CORRECTION

Correction to: Indefinite Abstract Splines with a Quadratic Constraint

Santiago Gonzalez Zerbo^{1,2} · Alejandra Maestripieri^{1,2} · Francisco Martínez Pería^{1,3}

Published online: 1 October 2021 © Springer Science+Business Media, LLC, part of Springer Nature 2021

Correction to: Journal of Optimization Theory and Applications (2020) 186:209–225 https://doi.org/10.1007/s10957-020-01692-z

1 Introduction

In [1] the statement of Lemma 4.1 is incorrect. In fact, if the dimension of \mathcal{H} is infinite it is always possible to find a sequence in \mathcal{C}_V which converges weakly to a vector not contained in \mathcal{C}_V , see Proposition 2.1 below. We apologize for this mistake. If the dimension of \mathcal{H} is finite, Lemma 4.1 is not necessary to prove Theorem 4.1. In this erratum, we provide the correct statement for Theorem 4.1 for the finite dimensional case, as well as its proof.

2 Corrected Result

Let us start by proving that C_V is not necessarily weakly closed if \mathcal{H} is infinite dimensional. Recall that $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a separable Hilbert space, $(\mathcal{E}, [\cdot, \cdot])$ is a Krein space

Francisco Martínez Pería francisco@mate.unlp.edu.ar

> Santiago Gonzalez Zerbo sgzerbo@fi.uba.ar

Alejandra Maestripieri amaestri@fi.uba.ar

- ¹ Instituto Argentino de Matemática "Alberto P. Calderón" (IAM), Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- ² Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
- ³ Centro de Matemática de La Plata (CMaLP), Universidad Nacional de La Plata, La Plata, Argentina

The original article can be found online at https://doi.org/10.1007/s10957-020-01692-z.

and $V \in \mathcal{L}(\mathcal{H}, \mathcal{E})$ is surjective. If dim $N(V)^{\perp}$ is finite the problem can be treated as if \mathcal{H} were finite dimensional, simply considering $N(V)^{\perp}$ instead of \mathcal{H} .

Proposition 2.1 If dim $N(V)^{\perp}$ is infinite then C_V is not weakly closed.

Proof Assume that dim $N(V)^{\perp}$ is infinite. Then, \mathcal{E} is also infinite dimensional (and separable) because V is surjective. Let $\mathcal{E} = \mathcal{E}_+[+]\mathcal{E}_-$ be a fundamental decomposition of \mathcal{E} . Hence, $(\mathcal{E}_+, [\cdot, \cdot])$ and $(\mathcal{E}_-, -[\cdot, \cdot])$ are Hilbert spaces. Without loss of generality, we can assume that dim \mathcal{E}_+ is infinite.

Let us consider an orthonormal basis $(e_n^+)_{n\geq 1}$ of \mathcal{E}_+ . As a consequence of Bessel's inequality we have that $e_n^+ \xrightarrow{w} 0$, i.e.

$$\begin{bmatrix} e_n^+, z \end{bmatrix} \to 0$$
 for every $z \in \mathcal{E}^+$.

For each $n \ge 1$ there exists a unique $x_n \in N(V)^{\perp}$ such that $Vx_n = e_n^+$. Also, choose $e^- \in \mathcal{E}_-$ such that $[e^-, e^-] = -1$ and the unique $x_0 \in N(V)^{\perp}$ such that $Vx_0 = e^-$. Then, define

$$y_n = x_n + x_0, \qquad n \ge 1.$$

Below we show that the sequence $(y_n)_{n\geq 1}$ is contained in C_V and it weakly converges to $x_0 \notin C_V$. On the one hand, if $n \geq 1$,

$$[Vy_n, Vy_n] = [e_n^+ + e^-, e_n^+ + e^-] = [e_n^+, e_n^+] + [e^-, e^-] = 1 - 1 = 0,$$

i.e. $y_n \in C_V$. On the other hand, given $x \in \mathcal{H}$,

$$\left|\langle y_n - x_0, x \rangle\right| = \left|\langle x_n, x \rangle\right| = \left|\langle V^{\dagger} e_n^+, x \rangle\right| = \left|\left[e_n^+, (V^{\dagger})^{\#} x\right]\right| \xrightarrow[n \to \infty]{} 0.$$

Therefore, $y_n \xrightarrow{w} x_0$ and $x_0 \notin C_V$ since $[Vx_0, Vx_0] = [e^-, e^-] = -1 \neq 0.$

Now we give the correct statement and proof of [1, Theorem 4.1], which establishes sufficient conditions for the existence of indefinite interpolating splines for every $z_0 \in \mathcal{E}$ in the finite dimensional setting.

Theorem 2.1 [1, Theorem 4.1] Suppose that \mathcal{H} is a finite dimensional space. If R(L) is a uniformly positive subspace of $(\mathcal{K} \times \mathcal{E}, [\cdot, \cdot]_{\rho})$ for some $\rho \neq 0$ then $S_{z_0} \neq \emptyset$ for every $z_0 \in \mathcal{E}$.

Proof In order to prove the theorem, we apply [1, Proposition 4.2]. To this end, we first show that $T^{\#}Tx \in R(L^{\#}L)$ for every $x \in \mathcal{H}$.

By [1, Proposition A.1], R(L) is a regular subspace. Then, for every $(y, z) \in \mathcal{K} \times \mathcal{E}$ there exists (a unique) $x \in \mathcal{H}$ such that $Lx - (y, z) \in R(L)^{[\perp]}$, or equivalently, $L^{\#}Lx = L^{\#}(y, z)$. Since *T* and *V* are surjective, for each $(y, z) \in \mathcal{K} \times \mathcal{E}$ there exist $u, w \in \mathcal{H}$ such that y = Tu and z = Vw. Therefore, there exists $x \in \mathcal{H}$ such that

$$T^{\#}Tu + \rho V^{\#}Vw = L^{\#}(Tu, Vw) = (T^{\#}T + \rho V^{\#}V)x,$$

and consequently $R(L^{\#}L) = R(T^{\#}T + \rho V^{\#}V) = R(T^{\#}T) + R(V^{\#}V)$. Thus, $R(T^{\#}T) \subseteq R(L^{\#}L)$.

Given $z_0 \in \mathcal{E}$, let $x_0, u_0 \in \mathcal{H}$ be such that $Vx_0 = z_0$ and $T^{\#}Tx_0 = L^{\#}Lu_0$. Since \mathcal{H} is a finite dimensional space, $(R(L^{\#}L), (\cdot, \cdot))$ is a Hilbert space and $\mathcal{C}_V \cap \mathcal{B}_L$ is compact. Then $d(u_0, \mathcal{C}_V \cap \mathcal{B}_L)$ is attained. In this case, [1, Proposition 4.2] ensures that $\mathcal{S}_{z_0} \neq \emptyset$.

Reference

 Gonzalez Zerbo, S., Maestripieri, A., Martínez Pería, F.: Indefinite abstract splines with a quadratic constraint. J. Optim. Theory Appl. 186, 209–225 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.