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Abstract

In this paper, we use a geometrical approach to sharpen a lower bound given in [5]
for the Lipschitz modulus of the optimal value of (finite) linear programs under tilt
perturbations of the objective function. The key geometrical idea comes from orthog-
onally projecting general balls on linear subspaces. Our new lower bound provides a
computable expression for the exact modulus (as far as it only depends on the nominal
data) in two important cases: when the feasible set has extreme points and when we
deal with the Euclidean norm. In these two cases, we are able to compute or estimate
the global Lipschitz modulus of the optimal value function in different perturbations
frameworks.
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1 Introduction

This paper exploits geometrical aspects of balls (associated with arbitrary norms) in
order to sharpen a lower bound, given in [5, Theorem 4.1], on the Lipschitz modulus
of the optimal value of linear programs under canonical perturbations, i.e., tilt pertur-
bations of the objective function together with right-hand side (RHS) perturbations of
the inequality system defining the constraints.

Lipschitz properties of optimal values and optimal solutions of perturbed linear
programs have been systematically studied since the 1970s and 1980s. In particular,
it is well known that the optimal value function, when restricted to solvable problems
(i.e., with finite optimal value), is Lipschitzian on bounded subsets of the parameter
space, see, e.g., [12,17]. The latter also follows from results of parametric linear
optimization (see, e.g., [10, Chapter 8] or [1, Chapter 5.5]), saying that the parameter
space of solvable problems is a convex polyhedral cone and the restricted optimal
value function is continuous and piecewise quadratic there. Moreover, for a fixed
objective function (respectively, for a fixed RHS) the corresponding ‘partial’ optimal
value function is piecewise linear and convex (respectively, concave) on its effective
domain (which is a convex polyhedral set), hence globally Lipschitzian there, see,
e.g., [10, Chapter 6], [1, Chapter 5.5] or [16,17]. For recent detailed discussions of the
history of Lipschitz analysis in linear optimization, we refer to the papers [4,5].

Clearly, to have an exact expression of the Lipschitz modulus of the optimal value
function at a (given) nominal solvable problem is a matter of interest in the sensitivity
analysis. Such an exact expression is obtained in [5, Theorem 5.2] in the case when the
nominal set of optimal solutions is bounded, and moreover, this expression is given
exclusively in terms of the nominal problem’s data (parameters and solutions), not
involving problems in a neighborhood; in this sense, we often use the term point-
based expression. The reader is addressed to [5] for further comments and references
and [3,8,9,14] and references therein for a wider view on Lipschitz moduli and related
variational concepts.

As an immediate antecedent to the current analysis, [5, Theorem 4.1] provides a
point-based upper bound on the Lipschitz modulus of the optimal value under tilt
perturbations of the objective function (for a fixed RHS) and [5, Theorem 3.1] gives
an exact expression for RHS perturbations and fixed objective. The present paper
completes the picture about the Lipschitzian behavior of the optimal value function
by providing:

e Alower bound on the Lipschitz modulus for fixed RHS (and perturbable objective),
which equals the exact modulus in the cases when either the nominal feasible set
contains no lines or the norm considered in the space of decision variables (R") is
the Euclidean norm. Note that the nominal feasible set contains no lines if and only
if it has extreme points, which obviously includes the case when it is bounded.

e The exact global Lipschitz modulus for fixed RHS in the two cases mentioned
above.
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e The exact global Lipschitz modulus for fixed objective (in all cases).
e An upper bound on the global Lipschitz modulus for canonical perturbations under
certain assumptions ensuring the modulus’ finiteness.

The main ingredient in this study is the operator norm of the orthogonal projec-
tion mapping on the (nonzero) linear subspace spanned by the left-hand side (LHS)
coefficients of the constraint system with respect to the usual inner product in R”.
Such a subspace is nothing else but the orthogonal one to the lineality space (see [13])
of any nonempty feasible set. Observe that, since we are not perturbing the LHS of
the constraints, this lineality space is fixed. The two special cases mentioned above
(the existence of extreme feasible points or the use of the Euclidean norm) make the
referred operator norm equal 1, independently of the values of the LHS coefficients.

The structure of the paper is as follows: Section 2 introduces the necessary notation
and preliminary results. Section 3 provides some ad hoc results on dual norms of
projections. Then, Section 4 computes the referred local and global moduli for partial
perturbations (with either the objective function or the RHS being fixed). The case of
canonical perturbations is tackled in Section 5. We finish the paper with a section of
conclusions.

2 Notation and Preliminaries

Given a subset X C R”, by convX, coneX, and spanX we denote the convex hull, the
conical convex hull, and the linear subspace spanned by X. It is assumed that cone X
and span X always contain 0y, the zero vector of R". In particular, cone{(J} =span{¢J} =
{0,} . The orthogonal subspace to X is denoted as X L:={y eR":yx =0forall
x € X}. Letus also denote by extrX the set of extreme points of a convex set X C R”.

From the topological side, intX and bd X denote, respectively, the interior and the
boundary of a given subset X of any topological space.

Throughout the paper, we are concerned with the parameterized linear program

7 :Infc'x subjecttoa,x < b, t € T ={1,...,m}, 1)

where x € R” is the decision variable, regarded as a column vector, i.e., R" = Rx1
the LHS coefficient vector a; € R”" is given (fixed) for each ¢t € T, with some a;
being nonzero, the prime stands for transposition, and 7 = (¢, b) € R" x RT, with
b = (b;);er, being the parameter to be perturbed, (for simplicity, hereafter we write
1w = (c, b)) either locally, around a given nominal value 7 = (E, a , or globally.

Associated with our parametric family (1) we consider the feasible set mapping,
F :RT = R”, the optimal value function, ¥ : R" x RT — [—o00, +00], and the
optimal set mapping, F°P : R" x RT = R”, given, respectively, by

F)y={xeR":aGx <b, teT},
¥ () :=inf {c'x : x € F(b)},
FoP(m):={x e F(b): /x =0 (m)},
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under the convention inf ¢ := +o0.
We consider R” endowed with an arbitrary norm ||-|| , whereas the parameter spaces
R” and R" x RT are, respectively, equipped with the norms given by

1blloo := max[b;| —and (¢, D) := max {ic]l,.. [Plloc} -

with [[c]l, 1= maXx|=1 |c/x| . Hereafter B, B, and B, stand for the closed unit balls
associated with [|-||, |||, and the Euclidean norm, |||, , in R".

Given 7 = (¢,b) € domF? := {7 = (c,b) € R" x RT : F (c, b) # ¥} (the
effective domain of F°P), the (local) Lipschitz modulus of ¥ at 7 is defined as

El

lipy () := limsup M

T AT, T#T lr — ﬁ:”

(under the convention (+00) — (+00) = (—00) — (—00) = 0). Then, lip? () equals
+o0o when 7 € bd domF°P. We can avoid infinite values of the Lipschitz modulus by
restricting ¥ to domF°? (which in finite linear programming coincides with the set
of bounded problems, i.e., having a finite optimal value). Following [5], we consider
DR := ©|gomszer . Obviously, lipg X () = lip (%) for 7 € int domF°P, whereas [5,
Theorem 5.2] shows that lip# ¥ (77) is always finite for 7 € domF?”.

Analogously, we can define the global Lipschitz modulus of 9 ¥ as

s -0 (T
g—lipl?R = sup —l () ()]

7, FedomFOP, w#£T 7w — 7|

In this paper, we start by considering the cases of c-perturbations (tilt perturbations),
where b € domF remains fixed, and b-perturbations (RHS perturbations), for a fixed

¢ € C:= —conefa;, t € T}, 2)
in order to guarantee dual consistency. Observe that, as it is well known in ordinary—
finite—linear programming (LP), (¢, b) € domF°? if and only if b € domF and
c € C (see, e.g., [2, Section 4.3]). In other words,

domF? = C x domF.

Specifically, given T = (E, E) € domF°P, we consider the partial optimal value
functions ﬁER :C — Rand 19§ : domF — R given by

ﬁg (¢) := ¥ (¢, b) and ¥ (b) := ¥ (¢, b) for (c, b) € domF’.

Some results of the paper appeal to the condition ¢ € intC, provided that 7 = (E, 5) €
domF°P, which is known to be equivalent to the boundedness of F°P () (see, e.g.,
[6, Corollary 9.3.1]).

@ Springer



284 Journal of Optimization Theory and Applications (2022) 193:280-299

As it has been advanced in the introduction, a key role in our analysis is played by
the orthogonal projection mapping, denoted by P, on span{a;, ¢t € T} with respect to
the usual inner product in R”. More in detail, the exact modulus lipﬁER (¢) is obtained
when

[Pl := max [[Pull, =1.
lull =1

Example 3 shows that condition || P||,, = 1 is not superfluous. Observe that always
1Pl = 1.
As in [5, formula (7)], we consider the set (which goes back to [4, Section 2.2])

EP () 1= extr (.7-"”” () Nspan{a;, t € T}), 7 € domF°P. 3)

For completeness, let us observe that whenever w € domF°P, £° () is a nonempty
and finite set. Indeed, we can write

FP () Nspan{a;, t € T}
={xeR'|ax<b,teT, x=0(), 0x =0}, 4)

where Q is the matrix whose rows form a basis of {@;, ¢ € T}* . Then, the nonempti-
ness and finiteness of set of extreme points of the previous set can be deduced, for
instance, from [2, Theorems 2.2 and 2.3.].

For simplicity in the notation, for our nominal problem = = (E, I_J) , we denote as
e (E°P (1), 0,,) the Hausdorff excess of £°P (1) over {0,}. In other words,

e (EP(m),0,) := max |x].
( (™) n) o [lx]]

Firstly, we are going to consider the case of c-perturbations, where b € domF remains
fixed. The next result can be seen as the starting point of this paper:

Theorem 1 (see [5, Theorem 4.1]) Let T € domF°P. Then,
d(0,, FP (7)) < lipdR (@) < e (£ (7). 0,) . ®)
Moreover, if we assume that ¢ € intC, then
lipp X (@) = e (F (%), 0,).

Remark 1 When ¢ € intC (equivalently, 7°P () is bounded), [5, Theorem 4.1] also
shows that e (F°P (), 0,) equals the calmness modulus of z?ER atc. See [4] for further

details on the calmness modulus of 9% in the different perturbation settings.

Remark 2 Throughout the paper, the quantities d(0,, F°7 (7)) and
e (E°P (), 0,) frequently appear. At this moment, let us write some comments about
the computation of these two scalars. Paper [7] is focussed on the computation of

@ Springer



Journal of Optimization Theory and Applications (2022) 193:280-299 285

the minimum norm solution for an LP problem, in other words, to the computation
of d(0,, F°P (7)), which is done by reformulating this problem as an unconstrained
minimization problem with a convex and smooth objective function and applying a
Newton-type method. As commented there, paper [7] (see also references therein)
presents an alternative approach to the standard method based on the Tikhonov regu-
larization ([15]). On the other hand, in the case when ¢ € intC, we have

e (E”p(ﬁ), On) =e (extr]—"’P (), O,,) =e (}"”p (), O,,) ,

where the last equality comes from the convexity of the norm. In this way, we can
apply [11, Theorem 1.1] to derive an upper bound for e (F°7 (7),0,) in terms of
the problem’s data. Despite the finiteness of £°P (), to the authors knowledge, the
practical computation of e (£°P (), 0,) in the case when ¢ ¢ intC remains as open
problem.

The following example comes from [5, Example 4.2] (see more details therein) and
provides a geometrical motivation for using projections in the present paper, as well
as it shows that the second inequality in (5) can be strict. In this sense, it is worth
mentioning that in [5, Example 4.1] the first inequality holds strictly. Recall that B,
stands for the closed unit ball with respect to norm ||-||,.. See [13, Theorem 15.2] for
a characterization of all possible norms in R” in terms of their closed unit balls.

Example 1 [5, Example 4.2] Consider R? endowed with the norm given by
lx|l := max {|2x; + x2f, |2x1 + 3x2l},
for which B, = conv{#(2, 1)/, +(2, 3)’}. Consider the nominal problem in R>

7 : minimize xj
subject to —x1 < —2.
Then, e (£°7(),0,) = [[(2,0)'| = 4 and 1ipz9§(a = 2. If we considered the
Euclidean norm in R? , then both quantities would equal 2 for the same 7.

We finish this preliminary section with the counterpart of Theorem 1 for canonical
perturbations.

Remark 3 A point-based expression of lipz9§ (b) is given in [5, Theorem 3.1]. The
reader is addressed there for details. We omit it here in order to avoid additional
notation and definitions.

Theorem 2 [5, Theorems 3.1 and 5.2 and Corollary 5.1] Let 7 € domF°P. Then,
lipp R (@) < lippR(B) + e (£ (7), 0,) . (6)
If, additionally, ¢ € intC, then equality holds in (6), which reads as
lipp ® (@) = 1lipdX () + e (F7 (7). 0,)
= lipo X (b) +lip? X ().
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3 Dual norms of orthogonal projections

Let us denote by H the class of all linear subspaces of R” not reduced to 0, and,
for each H € 'H, consider the orthogonal projection on H, Py : R" — H, with
respect to the usual inner product in R”. Evidently, Py u is the (unique) closest point
tou € R" in H with respect to the Euclidean norm in R”, but we focus on the norm of
the linear mapping Py, when R” and H are endowed with the dual norm ||-]|,, (recall
that our ‘primal’ norm ||-|| is an arbitrary one). Let us write

1Pl = max || Prull, .
lull, =1

Obviously || Py |, > 1 whenever H € H. We are particularly interested in the case
H = span{a;, t € T}, whose associated projection we are denoting by just P. For
instance, in Example 1 we have || P||, = 2 since P (By) = [—2,2] x {0} and (1, 0)’ €
bd B,.

Next we present some technical lemmas. The first one appeals to the well-known
fact that all norms in R" are equivalent. Observe that || Py ||, = 1 whenever H € H.

Lemmal Let 0 < o < B be such that o |-, < ||llx < Bl-ll2 (or equivalently,
BBy C B, C a”'By). Then,

sup | Pall, < 2. e

HeH o

Proof For all H € H and all u € B, we have

B
1Prulle = Bl Pruly = Bllully = — llull,-
O
The following example shows that inequality (7) may be strict even in the case

when « and 8 are chosen sharp (the supremum and the infimum, respectively, of all
possible ones).

Example 2 In the case of Example 1, we have the sharp o = 1/4/13, 8 = ﬁ and a
routinary computation gives

1426
>

max || Py, =
HeH

More in detail, if we rotate (with respect to the origin) the extreme points of B, an
angle 6 € [0, ], which is equivalent to rotate the horizontal axis an angle —6, we
can check that the function

9}—)’

P st
span (520

i )
whose graph is given in Figure 1, attains its maximum at = arctan (5 + 26) .
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The following lemmas are useful at order to see how tight the lower bound of next
Theorem 3 is. See also Example 3.

Lemma 2 supy .y | Pl is attained at some one-dimensional H € 'H.

Proof Let us write supycy | Prlly = lim,— || Pp, ||, for an appropriate sequence
of linear subspaces {H,},cy . For each r pick w, € bd B, and W, := Py, w, with
@l = | P, |, -

It is not restrictive to assume (by taking suitable subsequences) that w, — w and
w, — w for some w € bd By and some w € R" with || W], = supy s | Prl, - Take
H:= span{w} and let us see that W = Pz w. Indeed,

W' (w—w) = lim W, (w, —w,) = lim 0=0.
r—00 r—00

Lemma 3 There exists a one-dimensional H € H such that || Pg ||* =1.

Proof Take any w € bd B, such that ||@]l, = maxyep, |w], and let H:= span{w}.
Then, for any w € B, there exists A,, > 0 such that Pgw = ,,W, and the choice of
w yields

Mo [0l = | Pgwl|, < lwly < D],
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Consequently, PﬁwH* = Ay < 1forall w € B,. O

4 A projection-based approach to the Lipschitz modulus under
partial perturbations

In this section, we consider separately c-perturbations, with b fixed, and b-
perturbations, with ¢ fixed.

4.1 Local c-perturbations

Now we provide in Theorem 3 the announced new lower bound on lipzﬁ‘ER (c), which
may be greater or less than d (0, F°P (7)) (see Theorem 1), as we will see in Example
4. Moreover, Example 3 shows that, for any given norm in R”, the upper bound in
Theorem 1 and the worst-case of lower bounds in Theorem 3 may be attained for
appropriate choices of the given data (a;),c7. First, we need a technical lemma, which
follows from standard arguments in LP. Nevertheless, for the sake of completeness,
we give a proof. Recall that F (b) = {x e R" : @jx < b;, t € T ={1,...,m}}.

Lemma4 Let X be an extreme point of the polyhedral set F = F(b) N
span {a;,t € T}. Then, there exist u € R" and ¢ > 0 such that u'x < u'x for all
x € F and all u € R" satisfying |\u — u|| < & (with ||-|| being any given norm in R").
Proof Let H = span{a;, t € T}and write H = {x € R" : ¢/x =0, i € I} forsome
finite index set / and some (g;)ic; € (R,

Since X € extrF(b) N H, there exists J C T such that ax = b, forallr € J and
span ({a;, t € J}U{q;, i € I}) = R" (see [2, Theorems 2.2 and 2.3.]). Let

Z :=cone ({—a;, t € J}U{qi, i € 1}),

thus int Z # @. Choose any u € int Z. Then, there is some ¢ > 0 such that U := {u €
R™: |lu —ullx < &} is a subset of Z . Hence,

u'x <u'xforallx € Fandallu € U,

since each u € Z has a representation u = — Y, ; Aa; + ) oy Migi With A, > 0
(t € Jyand u; > 0(i € I),and so, by taking u’x = — ) _,_; Aa,x forx € Fb)NH
into account,

WX ==Y nax=-—y b <—) Max=ux,

teJ teJ teJ
yielding the thesis of the lemma. O
Theorem 3 Let 7 € domF°P. Then,

e (£ (m), On)

lippX (@) >
b 1Pl

’
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where || P ||y := max =1 || Pullx and P stands for the orthogonal projection on the
subspace spanf{a,;, t € T} with respect to the usual inner product in R".

Proof Takex € £°P(w) with ||x|| = e (£°P (), 0,) . Then, X is also an extreme point of
the polyhedral set 7 (B) Nspan {a;, t € T} (recall (3) and (4), and the characterization
of extreme points in [2, Theorems 2.2 and 2.3.]). Thus, by applying the previous lemma
(with taking the dual norm || - ||4), there exist u € R" and ¢ > 0 such that u'x < u’x
for all x € .7-'(1_7) Nspan{a;, t € T} and all u € R" satisfying ||u — u||, < ¢.

Let w € R" with ||w||, = 1 be such that w'x = ||X| and let w := Pw. For each
reNletc :=c+ %ﬁ and ¢ =" + riz@. Then, we have ¢, ¢" — ¢ and we claim
that

X € F (", b) N FP (", b) whenever

< €.
*

1
-
,

In fact, to see x € F°P (Z"’, l_z) for such an r, we observe that for all x € F (l_J) and

all v € span{a,, t € T}, one has v'x = v/ Px and, therefore, since Px € }"(E) N
span{a;, t € T},

/ 1 1 /
(Er)/sz’x—i— (ﬁ—i— 1’5) x:E’x—i——(ﬁ—l——ﬂ?) Px

The proof of X € F° (c’ , E) is similar (by just replacing w with 0,,). Consequently,

) o o (T,b) =0 (" . (@ =)x
lipo-%(c) > lim ( ~) (", b) = lim (~—)
b r—00 lc" — "l r—>o0 " — "l
w'x w'x x|
= o~ = -~ Z 9
lwl, llwl = P«
where we used [ —c" |71 (@ — ") = |0]|;'W, w'x =¥ Pw =X w = w'X = ||X]|
and || P|lx = |Pwllx = [|w]]. O

Corollary 1 If|| P ||« = 1, for instance when || - || is the Euclidean norm or span{a;, t €
T} =R" we have lipﬁER (¢) = e (E°P(), 0,) . In the particular case when ¢ € intC,

we can write lipﬂER (€) = e (F°P (), 0,).
Example 3 For any given norm ||-|| inR", letw and w be as in the p{\oof of Lemmas 2
and 3, respectively; and consider the next two problems 7 = (¢, b), T = (¢, b) €

domF°P C R" x R, with one single constraint each (i.e., T = {1} ):

7 : Inf W'x subjectto —w'x < — ||l’l7||%,
T

:Inf @'x subjectto — w'x < — [|@]3.
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Then, the associated moduli (note that the left-hand sides are different) are

e (£ (x), 0n)

0O = ]
H l«

and lipz;gR(E) =e (Eap(;f), On) ;

where, as in the proof of Lemma 2,

H = span{®} and |Ps ||* = geaﬁ | Pt |l

Indeed, it is clear that F°P (%) = W + {w}™, so that £ (T) = {w}. Accordingly,
since (|I|l4), = Il Pu = [(@/ ||175||2)/u] (w/ ||wll,) forall u € R", and recalling
from the proof of Lemma 2 that w = Pgw for some w € By, one has

e (E(7), 0,) = ||W]| = max W'u = max @' Pju
€B, ueB,
—~ o~ —~2
> W' Pw=w'w=|wl;.

We can directly compute lip{%R (¢) by observing that ¢ = w and b=—|w ||% , and
a perturbed & = (c, b) belongs to domF°P if and only if ¢ = aw for some o > 0.
Therefore,

’55 (@) — DE (azﬁ)‘

lipp£@ = limsup T
ar,00—1, a1 Foar ||ot1w - (qu)”*
: |01 @0'® — o@'@| W] _ e (EP®),00)
= lim sup — == =
ay,an—1, aj#ar |a1—a2|||w||* ”w”* ||Pf—1\“>‘<

Finally, Theorem 3 provides the converse inequality.

On the other hand, the case of lipz;;R (©) is sensibly easier since || Py ”* = 1 and
then Theorems 1 and 3 give the aimed equality.

Putting together Theorems 1 and 3, we have the next corollary.

Corollary 2 Let m € domF°P. Then,

e (£ (m), On)

max {d (0n, FP (7)), TP

} < 1ipz9§ ©) <e(EP(®),0,).

The next example shows that any of both lower bounds on lipﬁER (¢), namely
d(0,, F°P(m)) and %, may be greater or less than the other.
Example 4 Consider R? endowed with the norm given by

lx]l := |x2| +max {|2x1 + x3|, [2x1 + 3x3]},

@ Springer



Journal of Optimization Theory and Applications (2022) 193:280-299 291

whose dual norm ||-||,, has as its closed unit ball the set
B, :=conv{(—=2, £1, —1)/, (=2, £1, =3)/, (2, £1, 1)/, (2, £1, 3)'}.

Alternatively, we may start by considering B, and obtain ||-|| as (||-|l,), . Consider
the problems in R3

7o : minimize xj
subjectto —x; <0
—xp < —1
xo < 3.

771 : minimize x|
subjectto —x; <0
—xp < —1.

Note that || P|l«+ = 2 and it can be easily checked that £? (1) = {(0,1,0)’} and
E° (1) = {(0, 1,0), (0, 3, 0)’}. Then, we have

e(E%(m),03) 1 _
el RIS L o1 =d (05, FPGRY),
1Pl 2 (05, 777 )

and

e (E%P(m2),03) 3 _
8 ) 2 1 =d (05, FP (7).
EP > (05, 77 T2)

4.2 Local b-perturbations

This short subsection basically consists of a reformulation of known results. Given
T = (E, b) € domF“P, it is well known that for each (c, b) € domF“? the optimal
value z?ER (b) coincides with that of the dual problem

m
mP :Sup — b'A subjectto Y @ =—¢, A >0, (8)

t=1

where A = (1/)}L; € R™ is the decision variable. Observe that this subsection con-
siders a fixed ¢ € C (recall (2)), which entails the feasibility of 7P for any b € R™.
Hence, by duality theory, the boundedness (equivalently, solvability) of 7 is equiv-
alent to primal feasibility. Formally, denoting by A°? (c, b) the optimal set of the
problem 70, one has dom AP (c, -) = domF. Observe that, viewed as a parameter,
7P is, as well as 77, identified with (€, b) .

Recalling Remark 3, [5, Theorem 3.1] provides an exact point-based expression
for lipﬁER (b). This expression is given in terms of the extreme points of the optimal
set of T2 (see [4, Lemma 1]). More specifically, denoting by ||-||; the /;-norm in R",
dual to ||| (used for b-perturbations), [S, Theorem 3.1] can be reformulated as

lip0X(B) = e (extrA? (), 01) ©)
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where we have written e; to emphasize that the Hausdorff excess is considered with
respect to |||y -

Remark 4 The constraint A > 0,, in the formulation of T2, translated into the primal
terminology ensures that 77 satisfies the counterpart of condition span{a;,t € T} =
R". Accordingly, (9) is directly derived from Corollary 1.

4.3 Global Lipschitz moduli

In the next paragraphs, we appeal to the following sets associated with b € domF and
¢ € C, respectively:

E (b) :=extr (F (b) Nspan{a;, t € T}),

m
A(c) = AeR’ﬁ:—c:Z)\,Et}.

=1
The last one is indeed the feasible set of the dual problem of 7. A global result can be
obtained from local ones by focusing on the origin.
Theorem 4 Let 7T = (¢, b) € domFP. Then,

4 (5 (Z) , On) . R A — .
(i) W < g-hpﬂg <e (5 (b) , On) = xlen;(%) 1l

“e . R _ — _
(ii) g-lippf = et (exrA @, 0) = max. [l

Proof Just observe that F(b) = F (0,, b) and £(b) = E°P (0y, b), so that the result

will follow from Corollary 2 if we prove that g-lipl‘}BR < lipl‘}ER (0,) (the converse
inequality is obvious from the definitions). Pick arbitrarily £ > 0 and, by the definition
of Lipschitz modulus, take § > 0 such that

el Il <8

¢.eC }:‘W(C’E)—ﬁ(?ﬁ)}s(hpﬂf ) +2) lle =2l (10)

Now consider any ¢, ¢ € C and take u > 0 such that || uc||, , |4, < 8. Then, (10)
yields

9 (.5) =9 (.5)| = w9 (e, B) — ™" (. B)
< 17" (lip2f ) + &) e — wel,
= (lip2f ) + &) e 2.

Since this happens for all ¢ > 0, (i) follows.

The proof of (ii) is completely analogous, working with the dual problem 77 ” (see
(8)), replacing ¢ € C with b € domF, using ||b| s instead of ||c||« and taking the
beginning of Remark 4 into account. O
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5 Lipschitz modulus under canonical perturbations

In this section, we combine some ideas of the previous ones to study local and global
Lipschitz moduli under canonical perturbations.

5.1 Local perturbations

The next theorem can be seen as the counterpart of Theorem 3 for canonical per-
turbations. It appeals to the following lemma which can be partially traced out from
[4, Lemma 2] (see also references therein) written in terms of limits of sequences of
subsets in the Painlevé—Kuratowski sense. In order to distinguish this type of limits
(of sets) from ordinary limits of points, we use the symbol ¢ Lim,_,,’ instead of
‘lim,_, . In the sequel, 7} (x) represents the set of active indices at x € F (b), for
beRl,ie.,

Ty (x):={t €T |ax =b}.

Lemmab5 Let T = (E, E) € domF°P and {b"} ey C domF converging to b. Then,

(i) {€ (V")}ren is uniformly bounded and P # Lim, o0& (b") = € (b) ;
(ii) {E°P (¢, b")},eN is uniformly bounded and

¢ # Lim,,ocE7 (¢, b") = EP (7).

Proof (i) is exactly as [4, Lemma 2 ()], and (ii) comes from (i) by just taking into
account that, for each r, F°P (c, b") is nothing else but the feasible set of system
{¢x <9(@ b"), ajx < b}, t € T}; recall also the well-known fact that (see, e.g.,
[4, Theorem 2]) lim,_, o0 ¥ (€, ") = limy oo ¥ (€, D) . O

Theorem 5 Let T = (¢, b) € domFP. Then,

— EP (), 0
lipp® (@) > lipp:R () + e (&™), 0n).
Pl
Proof Let us consider two sequences {b" },¢N, {Z’}reN C domF converging to b such
that
_ 9e(b") — 9(b"
lippX (B) = lim M. (11)
r=o0 b7 =D

We can confine ourselves to the case lipﬂER (b) > 0, since otherwise the thesis of
the present theorem follows directly from Theorem 3. Accordingly, we may assume
Bz(b") — Bs(b") > 0 for r large enough. In particular, this implies ¢ # 0,,. This detail
will be used later.

Take x € E£° () with ||x|| = e (E°P (), 0,). We may assume x # 0, (oth-
erwise the thesis of the theorem is trivial). The previous lemma entails £ (7) =

@ Springer



294 Journal of Optimization Theory and Applications (2022) 193:280-299

Lim,_, & (c, E’); In particular, there exists a sequence {X"},cy converging to x
with X" € &% (c,b") for all r € N. According to the KKT conditions, we have
—¢ € cone {a;, t € Ty (")} for all » € N. By virtue of Carathéodory’s Theorem,
for each r there exists a subset D" C Ty (X") with —¢ € cone {a;, t € D’ } and such
that {@;, t € D"} is linearly independent. For each r, since X" € £°P(c, b ), we have
span {a;, t € Ty (X")} = spanf{a,, ¢ € T}, which entails that {,, 1 € D"} can be

enlarged to a basis [E,Ir, - c_zt]:] of span {a;, t € T'} with {tlr s t,ﬁ} CTy ") CT.
Since T is finite, we may assume without loss of generality (by taking a suitable sub-
sequence) that {tf t,:} does not depend on r, say {tlr t,f} = {11, ..., t} for all
r.Clearly {11, ..., fr} C Tj; (X") implies {11, ..., i} C T3, (X).

Now define
k
£ U= Z (12)
which implies —u € intcone {@,, ..., a, } (see [6, Theorem A.7]). Take & > 0 such
that
[4 € span{a;, t € T} and |lu — ul|, < €] = —u € cone {Etl, ...,Etk}. (13)

In the case when k := dimspan {a;, t € T} < n, let {vkt1, ..., v,} be a basis of
{@. t € TY", so that {@,, ..., @y, Vks1, ..., Uy} is a basis of R". Let A denote the
matrix whose rows are E;], e E;k and Q the one whose rows are v,’<+1, e v,’1. We
have and define

1 =1/ Tr\k
__ ( ) (G), ]), o (A) <(b,’i),':1>, s (A) ((m, 1>
Q On k Q On—k Q On k
It is clear that x" — X, buL some x” may not be feasible for the whole b". Let us
define, foreach r € N, g”, " € RT given by

g b} ift € frr, ...},
t "~ | max {b’ b’ E/x’} ifr e T\{t1, ..., 1y} ;
Er ) b’ ift ef{t,...., 1z},
re max{b’ b’ a,x } ifr e T\{t1, ..., tx} .

Obviously, [|8” — B lleo < |Ib" — b" || and one easily checks

max {Ilﬂr —bllsos ||Er _5”00}

< max {llb’ —Dlloo, 1B = Blloo, max |, (x" — 7)|} — 0.

Indeed, the nontrivial case happens for those t € T\ {t1, ..., tx} such that max {b,’ , E,’ ,
E’x’} = a,x". In this case, we distinguish two possibilities: 0 < @, x" — b, <
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a,x" —ax or bj < @x" < by. The first one yields |a,x" —b;| < |a; (x" — )|
whereas the second one entails |a,x" — b;| < |b] — by|.

From the definition, taking into account that, for each r, {t1, ..., %} C T} &N
Tpr (x"), we straightforwardly obtain x” € F° (¢, ") N F°P (u, B") and X" €
FOP(C, BrYNFOP(, B) (recall (12) and the fact that —C € cone {@y,., .., @y }). Now,
as in the proof of Theorem 3, let w € R” with ||w|, = 1 be such that w'X = ||X|| and
let w := Pw. For each r € N, let us define

_ 2~ _
=+ gllﬂr = B lloott,

2~ _ &g w
z*:=c+—||ﬁ’—ﬁ’||oo(u+——A )
& 2||w||*

We define " := (¢", B") and 7 := (¢", B"), for all r. Hence, from (13), x” €
FOP(n") and X" € FOP(7") for each r.

Now let us show that E’ # B holds true, provided that r is large enough to ensure
U6(b") — 9z (b") > 0 (recall the beginning of the proof). To do this, observe that

©'x" =0 (c,p") < (c,b") because F (B") > F (b).
Then, since X" € F° (¢, b’), writing ¢ = — Y _, Ay, with &; > Ofor i = 1,..., k,
we have

0 < 9=(b") — ¥ (br) (x —x" ZA f —x)

= - ZA Bi — Bi)»

which entails E’ *pB". ~ ~
Finally observe that || 7" — 7"|| = ||f" — B [l oc because [|c" — ¢" |, = [|8"—B" lloo-
Thus, recalling ||B" — 8" oo < [|b" — b" |0 and (11), we have

19 =ry _ 19 r
lipy % (77) > lim sup M

r—00 7" — "
@ @) @) () X
= lim sup ~
r—00 I1B" = B" o
> lim sup <(5)’J7’ - (5)’XL— I[e" =l IX" — x| n (E: - C’)’X’)
r—00 18" = B" o 18" = B"llo
Ox(b") — e (b 2 - w'x"
> lim sup (M — <_ llzll, + 1) ||xr —x" || + wa )
r—>00 16" — b llo € lwll,
ClipdR(B) + 2 > lippR () + L
lwll, ~ Pl
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where we have taken into account that w'x = ||x|| and that ||w||, < || P|, . O

Putting together the previous theorem with [5, Theorems 3.1 and 5.1] and Theo-
rem 2, we obtain the following result.

Corollary 3 Let w € domF°P. Then,

0B+ ma (0, 7y < E 0000

1Pl
< lipp® @) < lipoX (D) + e (€7 (%), 0,) .

Thus, when || P||x = 1 (for instance if span {a;, t € T} = R", or R" is endowed with
the Euclidean norm) we have

lipo * () = lip X (B) + lippX () = lipd L (B) + ¢ (7 (), 0,) .
In the particular case when ¢ € intC, e (£°P (), 0,) = e (F°P (), 0y) .

5.2 On the global Lipschitz modulus
We start by showing that
g-lipl?R = +00,

so that we have to restrict it somehow in order to get some global information.
Indeed, since obviously g-lipg R > SUP; edom For lipy R (), according to Theorem
5 it is enough to show sup,, cqomzer € (%7 (1), 0,) = +00. To do this, consider any
basis of span {a;, t € T}, say {E,l, e E,k} , and any unbounded sequence {x" },cy C
span{a;, t € T}. Define b := a,x”, for all r € T and r € N. Then, clearly
x" e &(0,,b") forall r € N.

In the sequel, fix T = (E, E) € domF°P, take any p > 0 and consider V, :=
{r € domF : ||lx — 7| < p}. We are concerned with

o 9 (7) — 9 (7)]
g-lip#ly = sup ————
’ TTAEV,, T#T |z — 7|l

Obviously, g-lipﬁlvp > SUp;cy, lipg ® (7). In order to obtain a point-based upper

bound for g—lipﬁlvp, we introduce the following notation for a matrix M C RP*?
withrankg < p:

7 (M) := max { HL_1 H : L is arank ¢ square submatrix of M} ,

where ||L’1 H = max|,| <1 HL’lu || is associated with some given norms in R” and

@ Springer



Journal of Optimization Theory and Applications (2022) 193:280-299 297

As in the proof of Theorem 5, set k := dim span {a;, ¢ € T} and let {viy1, ..., vy}
be a basis of {a;, t € T}J‘ in the case when k < n. Let Q denote the matrix whose
TOWS are v, , ..., v, (in the forthcoming expressions, Q is an ‘empty matrix’ when
k = n). In the next theorem, A denotes the matrix whose rows are E;, t € T. Also
denote by 1, the identity matrix of order m (the cardinality of T').

Theorem 6 With the notation above,
. A - A _
glip?ly, <7 (2] +0)+T (el + ),
Q _Im

where I(g) is associated with the norms ||-|| in R" and ||| o, in R K and I(flin) is
associated with ||| in R™ and ||c||, + Al for (;) e R+,

Proof Take sequences {7” := (¢", b")},en, (T := (", ) }ren C V), such that

.[9 r _.0 =r
glipdy, = lim 19 (') = 9 GO

r>oo |lx" =7
Ifb" = b forall r large enough, one has, from Proposition 4(i),

|9 (", b") =9 (", b")]

g-lipdly, = lim

”Cr - E‘r “*
< limsup g-lipgs < limsup e (€ (b7),0,).
r—00 r—0o0

. Am\—1/ b
For each r, any x" € &£ (b") may be written as x” = ( QD) (Onl—)k

k submatrix Ap of A, with rows 5;, t € D, and the corresponding b, = (b,’ )
Accordingly,

), for some rank

teD

I =€) 1 e = Z(3) (1B ] + ).
Thus,
glipdly, = 7(8) (8], + ).

The case when ¢" = ¢ for all r large enough, analogously entails, from Proposi-
tion 4(ii),

g-lipd|y, < limsup g-lipp} < limsup ey (extrA (¢"),0,) < I(iA,:n) el + p) -
F—> 00

r—>0o0

In the remaining case, we may assume, by taking suitable subsequences if necessary,
that " # D" and ¢" # ¢ for all r. Also observe that, according to primal-dual
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feasibility, (¢, 5’) € V, for all . Then, we have

S LGP Rt (b)) + 9 (. b)) =9 (@)

g'lipﬁ|vp = r]l>oo Iz — 7|
. |9 (") =9 (. D) | . |9 (€, b") — & (=)
< lim sup = + lim sup ~
r—00 llc" ="« r—0o0 ”br —br ”oo

<Z() (5] o + ) +Z( 1) Il + ) -

6 Conclusions

This paper is primarily concerned with lower estimations of the Lipschitz modulus
of the optimal value of linear programs in two perturbations settings: objective func-
tion (tilt) perturbations and canonical perturbations (tilt ones together with right-hand
side—RHS—perturbations). In both cases, we can find in the literature upper bounds
(Theorems 1 and 2), whereas only for RHS perturbations the exact modulus is known
(see Remark 3).

The new point-based lower bounds given in this paper have been obtained by using
a projection-based approach. Specifically, we have appealed to || P ||, which denotes
the dual norm of the orthogonal projection on the linear subspace spanned by the left-
hand side coefficients of the system with respect to the usual inner product in R”. It
is known that this value is always greater than or equal to 1, and, in particular, equals
1 when either the feasible set contains no lines or R” is endowed with the Euclidean
norm.

On tilt perturbations, Theorem 3 establishes a new lower bound which, combined
with the antecedent Theorem 1, completes the picture for this framework (see Corollary
2). In this sense, Example 4 shows that this new lower bound may be less or greater than
the previously known one, while Example 3 shows that both the new lower bound and
the known upper bound may be attained. In the cases when || P || equals 1 (previously
mentioned), we obtain the exact value of the Lipschitz modulus which coincides with
the previously known upper bound. As for canonical perturbations, a lower bound
on the corresponding Lipschitz modulus is given in Theorem 5, which, together with
Theorem 2, completes the study. Additionally, when || P||, equals 1, the Lipschitz
modulus under canonical perturbations can be written as the sum of the corresponding
moduli under tilt and RHS perturbations (see Corollary 3).

Finally, we have also studied the global Lipschitz modulus in the same perturbation
settings. As shown in Theorem 4, the corresponding modulus under tilt perturbations
can be estimated through lower and upper bounds, while the exact modulus arises under
RHS perturbations. In both cases, the expressions for the global case are the analogous
to the local ones. Since the global Lipschitz modulus under canonical perturbations
turns out to be always infinite, we restrict our approach to problems in a fixed ball,
centered at the nominal problem and with a fixed radius, in order to obtain a finite
upper bound (see Section 5.2).
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