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Abstract
Low-rank inducing unitarily invariant norms have been introduced to convexify prob-
lems with a low-rank/sparsity constraint. The most well-knownmember of this family
is the so-called nuclear norm. To solve optimization problems involving such norms
with proximal splitting methods, efficient ways of evaluating the proximal mapping
of the low-rank inducing norms are needed. This is known for the nuclear norm, but
not for most other members of the low-rank inducing family. This work supplies a
framework that reduces the proximal mapping evaluation into a nested binary search,
in which each iteration requires the solution of a much simpler problem. The simpler
problem can often be solved analytically as demonstrated for the so-called low-rank
inducing Frobenius and spectral norms. The framework also allows to compute the
proximal mapping of increasing convex functions composed with these norms as well
as projections onto their epigraphs.
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1 Introduction

Non-convex optimization problems with a rank or cardinality constraint appear in
many data driven areas such as machine learning, image analysis and multivariate
linear regression [6,8,13,26,40] as well as areas within control such as system identi-
fication, model reduction, low-order controller design, and low-complexity modeling
[2,15,18,35,47]. Besides the low-rank constraint, these problems are often convex and
therefore one of the most common techniques for solving such problems is to convex-
ify them by using regularizers or taking convex envelopes [8,15,17,19]. A promising
class of such regularizers and convex envelopes is the class of so-called unitarily
invariant low-rank inducing norms [17], i.e., convex envelopes of unitarily invariant
norms whose domain is restricted to matrices with prescribed bounded rank. As many
common loss functions, e.g., squared distance in the Frobenius norm, contain terms of
unitarily invariant norms, these norms have the attractive feature to exactly convexify,
i.e., the convexified problem in terms of the low-rank inducing norm coincides on
with the original at all low-rank matrices of prescribed bounded rank. Therefore, if
the convexified problem has a low-rank solution, it is guaranteed to be a solution to
the non-convex one.

Although low-rank inducing norms often admit a representation as semi-definite
programs (SDP) [17], proximal splitting algorithms [9] are often used for large-scale
problems, where standard interior-point method solvers have too costly iterations
[39]. The main objective of this work is to efficiently compute the needed proximal
mappings of low-rank inducing norms that are composed with increasing convex
functions. To this end, we develop a generic nested binary search algorithm, which
in each iteration solves a simple problem. While for well-known low-rank inducing
norms such as the nuclear norm [38] and the low-rank inducing Frobenius norm
[1,14,29,30], our algorithm will recover the same efficiency, for other norms such as
the low-rank inducing spectral norm [46], our approach improves the computational
complexity significantly, especially in the vector-valued case. Finally, [45] proposes a
non-analytic approach for an extended class of not necessarily unitarily invariant low-
rank inducing norms (see [27]). This approach, however, depends on the complexity
and convergence rates of other optimization algorithms.

The paper is organized as follows. We start by introducing some preliminaries
on norms and convex optimization. Subsequently, a formal definition of the class of
low-rank inducing norms, including their application to rank constrained optimization
problems is outlined. Then, we discuss and derive our main results, the binary search
framework and outline an algorithm for evaluating their epigraph projections. For the
low-rank inducing Frobenius and spectral norms, wemake these computations explicit
and arrive at implementable algorithms for which the computational cost is analyzed.
Subsequently, a case study is performed in order to illustrate the performance of our
algorithm through proximal splitting. Finally, we draw a conclusion and point the
reader to our freely available implementations of these algorithms in MATLAB and
Python.

123



170 Journal of Optimization Theory and Applications (2022) 192:168–194

2 Preliminaries

The set of reals is denoted by R, the set of real vectors by R
n , the set of vectors with

nonnegative entries byRn≥0 and the set of realmatrices byRn×m . In the remainder of the
paper, we assume without loss of generality that n ≤ m. The singular value decom-
position of X ∈ R

n×m is denoted by X = ∑n
i=1 σi (X)uivTi with non-increasingly

ordered singular values σ1(X) ≥ · · · ≥ σn(X) (counted with multiplicity). The cor-
responding vector of all singular values is given by σ(X) := (σ1(X), . . . , σn(X)).

For all x = (x1, . . . , xn) ∈ R
n , we define the �p norms with 1 ≤ p < ∞ by

�p(x) := (∑q
i=1 |xi |p

) 1
p and �∞(x) := maxi |xi |, where | · | denotes the absolute

value.
A matrix norm ‖ · ‖ : Rn×m → R≥0 is called unitarily invariant if for all unitary

matrices U ∈ R
n×n and V ∈ R

m×m and all X ∈ R
n×m it holds that ‖UXV ‖ = ‖X‖.

Equivalently, unitary invariance can be characterized by symmetric gauge functions
(see e.g., [25, Theorem 7.4.7.2]):

Definition 1 A function g : Rn → R≥0 is a symmetric gauge function if

i. g is a norm.
ii. ∀x ∈ R

n : g(|x |) = g(x), where |x | denotes the element-wise absolute value.
iii. g(Px) = g(x) for all permutation matrices P ∈ R

n×n and all x ∈ R
n .

Proposition 1 The norm ‖ · ‖ : R
n×m → R≥0 is unitarily invariant if and only if

‖ · ‖ = g(σ1(·), . . . , σn(·)), where g is a symmetric gauge function.

Throughout this work, we use the notation ‖X‖g := g(σ (X)). For X ,Y ∈ R
n×m the

Frobenius inner product is defined as 〈X ,Y 〉 := ∑m
i=1
∑n

j=n xi j yi j = trace(XTY )

with Frobenius norm ‖X‖�2 := �2(σ (X)) = √〈X , X〉. The nuclear norm and the
spectral norm are given by ‖ · ‖�1 := �1(σ (·)) and ‖ · ‖�∞ := �∞(σ (·)) = σ1(·). The
dual norm to ‖ · ‖g is defined as

‖ · ‖gD := max‖X‖g≤1
〈·, X〉 =: gD(σ1(·), . . . , σn(·)). (1)

Dual norms inherit the unitary invariance as well as the duality relationship for �p

norms, i.e., g = �p implies gD = �q with p, q ∈ [1,∞] satisfying 1
p + 1

q = 1. We
will also make use of truncated dual gauge functions. Let y ∈ R

n , r ∈ {1, . . . , n}, and
gD : Rn → R≥0. The truncated dual gauge function is then defined as

gDr (y) := gD(sort(y)1, . . . , sort(y)r , 0, . . . , 0), (2)

where sort : Rn → R
n denotes sorting in descending order.

Next, we introduce some standard notation and results from convex optimization
[5,41]. For f : Rn×m → R ∪ {∞}, we denote by dom( f ) and epi( f ) the effective
domain and epigraph of f , respectively. Its subdifferential at X ∈ R

n×m is written as
∂ f (X). In particular, by [24, Example VI.3.1]

∂‖X‖g = {G ∈ R
n×m : 〈G, X〉 = ‖X‖g, ‖G‖gD = 1}. (3)
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Further, f is said to be proper if dom f = ∅ and closed if epi( f ) is a closed set.
The conjugate (dual) function of f is denoted by f ∗ and f ∗∗ := ( f ∗)∗ is called the
biconjugate function or convex envelope of f . For f : R → R ∪ {∞}, we say that
f increasing if x ≤ y ⇒ f (x) ≤ f (y) for all x, y ∈ dom( f ) and if there exist
x, y ∈ R such that x < y and f (x) < f (y). Moreover, its monotone conjugate is
defined as [41] f +(y) := supx≥0 [xy − f (x)] for all y ∈ R. The 0-infinity indicator
(or characteristic) function of a set S ⊂ R

n×m is denoted by χS , which we also use
for the indicator function of the set of matrices with at most rank r , i.e., χrank(·)≤r .
For any Z ∈ R

n×m , the proximal mapping of a closed, proper and convex function
f : Rn×m → R ∪ {∞} is defined as

proxγ f (Z) := argmin
X

(

f (X) + 1

2γ
‖X − Z‖2�2

)

. (4)

In particular, proxγχC (Z) coincides with the unique Euclidean projection

�C(Z) := argmin
X∈C

‖X − Z‖�2

onto C for any closed, non-empty, convex set C ⊂ R
n×m . Moreover, by the extended

Moreau decomposition it holds for all f : Rn×m → R ∪ {∞}, Z ∈ R
n×m and γ > 0

that (see [4, Theorem 6.29])

proxγ f (Z) = Z − γ proxγ −1 f ∗(γ −1Z). (5)

Finally, we denote compositions of two functions f and g by ( f ◦ g)(·) := f (g(·)).

3 Low-Rank Inducing Norms

This section introduces the family of unitarily invariant low-rank inducing norms,
which has been discussed in [17]. Besides recapping some elementary properties,
we briefly motivate the usefulness of these norms as convex envelopes or additive
regularizers in optimization problems to promote low-rank solutions.

Low-rank inducing norms are defined as the dual norm of a rank constrained dual
norm

‖Y‖gD ,r := max
rank(X)≤r‖X‖g≤1

〈X ,Y 〉. (6)

This means that the low-rank inducing norms corresponding to ‖ · ‖g are

‖X‖g,r∗ := max‖Y‖gD ,r≤1
〈Y , X〉. (7)

For r = n, the rank constraint in (6) is redundant and ‖·‖g ≡ ‖·‖g,r∗. Some important
properties of these norms are summarized next [17].
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Lemma 1 Let X ,Y ∈ R
n×m, r ∈ N be such that 1 ≤ r ≤ n, and g : Rn → R≥0 be a

symmetric gauge function. Then ‖ · ‖gD ,r is a unitarily invariant norm with

‖Y‖gD ,r = gDr (σ (Y )), (8)

where gDr is defined in (2). Its dual norm ‖ · ‖g,r∗ satisfies

‖ · ‖g,r∗ = (‖ · ‖g + χrank(·)≤r (·))∗∗. (9)

In this work, we especially consider the so-called low-rank inducing Frobenius and
spectral norms, i.e., the cases when g = �2 and g = �∞. Since �D2 = �2 and �D∞ = �1,

it follows from (8) that ‖X‖�2,r∗ := max‖Y‖�2,r≤1 with ‖Y‖�D2 ,r :=
√∑r

i=1 σ 2
i (Y )

and ‖X‖�∞,r∗ := max‖Y‖�1,r≤1〈Y , X〉 with ‖Y‖�1,r =∑r
i=1 σi (Y ).

The following motivates the main interest in low-rank inducing norms (see [16,17,
19] for details).

Proposition 2 Assume that f0 : Rn×m → R∪{∞} is a proper closed convex function,
and that r ∈ N is such that 1 ≤ r ≤ min{m, n}. Let f1 : R≥0 → R ∪ {∞} be an
increasing, proper closed convex function, and let θ > 0. Then

( f1 ◦ ‖ · ‖g,r∗)∗ = f +
1 (‖ · ‖gD,r ) (10)

and

inf
X∈Rn×m

rank(X)≤r

[
f0(X) + θ f1(‖X‖g)

] ≥ − inf
D∈Rn×m

[
f ∗
0 (D) + θ f +(θ−1‖D‖gD,r )

]
(11)

= inf
X∈Rn×m

[
f0(X) + θ f1(‖X‖g,r∗)

]
. (12)

If X	 solves (12) such that rank(X	) ≤ r , then equality holds and X	 is also a solution
to the problem on the left of (11).

In other words, Proposition 2 shows that low-rank inducing norms can be used both
as additive regularizers and direct convex envelopes to find (approximate) solutions to

minimize
X

L(X)

subject to rank(X) ≤ r .
(13)

For regularization as in [15,42], we set f0 = L and choose a suitable f1 and θ to find an
approximate solution. In the second case, when L can be split into L = f0+ f1(‖ ·‖g)
as in Proposition 2, then

min
X∈Rn×m

[
f0(X) + f1(‖X‖g,r∗)

]
(14)

may return an (exact) solution to (13).
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4 Proximal Mappings

For problems of small dimensions, it is often convenient to solve (14) through semi-
definite programming (SDP). However, conventional SDP solvers are typically based
on interior-point methods (see [39]) with an iteration cost that grows unfavorably with
the problem dimension. For large-scale problems, proximal splitting methods can
be used [4,9]. To efficiently solve (14), proximal splitting methods require efficient
computation of the proximal mapping of f1(‖ · ‖g,r∗).

In this section, we present our main results on developing a nested binary search
framework for computing this proximal mapping for simple choices of f1, efficiently.
Explicit and implementable steps for these computationswill be shown for the common
cases f1 = (·) and f1 = (·)2 with g = �2 and g = �∞ [3,17,19,37]. In Sect. 4.3, the
computational complexity of our generic algorithm as well as these particular cases is
derived. In cases where f1 is not simple, we can write (14) as

min
t∈R, X∈Rn×m

f0(X) + f1(t) + χepi(‖·‖g,r∗)(X , t), (15)

where χepi(‖·‖g,r∗) is the indicator function of the epigraph to ‖ · ‖g,r∗. Then a con-
sensus formulation for proximal splitting methods (see [9]) requires an evaluation of
the proximal mappings for f1 and χepi(‖·‖g,r∗). Since f1 is one-dimensional, convex,
proper and increasing, its proximal mapping is fast to evaluate. We will see as part
of our complexity analysis in Sect. 4.3 that computing proxχepi(‖·‖g,r∗)

, prox‖·‖g,r∗ and

prox‖·‖2g,r∗ , i.e., f1 = (·) and f1 = (·)2, is equally costly.
Note that in contrast to ‖ · ‖g,r∗, its dual norm ‖ · ‖gD,r is explicitly known by its

definition (8), which is why we derive our search framework for

proxγ −1 f +
1 (‖·‖gD ,r )

(Z) and �−epi(‖·‖gD ,r )
(Z , zv), (16)

with

−epi(‖ · ‖gD ,r ) := {(Y ,−w) : ‖Y‖gD,r ≤ w}

which by (5) and (10) yields the sought proximal mappings

proxγ f1(‖·‖g,r∗)(Z) = Z − γ proxγ −1 f +
1 (‖·‖gD ,r )

(γ −1Z) (17a)

proxχepi(‖·‖g,r∗)
(Z , zv) = �epi(‖·‖g,r∗)(Z , zv) = (Z , zv) − �−epi(‖·‖gD ,r )

(Z , zv).

(17b)

4.1 Search Framework

Next, we present our main result, which shows that (16), and hence Eqs. (17a) and
(17b), can be computed by a nested parameter search. Since the computations of (16)
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Table 1 Example choices for f and γ in (18) for the computation of (16) and thus Eqs. (17a) and (17b).
χ‖·‖gD≤γ stands for the indicator function of the set {X : ‖X‖gD ≤ γ }

Solution (Y 	, w	) to (18) f (w) γ Via Eqs.(17a) and (17b)

(Y 	, −w	) = �−epi(‖·‖gD ,r )
(Z , zv) 1

2 (w + zv)2 1 �epi(‖·‖g,r∗)(Z , zv)

Y 	 = prox γ
2 ‖·‖2

gD ,r
(Z)

w2χ[0,∞)(w)

2 > 0 prox γ
2 ‖·‖2g,r∗ (Z)

Y 	 = proxχ‖·‖
gD ,r

≤γ
(Z) χ[0,γ ](w) > 0 proxγ ‖·‖g,r∗ (Z)

can be compactly unified as

minimize
Y ,w

f (w) + γ

2
‖Y − Z‖2�2

subject to w ≥ ‖Y‖gD,r , Y ∈ R
n×m,

(18)

where f is closed, proper and convex, our results are stated for all such problems.
Table 1 summaries common choices for f and its relationship to Eqs. (17a) and (17b)
via (16).

Before we state the main theorem on how to solve (18) with a nested binary search
method, we outline the steps that give rise to this algorithm. It is well-known that the
solution Y 	 to (18) and Z have a simultaneous SVD [31,36] and, therefore, only the
singular values of Y 	 need to be computed. Let yi = σi (Y ) and zi = σi (Z), then it
follows that (18) reduces to the vector-valued problem

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gDr (y), y ∈ R
n .

(19)

Since z ∈ R
n≥0 is monotonically decreasing, it can be shown that the minimizer of

(19) is nonnegative. The problem is, therefore, equivalent to solving

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gD(y1, . . . , yr , 0, . . . , 0), y ∈ R
n,

y1 ≥ · · · ≥ yn .

(20)

Since only the r first elements in y are included in the norm constraint, the solution
may have a chain of equalities around yr , i.e., there exist integers t ≥ 1 and s ≥ 0
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such that

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gD(y1, . . . , yr , 0, . . . , 0), y ∈ R
n,

y1 ≥ · · · ≥ yr−t+2 > yr−t+1 = · · · = yr
= · · · = yr+s > yr+s+1 ≥ · · · ≥ yn .

(21)

The base case t = 1 and s = 0 implies that yr−1 > yr > yr+1, i.e., the chain has
length one. Thus, if we can solve (21) for an arbitrary, but fixed pair (t, s), an optimal
(t∗, s∗) could be determined by comparison with all pairs. As this would be very
inefficient, the proposed search rules are devised to find (t∗, s∗) by only considering
a few pairs.

To state these rules, we need to introduce the truncated gauge function of gD as

gDr ,s,t (x) := gD
(

(T x)1, . . . , (T x)r−t , (T x)r−t+1, . . . , (T x)r−t+1︸ ︷︷ ︸
t times

, 0, . . . , 0

)

,

where x ∈ R
n and the truncation operator T : R

n → R
r−t+1 is defined for all

1 ≤ r ≤ n and (t, s) ∈ {1, . . . , r} × {0, . . . , n − r} as

(T x)i :=

⎧
⎪⎨

⎪⎩

sort(x)i , if 1 ≤ i ≤ r − t,
∑r+s

i=r−t+1 sort(x)i√
t + s

, if i = r − t + 1.
(22)

Note that gDr ,s,t is indeed a gauge functionwith dual gauge function [23, Lemma 2.2.2])

gr ,s,t (x) := g((T x)1, . . . , (T x)r−t ,
(T x)r−t+1(s+t)

t , . . . ,
(T x)r−t+1(s+t)

t︸ ︷︷ ︸
t times

, 0, . . . , 0).

For the special case (t, s) = (1, 0), it reduces to gDr in (2). We are now ready to state
our main theorem.

Theorem 1 Let Z = ∑n
i=1 σi (Z)uivTi ∈ R

n×m, γ > 0, 1 ≤ r ≤ n, g : Rn → R be
a gauge function, and f : R → R be proper, closed and convex. For each (t, s) ∈
{1, . . . , r} × {0, . . . , n − r} let (y(t,s), w(t,s)) ∈ R

n+1 be defined as

y(t,s)
i :=

⎧
⎪⎪⎨

⎪⎪⎩

ỹi , if 1 ≤ i ≤ r − t,
ỹi√
t + s

, if r − t + 1 ≤ i ≤ r + s,

σi (Z) if i ≥ r + s + 1.

(23a)

w(t,s) := w̃ (23b)
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where (ỹ, w̃) ∈ R
r−t+2 solves

minimize
ỹ,w̃

f (w̃) + γ

2

r−t+1∑

i=1

(ỹi − z̃i )
2

subject to w̃ ≥ gDr ,s,t (ỹ), ỹ ∈ R
r−t+1,

(24)

and z̃ := Tσ(Z) is given by (22). Then (Y 	, w	) = (
∑n

i=1 y
(t	,s	)
i uivTi , w

(t	,s	)) is
the solution to (18), where

t	 := min
{
{t : y(t,s	t )

r−t > y
(t,s	t )
r−t+1} ∪ {r}

}
(25a)

s	
t := min

{
{s : y(t,s)

r+s > y(t,s)
r+s+1} ∪ {n − r}

}

s	 := s	
t	 (25b)

In particular, (t	, s	) can be found by a nested binary search over t and s with the
following rules for increasing/decreasing t and s:

I. y
(t,s	t )
r−t ≥ y

(t,s	t )
r−t+1 for all t ≥ t	.

II. y
(t,s	t )
r−t ≤ y

(t,s	t )
r−t+1 for all t < t	.

III. If t < t	 and y
(t,s	t )
r−t = y

(t,s	t )
r−t+1 then

(
y(t,s	t ), w(t,s	t )

)
=
(
y(t	,s	), w(t	,s	)

)
.

IV. y(t,s)
r+s ≥ y(t,s)

r+s+1 for all s ≥ s	
t .

V. y(t,s)
r+s ≤ y(t,s)

r+s+1 for all s < s	
t .

VI. If s < s	
t and y(t,s)

r+s = y(t,s)
r+s+1 then

(
y(t,s), w(t,s)

) =
(
y(t,s	t ), w(t,s	t )

)
.

A few words on Theorem 1 may be helpful. The first part simply makes explicit that
(y(t,s), w(t,s)) in Eqs. (23a) and (23b) is the solution of (21) with fixed t and s, i.e., it
solves

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gDr (y), y ∈ R
n,

yr−t+1 = · · · = yr+s,

(26)

via the solution of the lower-dimensional problem (24). For fixed t in (21), the search
rules for s (Items IV. to VI.) can be used to find an optimal s = s	

t that minimizes

the cost in (21) among all choices of s that fulfil the constraint y(t,s)
r+s ≥ y(t,s)

r+s+1 ≥
· · · ≥ y(t,s)

n . Since y(t,s)
i = zi for i ≥ r + s + 1 by (23a), it suffices to check that

y(t,s)
r+s ≥ y(t,s)

r+s+1, where by (25b) s	
t is the smallest of such s. Similarly, the search

rules for finding an optimal t = t	 minimize the cost in (21) among all choices

(t, s) = (t, s	
t ) that do not violate the constraint y

(t,s	t )
r−t ≥ y

(t,s	t )
r−t+1. Using nested binary

search (see [28]) over s (inner loop) and t (outer loop), an optimal (t∗, s∗) can be found
efficiently under the assumption that (24) has an efficiently computable solution for
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all choices (t, s). For more details, see the derivation of the proof to Theorem 1 in
Appendix 2 and our explicit implementation for determining �−epi(‖·‖gD ,r )

(Z , zv) in
Algorithm 1.

Algorithm 1 Binary search for determining �−(epi(‖·‖gD ,r )
(Z , zv)

Input: Let Z ∈ R
n×m , zv ∈ R and r ∈ {1, . . . , n}.

Compute SVD Z =∑n
i=1 σi (Z)uiv

T
i and let z = σ(Z).

//Let f = 1
2 (w + zv)2 and γ = 1.

//Find (t	, s	) in Theorem 1 through binary search over (t, s).
Set tmin = 1, tmax = r , and t = � tmin+tmax

2 �
//Binary search over t to find t	: each iteration solves (21) for fixed t with optimal s = s	t and updates t
based on the search rules for feasibility and optimality in Theorem 1
while tmin = tmax do
Set smin = 0, smax = n − r , and s = � smin+smax

2 �
//Binary search over s to find s	t : each iteration solves (21) for fixed (t, s) and updates s based on the
search rules for feasibility and optimality in Theorem 1
while smin = smax do
Determine (y(t,s)

r+s , y(t,s)
r+s+1) in eqs.(23a) and (23b) via solving (24) (see Propositions 3 and 4 for the

the cases g = �2 and g = �1, respectively).

if y(t,s)
r+s < y(t,s)

r+s+1 then
smin = s + 1

else
smax = s

end if
end while
Set s	t = smin

Determine (y
(t,s	t )

r−t , y
(t,s	t )

r−t+1) in eqs.(23a) and (23b) via solving (24) (see Propositions 3 and 4 for the
the cases g = �2 and g = �1, respectively).

if y(t,s)
r−t < y(t,s)

r−t+1 then
tmin = t + 1

else
tmax = t

end if
end while
Set t	 = tmin and p.r.n. binary search for s	 = s	t	

Output: (Y 	, w	) = (
∑n

i=1 y
(t	,s	)
i uiv

T
i , −w(t	,s	)) with (y(t	,s	), w(t	,s	)) given by eqs. (23a) and

(23b).

4.2 Low-Rank Inducing Frobenius and Spectral Norms

Next, we exemplify solutions to (24) for the instances in Table 1 with g = �2 and
g = �∞. A general result on the solvability of (24) is given in Appendix 3.

In particular, we will discuss solutions to (24) for all g = τ�2 and g = τ�∞, τ > 0,
because this enables us to handle the first two cases in Table 1 simultaneously through
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the identity

prox τ2
2 ‖·‖2g,r∗

(Z) = Z − prox 1
2 ‖·‖2

gD
τ ,r

(Z) = Z − �Y

(

�−epi(‖·‖ gD
τ ,r

)(Z , 0)

)

,

where �Y (Y , w) := Y and τ > 0. It is easy to adjust these computations for the third
case, because proxτ‖·‖g,r∗(Z) = prox‖·‖τg,r∗(Z).

Proposition 3 Let Z = ∑n
i=1 σi (Z)uivTi ∈ R

n×m, g = τ�2 with τ > 0, 1 ≤ r ≤ n,
γ = 1, zv ∈ R and z̃ := Tσ(z). Then, �−epi(‖·‖gD ,r )

(Z , zv) can be computed via

Theorem 1 with f (w) = 1
2 (w + zv)2, where the solution to (24) is characterized by

one of the following three distinct cases:

(ỹ, w̃) = (z̃, zv) ⇐⇒
√
√
√
√

r−t∑

i=1

z̃2i + t

s + t
z̃2r−t+1 ≤ −τ zv, (27a)

(ỹ, w̃) = 0 ⇐⇒
√
√
√
√

r−t∑

i=1

ỹ2i + s + t

t
ỹ2r−t+1 ≤ zv

τ
(27b)

and otherwise

ỹi = z̃i
1 + μ

τ 2w̃

, 1 ≤ i ≤ r − t (27c)

ỹr−t+1 = z̃r−t+1

1 + μt
τ 2w̃(s+t)

(27d)

w̃ = μ − zv (27e)

where the unique μ ≥ 0 is a solution to the fourth-order polynomial

[(
w̃τ + μ

τ

)2 − c1

] [
(t + s)τ w̃ + μ

τ
t
]2 − tc22

(
w̃τ + μ

τ

)2 = 0 (27f)

c1 :=∑r−t
i=1 z̃

2
i and c2 := √

t + sz̃r−t+1.
Similarly,proxχ‖·‖

τgD ,r
≤γ

(Z) canbedeterminedby setting f (w) = χ[0,γ ](w), where

it suffices to consider the two cases: (27a) with zv = −1, and Eqs. (27c), (27d) and
(27f) with w̃ = 1.
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Proposition 4 Let Z = ∑n
i=1 σi (Z)uivTi ∈ R

n×m, g = τ�∞ with τ > 0, 1 ≤ r ≤ n,
γ = 1, zv ∈ R and z̃ := Tσ(z). Further, let

ẑ :=
(

z̃1, . . . , z̃ j ,
t√

(t + s)
z̃r−t+1, z̃ j+1, . . . , z̃r−t

)

∈ R
r−t+1,

α :=
⎛

⎜
⎝1, . . . , 1︸ ︷︷ ︸

length j

,
t2

(t + s)
, 1, . . . , 1

⎞

⎟
⎠ ∈ R

r−t+1.

where j is chosen such that

z̃ j >
√

(t+s)
t z̃r−t+1 ≥ z̃ j+1 or z̃r−t ≥

√
(t+s)
t z̃r−t+1. (28)

Then,�−epi(‖·‖gD ,r )
(Z , zv) can be computed via Theorem 1 with f (w) = 1

2 (w+ zv)2,
where the solution to (24) is characterized by one of the following three distinct cases:

(ỹ, w̃) = (z̃, zv) ⇐⇒
r−t∑

i=1

|z̃i | + t√
t + s

|z̃r−t+1| ≤ −τ zv (29a)

(ỹ, w̃) = 0 ⇐⇒ max

(

z̃1,

√
t + s

t
z̃r−t+1

)

≤ zv
τ

(29b)

and otherwise

ỹi = max
(
z̃i − μ

τ
, 0
)
, 1 ≤ i ≤ r − t, (29c)

ỹr−t+1 = max
(
z̃r−t+1 − tμ√

(t+s)τ
, 0
)

, (29d)

w̃ = μ − zv (29e)

where μ = μ̂k	 with μ̂k = zv+∑k
i=1 ẑi

1+∑k
i=1 αi

and k	 can be identified by a search over k with

the following rules for increasing/decreasing k:

I. k	 = max{k : ẑk − αkμ̂k ≥ 0}
II. ẑk − αkμ̂k ≥ 0 for all k ≤ k	

III. ẑk − αkμ̂k < 0 for all k > k	

Similarly, proxχ‖·‖
τgD ,r

≤γ
(Z) can be determined by setting f (w) = χ[0,γ ](w), where

it suffices to consider the two cases: (29a) with zv = −1 and Eqs. (29c) and (29d),

where μ = μ̂k	 can be found with the search rules from above and μ̂k =
∑k

i=1 ẑi∑k
i=1 αi

.

Propositions 3 and 4 are proved in Appendixces 4 and 6, respectively, and implemen-
tations for the user are available for MATLAB and Python at [20,21].
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Table 2 Complexity of computing �epi(‖·‖�2,r∗)(Z , zv) and �epi(‖·‖�1,r∗)(Z , zv) given a pre-computed

SVD of Z in comparison with others

Source �epi(‖·‖�2,r∗)(Z , zv) �epi(‖·‖�1,r∗)(Z , zv)

[14,29] O(log(r) log(n − r + 1) + n) n/a

[46] n/a O(r(n − r + 1))

This work O(log(r) log(n − r + 1) + n) O(r log(r) log(n − r + 1) + n)

4.3 Computational Complexity

In the following, we evaluate the computational complexity, i.e., counting all flops
(see [44]) of the discussed approaches for computing

proxχepi(‖·‖g,r∗)
(Z , zv) = �epi(‖·‖g,r∗)(Z , zv) = (Z , zv) − �−epi(‖·‖gD ,r )

(Z , zv).

Since the same analysis also applies to the other cases discussed in Table 1, this will
allow us to compare our approach to existing methods. Our evaluation starts with
a discussion of Algorithm 1 for a general gauge function, followed by an explicit
discussion for the cases of g = �2 and g = �∞ in Sects. 4.3.1 and 4.3.2 of which a
summary is given in Table 2.

In order to apply the binary search rules in Theorem 1, we only need to determine
(y(t,s)

r−t , y(t,s)
r−t+1, y

(t,s)
r+s , y(t,s)

r+s+1), whose computational cost we assume to be bounded
by C(n, r). Then, the complexity of Algorithm 1 is the sum of:

1. SVD for Z providing all σi (Z) and uivTi such that Z =∑n
i=1 σi (Z)uivTi (see [44]):

O(mn2).
2. Binary search rules (see [28]) in Theorem 1 for t and s:

O(C(n, r) log(r) log(n − r))

3. Determine the final full solution: O(n).
4. Compute proxχepi(‖·‖g,r∗)

(Z , zv) from �−epi(‖·‖gD ,r )
(Z , zv): O(n)

In practise, the first cost may be significantly reduced by employing sparse SVD
solvers (see e.g., [32,34]). In particular, for the vector-valued case, this corresponds
to a simple sorting of the entries. The second cost is determined by the coordinate
transformation (23a), i.e.,

(y(t,s)
r−t , y(t,s)

r−t+1, y
(t,s)
r+s , y(t,s)

r+s+1) =
(

ỹr−t ,
1√
s + t

ỹr−t+1,
1√
s + t

ỹr−t+1, σr+s+1(Z)

)

and therefore the cost for C(n, r) equals the cost C̃(n, r) for solving (24) to find
(ỹr−t , ỹr−t+1). To compute the full solution y(t	,s	), once an optimal pair (t	, s	) is
found, the cost for these pre- and post-computing steps is at mostO(n). Finally, com-
puting proxχepi(‖·‖g,r∗)

(Z , zv) from �−epi(‖·‖gD ,r )
(Z , zv) only contributes an additional

n + 1 subtractions.
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Remark 1 Thecost for computing z̃r−t+1 is givenby the cost for knowing
∑r+s

i=r+1 σi (Z)

(for s > 0) and
∑r

i=r−t+1 σi (Z). Both sums could be computed a priori for all t and s
through incremental summationwith costO(n).However, in practice itmaybe cheaper
to store and re-use the intermediate sums, when deriving

∑r
i=r−t+1 zi and

∑r+s
i=r+1 zi .

This means we only need to compute additional intermediate sums whenever t and s
get increased within the binary search.

4.3.1 Low-Rank Inducing Frobenius Norms

In order to determine the computational cost C̃(n, r) for g = �2, we need to analyze
the complexity of the three cases in Proposition 3. All cases require the evaluation
of
∑r−t

i=1 z̃
2
i = ∑r−t

i=1 σ 2
i (Z) as either part of the inequalities Eqs. (27a) and (27b)

or as coefficients in polynomial (27f). These sums can be computed once for all
t ∈ {1, . . . , r} with cost O(r). Then testing Eqs. (27a) and (27b) as well as solving
the fourth-order polynomial (27f) are of cost O(1). Our generic approach, there-
fore, recovers in this special case the same complexity as the algorithms in [14,29]
(see Table 2).

4.3.2 Low-Rank Inducing Spectral Norms

As in the previous case, determining C̃(n, r) for g = �∞ requires us to compute the
complexity of the three cases in Proposition 4. The cases Eqs. (29a) and (29b) require
the evaluation of

∑r−t
i=1 z̃i =∑r−t

i=1 σi (Z). This can be done once for all t ∈ {1, . . . , r}
with cost O(r), and verifying the corresponding inequalities is then of complexity
O(1).

Determining μ in the third case of Proposition 4 requires:

a) Find j in (28): O(log(r − t + 1)), because z̃1 ≥ · · · ≥ z̃r−t .
b) Determine μk	 = μ through binary search:O(r − t + 1), because

∑r−t+1
i=1 ẑi may

need to be computed.

Thus, C̃(n, r) is dominated by the complexity of determining μ, which by the pre-
ceding analysis is at most O(r). Compared to [46], our approach reduces the overall
cost significantly (see Table 2), which is especially important for the corresponding
vector-valued problem.

5 Case Study: Matrix Completion

In the following, we will see how the binary search parameters (t, s, k) from Algo-
rithm 1 and Proposition 4 evolve when solving an optimization problem with a
proximal splitting method. We consider the convexified low-rank matrix completion
problem (see, e.g., [7,8,17] for motivation and examples)

minimize
M

‖M‖�∞,r∗

subject to mi j = ni j , (i, j) ∈ I
(30)
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0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

100

101

102

Iterate

(t
,s
,k

)

Fig. 1 Parameter path of ( t, s, k) from Algorithm 1 and Proposition 4 when computing
prox‖·‖�∞,r∗ within the Douglas–Rachford iterations (32). There are no values for the first iterate, because

prox‖·‖�∞,r∗ (Z0) = 0 and the iterations are stopped when ‖Xi − Yi‖F ≤ 10−8. Strict inequalities in
Algorithm 1 are determined to be valid if the corresponding nonnegative difference is above the relative
threshold 10−12∑r

i=1 σi (Z). The local plateauing after relatively few iterations suggests to use (t, s, k)
from the previous iterations as an initial guess for the current iteration as well as to employ sparse SVD
solvers in order to save computational time

with r = 50, I := {ni j : ni j > 0} and N = ∑r
i=1 uiu

T
i being defined through the

SVD of

H :=
1 1 1 1
1 0

1 0
1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

=
500∑

i=1

σi (H)uiu
T
i ∈ R

500×500. (31)

Note that a smaller version of this example has been solved successfully in [17]
by using an SDP-solver, but this larger example is far out of the scope of typical
SDP-solvers [39,43]. Therefore, we apply the following Douglas–Rachford splitting
scheme (see [9,11,33]):

Xi = prox‖·‖�∞,r∗(Zi−1), Yi = �L(2Xi − Zi−1), Zi = Zi−1 + Yi − Xi (32)

with L := {X ∈ R
500×500 : xi j = ni j , (i, j) ∈ I}, Z0 = 0 and limi→∞ Xi =

limi→∞ Yi being a solution to (30). By the construction of N , it can be shown that
limi→∞ Xi = N (see [17]).

The parameter path of (t, s, k) for computing Xi is shown in Fig. 1. We observe
that as Xi approaches N , the values of t , s and k start plateauing. Thus, by using the
values from one iterate in the subsequent iterate, the practical computational cost may
reduce significantly. Finally, after the initial transient, the variance of each parameter is
small compared to the overall 500 singular values. As a result, sparse SVD algorithms,
which only compute a small predefined number of largest singular values (see, e.g.,
[32,34]), can be effectively applied. This emphasizing that our complexity analysis is
important to both, vector- and matrix-valued problems.
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6 Conclusion

This work presents a binary search framework for computing the proximal mappings
of all unitarily invariant low-rank inducing norms and their epigraph projections.
In particular, complete algorithms for the low-rank inducing Frobenius and spectral
norms are presented. Our framework unifies and extends the known proximal mapping
computations in the following sense: (i) So far, only proximalmappings for the squared
low-rank inducing Frobenius norm [14] and the (non-squared) low-rank inducing
spectral norm [46] have been derived. This framework is independent of the particular
unitary invariant norm and its composition with a convex increasing function. (ii)
Excluding the cost for an SVD, i.e., the cost for the analogous vector-valued problem,
we recover the same complexity for the squared low-rank inducing Frobenius norm as
in [14,29], but significantly decrease the complexity for the (non-squared) low-rank
inducing spectral norm. Further, we show that these costs also transfer to compositions
with simple functions.

Finally, in our case study we have seen that within a proximal splitting method, the
computational cost of our proximal mappings may be reduced to approximately linear
cost, besides the singular value decomposition, after a small number of iterations and
is therefore roughly the same as in case of the nuclear norm/spectral norm. Further,
our example also demonstrates that sparse singular value decomposition (see e.g.,
[32,34]) can be effectively applied, underlining the importance of our analysis even
for the matrix case. Implementations for the low-rank inducing Frobenius and spectral
norms are available for MATLAB and Python at [20,21].
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Lemmas, Proofs and Additional Discussion

Search Rules

Lemma 2 Let f be proper, closed and convex, z1 ≥ · · · ≥ zn ≥ 0 and(
y(t), w(t)

)
denote the t-dependent solution to
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minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gDr (y), y ∈ R
n,

yr−t+1 = · · · = yr ≥ · · · ≥ yn .

(33)

where 1 ≤ t ≤ r . Then there exists t	 such that
(
y(t	), w(t	)

)
is the solution to

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gDr (y), y ∈ R
n,

y1 ≥ · · · ≥ yn ≥ 0,

(34)

with y(t	)
r−t	 > y(t	)

r−t	+1 and y(t	)
r−t	 = y(t	)

r−t	+1 if t
	 = r . Further,

i. t	 = min
{
{t : y(t)

r−t > y(t)
r−t+1} ∪ {r}

}
.

ii. If y(t ′)
r−t ′ ≥ y(t ′)

r−t ′+1 then y(t)
r−t ≥ y(t)

r−t+1 for all t ≥ t ′.
iii. If y(t ′)

r−t ′ < y(t ′)
r−t ′+1 then y(t)

r−t < y(t)
r−t+1 for all t ≤ t ′.

In particular, t	 can be found by a search over t , where t is increased/decreased
according to the following rules:

I y(t)
r−t ≥ y(t)

r−t+1 for all t ≥ t	.

II y(t)
r−t ≤ y(t)

r−t+1 for all t < t	.

III If t < t	 and y(t)
r−t = y(t)

r−t+1 then
(
y(t), w(t)

) =
(
y(t	), w(t	)

)
.

Proof First we show the equivalence between Eqs. (34) and (33). To this end note
that it is not necessary to explicitly restrict y to be nonnegative. The unique solution
(y	, w	) to (34) fulfills 0 ≤ y	

i ≤ zi for 1 ≤ i ≤ n. The upper bound holds, because
otherwise by [25, Theorem 7.4.8.4] gDr (ȳ) ≤ gDr (y	)with ȳ	

i := min{zi , y	
i } and thus

ȳ	 is a feasible solution to (34) with smaller cost. Similarly, the lower bound holds,
because otherwise ȳ	 with ȳ	

i = max{0, y	
i } is a feasible solution to (34) with smaller

cost by Definition 1 (ii). Then there exists t	 such that y	
r−t	 > y	

r−t	+1 = · · · = y	
r

where t	 = r if y	
1 = y	

r , which implies that yr−t	 ≥ yr−t	+1 is assumed to be inactive
and therefore can be removed from (34). Thus, also the constraints y1 ≥ · · · ≥ yr−t	

can be removed, because the cost function and the sorting of z ensures that the solution
will always fulfill them. This yields solving (34) reduces to finding t	 such that (33)
solves (34).

Next, we characterize t	 in terms of solution to (33). In the following, we let p(t)
denote the optimal cost of (33) as a function of t . Since adding constraints cannot
reduce the optimal cost, p is a nondecreasing function.

Item i.: By the same reasoning that led to the equivalence between Eqs. (34) and
(33), it holds that y(t)

1 ≥ · · · ≥ y(t)
r−t , 1 ≤ t ≤ r , which is why the set {t : y(t)

r−t >
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y(t)
r−t+1} ∪ {r} contains all t for which the solution of (33) is feasible for (34). Since p

is nondecreasing and
(
y(t	), w(t	)

)
is unique, the first claim follows.

Item ii.: The second claim is proven by contradiction. Let (y(t ′), w(t ′)) be such that

y(t ′)
r−t ′ ≥ y(t ′)

r−t ′+1. Further assume that y(t ′+1)
r−t ′−1 < y(t ′+1)

r−t ′ . In the following, we construct
another solution (ỹ, w̃) ∈ R

q+1 to (33) with t = t ′ + 1, which has a cost that is no
larger than p(t ′ + 1). However, (33) has a unique solution due to strong convexity of
the cost function. This yields the desired contradiction. The contradicting solution is
constructed as a convex combination w̃ = (1 − α)w(t ′+1) + αw(t ′) with α ∈ (0, 1]
and a partially sorted convex combination of y(t ′) and y(t ′+1) with the same α. Let
ŷ := (1 − α)y(t ′+1) + αy(t ′) and let

ỹ := (sort(ŷ1, . . . , ŷr−t ′−2, ŷr−t ′), ŷr−t ′−1, ŷr−t ′+1, . . . , ŷq)

be the partially sorted convex combination. To select α, we note that by assumption,

y(t ′)
r−t ′−1 ≥ y(t ′)

r−t ′ ≥ y(t ′)
r−t ′+1 and y(t ′+1)

r−t ′−1 < y(t ′+1)
r−t ′ = y(t ′+1)

r−t ′+1. Therefore, there exists
an α ∈ (0, 1] such that

ỹr−t ′ = ŷr−t ′−1 = (1 − α)y(t ′+1)
r−t ′−1 + αy(t ′)

r−t ′−1

= (1 − α)y(t ′+1)
r−t ′+1 + αy(t ′)

r−t ′+1 = ŷr−t ′+1 = ỹr−t ′+1.

Since y(t ′)
r−t ′+1 = · · · = y(t ′)

r and y(t ′+1)
r−t ′−1 = · · · = y(t ′+1)

r , it follows that ỹr−t ′ = · · · =
ỹr . Furthermore, the construction of ỹ as well as the sorting yield that ỹr ≥ · · · ≥ ỹq
and ỹ1 ≥ · · · ≥ ỹr−t ′−1, which is why ỹ satisfies the chain of inequalities in (33) for
t = t ′ + 1.

It remains to show that ỹ satisfies the epigraph constraint and that the cost is not
higher than p(t ′ + 1). These properties are already fulfilled for ŷ being a convex
combination of two feasible points with costs p(t ′) and p(t ′ + 1), respectively, where
p(t ′) ≤ p(t ′ + 1). Therefore, it is left to show that the sorting involved in ỹ maintains
these properties. First, we show that sorting of any sub-vector in ŷ does not increase
the cost. Suppose that zi ≥ z j , ŷi ≤ ŷ j , i.e., ŷ is not sorted the same way as z. Then

1
2

(
(zi − ŷi )

2 + (z j − ŷ j )
2
)

= (zi − z j )(ŷ j − ŷi ) + 1
2

(
(zi − ŷ j )

2 + (z j − ŷi )
2
)

≥ 1
2

(
(zi − ŷ j )

2 + (z j − ŷi )
2
)

,

and thus the cost is not increased by sorting ŷ or any sub-vector of it. Further, a
permutation of the first r elements of ŷ does not influence the epigraph constraint,
because gDr (ŷ) is permutation invariant by definition.

Next notice that ỹ is obtained from ŷ by first swapping ŷr−t ′−1 and ŷr−t ′ . From the
choice of α, we conclude that

ŷr−t ′ = (1 − α)y(t ′+1)
r−t ′ + αy(t ′)

r−t ′ ≥ (1 − α)y(t ′+1)
r−t ′+1 + αy(t ′)

r−t ′+1 = ŷr−t ′+1 = ŷr−t ′−1.
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Thus, this swap is a sorting which does neither increase the cost, nor does it violate the
epigraph constraint. Analogously, sorting the first r−t ′ elements of the resulting vector
to obtain ỹ has the same effect and therefore we receive the desired contradiction.

Item iii.: Suppose that there exist t and t ′ with t ′ > t such that y(t ′)
r−t ′ < y(t ′)

r−t ′+1 and

y(t)
r−t ≥ y(t)

r−t+1. Then Item ii. shows that y(t ′)
r−t ′ ≥ y(t ′)

r−t ′+1, which is a contradiction.
Items I. to III.: The statements follow immediately from Items i. to iii.

Lemma 3 Let f and z be as in Lemma 2 and
(
y(t,s), w(t,s)

)
denote the (t, s)-dependent

solution to

minimize
y,w

f (w) + γ

2

n∑

i=1

(yi − zi )
2

subject to w ≥ gDr (y), y ∈ R
n,

yr−t+1 = · · · = yr+s .

(35)

where 0 ≤ s ≤ r − n and t is fixed within 1 ≤ t ≤ r . Then, there exists s	 such that(
y(t,s	), w(t,s	)

)
is the solution to (33) with y(t,s	)

r+s	 > y(t,s	)
r+s	+1 and y(t,s	)

r+s	 = y(t)
r+s	+1 if

s	 = n − r . Further,

i s	 = min
{
{s : y(t,s	)

r+s	 > y(t,s	)
r+s	+1} ∪ {n − r}

}
.

ii If y(t,s′)
r+s′ ≥ y(t,s′)

r+s′+1 then y(t,s)
r+s ≥ y(t,s)

r+s+1 for all s ≥ s′.
iii If y(t,s′)

r+s′ < y(t,s′)
r+s′+1 then y(t,s)

r+s < y(t,s)
r+s+1 for all s ≤ s′.

In particular, s	 can be found by a search over s, where s is increased/decreased
according to the following rules:

I y(t,s)
r+s ≥ y(t,s)

r+s+1 for all s ≥ s	.

II y(t,s)
r+s ≤ y(t,s)

r+s+1 for all s < s	.

III If s < s	 and y(t,s)
r+s = y(t,s)

r+s+1 then
(
y(t,s), w(t,s)

) =
(
y(t,s	), w(t,s	)

)
.

The proof of Lemma 3 goes analogously to the proof of Lemma 2 and is therefore
omitted.

Lemma 4 Let f and z be as in Lemma 2, 1 ≤ t ≤ r and 0 ≤ s ≤ n − r . Moreover,
let z̃ := T z ∈ R

r−t+1 be defined by (22) and be (ỹ(t,s), w(t,s)) the (t, s)-dependent
solution to

minimize
ỹ,w

f (w) + γ

2

r−t+1∑

i=1

(ỹi − z̃i )
2

subject to w ≥ gDr ,s,t (ỹ), ỹ ∈ R
r−t+1

(36)

Then (y(t,s), w(t,s)) is a solution to (35), where

y(t,s)
i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ỹ(t,s)
i , if 1 ≤ i ≤ r − t,

ỹ(t,s)
i√
t + s

, if r − t + 1 ≤ i ≤ r + s,

zi , if i ≥ r + s + 1.

(37)
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Proof Letting ỹ ∈ R
r−t+1 be defined as

ỹi =
{
yi , if 1 ≤ i ≤ r − t,√
t + syr−t+1, if i = r − t + 1,

(38)

and notice that

r+s∑

i=r−t+1

(yr − zi )
2 = (ỹr−t+1 − z̃r−t+1)

2 +
r+s∑

i=r−t+1

z2i −
(

1√
t + s

r+s∑

i=r−t+1

zi

)2

,

yields the reduced dimensional problem (36).

Proof to Theorem 1

ByLemma 2, (34) can be solved by performing a search over the t-dependent solutions
to (33), where by Lemma 3 these solutions can be determined for each t by a search
over the s-dependent solutions to (35). In order to solve (35), we apply Lemma 4 to
reduce (35) to solving (24) in Theorem 1. Hence, the remainder of the theorem is a
direct application of Lemmas 3 and 2 and thus a nested search with the stated rules
succeeds in finding (t	, s	).

General Solution to (24)

In every step of the binary search (24) must be solved. Provided a very mild constraint
qualification holds (which it does for our functions of interest), the solution will fall
into one of three cases, depending on f and the singular values of Z . The different
cases are described in the following.

Proposition 5 Suppose that there exits (ȳ, w̄) such that w̄ ∈ relint(dom f ) and w̄ >

gDr ,s,t (ȳ). Then (ỹ, w̃) is a solution to (24) if and only if one of the following cases
applies:

Case 1: ỹ = z̃ ⇐⇒ w̃ = argmin
w

f and w̃ ≥ gDr ,s,t (z̃) (C1)

Case 2: (ỹ, w̃) = 0 ⇐⇒ gr ,s,t (z̃) ≤ μ

γ
and μ ∈ ∂ f (0) (C2)

Case 3:
γ

μ
(z̃ − ỹ) ∈ ∂gDr ,s,t (ỹ) μ ∈ ∂ f (w̃) ∩ R≥0 and w̃ = gDr ,s,t (ỹ) (C3)

where z̃ := Tσ(Z) is given by (22).
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Proof A solution (ỹ, w̃) to (24) fulfills 0 ∈ ∂( f (w̃)+ γ
2 ‖ỹ− z̃‖2+χepi(gDr ,s,t )

(ỹ, w̃)) by
[24, TheoremVI.2.2.1], which under the assumed constraint qualification is equivalent
to

0 ∈
(

γ (ỹ − z̃)
∂ f (w̃)

)

+ Nepi(gDr ,s,t )
(ỹ, w̃) (40)

where N denotes the normal cone to epi(gDr ,s,t ) and the summation is understood
set-wise. Then by [24, Proposition VI.1.3.1]

Nepi(gDr ,s,t )
(ỹ, w̃) =

{
{(μG,−μ) : G ∈ ∂gDr ,s,t (ỹ), μ ≥ 0} if w̃ = gDr ,s,t (ỹ)

{0} if (ỹ, w̃) ∈ int(epi(gDr ,s,t ))

(41)

which is why we need to distinguish the cases ỹ = z̃ and w̃ = gDr ,s,t (ỹ). Thus, the
proof follows by invoking (3).

Remark 2 In the epigraph case with f (x) = 1
2 (w + zv)2 and γ = 1, (C1) corresponds

to that (z,−zv) is in the cone given by the epigraph of gDr ,s,t , (C2) corresponds to that
(z, zv) is in the cone given by the epigraph of the dual gauge function gr ,s,t , and (C3)
covers the remaining cases.

The problem of solving (18) therefore reduces to checking Eqs. (C1), (C2) and (C3)
within the nested binary search, which has been made explicit for gD = �2 in
Appendix 4 and gD = �1 in Appendix 6.

Proof to Proposition 3

For τ > 0 and a gauge function g̃ it holds that g = τ g̃ is gauge function with gD = g̃
τ
.

Setting γ = 1 and f (w) = 1
2 (w + zv) in Theorem 1, Eqs. (C1), (C2), and (C3) in

Proposition 5 then become

(ỹ, w̃) = (z̃, zv) ⇐⇒ − τ zv ≥ g̃Dr ,s,t (z̃) (42a)

(ỹ, w̃) = 0 ⇐⇒ g̃r ,s,t (z̃) ≤ zv
τ

(42b)

τ

μ
(z̃ − ỹ) ∈ ∂ g̃Dr ,s,t (ỹ), μ = w̃ + zv ≥ 0 and τw̃ = g̃Dr ,s,t (ỹ). (42c)

For our particular case g̃ = �2, it follows immediately that Eqs. (42a) and (42b)
correspond to Eqs. (27a) and (27b). Furthermore, by taking the gradient of gDr ,s,t ,
(42c) becomes Eqs. (27c), (27e) and (27d) with the constraints μ ≥ 0 and τw̃ =
gDr ,s,t (ỹ). Thus, it is left to compute μ ≥ 0. Plugging Eqs. (27c), (27e) and (27d) into
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τ 2w̃2 = gDr ,s,t (ỹ)
2
and making some rearrangements yields

1 =
∑r−t

i=1 z̃
2
i

(
w̃τ + μ

τ

)2 + t

s + t

z̃2r−t+1
(
w̃τ + μt

(s+t)τ

)2 .

Then defining c1 := ∑r−t
i=1 z̃

2
i and c2 := √

t + sz̃r−t+1, this can be rewritten as the
fourth-order polynomial equation (27f) which can be solved explicitly for uniqueμ ≥
0 after the substitution (27e) is performed. This proves the first part of Proposition 3.
For f (w) = χ[0,γ ](w), Eqs. (C1), (C2) and (C3) are

ỹ = z̃ ⇐⇒ τ ≥ g̃Dr ,s,t (z̃) (43a)
γ

μ
(z̃ − ỹ) ∈ ∂ g̃Dr ,s,t (ỹ), μ ≥ 0 and τ = g̃Dr ,s,t (ỹ). (43b)

Note that (C2) is redundant here, because it coincides with (43a). Hence, for g = �2
(43a) becomes (27a) with zv = −1 and (43b) is equivalent to Eqs. (27f), (27c) and
(27d) with w̃ = 1.

Break Point Search

Lemma 5 Let (z̃, zv) fulfill neither of Eqs. (29a) and (29b), and ẑ and α be as in
Proposition 4. Further, letμ	 be the solution to

∑r−t+1
i=1 max(ẑi−αiμ, 0)+zv−μ = 0

and μ̂k be the solution to
(∑k

i=1 ẑi − αiμ
)

+ zv −μ = 0, i.e., μ̂k = zv+∑k
i=1 ẑi

1+∑k
i=1 αi

. Then

there exists k	 ∈ {1, . . . r − t + 1} such that ẑk	 − αk	μ	 ≥ 0, ẑi − αiμ
	 < 0 for all

i > k	 and

i. μ̂k	 = μ	.

ii. k	 = max{k : ẑk − αkμ̂k ≥ 0}.
iii. If ẑk − αkμ̂k ≥ 0, then ẑi − αi μ̂i ≥ 0 for all i ≤ k.
vi. If ẑk − αkμ̂k < 0, then ẑi − αi μ̂i < 0 for all i ≥ k.

In particular,

I. ẑk − αkμ̂k ≥ 0 for all k ≤ k	.
II. ẑk − αkμ̂k < 0 for all k > k	.

Proof We first show some results needed to prove Items ii. and iii. Let gk(μ) :=∑k
i=1 max(ẑi − αiμ, 0) + zv − μ, and let μk be the unique solution to the equation

gk(μ) = 0. Since all gi are strictly decreasing in μ and gk(μ) = gk−1(μ)+max(ẑk −
αkμ, 0) ≥ gk−1(μ), we have

a. μk−1 ≤ μk .

b. ẑk − αkμk ≤ 0 ⇔ gk−1(μk) = gk(μk) = 0 ⇔ μk−1 = μk .
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Moreover, the break point sorting in ẑ implies that if l andμ are such that ẑl −αlμ ≥ 0,
then also ẑi − αiμ ≥ 0 for all i ≤ l. Thus,

ẑk − αkμ ≥ 0 ⇔
k∑

i=1

max(ẑi − αiμ, 0) + zv − μ =
(

k∑

i=1

ẑi − αiμ

)

+ zv − μ.

In conjunction with the uniqueness of μk , this implies that

c. ẑk − αkμk ≥ 0 or ẑk − αkμ̂k ≥ 0 ⇔ μ̂k = μk .

Item i.: This has already been proven in the discussion before Lemma 5.
Item ii.: By the definition of k	 and Item i. it holds that

ẑk	 − αk	 μ̂k	 ≥ 0 and ẑi − αi μ̂k	 < 0 for all i > k	. (44)

Thus, by Item c. μ̂k	 = μ	 = μk	 and ẑi − αiμi < 0 for all i > k	. Then Item
b. implies that μ̂k	 = μ	 = μr−t+1 = μr−t = · · · = μk	 . Therefore, if there
exists k > k	 with ẑk − αkμ̂k ≥ 0, it will hold by Item c. that μ̂k = μk = μ̂k	 ,
which contradicts (44), because 0 ≤ ẑk − αkμ̂k = ẑk − αkμ̂k	 < 0. This proves that
k	 = max{k : ẑk − αkμ̂k ≥ 0}.

Item iii.: Assume that ẑk −αkμ̂k ≥ 0. Then, by the break point sorting it holds that
ẑk−1 − αk−1μ̂k ≥ 0 and by Items a. and c. that μ̂k = μk ≥ μk−1. Thus, we conclude
that

0 ≤ ẑk−1 − αk−1μ̂k = ẑk−1 − αk−1μk ≤ ẑk−1 − αk−1μk−1 = ẑk−1 − αk−1μ̂k−1,

where the last equality follows again by Item c. The other indices follow inductively.
Item iv.: Let on the contrary k be such that ẑk −αkμ̂k < 0, but with i ∈ {k, . . . , r −

t + 1} such that ẑi − αi μ̂i ≥ 0. Then, by Item iii., ẑk − αkμ̂k ≥ 0, which is a
contradiction.

Items I. and II.: Follow immediately from Items ii. to iv.

Proof to Proposition 4

Analogous to showing Proposition 3, Eqs. (42a) and (42b) correspond to Eqs. (C1) and
(C2) in Proposition 5, which translate for g̃ = �∞ to

(ỹ	, w	) = (z̃, zv) ⇐⇒
r−t∑

i=1

|z̃i | + t√
t + s

|z̃r−t+1| ≤ −τ zv

(ỹ	, w	) = 0 ⇐⇒ max

(

|z̃1|, . . . , |z̃r−t−2|,
√
t + s

t
|z̃r−t+1|

)

≤ zv
γ

Since z̃ is nonnegative and decreasingly sorted, the second case simplifies to (29b).
For (42c), we need to note that ỹ ∈ R

r−t+1
≥0 and therefore the conditions for ỹi = 0
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and ỹi > 0 become

ỹi = 0 ⇔ z̃i ∈ [0, μ
τ

]
, ỹi > 0 ⇔ ỹi = z̃i − μ

τ

for all i ∈ {1, . . . , r−t}. These equivalences also hold for ỹr−t+1 withμmultiplied by
t/

√
s + t . Therefore, Eqs. (29c), (29d) and (29e) follow together with the constraints

τw̃ = g̃Dr ,s,t (ỹ) and μ ≥ 0. Then, plugging Eqs. (29c) and (29d) into τw	 = g̃Dr ,s,t (ỹ)
yields

0 = 1

τ

r−t∑

i=1

|ỹi | + t√
t + s

|ỹr−t+1| − w̃

=
r−t∑

i=1

max

(
z̃i
γ

− μ

γ 2 , 0

)

+ max

(
t√

t + sγ
z̃r−t+1 − t2μ

(t + s)γ 2 , 0

)

+ zv − μ.

(45a)

which determines the unique solution to μ ≥ 0. We solve the equation by using a
so-called break point searching algorithm, as it has been done for similar problems
in [10,12,22].

In our case, the break points are given by the smallest values of μ for which each

max expressions as function ofμ becomes zero, i.e.,
(
γ z̃1, . . . , γ z̃r−t ,

γ
√
s+t
t z̃r−t+1

)
.

Then we define ẑ := 1
γ

(

z̃1, . . . , z̃ j ,
t√

(t + s)
z̃r−t+1, z̃ j+1, . . . , z̃r−t

)

, to be the vec-

tor that sorts 1
γ

(
z̃1, . . . , z̃r−t ,

t√
t+s

z̃r−t+1

)
by decreasing break points, i.e., j fulfills

z̃ j >
√

(t+s)
t z̃r−t+1 ≥ z̃ j+1 or z̃r−t ≥

√
(t+s)
t z̃r−t+1. (46a)

Therefore, (45a) can be equivalently written as

r−t+1∑

i=1

max(ẑi − αiμ, 0) + zv − μ = 0 (46b)

with α = 1
γ 2

(

1, . . . , 1,
t2

(t + s)
, 1, . . . , 1

)

. Hence, there exists an index k	 ∈
{1, . . . , r − t + 1} such that the unique solution μ ≥ 0 to (46b) fulfills

ẑk	 − αk	μ ≥ 0 and ẑi − αiμ < 0 for all i > k	, (46c)

which is why μ can be determined as

μ = zv +∑k	

i=1 ẑi

1 +∑k	

i=1 αi
. (46d)
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Consequently, computing μ equals a search for k	 ∈ {1, . . . , r − t + 1} for which
(46d) satisfies (46c). This can be done with the search rules in Lemma 5.

Finally, if f (w) = χ[0,γ ](w), then Eqs. (C1), (C2) and (C3) are given by Eqs. (43a)
and (43b). For g̃ = �∞, this corresponds to (29a) with zv = −1, and Eqs. (29c) and
(29d) with the constraint that

∑r−t+1
i=1 max(ẑi −αiμ, 0) = τ, respectively. Therefore,

μ̂k =
∑k

i=1 ẑi∑k
i=1 αi

, μ =
∑k	

i=1 ẑi
∑k	

i=1 αi
and it is readily seen that k	 obeys the same rules as in

Lemma 5.
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