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Abstract
In vector optimization, it is of increasing interest to study problems where the image
space (a real linear space) is preordered by a not necessarily solid (and not necessar-
ily pointed) convex cone. It is well-known that there are many examples where the
ordering cone of the image space has an empty (topological/algebraic) interior, for
instance in optimal control, approximation theory, duality theory. Our aim is to con-
sider Pareto-type solution concepts for such vector optimization problems based on
the intrinsic core notion (a well-known generalized interiority notion). We propose a
new Henig-type proper efficiency concept based on generalized dilating cones which
are relatively solid (i.e., their intrinsic cores are nonempty). Using linear functionals
from the dual cone of the ordering cone, we are able to characterize the sets of (weakly,
properly) efficient solutions under certain generalized convexity assumptions. Toward
this end, we employ separation theorems that are working in the considered setting.
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1 Introduction

It is known that in vector optimization (see Jahn [34]) as well as in Image Space
Analysis (ISA) in infinite dimensional linear spaces (see Giannessi [19,20] and refer-
ences therein) difficulties may arise because of the possible non-solidness of ordering
cones (for instance in the fields of optimal control, approximation theory, duality
theory). Thus, it is of increasing interest to derive optimality conditions and duality
results for such vector optimization problems using generalized interiority conditions
(see, e.g., Adán and Novo [1–4], Bagdasar and Popovici [6], Bao and Mordukhovich
[7], Borwein and Goebel [10], Borwein and Lewis [11], Grad [23,24], Grad and Pop
[25], Khazayel et al. [36], Zălinescu [43,44], and Cuong et al. [14]). Such conditions
can be formulated using the well-established generalized interiority notions given by
quasi-interior, quasi-relative interior, algebraic interior (also known as core), relative
algebraic interior (also known as intrinsic core, pseudo-relative interior or intrinsic rel-
ative interior). Moreover, it is known that for defining Pareto-type solution concepts
of vector optimization problems, generalized interiority notions are also useful.

In recent works related to vector optimization in real linear spaces (see, e.g., Adán
and Novo [1–4], Bao andMordukhovich [7], Khazayel et al. [36], Novo and Zălinescu
[40], Popovici [41], and Zhou, Yang and Peng [45]), the intrinsic core notion is studied
in more detail. Having two real linear spaces X and E , a vector-valued objective
function f : X → E , a certain set of constraints Ω ⊆ X , a convex (ordering) cone
K ⊆ E (with possibly empty algebraic interior), a vector optimization problem is
defined by

f (x) → min w.r.t. K

x ∈ Ω.

For this problem, a useful solution concept is to say that a point x̄ ∈ Ω is optimal if

{x ∈ Ω | f (x) ∈ f (x̄) − icor K } = ∅, (1)

where icor K denotes the intrinsic core of K . It is important to know that in finite
dimensional real linear spaces the intrinsic core of any convex set (cone) is nonempty
but core could be empty (for instance recession cones of polyhedral sets in R

n are
convex cones which are not necessarily solid). Replacing icor K in (1) by any other
(generalized) interior of K one can define other solution concepts. By involving an
appropriate set S ⊆ E \ {0} with icor K ⊆ S, one can define a stronger solution
concept by replacing (1) by

{x ∈ Ω | f (x) ∈ f (x̄) − S} = ∅. (2)

Notice that (2) implies (1). This leads to other solution concepts such as the well-
known concepts of Pareto efficiency (i.e., x̄ satisfies (2) for S := K \ (−K )) or proper
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Pareto efficiency (i.e., x̄ satisfies (2) with S := corC for some generalized dilating
cone C).

In order to derive theoretical (duality assertions) and computational (algorithms
based on scalarization) results in vector optimization, one needs strict monotonicity
properties concerning the scalarizing functional. This is the reason that the solution
concepts of weak and proper efficiency (based on generalized interiors of the ordering
cone) are of big importance. Using linear scalarization, it is known that the set of
properly (respectively, weakly) efficient solutions can be completely characterized in
the (generalized) convex case (e.g., if f [Ω] + K is convex) if the ordering cone is
pointed (respectively, solid).

In particular, the notion of proper Pareto efficiency is very important, not only froma
theoretical point of view, but also fromapractical point of view. In the literature, several
notions of proper efficiency have been proposed. The concept of proper efficiency
dates back to the work byKuhn and Tucker [37]. Geoffrion [18] proposed a very useful
concept for multiobjective optimization problems (i.e., E := R

m is them-dimensional
Euclidean space and K := R

m+ is the natural ordering cone in R
m) for which the

solutions have a bounded trade-off (which decision makers could prefer in view of
applications). Some well-known generalizations of the mentioned proper efficiency
concepts are given by Benson [8], Borwein [9], Borwein and Zhuang [12], Hartley
[29], Henig [30], andHurwicz [33]. These concepts and corresponding generalizations
are discussed, among others, by Durea, Florea and Strugariu [15], Eichfelder and
Kasimbeyli [16], Gutiérrez et al. [28], Hernández, Jiménez and Novo [31], Jahn [34,
Ch. 4], and Luc [38, Def. 2.1]. Moreover, an overview on different concepts including
corresponding relationships is given in Khan, Tammer and Zălinescu [35, Sec. 2.4],
and Guerraggio, Molno and Zaffaroni [27]. Furthermore, special cases for concepts of
properly efficient elements in finite dimensional spaces are presented in Ansari, Köbis
and Yao [5, Sec. 3.2.3], and Giorgi, Guerraggio and Thierfelder [21, Sec. 6.4].

To attack vector optimization problems, it is known that the Image Space Analysis
approach byGiannessi [19] (see also [20] for some perspectives on vector optimization
via ISA) is of great importance. In the ISA approach, one is constructing a certain
convex cone using the original ordering cone (defining the solution concept) as well
as the cone which is used to describe the constraints. So, the idea arises to consider
generalized interiority notions within ISA.We will not focus on this ISA approach but
like to highlight that the framework of this paper is useful for this field. Notice, also
for the case X := R

n , E := R
m and K := R

m+, the cone in the ISA approach is not
solid if beside inequality constraints also equality constraints appear in the problem.

The outline of the article is as follows.
First, in Sect. 2 we recall important algebraic properties of convex sets and convex

cones in linear spaces. In our main results, we will deal with relatively solid, convex
cones, and for proving them, we will use separation techniques in linear spaces that
are based on the intrinsic core notion (see [36] and Proposition 2.2).

In Sect. 3, we study vector optimization problems involving relatively solid, convex
cones which are not necessarily pointed. We will concentrate in this section on the
concept of Pareto efficiency as well as on the concept of weak Pareto efficiency (based
on the intrinsic core notion). For the sets of solutions of the given vector optimization
problem w.r.t. these concepts, we derive some useful properties and relationships.
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Henig-type proper efficiency concepts based on certain families of generalized
dilating cones play the main role in Sect. 4. Our proposed concept uses generalized
dilating cones which are relatively solid and convex (see Definition 4.2). Since our
concept is based on the intrinsic core notion, we are able to find (in the case that K
is not solid) a better inner approximation of the set of Pareto efficient solutions in
comparison with most of the known (Henig-type) proper efficiency concepts (see also
Remark 4.5).

In Sect. 5, we present scalarization results for vector optimization problems. For the
linear scalarization case, we are able to state representations for the sets of (weakly,
properly) efficient solutions under certain generalized convexity assumptions.

The article concludes in Sect. 6 with a brief summary and an outlook to future work.

2 Preliminaries in Preordered Linear Spaces

Throughout the paper, let E �= {0} be a real linear space, and let E ′ be its algebraic
dual space, which is given by

E ′ = {x ′ : E → R | x ′ is linear}.

It is well-known that E can be endowed with the strongest locally convex topology τc,
that is generated by the family of all the semi-norms defined on E (see Khan, Tammer
and Zălinescu [35, Sec. 6.3 ]). In the literature, the topology τc is known as the convex
core topology. According to [35, Prop. 6.3.1 ], the topological dual space of E , namely
(E, τc)

∗, is exactly the algebraic dual space E ′. In recent works (see, e.g., Khazayel
et al. [36], Novo and Zălinescu [40]), the convex core topology τc is used to derive
properties for algebraic interiority notions (such as core and intrinsic core).

2.1 Algebraic Interiority Notions

Let us define, for any two points x and x in E , the closed, the open, the half-open line
segments by

[x, x] := {(1 − λ)x + λx | λ ∈ [0, 1]}, (x, x) := {(1 − λ)x + λx | λ ∈ (0, 1)},
[x, x) := {(1 − λ)x + λx | λ ∈ [0, 1)}, (x, x] := {(1 − λ)x + λx | λ ∈ (0, 1]}.

Consider any set Ω ⊆ E . The smallest affine (respectively, linear) subspace of E
containing Ω is denoted by aff Ω (respectively, spanΩ). Two special subsets of Ω

will be of interest (c.f. Holmes [32, pp. 7–8]):

• the algebraic interior (or the core) of Ω , which is given as

corΩ := {x ∈ Ω | ∀ v ∈ E ∃ ε > 0 : x + [0, ε] · v ⊆ Ω},
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• the relative algebraic interior (or the intrinsic core) of Ω , which is defined by

icorΩ := {x ∈ Ω | ∀ v ∈ aff(Ω − Ω) ∃ ε > 0 : x + [0, ε] · v ⊆ Ω}.

Notice, for any nonempty set Ω ⊆ E , we have

corΩ =
{
icorΩ if aff Ω = E,

∅ otherwise ,

and if icorΩ �= ∅,

corΩ �= ∅ ⇐⇒ aff Ω = E .

The algebraic closure of Ω is defined using all linearly accessible points of Ω (c.f.
Holmes [32, p. 9]) as

aclΩ := {x ∈ E | ∃ x ∈ Ω : [x, x) ⊆ Ω}.

For any d ∈ E , the vector closure of Ω in the direction d is denoted by

vcld Ω := {x ∈ E | ∀ λ > 0 ∃ t ∈ [0, λ] : x + td ∈ Ω}.

Then, the set

vclΩ :=
⋃
d∈E

vcld Ω

is exactly the vector closure of Ω in the sense of Adán and Novo [3, Def. 1]. It is
well-known that

intτc Ω ⊆ rintτc Ω ⊆ icorΩ ⊆ Ω ⊆ aclΩ ⊆ vclΩ ⊆ clτc Ω ⊆ aff Ω.

Notice that clτcΩ , intτcΩ and rintτcΩ denotes the closure, the interior and the relative
interior of Ω with respect to the convex core topology τc, respectively.

2.2 Convex Sets

As usual, a set Ω ⊆ E is said to be convex if (x, x̄) ⊆ Ω for any x, x̄ ∈ Ω . Having a
convex set Ω ⊆ E , it is known that

aclΩ = vclΩ ⊆ clτc Ω, corΩ = intτc Ω, icorΩ = rintτc Ω,
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where each of these sets is convex as well. If, in addition, Ω is relatively solid (i.e.,
icorΩ �= ∅), then we have

⋃
x∈icorΩ,x∈aclΩ

[x, x) ⊆ icorΩ = icor(aclΩ) = icor(clτc Ω),

vclΩ = aclΩ = acl(icorΩ) = acl(aclΩ) = clτc (icorΩ) = clτc Ω.

In contrast, if Ω is a not relatively solid, convex set (hence, E has infinite dimension),
then it may happen that aclΩ �= clτc Ω (see Novo and Zălinescu [43, Ex. 1.1]).

To prove our main scalarization results for vector optimization problems in Sect. 5,
we will apply well-known separation results for convex sets in linear spaces.

Proposition 2.1 Assume thatΩ1,Ω2 ⊆ E are nonempty, convex sets, andΩ1 is solid.
Then, the following assertions are equivalent:

1◦ Ω2 ∩ corΩ1 = ∅.
2◦ ∃ x ′ ∈ E ′, α ∈ R,∀ω1 ∈ corΩ1, ω2 ∈ aclΩ2 : x ′(ω2) ≤ α < x ′(ω1).

For two relatively solid, convex sets we have the following separation result, which
is a consequence of the well-known support theorem by Holmes [32, p. 21] (see also
Khazayel et al. [36, Cor. 2.24]).

Proposition 2.2 Assume that Ω1,Ω2 ⊆ E are relatively solid, convex sets. Then, the
following assertions are equivalent:

1◦ (icorΩ1) ∩ (icorΩ2) = ∅.
2◦ ∃ x ′ ∈ E ′, α ∈ R,∀ω1 ∈ icorΩ1, ω2 ∈ icorΩ2 : 0 ≤ α < x ′(ω1) − x ′(ω2).

2.3 Convex Cones

In what follows, R+ denotes the set of nonnegative real numbers, while P := R++
denotes the set of positive real numbers. Recall that a cone K ⊆ E (i.e., 0 ∈ K =
R+ · K ) is convex if K + K = K ; nontrivial if {0} �= K �= E ; pointed if �(K ) :=
K ∩ (−K ) = {0}. The set �(K ) is called the lineality space of K . Notice that �(K ) ⊆
K ⊆ aff K , and K is a linear subspace of E if and only if K = �(K ).

In this paper, we assume that

K ⊆ E is a convex cone with K �= �(K ). (3)

Then, according to Khazayel et al. [36, Lem. 2.9], the following hold:

0 /∈ icor K , (icor K ) ∩ �(K ) = ∅, icor K � K � aff K .

Moreover, if K is relatively solid, then clτc K is not a linear subspace, i.e., clτc K �=
�(clτc K ). The following convex cone

K+ := {y′ ∈ E ′ | ∀ k ∈ K : y′(k) ≥ 0}
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is called the (algebraic) dual cone of K . It is well-known that acl K+ = K+ =
(acl K )+ = (clτc K )+. Moreover, if K is relatively solid, then

∅ �= K+ \ �(K+) = {x ′ ∈ E ′ | ∀ k ∈ icor K : x ′(k) > 0}
= {x ′ ∈ K+ \ {0} | ∃ k ∈ icor K : x ′(k) > 0}.

If K (respectively, K+) is solid, then K+ (respectively, K ) is pointed. Define

K # := {y′ ∈ E ′ | ∀ k ∈ K \ {0} : y′(k) > 0} ⊆ K+.

It is obvious that P · K # = K # = K # + K # = K+ + K # (hence, K # is convex).
Furthermore, if K # �= ∅, then K is pointed. In particular, the following set

K& := {y′ ∈ E ′ | ∀ k ∈ K \ �(K ) : y′(k) > 0}

will be of special interest. Since K �= �(K ), we have K& ⊆ K+ \ �(K+). Obviously,
K # = ∅ if �(K ) �= {0}; K # = K& if �(K ) = {0}. In addition, the following assertions
are provided by Khazayel et al. [36, Th. 4.1, Cor. 4.5]:

Lemma 2.1 ([36, Th. 4.1, Cor. 4.5]) Suppose that K is τc-closed and satisfies (3), and
K+ is relatively solid. Then:

1◦ ∅ �= icor K+ ⊆ K&.
2◦ If E has finite dimension, then icor K+ = K&.
3◦ K is pointed ⇐⇒ K # ⊇ K& ⇐⇒ K # �= ∅.

Notice that the τc-closedness assumption concerning K in Lemma 2.1 cannot be
omitted, as the example by Khazayel et al. [36, Ex. 4.3] shows.

Lemma 2.2 ([36, Lem. 2.9]) Suppose that K satisfies (3). Then, Q := K \ �(K ) is a
nonempty, convex set and the following properties hold:

P · Q = Q, K + Q = Q + Q = Q,

aff Q = Q − Q = K − K , icor Q = icor K ,⋃
x∈Q,x∈K

[x, x) ⊆ Q, cor K ⊆ icor K ⊆ Q ⊆ K ⊆ acl Q.

Having a cone K that satisfies (3), we are also interested in the analysis of the
subsets

Q0 := (K \ �(K )) ∪ {0} and P0 := (icor K ) ∪ {0}.

The next two lemmata, which are direct consequences of the results by Khazayel et
al. [36], show that the sets Q0 and P0 are actually nontrivial, pointed, convex cones.
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Lemma 2.3 Suppose that K satisfies (3). Then, Q0 := (K \�(K ))∪{0} is a nontrivial,
pointed, convex cone, and the following properties hold:

R+ · Q0 = Q0 = Q0 + Q0 ⊆ clτc Q0 = clτc K ,

aff Q0 = Q0 − Q0 = K − K = aff K ,

icor Q0 = icor K = Q0 + icor K = K + icor Q0,

K& = (Q0)
# = (Q0)

& ⊆ (Q0)
+ = K+.

Proof Directly follows from [36, Lem. 2.7, Lem. 2.9, Lem. 2.14]. ��

Lemma 2.4 Suppose that K is relatively solid and satisfies (3). Then, P0 := (icor K )∪
{0} is a nontrivial, pointed, relatively solid, convex cone, and the following properties
hold:

R+ · P0 = P0 = P0 + P0 ⊆ acl P0 = acl K ,

aff P0 = P0 − P0 = (icor K ) − icor K = K − K = aff K ,

icor P0 = icor K = P0 + icor K = K + icor P0,

K+ \ �(K+) = (P0)
# = (P0)

& ⊆ (P0)
+ = K+.

Proof It is well-known that P0 is a convex cone (hence, R+ · P0 = P0 = P0 + P0).
Clearly, K �= �(K ) implies that P0 is nontrivial. Since icor K ⊆ Q, we get P0 ⊆ Q0.
Because Q0 is pointed (by Lemma 2.3), we conclude that P0 is pointed as well.
Applying Lemma 2.2 for P0 in the role of K (hence, Q = icor K and Q0 = P0), we get
(icor K )− icor K = P0− P0, icor K = icor(icor K ) = icor P0 and acl K = acl P0(=
clτc P0 = clτc K ). Clearly, K+ = (acl K )+ = (acl P0)+ = (P0)+. Finally, in view of
[36,Lem. 2.7],we conclude aff P0 = P0−P0 = K−K = aff K , icor K = P0+icor K
and icor P0 = K + icor P0. By [36, Cor. 4.9], we get K+ \ �(K+) = (P0)# = (P0)&

taking into account the pointedness of P0. ��

The following lemma will play a key role for deriving characterizations of solution
sets of vector optimization problems under certain generalized convexity assumptions
(see Sect. 5).

Lemma 2.5 Suppose that K is relatively solid and satisfies (3). Assume A ⊆ E is a
nonempty set. Then, the following assertions hold:

1◦ For any x ∈ A, we have x + icor K = icor(x + K ) = icor(x + icor K ).
2◦ A + icor K ⊇ icor(A + K ).
3◦ If aff(K − K ) = aff((A + K ) − (A + K )), then A + icor K ⊆ icor(A + K ).
4◦ If A is relatively solid and convex, then

[⋃
k∈K

vclk(icor A)

]
+ icor K = (icor A) + icor K = icor(A + K ).
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5◦ If A + K is a relatively solid, convex set, then

[⋃
k∈K

vclk(icor(A + K ))

]
+ icor K = icor(A + K ) + icor K = icor(A + K ).

6◦ If K is solid, then A + cor K = cor(A + K ) = cor(A + cor K ).

Proof First, notice that icor(Ω1 + Ω2) = (icorΩ1) + icorΩ2 if Ω1,Ω1 ⊆ E are
relatively solid, convex sets (see Khan, Tammer and Zălinescu [35, Prop. 6.3.2], Novo
and Zălinescu [40, Cor. 2.1]).

1◦ Since K , icor K and {x} are relatively solid, convex sets, we have x + icor K =
(icor {x}) + icor K = icor(x + K ) and x + icor K = (icor {x}) + icor(icor K ) =
icor(x + icor K ).

2◦ Take some x ∈ icor(A+K ), and k ∈ icor K ⊆ aff K ⊆ aff((A+K )− (A+K )).
Then, there exists ε > 0 such that x − εk ∈ A + K , hence x ∈ A + K + εk ⊆
A + K + icor K = A + icor K .

3◦ A + icor K = ⋃
x∈A(x + icor K )

1◦= ⋃
x∈A icor(x + K ) ⊆ icor(A + K ), where

aff(K − K ) = aff((A + K ) − (A + K )) is needed for the last inclusion.
4◦ Clearly, since icor A ⊆ ⋃

k∈K vclk(icor A), we have icor(A + K ) = (icor A) +
icor K ⊆ [⋃

k∈K vclk(icor A)
]+icor K . In order to prove the remaining inclusion,

fix some k ∈ K , x ∈ vclk(icor A) and k̄ ∈ icor K . Then, there is ε > 0 such that
k̄ + [0, ε] · (−k) ⊆ icor K , and there is t ∈ [0, ε] such that x + tk ∈ icor A. Thus,
x + k̄ = (x + tk) + (k̄ + t(−k)) ∈ (icor A) + icor K = icor(A + K ).

5◦ Follows from 4◦ (applied for A + K in the role of A). Indeed,

[⋃
k∈K

vclk(icor(A + K ))

]
+ icor K = icor(A + K ) + icor K

= icor(A + K + K ) = icor(A + K ).

6◦ Since E = aff(K − K ) ⊆ aff((A + K ) − (A + K )), by 2◦ and 3◦ we get
A + cor K = A + icor K = icor(A + K ) = cor(A + K ).

Clearly, cor(A+ cor K ) ⊆ A+ cor K . Now, take some x ∈ A+ cor K and v ∈ E .
Then, there are a ∈ A and k ∈ cor K such that x = a + k. Moreover, using [35,
Lem. 2.5 (4)], there is ε > 0 such that k + [0, ε]v ⊆ cor K . Consequently, we get
x + [0, ε]v = a + k + [0, ε]v ⊆ A + cor K , hence x ∈ cor(A + cor K ).

��

Remark 2.1 The reverse implication in Lemma 2.5 (3◦) is false (for A := E and any
convex cone K with aff K �= E we have aff(K −K ) �= E = aff((A+K )− (A+K ))

and A + icor K = E = icor(A + K )).
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3 Pareto Efficiency andWeak Pareto Efficiency in Vector Optimization

Given two real linear spaces X and E , a nonempty feasible set Ω ⊆ X , and a vector-
valued objective function f : X → E , we consider the following vector optimization
problem:

f (x) → min w.r.t. K
x ∈ Ω,

(P)

where the image space E is preordered by a cone K such that (3) is fulfilled. It is
well-known that K induces on E a preorder relation �K defined, for any two points
y, y ∈ E , by

y �K y :⇐⇒ y ∈ y − K .

For notational convenience, we consider the binary relations≤0
K ,≤K and<K that are

defined, for any two points y, y ∈ E , by

y ≤0
K y :⇐⇒ y ∈ y − K \ {0},

y ≤K y :⇐⇒ y ∈ y − K \ �(K ),

y <K y :⇐⇒ y ∈ y − icor K .

One type of solutions of the problem (P) can be defined according to the next
definition (see, e.g., Bagdasar and Popovici [6, Sec. 2.2], Jahn [34, Def. 4.1], Khazayel
et al. [36, Sec. 5], and Luc [38, Def. 2.1]).

Definition 3.1 (Pareto efficiency) A point x ∈ Ω is said to be a Pareto efficient solution
if for any x ∈ Ω the condition f (x) �K f (x) implies f (x) �K f (x). The set of all
Pareto efficient solutions of (P) is denoted by

Eff(Ω | f , K ) := {x ∈ Ω | ∀x ∈ Ω : f (x) �K f (x) ⇒ f (x) �K f (x)}.

The following representations of Eff(Ω | f , K ) are well-known.

Lemma 3.1 Suppose that K satisfies (3). The following assertions hold:

1◦ Eff(Ω | f , K ) = {x ∈ Ω | � x ∈ Ω : f (x) ≤K f (x)}.
2◦ If K is pointed, then

Eff(Ω | f , K ) = {x ∈ Ω | � x ∈ Ω : f (x) ≤0
K f (x)} =: Eff0(Ω | f , K ).

Remark 3.1 Some authors are also interested to compute solutions of the set Eff0(Ω |
f , K ) from Lemma 3.1 (2◦) when K is a (not necessarily pointed) convex cone (see,
e.g., Bao and Mordukhovich [7, p. 302]). Notice that Eff0(Ω | f , K ) ⊆ Eff(Ω |
f , K ) and Eff(Ω | f , Q0) = Eff0(Ω | f , Q0) = Eff(Ω | f , K ), where Q0 =
(K \ �(K )) ∪ {0} (see also Lemma 2.3).

Lemma 3.2 Assume that K1, K2 ⊆ E are convex cones with K1 \ �(K1) �= ∅ �=
K2 \ �(K2). Then, the following assertions hold:
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1◦ If K1 \ �(K1) ⊆ K2 \ �(K2), then Eff(Ω | f , K2) ⊆ Eff(Ω | f , K1).
2◦ If (K1 \ �(K1)) ∩ �(K2) = ∅, then Eff(Ω | f , K2) ⊆ Eff(Ω | f , K1 ∩ K2).

Proof 1◦ Clearly, if x ∈ Eff(Ω | f , K2) and ∅ �= K1 \ �(K1) ⊆ K2 \ �(K2),
then f [Ω] ∩ ( f (x) − K1 \ �(K1)) ⊆ f [Ω] ∩ ( f (x) − K2 \ �(K2)) = ∅, i.e.,
x ∈ Eff(Ω | f , K1).

2◦ Follows by 1◦ (applied for K1 ∩ K2 in the role of K1). Indeed, since

(K1 ∩ K2) \ �(K1 ∩ K2) = [(K1 ∩ K2) \ (�(K1) ∪ �(K2))]

∪ [(�(K1) ∩ (K2 \ �(K2))]

∪ [(K1 \ �(K1)) ∩ �(K2)] ,

it is easy to check that (K1 ∩ K2) \ �(K1 ∩ K2) ⊆ K2 \ �(K2) if and only if
(K1 \ �(K1)) ∩ �(K2) = ∅. ��
A kind of weak solution concept for the vector optimization problem (P) will be

given in the next definition where the intrinsic core of the convex cone K is used.

Definition 3.2 (Weak Pareto efficiency) A point x ∈ Ω is said to be a weakly Pareto
efficient solution if there is no x ∈ Ω such that f (x) <K f (x). The set of all weakly
Pareto efficient solutions of (P) is denoted by

WEff(Ω | f , K ) := {x ∈ Ω | � x ∈ Ω : f (x) <K f (x)}.

Remark 3.2 The weak solution concept considered in Definition 3.2, which is based
on the intrinsic core notion, is also studied by Adán and Novo [2, Def. 5], Bao and
Mordukhovich [7, p. 303], Khazayel et al. [36, Sec. 5] and Zhou, Yang and Peng [45,
Def. 4.1].

It is obvious that Eff(Ω | f , K ) ⊆ WEff(Ω | f , K ), and if K is not relatively
solid, then WEff(Ω | f , K ) = Ω . Moreover, since icor K = (icor K ) \ (−icor K ),
one can easily check that

WEff(Ω | f , K ) = {x ∈ Ω | ∀x ∈ Ω : f (x) <K f (x) ⇒ f (x) <K f (x)}.

Next, we present some localization results for the image points of weakly Pareto
efficient solutions:

Lemma 3.3 Suppose that K is relatively solid and satisfies (3). Then, the following
assertions hold:

1◦ If K ⊆ aff( f [Ω] − f [Ω]), then f [WEff(Ω | f , K )] ⊆ f [Ω] \ icor f [Ω].
2◦ If f [Ω] is solid, then f [WEff(Ω | f , K )] ⊆ f [Ω] \ cor f [Ω].
3◦ f [WEff(Ω | f , K )] ⊆ f [Ω] \ icor( f [Ω] + K ).
4◦ If K is solid, then f [WEff(Ω | f , K )] ⊆ f [Ω] \ cor( f [Ω] + K ) = f [Ω] \

( f [Ω] + cor K).
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Proof 1◦ Assume that K ⊆ aff( f [Ω] − f [Ω]). Take some x ∈ WEff(Ω | f , K ).
Obviously, f (x) ∈ f [Ω]. On the contrary, assume that f (x) ∈ icor f [Ω]. Thus,
for v ∈ −icor K ⊆ aff( f [Ω] − f [Ω]) there is ε > 0 such that f (x) + εv ∈
f [Ω], i.e., f (x̄) = f (x) + εv for some x̄ ∈ Ω . Then, f (x) − f (x̄) = −εv ∈
ε · (icor K ) ⊆ icor K , hence f (x̄) ∈ f [Ω] ∩ ( f (x) − icor K ), a contradiction to
x ∈ WEff(Ω | f , K ).

2◦ If f [Ω] is solid, then E = aff( f [Ω] − f [Ω]) and icor f [Ω] = cor f [Ω], hence
2◦ is a direct consequence of 1◦.

3◦ Take some x ∈ WEff(Ω | f , K ). Obviously, f (x) ∈ f [Ω]. On the contrary,
assume that f (x) ∈ icor( f [Ω] + K ). Thus, for v ∈ −icor K ⊆ aff(K − K ) ⊆
aff(( f [Ω]+K )−( f [Ω]+K )) there is ε > 0 such that f (x)+εv ∈ f [Ω]+K , i.e.,
f (x) + εv = f (x̄) + k for some x̄ ∈ Ω and some k ∈ K . Then, f (x) − f (x̄) =
k − εv ∈ K + icor K = icor K , hence f (x̄) ∈ f [Ω] ∩ ( f (x) − icor K ), a
contradiction to x ∈ WEff(Ω | f , K ).

4◦ Is a direct consequence of 3◦ and Lemma 2.5 (6◦). ��
Remark 3.3 Notice that the condition K ⊆ aff( f [Ω]− f [Ω]) in Lemma 3.3 (1◦) is not
superfluous (since, for K �= {0} and Ω = {x}, we have f [Ω] = { f (x)} = icor f [Ω]
and K �= {0} = aff( f [Ω] − f [Ω]) but f [WEff(Ω | f , K )] = { f (x)} � ∅ =
f [Ω] \ icor f [Ω]).
Lemma 3.4 Suppose that K is relatively solid and satisfies (3). Consider P0 =
(icor K ) ∪ {0} (from Lemma 2.4). Then,

Eff(Ω | f , K ) ⊆ WEff(Ω | f , K ) and Eff(Ω | f , P0) = WEff(Ω | f , K ).

Proof First, let us show the inclusion Eff(Ω | f , K ) ⊆ WEff(Ω | f , K ). Take some
x̄ ∈ Eff(Ω | f , K ). By Lemma 2.2, icor K ⊆ K \ �(K ), and so, applying Lemma 3.1
(1◦) we infer f [Ω] ∩ ( f (x̄) − icor K ) ⊆ f [Ω] ∩ ( f (x̄) − K \ �(K )) = ∅. Thus,
x̄ ∈ WEff(Ω | f , K ).

Let us show the remaining equality Eff(Ω | f , P0) = WEff(Ω | f , K ). Since K
is a relatively solid, convex cone with K �= �(K ) (hence, 0 /∈ icor K ), we know that
P0 is a relatively solid, pointed, convex cone as well. Thus, we conclude

Eff(Ω | f , P0) = {x̄ ∈ Ω | f [Ω] ∩ ( f (x̄) − P0 \ �(P0)) = ∅}
= {x̄ ∈ Ω | f [Ω] ∩ ( f (x̄) − P0 \ {0}) = ∅}
= {x̄ ∈ Ω | f [Ω] ∩ ( f (x̄) − icor K ) = ∅}
= WEff(Ω | f , K ).

��
Remark 3.4 Taking into account Remark 3.1, all known results which are related to
the set Eff0(Ω | f , K̄ ) for a (pointed) convex cone K̄ (however, without assuming
closedness of K̄ ) are useful to derive results for Eff(Ω | f , K ) and WEff(Ω | f , K )

since Eff0(Ω | f , Q0) = Eff(Ω | f , K ) and Eff(Ω | f , P0) = Eff0(Ω | f , P0) =
WEff(Ω | f , K ) for the (nontrivial, pointed) convex cones Q0 and P0 (see also
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Lemmata 2.3 and 2.4 ). For instance, algorithms derived by Günther and Popovici
[26] for discrete vector optimization problems involving a (not necessarily closed)
nontrivial, pointed, convex cone K could be applied for Q0 and P0, respectively. In this
way, assuming Ω has a finite number of elements, one can compute the sets Eff0(Ω |
f , K ), Eff(Ω | f , K ) and WEff(Ω | f , K ) by using the effective algorithms in [26].

Lemma 3.5 Assume that K1, K2 ⊆ E are convex cones. Then, the following assertions
hold:

1◦ If icor K1 ⊆ icor K2, then WEff(Ω | f , K2) ⊆ WEff(Ω | f , K1).
2◦ If (icor K1) ∩ icor K2 �= ∅, then

WEff(Ω | f , K1) ∪ WEff(Ω | f , K2) ⊆ WEff(Ω | f , K1 ∩ K2).
3◦ If aff K1 ⊆ aff K2 and K1 ∩ (icor K2) �= ∅, then aff(K1 ∩ K2) = aff K1 and

WEff(Ω | f , K1) ∪ WEff(Ω | f , K2) ⊆ WEff(Ω | f , K1 ∩ K2).

Proof 1◦ Clearly, if x ∈ WEff(Ω | f , K2), then f [Ω]∩ ( f (x)− icor K1) ⊆ f [Ω]∩
( f (x) − icor K2) = ∅, i.e., x ∈ WEff(Ω | f , K1).

2◦ Notice that icor(Ω1 ∩Ω2) = (icorΩ1)∩ icorΩ2 if Ω1,Ω1 ⊆ E are convex sets
with (icorΩ1) ∩ icorΩ2 �= ∅ (see Novo and Zălinescu [40, Cor. 2.1]). Thus, for
any i = 1, 2, we have icor(K1 ∩ K2) = (icor K1) ∩ icor K2 ⊆ icor Ki , and so, 2◦
follows easily by 1◦.

3◦ Assume that aff K1 ⊆ aff K2 and K1∩(icor K2) �= ∅. ByNovo and Zălinescu [40,
Lem. 2.1], we get aff(K1∩K2) = aff K1 and (icor K1)∩icor K2 = icor(K1∩K2),
and so, 3◦ follows also easily by 1◦. ��

4 Henig-type Proper Efficiency in Vector Optimization

As usual for Henig-type proper efficiency concepts, (generalized) dilating cones for
the cone K (which satisfies (3))will play an important role in ourwork.More precisely,
our considered proper efficiency conceptswillmainly be based on two specific families
of cones, namely C(K ) and D(K ), that we introduce in the next section.

4.1 Generalized Dilating Cones

Let us define two specific families of convex cones related to K ,

C(K ) := {C ⊆ E | C is a convex cone with K \ �(K ) ⊆ icorC and C �= �(C)}.

and

D(K ) := {D ⊆ E | D is a nontrivial, convex cone with K \ �(K ) ⊆ cor D}.

It is easy to check thatD(K ) ⊆ C(K ). Moreover, K ⊆ acl(K \�(K )) ⊆ acl(icorC) =
aclC for C ∈ C(K ) as well as K ⊆ acl D for D ∈ D(K ). In Khan, Tammer and
Zălinescu [35, Def. 2.4.14] (applied for (E, τc)), the cones from the set D(K ) are
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called “generalized dilating cones.” We will also use this name for the cones of the
family C(K ).

From Khan, Tammer and Zălinescu [35, Lem. 2.4.15], we derive the following
result, which states some important relationships between the cone K and cones from
the set D(K ).

Lemma 4.1 Suppose that K satisfies (3). Then, the following assertions hold:

1◦ D(K ) �= ∅ ⇐⇒ K& �= ∅.
2◦ If D ∈ D(K ), then clτc (K \ �(K )) + cor D = K \ �(K ) + cor D.
3◦ If D ∈ D(K ), then K + cor D = cor D and K + acl D = acl D.
4◦ K& = ⋃

D∈D(K ) D
+ \ {0}.

5◦ K ∈ D(K ) ⇐⇒ K \ �(K ) = cor K ⇐⇒ K = (cor K ) ∪ �(K ).
6◦ If K ∈ D(K ), then K is solid.

Proof 1◦–4◦ Can easily be derived from Khan, Tammer and Zălinescu
[35, Lem. 2.4.15] taking into account intτc S = cor S for any convex set S ⊆ E .

5◦ Since K �= �(K ), we have cor K ⊆ K \ �(K ) and (cor K ) ∩ �(K ) = ∅, hence
K ∈ D(K ) ⇐⇒ cor K = K \ �(K ) ⇐⇒ K = (cor K ) ∪ �(K ).

6◦ If K ∈ D(K ), by 5◦, we have cor K = K \ �(K ) �= ∅. ��
The next lemma, which includes also an intrinsic counterpart to Lemma 4.1, states

relationships between the cone K and cones from C(K ) and D(K ).

Lemma 4.2 Suppose that K satisfies (3). Then, the following assertions hold:

1◦ C(K ) �= ∅ ⇐⇒ K& �= ∅.
2◦ If C ∈ C(K ), then acl(K \ �(K )) + icorC = K \ �(K ) + icorC.
3◦ If C ∈ C(K ), then K + icorC = icorC and K + aclC = aclC.
4◦ K& = ⋃

C∈C(K ) C
+ \ �(C+).

5◦ K ∈ C(K ) ⇐⇒ K \ �(K ) = icor K ⇐⇒ K = (icor K ) ∪ �(K ).
6◦ If K ∈ C(K ), then K is relatively solid.
7◦ If K is solid, then C(K ) = D(K ).

Proof For notational convenience, let us define Q := K \ �(K ).

1◦ If C(K ) �= ∅, then there is C ∈ C(K ) (in particular, C �= �(C) and icorC �= ∅)
such that ∅ �= C+ \ �(C+) = ((icorC) ∪ {0})# ⊆ (Q ∪ {0})# = K&.

If K& �= ∅, then by Lemma 4.1 (1◦) we get ∅ �= D(K ) ⊆ C(K ).
2◦ Since Q ⊆ acl Q, the inclusion “⊇” is clear. In order to show “⊆”, take some

x ∈ (acl Q) + icorC . There exist k ∈ acl Q and c ∈ icorC such that x = k + c.
For the case k ∈ Q, the inclusion holds. Now, assume that k ∈ (acl Q) \ Q.
Consequently, there is k ∈ Q such that [k, k) ⊆ Q. Define v := k − k. Since
Q ⊆ C , we have k, k ∈ acl Q ⊆ aclC . Hence, (by [36, Lem. 2.7]), we get
v ∈ aclC − aclC = C − C = aff(C − C). Thus, there is ε > 0 such that
c + [0, ε]v ⊆ C . Using [35, Lem. 2.5 (4)], there is δ ∈ (0,min{1, ε}) such that
c + [0, δ]v ⊆ icorC . Finally, we get

x = k + c = (k − δv) + (c + δv) = ((1 − δ)k + δk) + (c + δv)

∈ (k, k) + icorC ⊆ Q + icorC .
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3◦ Using similar ideas as in the proof of [35, Lem. 2.4.15], one gets

icorC ⊆ K + icorC (since 0 ∈ K )

⊆ acl Q + icorC (in view of Lemma 2.2)

= Q + icorC (in view of 2◦)
⊆ icorC + icorC (since C ∈ C(K ))

⊆ icorC,

hence Q + icorC = icorC .
Because 0 ∈ K ⊆ aclC , we get K + aclC = aclC .

4◦ The result is obvious if K& = ∅ (see part 1◦). Otherwise, since D ∈ D(K ) ⊆ C(K )

is solid, hence D+ is pointed (i.e., �(D+) = {0}), we get

K& =
⋃

D∈D(K )

D+ \ {0} ⊆
⋃

C∈C(K )

C+ \ �(C+)

taking into account Lemma 4.1 (4◦).
For any C ∈ C(K ), we have K& ⊇ C+ \ �(C+), as the proof of 1◦ shows.

5◦ Since K �= �(K ), we have icor K ⊆ Q and (icor K ) ∩ �(K ) = ∅, hence K ∈
C(K ) ⇐⇒ icor K = Q ⇐⇒ K = (icor K ) ∪ �(K ).

6◦ If K ∈ C(K ), by 5◦, we have icor K = Q �= ∅.
7◦ Suppose that K is solid. D(K ) ⊆ C(K ) is clear. Take some C ∈ C(K ). First,

notice that C is a nontrivial, convex cone. Because cor K ⊆ Q ⊆ icorC, we get
icorC = corC �= ∅. Thus, we conclude that C ∈ D(K ). ��

Remark 4.1 By Lemma 2.1 (1◦), Lemma 4.1 (1◦) and Lemma 4.2 (1◦), for any τc-
closed, convex cone K ⊆ E with a relatively solid dual cone K+, we have K& �= ∅,
and so C(K ) ⊇ D(K ) �= ∅.

4.2 Henig Proper Efficiency

In the following, we study a well-known Henig-type proper efficiency concept.

Definition 4.1 (Proper efficiency in the sense of Henig)
A point x ∈ Ω is said to be a classical Henig properly efficient solution if there is

a nontrivial, convex cone D ⊆ E with K \ �(K ) ⊆ cor D (i.e., D ∈ D(K )) such that
x ∈ Eff(Ω | f , D). The set of all classical Henig properly efficient solutions of (P)
is denoted by PEffc(Ω | f , K ).

Remark 4.2 Consider a real linear topological space (E, τ ). The original concept of
proper efficiency proposed by Henig in [30] is formulated with the family of dilating
cones

DHe(K ) := {D ⊆ E | D is a convex cone with K \ {0} ⊆ intτ D}.
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According to Henig [30, Def. 2.1], a point x ∈ Ω is properly efficient if there is
D ∈ DHe(K ) such that x ∈ Eff0(Ω | f , D). El Maghri and Laghdir [17], Khan,
Tammer and Zălinescu [35, Def. 2.4.13], and Luc [38, Def. 2.1] are studying the
concept from Definition 4.1 with the family of dilating cones

DKTZ(K ) := {D ⊆ E | D is a nontrivial, convex cone with K \ �(K ) ⊆ intτ D}

in the role of D(K ). Notice that DHe(K ) \ {E} ⊆ DKTZ(K ) ⊆ D(K ) ⊆ C(K ). If E
is endowed with the convex core topology τc, then DKTZ(K ) = D(K ), and if further
K is pointed, then DHe(K ) \ {E} = DKTZ(K ) = D(K ).

Lemma 4.3 ([35, Sec. 2.4]) Suppose that K satisfies (3). Then, the following assertions
hold:

1◦ PEffc(Ω | f , K ) ⊆ Eff(Ω | f , K ).

2◦ PEffc(Ω | f , K ) = ⋃
D∈D(K ) Eff(Ω | f , D) = ⋃

D∈D(K ) WEff(Ω | f , D)

= ⋃
D∈D(K ) WEff(Ω | f , acl D).

3◦ If K ∈ D(K ), then PEffc(Ω | f , K ) = Eff(Ω | f , K ) = WEff(Ω | f , K ).

4.3 An Extension of Henig Proper Efficiency

In the following, we will propose an extension of the concept of proper efficiency in
the sense of Henig [30]. To our knowledge, it is a extended approach to use the family
C(K ) of generalized dilating cones of K in order to define a new Henig-type proper
efficiency concept.

Definition 4.2 (Extended proper efficiency in the sense of Henig)
A point x ∈ Ω is said to be a Henig properly efficient solution if there is a convex

cone C ⊆ E with K \ �(K ) ⊆ icorC and C �= �(C) (i.e., C ∈ C(K )) such that
x ∈ Eff(Ω | f ,C). The set of all Henig properly efficient solutions of (P) is denoted
by PEff(Ω | f , K ).

Remark 4.3 Zhou,Yang andPeng [45,Def. 4.2] introduced a similarHenig-type proper
efficiency concept based on the family of generalized dilating cones

CZYP(K ) := {C ⊆ E | C is a nontrivial, pointed, convex cone with K \ {0} ⊆ icorC},

where the authors assume that K is a nontrivial, pointed, convex cone. Hence, this
family CZYP(K ) is always contained in the family C(K ) (however, notice that C ∈
C(K )maynot be pointed). InRemark4.7,wewill take a closer lookon the relationships
between our concept fromDefinition 4.2 and the concept proposed by Zhou, Yang and
Peng [45, Def. 4.2].

First properties for the set of Henig properly efficient solutions (in the sense of
Definition 4.2) are studied in the following lemma.

Lemma 4.4 Suppose that K satisfies (3). Then, the following assertions hold:
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1◦ PEffc(Ω | f , K ) ⊆ PEff(Ω | f , K ) ⊆ Eff(Ω | f , K ).

2◦ If C(K ) = D(K ), then PEffc(Ω | f , K ) = PEff(Ω | f , K ).

3◦ If C(K ) = ∅ ( ⇐⇒ D(K ) = ∅ ⇐⇒ K& = ∅), then PEffc(Ω | f , K ) =
PEff(Ω | f , K ) = ∅.

4◦ PEff(Ω | f , K ) = ⋃
C∈C(K ) Eff(Ω | f ,C) = ⋃

C∈C(K ) WEff(Ω | f ,C).

5◦ If K ∈ C(K ), then PEff(Ω | f , K ) = Eff(Ω | f , K ) = WEff(Ω | f , K ).

Proof 1◦ Since D(K ) ⊆ C(K ), we have PEffc(Ω | f , K ) ⊆ PEff(Ω | f , K ). Now,
let x ∈ PEff(Ω | f , K ). Hence, there is C ∈ C(K ) with x ∈ Eff(Ω | f ,C).
In view of Lemma 2.2, we have ∅ �= K \ �(K ) ⊆ icorC ⊆ C \ �(C). Thus, by
Lemma 3.2 (1◦), we conclude x ∈ Eff(Ω | f ,C) ⊆ Eff(Ω | f , K ).

2◦ This assertion is obvious.
3◦ Follows by the definition of PEff(Ω | f , K ) taking into account Lemmata 4.1 and

4.2 .
4◦ By the definition of PEff(Ω | f , K ), and since Eff(Ω | f ,C) ⊆ WEff(Ω | f ,C)

for any C ∈ C(K ) (by Lemma 3.4), we have

PEff(Ω | f , K ) =
⋃

C∈C(K )

Eff(Ω | f ,C) ⊆
⋃

C∈C(K )

WEff(Ω | f ,C). (4)

Fix an arbitrarily C̄ ∈ C(K ) and define C̃ := (icor C̄)∪{0}. ByLemma2.4 (applied
for C̄ in the role of K ), C̃ is a convex cone with ∅ �= K \ �(K ) ⊆ icor C̄ = icor C̃
and C̃ �= {0} = �(C̃), hence C̃ ∈ C(K ). Lemma 3.4 yields

WEff(Ω | f , C̄) = Eff(Ω | f , C̃) ⊆
⋃

C∈C(K )

Eff(Ω | f ,C). (5)

Combining (4) and (5), we conclude 4◦.
5◦ Suppose that K ∈ C(K ). By Lemma 4.2 (5◦), we get K \ �(K ) = icor K �= ∅,

and so Eff(Ω | f , K ) = WEff(Ω | f , K ). Moreover, by 1◦, we have PEff(Ω |
f , K ) ⊆ Eff(Ω | f , K ), and by 4◦ and the fact that K ∈ C(K ),

Eff(Ω | f , K ) ⊆
⋃

C∈C(K )

Eff(Ω | f ,C) = PEff(Ω | f , K ).

��
Remark 4.4 In view of Lemma 4.2 (5◦), for any not relatively solid, convex cone K
we have K /∈ C(K ).

Remark 4.5 Lemma 4.4 (1◦) motivates our proper efficiency concept given in Defini-
tion 4.2. It is important to know that any inclusion stated in Lemma 4.4 (1◦) can be
strict. Indeed, if K is not solid, we will see in Example 5.3 that PEffc(Ω | f , K ) =
PEff(Ω | f , K ) does not hold in general (even in the case that f [Ω] + K is a solid,
convex set). More precisely, in Example 5.3, we consider a relatively solid (but not
solid), convex cone K which satisfies K /∈ C(K ) and

PEffc(Ω | f , K ) � PEff(Ω | f , K ) � Eff(Ω | f , K ) = WEff(Ω | f , K ).
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Lemma 4.5 Suppose that K satisfies (3). Then,

PEff(Ω | f , K ) =
⋃

C∈C(K )

WEff(Ω | f ,C) =
⋃

C∈C0(K )

WEff(Ω | f ,C)

=
⋃

C∈C0(K )

Eff(Ω | f ,C),

where

C(K ) := {C ⊆ E | C is a convex cone with K \ �(K ) ⊆ icorC and aclC = C �= �(C)},
C0(K ) := {C ⊆ E | C is a nontrivial, pointed, convex cone with K \ �(K ) ⊆ icorC}.

Proof Clearly, C(K ) ⊆ C(K ) and C0(K ) ⊆ C(K ), hence

⋃
C∈C(K )∪C0(K )

WEff(Ω | f ,C) ⊆
⋃

C∈C(K )

WEff(Ω | f ,C) = PEff(Ω | f , K )

in view of Lemma 4.4 (4◦). Take some C ∈ C(K ), i.e., C is a relatively solid, convex
cone with ∅ �= K \ �(K ) ⊆ icorC and C �= �(C). Define C̄ := (C \ �(C)) ∪ {0} and
C̃ := (icorC) ∪ {0}. By Lemmas 2.3 and 2.4 (applied for the convex cone C), we get
icorC = icor C̄ = icor C̃ = icor(aclC). Notice that the convex cones C̄ and C̃ are
relatively solid, nontrivial and pointed. SinceC( �= �(C)) is relatively solid, the convex
cone aclC satisfies aclC = clτc C �= �(clτc C) = �(aclC). Hence, for C̄, C̃ ∈ C0(K )

and aclC ∈ C(K ) we have

WEff(Ω | f ,C) = WEff(Ω | f , C̄) = WEff(Ω | f , C̃) = WEff(Ω | f , aclC).

Thus, we derive the first two equalities.
Observing that Eff(Ω | f ,C) ⊆ WEff(Ω | f ,C) = Eff(Ω | f , C̃) for any

C ∈ C0(K ), we get the last equality. ��
Remark 4.6 Notice that we have

K& �= ∅ ⇐⇒ D(K ) �= ∅ ⇐⇒ C(K ) �= ∅ ⇐⇒ C0(K ) �= ∅ ⇐⇒ C(K ) �= ∅.

Remark 4.7 Consider the pointed, convex cone Q0 = (K \ �(K )) ∪ {0} from
Lemma 2.3. For the family CZYP(Q0) (in the sense of Zhou, Yang and Peng [45],
see Remark 4.3), we have CZYP(Q0) = C0(K ) ⊇ CZYP(K ), hence (by Lemma 4.5),

PEff(Ω | f , K ) =
⋃

C∈C0(K )

Eff(Ω | f ,C)

=
⋃

C∈CZYP(Q0)

Eff0(Ω | f ,C) (=: PEffZYP(Ω | f , Q0))
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⊇
⋃

C∈CZYP(K )

Eff0(Ω | f ,C) (=: PEffZYP(Ω | f , K )).

If K is pointed, then Q0 = K , C0(K ) = CZYP(K ) and PEff(Ω | f , K ) =
PEffZYP(Ω | f , K ), hence solutions according to Definition 4.2 are exactly the same
solutions according to [45, Def. 4.2]. Notice that all results derived in our paper (for
not necessarily pointed, convex cones) are useful for the concepts considered in [45].

Lemma 4.6 Assume that K1, K2 ⊆ E are convex cones with K1 \ �(K1) �= ∅ �=
K2 \ �(K2). Then, the following assertions hold:

1◦ If K1 \ �(K1) ⊆ K2 \ �(K2), then PEff(Ω | f , K2) ⊆ PEff(Ω | f , K1).
2◦ If (K1 ∩ K2) \ �(K1 ∩ K2) �= ∅ and (K1 \ �(K1)) ∩ �(K2) = ∅, then PEff(Ω |

f , K2) ⊆ PEff(Ω | f , K1 ∩ K2).

Proof 1◦ Take some x ∈ PEff(Ω | f , K2). Then, there is C ∈ C(K2) such that
x ∈ Eff(Ω | f ,C). Because K1 \ �(K1) ⊆ K2 \ �(K2) ⊆ icorC , we have
C ∈ C(K1), hence x ∈ PEff(Ω | f , K1).

2◦ Directly follows by 1◦ (applied for K1 ∩ K2 in the role of K1). Notice that (K1 ∩
K2) \ �(K1 ∩ K2) ⊆ K2 \ �(K2) is equivalent to (K1 \ �(K1)) ∩ �(K2) = ∅. ��

5 Scalarization Results

Let two real linear spaces X and E , a nonempty feasible setΩ ⊆ X , and avector-valued
objective function f : X → E be given. Beside the vector optimization problem (P)
from Sect. 3, we consider the following scalar optimization problem

{
(ϕ ◦ f )(x) → min

x ∈ Ω,
(Pϕ)

where ϕ : E → R is a real-valued function. Clearly, to get useful relationships
between the problems (P) and (Pϕ) one needs to impose certain properties on ϕ. By
solving the scalar problem (Pϕ) (with a specific function ϕ), one can also get some
knowledge about the original vector problem (P). Applying such a strategy is called
scalarization method in the literature of vector optimization. Within such methods, the
function ϕ is called scalarization function. For more details, we refer also the reader
to the standard books of vector/set optimization by Boţ, Grad and Wanka [13], Grad
[23], Jahn [34], Khan, Tammer and Zălinescu [35], and Luc [38].

In this paper, we like to analyze the relationships between solutions of (Pϕ) and the
(weakly, properly) efficient solutions of (P) for the case that ϕ satisfies certain mono-
tonicity properties. For doing this, we recall monotonicity concepts for the function ϕ

(c.f. Jahn [34, Def. 5.1]).
Given binary relations ∼E∈ {�K ,≤0

K ,≤K ,<K } and ∼R∈ {<,≤}, a function
ϕ : E → R is said to be (∼E , ∼R)-increasing if

∀ y, y ∈ E, y ∼E y : ϕ(y) ∼R ϕ(y).
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As an immediate consequence, any (≤0
K , <)-increasing function is (�K , ≤)-

increasing, while any (≤K , <)-increasing function is (<K , <)-increasing.

Lemma 5.1 ([36, Lem. 5.5]) Suppose that K satisfies (3). Then, the following asser-
tions hold:

1◦ Any x ′ ∈ K+ is (�K , ≤)-increasing.
2◦ Assume that K is relatively solid. Any x ′ ∈ K+ \ �(K+) is (<K , <)-increasing.
3◦ Any x ′ ∈ K& is (≤K , <)-increasing.
4◦ Any x ′ ∈ K # is (≤0

K , <)-increasing.

Next, we present some scalarization results for the vector optimization problem (P)
by using increasing scalarization functions (see also Khazayel et al. [36, Lem. 5.6]).

Lemma 5.2 Consider a real-valued function ϕ : E → R. Then, the following asser-
tions hold:

1◦ If ϕ is (<K , <)-increasing, then argminx∈Ω (ϕ ◦ f )(x) ⊆ WEff(Ω | f , K ).
2◦ If ϕ is (≤K , <)-increasing, then argminx∈Ω (ϕ ◦ f )(x) ⊆ Eff(Ω | f , K ).
3◦ If ϕ is (≤K , ≤)-increasing, and argminx∈Ω (ϕ ◦ f )(x) = {x} for some x ∈ Ω ,

then x ∈ Eff(Ω | f , K ).
4◦ If ϕ is (<C , <)-increasing or (≤C , <)-increasing for some C ∈ C(K ), then

argminx∈Ω (ϕ ◦ f )(x) ⊆ PEff(Ω | f , K ).
5◦ If ϕ is (<D, <)-increasing or (≤D, <)-increasing for some D ∈ D(K ), then

argminx∈Ω (ϕ ◦ f )(x) ⊆ PEffc(Ω | f , K ).

Proof Assertions 1◦ − 3◦ are given in [36, Lem. 5.6], while assertion 4◦ is a conse-
quence of 1◦ and 2◦ (applied for C ∈ C(K ) in the role of K ) taking into account
PEff(Ω | f , K ) = ⋃

C∈C(K ) Eff(Ω | f ,C) = ⋃
C∈C(K ) WEff(Ω | f ,C).

The proof of 5◦ is similar to the proof of 4◦. ��
Remark 5.1 Notice that the convex cone K considered inLemma5.2 is neither assumed
to be pointed nor solid, in contrast to the known results by Jahn [34, Lem. 5.14 and
5.24].

For the linear scalarization case, we derive the following result:

Theorem 5.1 Suppose that K satisfies (3). Then:

1◦ For any x ′ ∈ K+ \ �(K+), we have argminx∈Ω (x ′ ◦ f )(x) ⊆ WEff(Ω | f , K ).
2◦ For any x ′ ∈ K&, we have argminx∈Ω (x ′ ◦ f )(x) ⊆ PEffc(Ω | f , K ) ⊆

PEff(Ω | f , K ).
3◦ For any x ′ ∈ K+ with argminx∈Ω (x ′ ◦ f )(x) = {x} for some x ∈ Ω , we have

x ∈ Eff(Ω | f , K ).
4◦ Assume that K is pointed. For any x ′ ∈ K #, we have argminx∈Ω (x ′ ◦ f )(x) ⊆

PEffc(Ω | f , K ) ⊆ PEff(Ω | f , K ).

Proof Assertions 1◦ and 3◦ are given in Khazayel et al. [36, Th. 5.7]. Let us prove
assertion 2◦. Take some x ′ ∈ K&. Consider the nontrivial, convex cone D̄ := {y ∈ E |
x ′(y) ≥ 0}. Because x ′ ∈ K&, we have K \ �(K ) ⊆ {y ∈ E | x ′(y) > 0} = cor D̄,
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and so D̄ ∈ D(K ). For any y, y ∈ E with y <D̄ y, we have y − y ∈ cor D̄,
hence x ′(y − y) > 0, or equivalently, x ′(y) > x ′(y). We conclude that x ′ is (<D̄ ,
<)-increasing. Thus, the conclusion follows by Lemma 5.2 (5◦).

When K is pointed, then K& = K #, and so we get 4◦ by applying 2◦. ��
Remark 5.2 Notice, cor K+ ⊆ K #, and if K is τc-closed, then icor K+ ⊆ K&.

To derive representations for the sets WEff(Ω | f , K ), PEffc(Ω | f , K ) and
PEff(Ω | f , K ) using linear scalarization, we need some well-known generalized
convexity concepts. The vector function f : X → E is called

• K -convex on the convex set Ω ⊆ X if, for any x, x̄ ∈ Ω and λ ∈ (0, 1), we have
f (λx + (1 − λ)x̄) ∈ λ f (x) + (1 − λ) f (x̄) − K .

• K -convexlike on Ω ⊆ X if f [Ω] + K is a convex set.

Lemma 5.3 Consider f : X → E and Ω ⊆ X. The following assertions hold:

1◦ If f is K -convex on Ω , then f is K -convexlike on Ω .
2◦ If f is K -convexlike on Ω , then f is (aclC)-convexlike on Ω for any C ∈ C(K ).
3◦ If f is K -convex on Ω , then f is (aclC)-convex on Ω for any C ∈ C(K ).

Proof 1◦ This fact is well-known.
2◦ In view of Lemma 4.2 (3◦), we have K + aclC = aclC , hence f [Ω] + aclC =

( f [Ω]+K )+aclC .Thus, f [Ω]+aclC is convex whenever f [Ω]+K is convex.
3◦ Since K ⊆ aclC , the (aclC)-convexity of f is obvious if f is K -convex. ��

For the case that K is nontrivial and solid, the following result is well-known (see,
e.g., Boţ, Grad and Wanka [13, Cor. 2.4.26] and Jahn [34, Cor. 5.29]):

Proposition 5.1 Assume that K is a nontrivial, solid, convex cone in E. If f is K -
convexlike on Ω , then

WEff(Ω | f , K ) =
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).

Remark 5.3 Consider any nontrivial, convex cone K with intτ K �= ∅ in a real linear
topological space (E, τ ). Let E∗ be the topological dual space of E , and K ∗ be the
topological dual cone (w.r.t. τ ) of K . It is known that cor K = intτ K (see Holmes
[32, p. 59]), and whenever f is K -convexlike on Ω we have

WEff(Ω | f , K ) =
⋃

x∗∈K ∗\{0}
argminx∈Ω (x∗ ◦ f )(x). (6)

Indeed, the inclusion “⊇” in (6) follows directly by Proposition 5.1 taking into account
that K ∗ ⊆ K+. The proof of the inclusion “⊆” in (6) is similar to the proof in Jahn
[34, Th. 5.13] by using the well-known separation result in real linear topological
spaces (see, e.g., Jahn [34, Th. 3.16] and Zălinescu [43, Th. 1.1.3]). We mention also
a remark by Boţ, Grad and Wanka [13, Rem. 2.4.11] related to the validity of (6) in
real linear topological spaces.

Notice, under the K -convexity of f also Luc [38, Th. 4.2.10] and El Maghri and
Laghdir [17, Th. 3.1] stated the representation (6).
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Next, we present a counterpart to Proposition 5.1 for the case that K is relatively
solid but not necessarily solid.

Theorem 5.2 Suppose that K is relatively solid and satisfies (3). In addition, assume
that the function f is K -convexlike on Ω , and f [Ω]+ K is relatively solid. Then, the
following assertions hold:

1◦

WEff(Ω | f , K ) ⊆
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).

2◦ If K+ is pointed, then

WEff(Ω | f , K ) =
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).

3◦ If x̄ ∈ WEff(Ω | f , K ) and f (x̄) + icor K ⊆ icor( f [Ω] + K ), then

x̄ ∈
⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x).

4◦ If f [WEff(Ω | f , K )] + icor K ⊆ icor( f [Ω] + K ), then

WEff(Ω | f , K ) =
⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x).

Proof Notice that assertion 2◦ is a direct consequence of Theorem 5.1 (1◦) and asser-
tion 1◦. Let us show assertion 1◦.

Consider x ∈ WEff(Ω | f , K ), i.e., f [Ω]∩ ( f (x)− icor K ) = ∅. More precisely,
we have ( f [Ω] + K ) ∩ ( f (x) − icor K ) = ∅. Indeed, assuming f (x) + k ∈ f (x) −
icor K for some x ∈ Ω and k ∈ K , we get f (x) ∈ f (x)−icor K−K = f (x)−icor K ,
a contradiction.

Now, it is easy to see that the sets f [Ω]+K and f (x)−K are nonempty, relatively
solid and convex, taking into account icor( f [Ω] + K ) �= ∅ and icor( f (x) − K ) =
f (x)− icor K �= ∅ (by Lemma 2.5). By the separation result stated in Proposition 2.2,
there exist x ′ ∈ E ′ \ {0} and α ∈ R such that

0 ≤ α < x ′(y) − x ′( f (x) − c) (7)

for all y ∈ icor( f [Ω] + K ) and c ∈ icor K . It is easy to check that x ′(c) ≥ 0
for all c ∈ icor K (hence, also x ′ ∈ K+ \ {0}). Indeed, on the contrary assume
that x ′(c) < 0 for some c ∈ icor K . Notice that λc ∈ icor K for all λ > 0, and
x ′(λc) = λx ′(c) → −∞ for λ → +∞. Hence, we have

0 ≤ α < x ′(y) − x ′( f (x)) + x ′(λc) → −∞ (8)
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for λ → +∞, a contradiction.
By (7), we also get

0 ≤ x ′( f (x) + k) − x ′( f (x) − c) (9)

for all k, c ∈ K and x ∈ Ω . Finally, letting k = 0 and c = 0 in (9), it follows
x ′( f (x)) ≤ x ′( f (x)) for all x ∈ Ω , which actually means that x ∈ argminx∈Ω (x ′ ◦
f )(x). The proof of 1◦ is complete.
In order to show 3◦, assume that f (x̄) + icor K ⊆ icor( f [Ω] + K ). Following the

lines in the proof of 1◦, from (7) we get

0 ≤ α < x ′( f (x) + k) − x ′( f (x) − c) = x ′(k + c) (10)

for all k, c ∈ icor K . Take any k̃ ∈ icor K . Letting k := 1
2 k̃ and c := 1

2 k̃, we get
0 < x ′(k + c) = x ′(k̃). We conclude that x ′ ∈ K+ \ �(K+). Thus, 3◦ is valid.

The inclusion “⊆” in 4◦ follows by 3◦, while “⊇” in 4◦ is provided by Theorem 5.1
(1◦). ��
Remark 5.4 Assume that K �= E is solid (hence, relatively solid andK �= �(K )). Then,
K+ is pointed and f [Ω]+icor K = f [Ω]+cor K = cor( f [Ω]+K ) = icor( f [Ω]+
K ) (by Lemma 2.5), which also shows the (relative) solidness of f [Ω] + K . Thus,
we recover the well-known result from Proposition 5.1.

Remark 5.5 ByLemma 3.3 (2◦), we have f [WEff(Ω | f , K )] ⊆ f [Ω]\icor( f [Ω]+
K ). Thus, in the case that f [Ω] + K is relatively solid and convex, the well-known
rule

icor( f [Ω] + K ) + icor K = icor( f [Ω] + K + K ) = icor( f [Ω] + K )

cannot directly be used to guarantee the condition f (x) + icor K ⊆ icor( f [Ω] + K )

for x ∈ WEff(Ω | f , K ) (as needed in Theorem 5.2 (3◦)). However, in view of
Lemma 2.5 (5◦), this condition is fulfilled if

f (x) ∈ vclk(icor( f [Ω] + K )) for some k ∈ K .

The mentioned inclusion f [WEff(Ω | f , K )] + icor K ⊆ icor( f [Ω] + K ) in
Theorem 5.2 (4◦) (respectively, the assumption f (x̄) + icor K ⊆ icor( f [Ω] + K ) in
Theorem 5.2 (3◦)) is not superfluous, as the following example shows:

Example 5.1 Let the linear space X := E := R
2 be endowed with the Euclidean norm

and consider the identity function f = idX : X → X . Define Ω as the closed unit
ball (denoted by B2) in the normed space X , and K as the relatively solid (not solid),
convex cone {0} × R+. The dual cone K+ = R × R+ is a solid, convex cone with
�(K+) = R×{0} (hence, K+ is not pointed).Moreover, f [Ω]+K = B2+({0}×R+)

is a solid (hence, relatively solid), convex set. It is easy to check that
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WEff(Ω | f , K ) = {x ∈ R × (−R+) | ||x ||2 = 1},⋃
x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x) = {x ∈ R × (−P) | ||x ||2 = 1},
⋃

x ′∈�(K+)\{0}
argminx∈Ω (x ′ ◦ f )(x) = {x1 := (−1, 0), x2 := (1, 0)},

and so

WEff(Ω | f , K ) =
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x)

�

⋃
x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x).

Notice that f (x) + icor K ⊆ icor( f [Ω] + K ) for all x ∈ B2 \ {x1, x2} but f (xi ) +
icor K � icor( f [Ω] + K ) for i = 1, 2. We conclude that f [WEff(Ω | f , K )] +
icor K � icor( f [Ω] + K ). Moreover, this example shows that the conclusion in
Theorem 5.2 (2◦) does not imply the pointedness of K+.

The conclusion in Theorem 5.2 (4◦) does not imply the inclusion f [WEff(Ω |
f , K )] + icor K ⊆ icor( f [Ω] + K ) in general, as the following example shows:

Example 5.2 Consider the linear space X := E := R
2 with the maximum norm. Let

the function f , the convex cone K and its dual cone K+ be given as in Example 5.1.
Define Ω as the closed unit ball (denoted by B∞) in the normed space X . Then,
f [Ω]+K = B∞+({0}×R+) is a solid (hence relatively solid), convex set. Obviously,
we have ⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x) = [−1, 1] × {−1} = WEff(Ω | f , K ),

⋃
x ′∈�(K+)\{0}

argminx∈Ω (x ′ ◦ f )(x) = ({−1} × [−1, 1]) ∪ ({1} × [−1, 1]),

and so

WEff(Ω | f , K ) =
⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x)

�

⋃
x ′∈K+\{0}

argminx∈Ω (x ′ ◦ f )(x).

Notice that for x1 := (−1,−1), x2 := (1,−1) ∈ WEff(Ω | f , K ) we have
f (xi )+ icor K � icor( f [Ω]+ K ), i = 1, 2, and so f [WEff(Ω | f , K )]+ icor K �

icor( f [Ω] + K ). From this example, we can also deduce that the inclusion in The-
orem 5.2 (1◦) does not need to be an equality in general. Hence, the pointedness
assumption concerning K+ in Theorem 5.2 (2◦) is a not superfluous condition.
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Remark 5.6 Adán and Novo [2, Th. 2] stated sufficient conditions (involving a gener-
alized convexlikeness assumption on f ) for the inclusion

WEff(Ω | f , K ) ⊆
⋃
x ′∈S

argminx∈Ω (x ′ ◦ f )(x),

where

S := {x ′ ∈ K+ \ {0} | ∃ x ∈ WEff(Ω | f , K ),

y ∈ (icor K ) ∪ ( f [Ω] − f (x)) : x ′(y) �= 0} ⊆ K+ \ {0}.

If WEff(Ω | f , K ) �= ∅, then

K+ \ �(K+) = {x ′ ∈ K+ \ {0} | ∃ k ∈ icor K : x ′(k) > 0} ⊆ S,

and if further K+ is pointed, then K+ \ �(K+) = S = K+ \ {0}. Notice that in both
Examples 5.1 and 5.2 we have K+ \�(K+) � S = K+ \{0}. In Example 5.1, we have
WEff(Ω | f , K ) = ⋃

x ′∈K+\{0} argminx∈Ω (x ′ ◦ f )(x) =: A, while in Example 5.2,
the set WEff(Ω | f , K ) is a proper subset of A, where A contains two additional line
segments.

Theorem 5.3 Suppose that K satisfies (3), and f is K -convexlike on Ω . If either K
and f [Ω] + K are relatively solid (e.g., if E has finite dimension) or f [Ω] + K is
solid, then

Eff(Ω | f , K ) ⊆
⋃

x ′∈K+\{0}
argminx∈Ω (x ′ ◦ f )(x).

Proof If K and f [Ω]+ K are relatively solid, then the conclusion directly follows by
Theorem 5.2 (1◦) taking into account Eff(Ω | f , K ) ⊆ WEff(Ω | f , K ).

Now, assume that f [Ω]+K is solid.Define Q := K \�(K ). Take some x̄ ∈ Eff(Ω |
f , K ), i.e., f [Ω] ∩ ( f (x̄) − Q) = ∅. Then, since Q + K = Q by Lemma 2.2, it
is easy to check that ( f [Ω] + K ) ∩ ( f (x̄) − Q) = ∅. Applying Proposition 2.1 for
Ω1 := f [Ω] + K and Ω2 := f (x̄) − Q, there exist x ′ ∈ E ′ \ {0} and α ∈ R such
that

x ′( f (x̄) − k2) ≤ α ≤ x ′( f (x) + k1) (11)

for all x ∈ Ω , k1 ∈ K and k2 ∈ K ⊆ acl Q (notice that f (x̄) − acl Q ⊆ acl( f (x̄) −
Q)). Since K is a cone, one easily gets x ′ ∈ K+ \ {0}. By (11) for any x ∈ Ω and
k1 := k2 := 0, we conclude x̄ ∈ argminx∈Ω (x ′ ◦ f )(x). ��
Remark 5.7 Notice that in Theorem 5.3, no pointedness assumption concerning K is
formulated. In the well-known result by Boţ, Grad and Wanka [13, Th. 2.4.21] and
Jahn [34, Th. 5.4], the conclusion of Theorem 5.3 is stated under the assumptions that
f is K -convexlike on Ω , f [Ω] + K is solid, and K is a nontrivial, pointed, convex
cone.
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Proposition 5.2 Consider a real linear topological space (E, τ ), and suppose that K
satisfies (3). If f is a K -convexlike function on Ω , then

PEffKTZ(Ω | f , K ) :=
⋃

D∈DKTZ(K )

Eff(Ω | f , D) =
⋃

x ′∈K&∩E∗
argminx∈Ω (x ′ ◦ f )(x).

Proof Assume that f is a K -convexlike function on Ω . Then, for any D ∈ DKTZ(K ),
the function f is (clτ D)-convexlike on Ω (the proof is similar to Lemma 5.3), and
so (by Remark 5.3),

WEff(Ω | f , clτ D) =
⋃

x∗∈(clτ D)∗\{0}
argminx∈Ω (x∗ ◦ f )(x).

Moreover, similar to Lemma 4.1 (4◦), one has

K& ∩ E∗ =
⋃

D∈DKTZ(K )

D∗ \ {0}

by Khan, Tammer and Zălinescu [35, Lem. 2.4.15]. Consequently, we conclude

PEffKTZ(Ω | f , K ) =
⋃

D∈DKTZ(K )

Eff(Ω | f , D)

=
⋃

D∈DKTZ(K )

WEff(Ω | f , D)

=
⋃

D∈DKTZ(K )

WEff(Ω | f , clτ D)

=
⋃

D∈DKTZ(K )

⋃
x∗∈(clτ D)∗\{0}

argminx∈Ω (x∗ ◦ f )(x)

=
⋃

D∈DKTZ(K )

⋃
x∗∈D∗\{0}

argminx∈Ω (x∗ ◦ f )(x)

=
⋃

x∗∈K&∩E∗
argminx∈Ω (x∗ ◦ f )(x).

��
Remark 5.8 The representation given in Theorem 5.2 was established by

• Luc [38, Th. 4.2.11] for the case that E is a reflexive real linear topological space,
K is a convex cone, and f is a K -convex function;

• Makarov and Rachkovski [39, Th. 3.2] for the case that E is a separated real
linear topological space, K is a nontrivial, pointed, closed, convex cone with
K # ∩ E∗ �= ∅, and f is a K -convexlike function;

• El Maghri and Laghdir [17, Th. 3.1] for the case that E is a separated real linear
topological space, K is a nontrivial, pointed, convex cone, and f is a K -convex
function.
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Our proof of the representation given in Proposition 5.2 shows that no pointedness
assumption related to K is needed.

The next theorem studies properties of the set of classical Henig properly efficient
solutions of (P) (in the sense of Definition 4.1) where the cone K is not necessarily
assumed to be pointed.

Theorem 5.4 Suppose that K satisfies (3). Assume that the function f is K -convexlike
on Ω . Then:

1◦

PEffc(Ω | f , K ) =
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).

2◦ If E has finite dimension and K is τc-closed, then

PEffc(Ω | f , K ) =
⋃

x ′∈icor K+
argminx∈Ω (x ′ ◦ f )(x).

Proof If E is endowed with the convex core topology τc, then we have PEffc(Ω |
f , K ) = PEffKTZ(Ω | f , K ) and K&∩E∗ = K&.Hence, by applyingProposition5.2
for (E, τc) we get assertion 1◦.

Assertion 2◦ is a direct consequence of assertion 1◦ taking into account Lemma 2.1
(2◦). ��
Remark 5.9 Adán and Novo [3, Sec. 4] stated linear scalarization results for specific
types of proper efficiency concepts (in the sense of Benson, Borwein and Hurwicz,
respectively). Notice that in [3, Cor. 4.1] a solidness assumption on the dual cone K+
(hence, K is pointed and K # = K&) is assumed (due to the application of a separation
result in [3, Th. 2.2]; see also Novo and Zălinescu [40, Cor. 2.3]).

Finally, we study properties of the set of Henig properly efficient solutions of (P)
where the cone K is not necessarily assumed to be pointed.

Theorem 5.5 Suppose that K is relatively solid and satisfies (3). In addition, assume
that the function f is K -convexlike on Ω . Then:

1◦ If x̄ ∈ PEff(Ω | f , K ) and f (x̄) + icor K ⊆ icor( f [Ω] + K ), then

x̄ ∈
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).

2◦ If f [PEff(Ω | f , K )] + icor K ⊆ icor( f [Ω] + K ), then

PEff(Ω | f , K ) =
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x).
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3◦ If E has finite dimension, K is τc-closed, and f [PEff(Ω | f , K )] + icor K ⊆
icor( f [Ω] + K ), then

PEff(Ω | f , K ) =
⋃

x ′∈icor K+
argminx∈Ω (x ′ ◦ f )(x).

Proof Let us show assertion 1◦. Consider x ∈ PEff(Ω | f , K ). In view of Lemma 4.4
(4◦), there exists a convex cone C ⊆ Y with K \ �(K ) ⊆ icorC and C �= �(C) (i.e.,
C ∈ C(K )) such that x ∈ WEff(Ω | f ,C), whichmeans f [Ω]∩( f (x)−icorC) = ∅.

Now,we actually have ( f [Ω]+K )∩( f (x)−icorC) = ∅. Indeed, assuming f (x)+k ∈
f (x) − icorC for some x ∈ Ω and k ∈ K , we get f (x) ∈ f (x) − icorC − K =
f (x) − icorC by Lemma 4.2 (3◦), a contradiction.
Now, it is easy to see that the sets f [Ω]+K and f (x)−C are nonempty, relatively

solid and convex, taking into account icor( f [Ω] + K ) �= ∅ and icor( f (x) − C) =
f (x) − icorC ⊇ f (x) − (K \ �(K )) �= ∅ (by Lemma 2.5). By the separation result
stated in Proposition 2.2, there exist x ′ ∈ E ′ \ {0} and α ∈ R such that

0 ≤ α < x ′(y) − x ′( f (x) − c) (12)

for all y ∈ icor( f [Ω] + K ) and c ∈ icorC .
Assume that f (x̄) + icor K ⊆ icor( f [Ω] + K ). From (12), we get

0 ≤ α < x ′( f (x) + k) − x ′( f (x) − c) = x ′(k + c) (13)

for all k ∈ icor K and c ∈ icorC . Take any k̃ ∈ K \ �(K ) and k̄ ∈ icor K . Since
icor K ⊆ K \ �(K ) ⊆ icorC ⊆ C , we have k̃ ∈ icorC and −k̄ ∈ −icor K ⊆ −C ⊆
aff(C −C). Thus, there exists ε > 0 such that k̃ + ε(−k̄) ∈ icorC . Consequently, by
(13) for k := εk̄ ∈ icor K , c := k̃ − εk̄, we get

0 ≤ α < x ′(k + c) = x ′(εk̄ + k̃ − εk̄) = x ′(k̃). (14)

Since (14) holds for any k̃ ∈ K \ �(K ), we conclude x ′ ∈ K&.
By (12), we also get

0 ≤ x ′( f (x) + k) − x ′( f (x) − c) (15)

for all k ∈ K , c ∈ C and x ∈ Ω . Finally, letting k = 0 and c = 0 in (15), it follows
x ′( f (x)) ≤ x ′( f (x)) for all x ∈ Ω , which means that x ∈ argminx∈Ω (x ′ ◦ f )(x).
The proof of 1◦ is complete.

The inclusion “⊆” in 2◦ follows by 1◦, while “⊇” in 2◦ is provided by Theorem 5.1
(2◦).

Assertion 3◦ is a direct consequence of assertion 2◦ taking into account Lemma 2.1
(2◦). ��

The mentioned inclusion f [PEff(Ω | f , K )] + icor K ⊆ icor( f [Ω] + K ) in
Theorem 5.5 (2◦, 3◦) (respectively, the assumption f (x̄)+ icor K ⊆ icor( f [Ω]+ K )
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in Theorem 5.5 (1◦)) is not superfluous, as Example 5.3 shows. Moreover, in this
Example 5.3, we will see that

PEffc(Ω | f , K ) � PEff(Ω | f , K ) � Eff(Ω | f , K )

may hold when K is a relatively solid (but not solid), convex cone with K /∈ C(K )

and K �= �(K ).

Example 5.3 Let the linear space X := E := R
3 be endowed with the Euclidean norm

and consider the identity function f = idX : X → X . Define Ω as the closed unit
ball (denoted by B2) in the normed space X , and K as the relatively solid (not solid),
pointed, algebraically closed (respectively, τc-closed), convex cone R+ × {0} × R+.
Then, f [Ω]+ K = B2 + (R+ ×{0}×R+) is a solid (hence, relatively solid), convex
set. The dual cone of K is given by K+ = R+ ×R×R+, which is a convex cone with
cor K+ = P × R × P �= ∅ and �(K+) = {0} × R × {0} � {(0, 0, 0)} (hence, K+ is
solid but not pointed). By Lemma 2.1 (2◦), we have cor K+ = icor K+ = K& = K #.
Thus, it is easy to check that

K+ \ �(K+) = (R+ × R × R+) \ ({0} × R × {0}) � P × R × P = cor K+ = K # = K&.

Because B2 is solid, applying Lemma 3.3 (1◦) yields

PEffc(Ω | f , K ) ⊆ PEff(Ω | f , K ) ⊆ Eff(Ω | f , K ) ⊆ WEff(Ω | f , K )

⊆ {x ∈ R
3 | ||x ||2 = 1}.

Since K � (P × {0} × P) ∪ {(0, 0, 0)} = (icor K ) ∪ �(K ), we have K /∈ C(K ) by
Lemma 4.2 (5◦). By Theorems 5.1 (1◦), 5.2 (1◦) and 5.4 (1◦), and taking into account
K& ⊆ K+ \ �(K+), we get

⋃
x ′∈K+\{0}

argminx∈Ω (x ′ ◦ f )(x) ⊇ WEff(Ω | f , K )

⊇
⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x)

⊇
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x)

= PEffc(Ω | f , K ).

Define x1 := (0,−1, 0) and x2 := (0, 1, 0). Since, for any x ′ ∈ R
3 \ {(0, 0, 0)} with

||x ′||2 = 1 we have −1 = minx∈B2
〈x ′, x〉, one can check that

⋃
x ′∈K+\{0}

argminx∈Ω (x ′ ◦ f )(x) =
⋃

x ′∈(R+×R×R+)\{(0,0,0)}
argminx∈B2

〈x ′, x〉
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=
⋃

x ′∈(R+×R×R+)\{(0,0,0)},
||x ′||2=1

{x ∈ B2 | ||x ||2 cos(θ) = −1 (θ is the angle between x ′ and x)}

= {x ∈ (−R+) × R × (−R+) | ||x ||2 = 1} =: A1,

and ⋃
x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x) =
⋃

x ′∈(R+×R×R+)\({0}×R×{0})
argminx∈B2

〈x ′, x〉

= {x ∈ (−R+) × R × (−R+) | ||x ||2 = 1} \ {x1, x2} =: A2,

as well as ⋃
x ′∈K&

argminx∈Ω (x ′ ◦ f )(x) =
⋃

x ′∈P×R×P

argminx∈B2
〈x ′, x〉

= {x ∈ (−P) × R × (−P) | ||x ||2 = 1} =: A3.

We directly conclude that PEffc(Ω | f , K ) = A3 and x1, x2 /∈ PEffc(Ω | f , K ).
Moreover, one can check that x1, x2 ∈ PEff(Ω | f , K ). For doing this, define the
generalized dilating cone

C := {(y1, y2, y3) ∈ R
3 | y2 = 0 ∧ y1 + y3 ≥ 0}.

Clearly, C is a convex cone with C �= �(C) and

K \ �(K ) = (R+ × {0} × R+) \ {(0, 0, 0)}
⊆ {(y1, y2, y3) ∈ R

3 | y2 = 0 ∧ y1 + y3 > 0} = icorC,

hence C ∈ C(K ). Now, observe that

f [Ω] ∩ ( f (xi ) − icorC) = B2 ∩ (xi − icorC) = ∅. (16)

Indeed, take any y ∈ xi − icorC , i.e., there is c ∈ icorC with y = xi − c. Then, since
〈c, xi 〉 = 0 and c �= (0, 0, 0) we get

||y||22 = 〈y, y〉 = 〈xi , xi 〉 − 2〈c, xi 〉 + 〈c, c〉 = ||xi ||22 + ||c||22 = 1 + ||c||22 > 1,

which means that y /∈ B2. Thus, (16) holds true.
Since x1, x2 ∈ PEff(Ω | f , K ) ⊆ WEff(Ω | f , K ) and A1 ⊇ WEff(Ω |

f , K ) ⊇ A2, we also get A1 ⊇ WEff(Ω | f , K ) ⊇ A2 ∪ {x1, x2} = A1, hence
WEff(Ω | f , K ) = A1. Applying Lemma 2.5 (4◦) for A := B2, we conclude[⋃

k∈K
vclk(cor B2)

]
+ icor K = (cor B2) + icor K = cor(B2 + K ). (17)
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Now, the following inclusion holds true

A2 ⊆
⋃
k∈K

vclk(cor B2). (18)

Indeed, take some x = (x1, x2, x3) ∈ A2 = {x ∈ (−R+) × R × (−R+) | ||x ||2 =
1} \ {x1, x2} and λ > 0. For x1 < 0, we choose k := (1, 0, 0); otherwise, for x1 = 0
(hence x3 < 0), we choose k := (0, 0, 1). Then, k ∈ K = R+ × {0} × R+, and so
x + tk ∈ ([x1, 0] × {x2} × [x3, 0]) \ {x} for some t > 0. W.l.o.g. one can assume that
t ∈ (0, λ]. Clearly, we have ||x + tk||2 < ||x ||2 = 1, hence x + tk ∈ cor B2. Thus,
x ∈ vclk(cor B2).

Combining (17) and (18), we conclude f (x) + icor K ⊆ icor( f [Ω] + K ) for all
x ∈ A2.

Since x1, x2 ∈ PEff(Ω | f , K ) \ A3, from Theorem 5.5 (1◦), we can deduce that
f (xi ) + icor K � icor( f [Ω] + K ) for all i = 1, 2, and so xi /∈ ⋃

k∈K vclk(cor B2)

for all i = 1, 2, in view of (17). This shows also that f [PEff(Ω | f , K )] + icor K �

icor( f [Ω] + K ).
As already observed above, PEff(Ω | f , K ) ⊆ WEff(Ω | f , K ) = A1, hence we

get PEff(Ω | f , K ) \ {x1, x2} ⊆ A2. Thus, as a consequence of Theorem 5.5 (1◦),
Theorem 5.1 (2◦), formulae (17) and (18), we have

PEff(Ω | f , K ) \ {x1, x2} ⊆ A3 ⊆ PEff(Ω | f , K ).

Recalling that x1, x2 ∈ PEff(Ω | f , K ), we conclude

PEff(Ω | f , K ) ⊆ A3 ∪ {x1, x2} ⊆ PEff(Ω | f , K ) ∪ {x1, x2} = PEff(Ω | f , K ),

hence PEff(Ω | f , K ) = A3 ∪ {x1, x2}.
Finally, let us show that Eff(Ω | f , K ) = WEff(Ω | f , K ). Clearly, Eff(Ω |

f , K ) ⊆ WEff(Ω | f , K ). Take some x ∈ WEff(Ω | f , K ) = A1. We prove that

f [Ω] ∩ ( f (x) − K \ �(K )) = B2 ∩ (x − K \ �(K )) = ∅, (19)

i.e., x ∈ Eff(Ω | f , K ). Take an arbitrarily y ∈ x − K \ �(K ). Since x ∈ A1, we have
x = (x1, x2, x3) ∈ (−R+) × R × (−R+) and ||x ||2 = 1. Moreover, −K \ �(K ) =
(((−R+) × {0} × (−R+)) \ {(0, 0, 0)}. Thus, we conclude

y = (y1, y2, y3) ∈ x − K \ �(K ) ⊆ ((x1 − R+) × {x2} × (x3 − R+)) \ {x}.

Now, it is easy to check that |y1| ≥ |x1|, y2 = x2 and |y3| ≥ |x3|, where at least one
inequality is strict. Hence, 1 = ||x ||2 < ||y||2, which means that y /∈ B2. The proof
of (19) is complete.

Observing that A3
� A3 ∪ {x1, x2} � A1, we conclude

PEffc(Ω | f , K ) � PEff(Ω | f , K ) � Eff(Ω | f , K ) = WEff(Ω | f , K ).
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The conclusion in Theorem 5.5 (2◦) does not imply the inclusion f [PEff(Ω |
f , K )] + icor K ⊆ icor( f [Ω] + K ) in general, as the following example shows:

Example 5.4 Consider the data from Example 5.2. It is easy to check that

K+ \ �(K+) = icor K+ = cor K+ = R × P = K& = K #.

As mentioned in Example 5.2,

WEff(Ω | f , K ) = [−1, 1] × {−1} =
⋃

x ′∈K+\�(K+)

argminx∈Ω (x ′ ◦ f )(x).

By Theorem 5.4 (1◦),

PEffc(Ω | f , K ) =
⋃

x ′∈K&

argminx∈Ω (x ′ ◦ f )(x),

hence WEff(Ω | f , K ) = PEffc(Ω | f , K ). This shows also PEffc(Ω | f , K ) =
PEff(Ω | f , K ) = Eff(Ω | f , K ) = WEff(Ω | f , K ) = [−1, 1]× {−1}. In particu-
lar, we have {x1, x2} ⊆ PEff(Ω | f , K ), where x1, x2 are given as in Example 5.2. As
alreadymentioned in Example 5.2, f (xi )+icor K � icor( f [Ω]+K ), i = 1, 2, hence
f [PEff(Ω | f , K )] + icor K � icor( f [Ω] + K ). Figure 1 illustrates Examples 5.2
and 5.4 .

6 Conclusions

In this paper, we studied vector optimization problems involving not necessarily
pointed and not necessarily solid, convex cones in real linear spaces. Based on the
“intrinsic core” interiority notion (a well-known generalized interiority notion), we
defined our solution concepts (proper/weak efficiency) for such vector optimization
problems.

On the one hand,weproposed aHenig-type proper efficiency solution concept based
on generalized dilating convex cones which have nonempty intrinsic cores (but cores
could be empty). Notice that any convex cone has a nonempty intrinsic core in finite
dimension; however, this property may fail in infinite dimension. We showed certain
useful properties of the new solution concept, pointed out that the set of solutions w.r.t.
this concept is always between the set of classical Henig properly efficient solutions
and the set of Pareto efficient solutions and showed an example where all these three
sets do not coincide, i.e., PEffc(Ω | f , K ) � PEff(Ω | f , K ) � Eff(Ω | f , K ).

On the other hand, using linear functionals from the dual cone of the ordering cone
K , we were able to characterize the sets WEff(Ω | f , K ), PEffc(Ω | f , K ) and
PEff(Ω | f , K ) under the assumption f [Ω] + K is convex. The analysis of the rule
A + icor K ⊆ icor(A + K ) for A ⊆ f [Ω] (see also Lemma 2.5) was essential for
deriving the representations of the sets WEff(Ω | f , K ) and PEff(Ω | f , K ).
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Fig. 1 Illustration of Examples 5.2 and 5.4

In forthcoming works, we aim to extend the scalarization results derived in Sect. 5.
One idea could be to involve further generalized convexity concepts, and another idea
could be to consider nonlinear scalarization techniques (for instance based on the
so-called Gerstewitz function, see [35, Sec. 5.2] and [42]). In this context, Arrow–
Barankin–Blackwell type theorems for our considered Henig-type proper efficiency
concepts are of interest (see, e.g., [22]).

The investigation of the Image Space Analysis (ISA) approach (in the sense of
Giannessi [19,20]) involving a relatively solid (but not necessarily solid), convex cone
could be a further interesting task.
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