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Abstract
In this paper, we present new second-order methods with convergence rate O

(
k−4
)
,

where k is the iteration counter. This is faster than the existing lower bound for this type
of schemes (Agarwal and Hazan in Proceedings of the 31st conference on learning
theory, PMLR, pp. 774–792, 2018;Arjevani and Shiff inMath Program178(1–2):327–
360, 2019), which is O

(
k−7/2

)
. Our progress can be explained by a finer specification

of the problem class. The main idea of this approach consists in implementation of
the third-order scheme from Nesterov (Math Program 186:157–183, 2021) using the
second-order oracle. At each iteration of our method, we solve a nontrivial auxil-
iary problem by a linearly convergent scheme based on the relative non-degeneracy
condition (Bauschke et al. in Math Oper Res 42:330–348, 2016; Lu et al. in SIOPT
28(1):333–354, 2018). During this process, the Hessian of the objective function is
computed once, and the gradient is computed O

(
ln 1

ε

)
times, where ε is the desired

accuracy of the solution for our problem.

Keywords Convex optimization · Tensor methods · Lower complexity bounds ·
Second-order methods

Mathematics Subject Classification 90C25

1 Introduction

In the last years, the theory of high-order methods in convex optimization was devel-
oped seemingly up to its natural limits. After discovering the simple fact that the
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auxiliary problem in tensor methods can be posed as a problem of minimizing a con-
vex multivariate polynomial [15], very soon the performance of these methods was
increased up to the maximal limits [6,7,9], given by the theoretical lower complexity
bounds [1,2].

It is interesting that the first accelerated tensor methods were analyzed in the
unpublished paper [3], where the author did not express any hope for their practi-
cal implementations in the future. In [3] and [15], it was shown that the p-th order
methods can accelerate up to the level O

(
k−(p+1)

)
, where k is the iterations counter.

The main advantage of the theory in [15] is that it corresponds to the methods with
convex polynomial subproblems.

However, the fastest tensor methods [6,7,9] are based on the trick discovered in
[11] for the second-order methods. It allows to increase the rate of convergence of
tensor methods up to the level O

(
k−(3p+1)/2

)
, which matches the lower complexity

bounds for functions with Lipschitz-continuous pth derivative. Thus, for example, the
best possible rate of convergence of the second-order methods on the corresponding
problem class is of the order O

(
k−7/2

)
.

Unfortunately, this advanced technique requires finding at each iteration a root
of a univariate nonlinear non-monotone equation defined by inverse Hessians of the
objective function. Hence, from the practical point of view, the methods proposed in
[15] remain the most attractive.

The developments of this paper are based on one simple observation. In [15], it was
shown that the accelerated tensor method of degree three with the rate of convergence
O
(
k−4
)
can be implemented by using at each iteration a simple gradient method

based on the relative non-degeneracy condition [4,10]. This auxiliary method has to
minimize an augmented Taylor polynomial of degree three, computed at the current
test point x ∈ R

n :

〈∇ f (x), h〉 + 1

2
〈∇2 f (x)h, h〉 + 1

6
D3 f (x)[h]3 + H

24
‖h‖42 → min

h∈Rn
.

At each iteration of this linearly convergent scheme, we need to compute the gradient
of the auxiliary objective function in h. The only non-trivial part of this gradient comes
from the gradient of the third derivative. This is the vector D3 f (x)[h]2 ∈ R

n . It is the
only placewhere we need the third-order information. However, it is well known that

D3 f (x)[h]2 = lim
τ→0

1

τ 2
[∇ f (x + τh) + ∇ f (x − τh) − 2∇ f (x)].

In other words, the vector D3 f (x)[h]2 can be approximated with any accuracy by the
first-order information. This means that we have a chance to implement the third-order
method with the convergence rate O

(
k−4
)
using only the second-order information.

So, formally our method will be of the order two. However, it will have the rate of
convergence, which is higher than the formal lower bound O

(
k−7/2

)
for the second-

order schemes. Of course, the reason for this is that it will work with the problem
class initially reserved for the third-order methods. However, interestingly enough,
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our method will demonstrate on this class the same rate of convergence as the third-
order schemes.

In order to implement our hint into rigorous statements, we need to introduce in
the constructions of Section 5 in [15] some modifications related to the inexactness of
the available information. This is the subject of the remaining sections of this paper.

Contents. The paper is organized as follows: In Sect. 2, we introduce a convenient
definition of the acceptable neighborhood of the exact tensor step. It differs from the
previous ones (e.g. [5,8,13]) since for its verification it is necessary to call the oracle
of the main objective function. However, we will see that it significantly simplifies
the overall complexity analysis. We prove that every point from this neighborhood
ensures a gooddecrease of the objective functions,which is sufficient for implementing
the Basic Tensor Method and its accelerated version without spoiling their rates of
convergence.

In Sect. 3, we analyze the rate of convergence of the gradient method based on
the relative smoothness condition [4,10], under the assumption that the gradient of
the objective function is computed with a small absolute error. We need this analysis
for replacing the exact value of the third derivative along two vectors by a finite
difference of the gradients. We show that the perturbed method converges linearly to
a small neighborhood of the exact solution.

In Sect. 4, we put all our results together in order to justify a second-order imple-
mentation of the accelerated third-order tensor method. The rate of convergence of
the resulting algorithm is of the order O

(
k−4
)
, where k is the iteration counter. At

each iteration, we compute the Hessian once and the gradient is computed O
(
ln 1

ε

)

times, where ε is the desired accuracy of the solution of the main problem. Recall that
this rate of convergence is impossible for the second-order schemes working with the
functionswith Lipschitz-continuous third derivative (see [1,2]). However, our problem
class is smaller (see Lemma 4.1).

In Sect. 5, we show how to ensure boundedness of the constants, essential for
our minimization schemes. Finally, we conclude the paper with Sect. 6, containing a
discussion of our results and directions for future research.

Notation and generalities. In what follows, we denote by E a finite-dimensional real
vector space and by E

∗ its dual spaced composed by linear functions on E. For such
a function s ∈ E

∗, we denote by 〈s, x〉 its value at x ∈ E.
If it is not mentioned explicitly, we measure distances in E and E

∗ in a Euclidean
norm. For that, using a self-adjoint positive-definite operator B : E → E

∗ (notation
B = B∗ 	 0), we define

‖x‖ = 〈Bx, x〉1/2, x ∈ E, ‖g‖∗ = 〈g, B−1g〉1/2, g ∈ E∗.

In the formulas involving products of linear operators, it will be convenient to treat
x ∈ E as a linear operator from R to E, and x∗ as a linear operator from E

∗ to R. In
this case, xx∗ is a linear operator from E

∗ to E, acting as follows:

(xx∗)g = 〈g, x〉x ∈ E, g ∈ E
∗.
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For a smooth function f : dom f → R with convex and open domain dom f ⊆ E,
denote by ∇ f (x) its gradient, and by ∇2 f (x) its Hessian evaluated at point x ∈
dom f ⊆ E. Note that

∇ f (x) ∈ E
∗, ∇2 f (x)h ∈ E

∗, x ∈ dom f , h ∈ E.

In our analysis, we use Bregman divergence of function f (·) defined as follows:

β f (x, y) = f (y) − f (x) − 〈∇ f (x), y − x〉, x, y ∈ dom f . (1)

We often work with directional derivatives. For p ≥ 1, denote by

Dp f (x)[h1, . . . , h p]

the directional derivative of f at x along directions hi ∈ E, i = 1, . . . , p. Note that
Dp f (x)[·] is a symmetric p-linear form. Its norm is defined as follows:

‖Dp f (x)‖ = max
h1,...,h p

{∣∣∣Dp f (x)[h1, . . . , h p]
∣∣∣ : ‖hi‖ ≤ 1, i = 1, . . . , p

}
. (2)

In terms of our previous notation, for any x ∈ dom f and h1, h2 ∈ E, we have

Df (x)[h1] = 〈∇ f (x), h1〉, D2 f (x)[h1, h2] = 〈∇2 f (x)h1, h2〉.

For Hessian, this gives the spectral norm of self-adjoint linear operator (the maximal
module of all eigenvalues computed with respect to operator B).

If all directions h1, . . . , h p are the same, we apply notation

Dp f (x)[h]p, h ∈ E.

Then, Taylor approximation of function f (·) at x ∈ dom f can be written as

f (y) = Ωx,p(y) + o(‖y − x‖p), y ∈ dom f ,

Ωx,p(y)
def= f (x) +

p∑

k=1

1

k!D
k f (x)[y − x]k, y ∈ E.

Note that, in general, we have (see, for example, Appendix 1 in [16])

‖Dp f (x)‖ = max
h

{∣∣
∣Dp f (x)[h]p

∣∣
∣ : ‖h‖ ≤ 1

}
. (3)

Similarly, since for x, y ∈ dom f being fixed, the form Dp f (x)[·, . . . , ·]
− Dp f (y)[·, . . . , ·] is p-linear and symmetric, we also have

‖Dp f (x) − Dp f (y)‖ = max
h

{∣∣∣Dp f (x)[h]p − Dp f (y)[h]p
∣
∣∣ : ‖h‖ ≤ 1

}
. (4)
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In this paper, we consider functions from the problem classesFp, which are convex
and p times differentiable on E. Denote by L p its uniform bound for the Lipschitz
constant of their pth derivative:

‖Dp f (x) − Dp f (y)‖ ≤ L p‖x − y‖, x, y ∈ dom f , p ≥ 1. (5)

If an ambiguity can arise, we use notation L p( f ). Sometimes it is more convenient to
work with uniform bounds on the derivatives:

Mp( f ) = sup
x∈dom f

‖Dp f (x)‖. (6)

If both values are well defined, we suppose that L p( f ) = Mp+1( f ), p ≥ 1.
Let F(·) be a sufficiently smooth vector function, F : dom F → E2. Then, by the

well-known Taylor formula, we have

F(y) − F(x) −
p∑

k=1

1

k!D
kF(x)[y − x]k

= 1

p!
1∫

1

(1 − τ)pDp+1F(x + τ(y − x))[y − x]p+1dτ, x, y ∈ dom F . (7)

Hence, we can bound the following residual:

| f (y) − Ωx,p(y)| ≤ L p

(p + 1)! ‖y − x‖p+1, x, y ∈ dom f . (8)

By the same reason, for functions ∇ f (·) and ∇2 f (·), we get

‖∇ f (y) − ∇Ωx,p(y)‖∗ ≤ L p

p! ‖y − x‖p, (9)

‖∇2 f (y) − ∇2Ωx,p(y)‖ ≤ L p

(p − 1)! ‖y − x‖p−1, (10)

which are valid for all x, y ∈ dom f .
Finally, for simplifying long expressions, we often use the trivial inequality

(
a1/p + b1/p

)p ≤ 2p−1(a + b), (11)

which is valid for all a, b ≥ 0 and p ≥ 1.
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2 Tensor Methods with Inexact Iteration

Consider the following unconstrained optimization problem:

min
x∈E f (x), (12)

where f (·) is a convex function with Lipschitz-continuous pth derivative:

‖Dp f (x) − Dp f (y)‖ ≤ L p‖x − y‖, x, y ∈ E, p ≥ 1. (13)

In this section, we work only with Euclidean norms.
We are going to solve problem (12) by tensor methods. Their performance crucially

depends on ability to achieve a significant improvement in the objective function at
the current test point.

Definition 2.1 We say that point T ∈ E ensures p th − order improvement of some
point x ∈ E with factor c > 0 if it satisfies the following inequality:

〈∇ f (T ), x − T 〉 ≥ c‖∇ f (T )‖
p+1
p∗ . (14)

This terminology has the following justification. Consider the augmented Taylor
polynomial of degree p ≥ 1:

Ω̂x,p,H (y)
def= Ωx,p(y) + H

(p + 1)! ‖y − x‖p+1, y ∈ E.

By (8), for H ≥ L p, this function gives us an upper estimate for the objective.
Moreover, for H ≥ pL p this function is convex (see Theorem 1 in [15]).

We are going to generate new test point T as a close approximation to the minimum
of function Ω̂x,p,H (·). Namely, we are interested in points from the following nested
neighborhoods:

N γ

p,H (x) = {T ∈ E : ‖∇Ω̂x,p,H (T )‖∗ ≤ γ ‖∇ f (T )‖∗}, (15)

where γ ∈ [0, 1) is an accuracy parameter. The smallest setN 0
p,H (x) contains only the

exactminimizers of the augmentedTaylor polynomial.Note that Ω̂x,p,H (x) = ∇ f (x).
Hence, if ∇ f (x) = 0, then x /∈ N γ

p,H (x) for any γ ∈ [0, 1).
These neighborhoods are important by the following reason.

Theorem 2.1 Let x ∈ E and parameters γ , H satisfy the following condition:

γ + L p

H
≤ 1

p
. (16)
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Then, any point T ∈ N γ

p,H (x) ensures a pth-order improvement of x with factor

cγ,H (p)
def=
[
(1 − γ )p!
L p + H

] 1
p

. (17)

Consequently, we have

f (x) − f (T ) ≥ cγ,H (p)‖∇ f (T )‖
p+1
p∗ . (18)

Proof Let T ∈ N γ

p,H (x). Denote by r = ‖x − T ‖. Then,

‖∇ f (T )‖2∗ + 2
H

p!r
p−1〈∇ f (T ), T − x〉 +

(
H

p!
)2

r2p

= ‖∇ f (T ) + H

p!r
p−1B(T − x)‖2∗

= ‖∇ f (T ) − ∇Ωx,p(T ) + ∇Ω̂x,p,H (T )‖2∗
(9)≤
(
L p

p! r
p + γ ‖∇ f (T )‖∗

)2
.

Therefore,

2Hr p−1

p! 〈∇ f (T ), x − T 〉 ≥ (1 − γ 2)‖∇ f (T )‖2∗ + H2 − L2
p

(p!)2 r2p

−2γ L p

p! r p‖∇ f (T )‖∗.

In other words,

〈∇ f (T ), x − T 〉 ≥ (1 − γ 2)p!
2Hr p−1 ‖∇ f (T )‖2∗ + H2 − L2

p

2Hp! r p+1

−γ r L p

H
‖∇ f (T )‖∗

def= κ(r).

Function κ(r) is convex in r ≥ 0. Its derivative in r is

κ
′(r) = − (1 − γ 2)(p − 1)p!

2Hr p
‖∇ f (T )‖2∗

+ (p + 1)(H2 − L2
p)

2Hp! r p − γ
L p

H
‖∇ f (T )‖∗.

Note that

‖∇ f (T )‖∗ = ‖∇ f (T ) − ∇Ωx,p(T ) + ∇Ω̂x,p,H (T ) − H

p!r
p−1B(T − x)‖∗
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≤ L p

p! r
p + γ ‖∇ f (T )‖∗ + H

p!r
p.

Thus, r ≥ r∗
def=
[

(1−γ )p! ‖∇ f (T )‖∗
L p+H

] 1
p
. At the same time,

κ
′(r∗) = − (1 − γ 2)(p − 1)p!‖∇ f (T )‖2∗·

2H
· L p + H

(1 − γ )p! ‖∇ f (T )‖∗

+ (p + 1)(H2 − L2
p)

2Hp! · (1 − γ )p! ‖∇ f (T )‖∗
L p + H

− γ
L p

H
‖∇ f (T )‖∗

= ‖∇ f (T )‖∗
[
− (1 + γ )(p − 1)

2

(
1 + L p

H

)

+ (p + 1)(1 − γ )

2

(
1 − L p

H

)
− γ

L p

H

]

= ‖∇ f (T )‖∗
[
1 − pγ − p

L p

H

]
(16)≥ 0.

So by convexity of κ(·) and r ≥ r∗, we have κ(r) ≥ κ(r∗). Therefore,

〈∇ f (T ), x − T 〉

≥ κ(r∗) = r∗

[
(1 − γ 2)p!

2Hr p∗
‖∇ f (T )‖2∗ + H2 − L2

p

2Hp! r p∗ − γ
L p

H
‖∇ f (T )‖∗

]

= r∗‖∇ f (T )‖∗

[
(1 − γ 2)p!

2H
· L p + H

(1 − γ )p! + H2 − L2
p

2Hp! · (1 − γ )p!
L p + H

− γ
L p

H

]

= r∗‖∇ f (T )‖∗.

Inequality (18) is valid since our function is convex:

f (x) ≥ f (T ) + 〈∇ f (T ), x − T 〉. �

We have proved that the pth-order improvement at point x ∈ E can be ensured by
inexact minimizers of the augmented Taylor polynomials of degree p ≥ 1. Let us
present the efficiency estimates for corresponding methods.

From now on, let us assume that the constant L p is known. For the sake of notation,
we fix the following values of the parameters:

γ = 1

2p
, H = 2pL p. (19)

Then, we can use a shorter notation for the following objects:

Np(x)
def= N 1/(2p)

p,2pL p
(x), cp

def= c1/(2p),2pL p (p) =
[

2p − 1

2p(2p + 1)

p!
L p

] 1
p

. (20)
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As a consequence of all these specifications, we have the following result.

Corollary 2.1 For any x ∈ E, all points from the neighborhood Np(x) ensure the
pth-order improvement of x with factor cp.

Let us start from the simplest Inexact Basic Tensor Method:

xk+1 ∈ Np(xk), k ≥ 0. (21)

Denote R(x0) = max
y∈E {‖y − x∗‖ : f (y) ≤ f (x0)}.

Theorem 2.2 Let the sequence {xk}k≥0 be generated by method (21). Then, for any
k ≥ 1 we have

f (xk) − f ∗ ≤
[
p + 1

k

(
1

cp
R

p+1
p (x0) + ( f (x0) − f ∗)1/p

)]p

(11)≤
(
2(p + 1)

k

)p [ p(2p + 1)

(2p − 1)p! L pR
p+1(x0) + 1

2
( f (x0) − f ∗)

]
.

(22)

Proof In view of inequality (18), we have f (xk) ≤ f (x0) for all k ≥ 0. Therefore,

‖xk − x∗‖ ≤ R0
def= R(x0), k ≥ 0.

Consequently,

f (xk) − f (xk+1)
(18)≥ cp‖∇ f (xk+1)‖

p+1
p∗ ≥ cp

( 〈∇ f (xk+1), xk+1 − x∗〉
R(x0)

) p+1
p

≥ cp

(
f (xk+1) − f ∗

R(x0)

) p+1
p

.

Denoting ξk = cpp

R p+1
0

( f (xk) − f ∗), we get inequality ξk − ξk+1 ≥ ξ

p+1
p

k+1 . Hence, in

view of Lemma 11 in [13], we have

ξk ≤ 1

k p

[
(p + 1)(1 + ξ

1/p
0 )

]p
, k ≥ 1.

This is exactly the estimate (22). ��
Let us present a convergence analysis for Inexact Accelerated Tensor Method. We

need to choose the degree of the method and define the prox-function

dp+1(x) = 1

p + 1
‖x‖p+1, x ∈ E.
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This is a uniformly convex function of degree p + 1: for all x, y ∈ E we have

dp+1(y) ≥ dp+1(x) + 〈∇dp+1(x), y − x〉 + 1

p + 1

(
1

2

)p−1

‖y − x‖p+1 (23)

(see, for example, Lemma 4.2.3 in [14]). Define the sequence

Ak = 2

(
p + 1

2p
cp

)p ( k

p + 1

)p+1

, ak+1
def= Ak+1 − Ak, k ≥ 0. (24)

Note that for all values Bk =
(

k
p+1

)p+1
with k ≥ 0 we have

(Bk+1 − Bk)
p+1
p

Bk+1
=
(
k + 1

p + 1
− k

p + 1

[
k

k + 1

]p) p+1
p

≤
(
k + 1

p + 1
− k

p + 1

[
1 − p

k + 1

]) p+1
p ≤ 1.

Therefore, the elements of sequence {Ak}k≥0 satisfy the following inequality:

a
p+1
p

k+1 ≤ 21/p
p + 1

2p
cp Ak+1, k ≥ 0. (25)

Inexact pth-Order Accelerated Tensor Method (ATMIp)
Initialization. Choose x0 ∈ E. Define coefficients Ak by (24) and
function ψ0(x) = dp+1(x − x0)
Iteration k ≥ 0.
1. Compute vk = argmin

x∈E ψk(x) and choose yk = Ak
Ak+1

xk + ak
Ak+1

vk .

2. Compute xk+1 ∈ Np(yk) and update
ψk+1(x) = ψk(x) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉].

(26)

First of all, note that by induction it is easy to see that

ψk(x) ≤ Ak f (x) + dp+1(x − x0), x ∈ E. (27)

In particular, for ψ∗
k

def= min
x∈E ψk(x) and all x ∈ E, we have

Ak f (x) + dp+1(x − x0)
(27)≥ ψk (x)

(23)≥ ψ∗
k + 1

p+1

(
1
2

)p−1 ‖x − vk‖p+1. (28)

Let us prove by induction the following relation:

ψ∗
k ≥ Ak f (xk), k ≥ 0. (29)
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For k = 0, we have ψ∗
0 = 0 and A0 = 0. Hence, (29) is valid. Assume it is valid for

some k ≥ 0. Then,

ψ∗
k+1 = min

x∈E

{
ψk(x) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]

}

(28)≥ min
x∈E

{
ψ∗
k + 1

p + 1

(
1

2

)p−1

‖x − vk‖p+1

+ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]
}
.

Note that

ψ∗
k + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]

(29)≥ Ak f (xk) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉]
≥ Ak+1 f (xk+1) + 〈∇ f (xk+1), ak+1(x − xk+1) + Ak(xk − xk+1)〉
= Ak+1 f (xk+1) + 〈∇ f (xk+1), ak+1(x − vk) + Ak+1(yk − xk+1)〉.

Further, in view of inequality α
p+1τ

p+1 − βτ ≥ − p
p+1α

−1/pβ(p+1)/p, τ ≥ 0, for all
x ∈ E we have

1
p+1

( 1
2

)p−1 ‖x − vk‖p+1 + ak+1〈∇ f (xk+1), x − vk〉

≥ − p
p+12

p−1
p

(
ak+1‖∇ f (xk+1)‖∗

) p+1
p

.

Finally, since xk+1 ∈ Np(yk), by Corollary 2.1 we get

〈∇ f (xk+1), yk − xk+1〉 ≥ cp‖∇ f (xk+1)‖
p+1
p∗ .

Putting all these inequalities together, we obtain

ψ∗
k+1 ≥ Ak+1 f (xk+1) − p

p + 1
2

p−1
p

(
ak+1‖∇ f (xk+1)‖∗

) p+1
p

+Ak+1cp‖∇ f (xk+1)‖
p+1
p∗

= Ak+1 f (xk+1) + ‖∇ f (xk+1)‖
p+1
p∗
(
Ak+1cp − p

p + 1
2

p−1
p a

p+1
p

k+1

)

(25)≥ Ak+1 f (xk+1).

Thus, we have proved the following theorem.
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Theorem 2.3 Let sequence {xk}k≥0 be generated by method (26). Then, for any k ≥ 1,
we have

f (xk) − f ∗ ≤ 2p + 1

2(2p − 1)p!
(
2p

k

)p+1

· L p‖x∗ − x0‖p+1. (30)

Proof Indeed, in view of relations (27) and (29), we have

f (xk) − f ∗ ≤ 1

Ak
dp+1(x

∗ − x0)
(24)= 1

2

(
2p

(p + 1)cp

)p ( p + 1

k

)p+1

· 1

p + 1
‖x∗ − x0‖p+1

= 1

2

(
2p

cp

)p (1
k

)p+1

· ‖x∗ − x0‖p+1 = (2p + 1)L p

2(2p − 1)p!
(
2p

k

)p+1

·‖x∗ − x0‖p+1.

��

3 Relative Non-degeneracy and Approximate Gradients

In this section, we measure distances in E by general norms. Consider the following
composite minimization problem:

min
x∈domψ

{
F(x)

def= ϕ(x) + ψ(x)
}

, (31)

where the convex function ϕ(·) is differentiable, and ψ(·) is a simple closed convex
function. The most important example of function ψ(·) is an indicator function for a
closed convex set. Denote by x∗ one of the optimal solutions of problem (31), and let
F∗ = F(x∗).

Let ϕ(·) be non-degenerate with respect to some scaling function d(·):

μd(ϕ)βd(x, y) ≤ βϕ(x, y)
(1)= ϕ(y) − ϕ(x) − 〈∇ϕ(x), y − x〉

≤ Ld(ϕ)βd(x, y), x, y ∈ domψ, (32)

where 0 ≤ μd(ϕ) ≤ Ld(ϕ). Denote by γd(ϕ) = μd (ϕ)
Ld (ϕ)

≤ 1 the condition number of
function ϕ(·)with respect to the scaling function d(·). Sometimes it is more convenient
to work with the second-order variant of the condition (32):

μd(ϕ)∇2d(x) � ∇2ϕ(x) � Ld(ϕ)∇2d(x), x ∈ domψ. (33)

We are going to solve problem (31) using an approximate gradient of the smooth
part of the objective function. Namely, at each point x ∈ E we use a vector gϕ(x) such
that
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‖gϕ(x) − ∇ϕ(x)‖∗ ≤ δ, (34)

where δ ≥ 0 is an accuracy parameter.
Our first goal is to describe the influence of parameter δ onto the quality of the

computed approximate solutions to problem (31). For this, we need to assume that
function d(·) is uniformly convex of degree p + 1 with p ≥ 1:

βd(x, y) ≥ 1

p + 1
σp+1(d)‖x − y‖p+1, x, y ∈ domψ. (35)

Consider the following Bregman Distance Gradient Method (BDGM),
working with inexact information.

Choose x0 ∈ E. For k ≥ 0 iterate:

xk+1 = arg min
y∈domψ

{
ψ(y) + 〈gϕ(xk), y − xk〉 + 2Ld(ϕ)βd(xk, y)

}
.

(36)

Lemma 3.1 Let the approximate gradient gϕ(xk) satisfy the condition (34). Then, for
any x ∈ E and k ≥ 0 we have

βd(xk+1, x) ≤ (1 − 1
4γd(ϕ)

)
βd(xk, x) + 1

2Ld (ϕ)
[F(x) − F(xk+1)] + δ̂, (37)

where δ̂
def= 2p

p+1δ
p+1
p

(
(p+1)(2+γd (ϕ))
σp+1(d) γd (ϕ)

) 1
p
.

Proof The first-order optimality condition defining xk+1 is as follows:

〈gϕ(xk) + 2Ld(ϕ)(∇d(xk+1) − ∇d(xk), x − xk+1〉 + ψ(x) ≥ ψ(xk+1) (38)

for all x ∈ domψ . Therefore, denoting rk(x) = βd(xk, x), we have

rk+1(x) − rk(x)

=
(
d(x) − d(xk+1) − 〈∇d(xk+1), x − xk+1〉

)

−
(
d(x) − d(xk) − 〈∇d(xk), x − xk〉

)

= d(xk) − 〈∇d(xk), xk − xk+1〉 − d(xk+1)

+〈∇d(xk) − ∇d(xk+1), x − xk+1〉
(38)≤ −βd(xk, xk+1) + 1

2Ld(ϕ)

[
〈gϕ(xk), x − xk+1〉 + ψ(x) − ψ(xk+1)

]
.

Note that 〈gϕ(xk), x − xk+1〉 = 〈gϕ(xk) − ∇ϕ(xk), x − xk+1〉 + 〈∇ϕ(xk), x − xk+1〉,
and

〈∇ϕ(xk), x − xk+1〉
(32)≤ 〈∇ϕ(xk), xk − xk+1〉 + ϕ(x) − ϕ(xk) − μd(ϕ)βd(xk, x)
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(32)≤ Ld(ϕ)d(xk, xk+1) + ϕ(x) − ϕ(xk+1) − μd(ϕ)βd(xk, x).

Hence,

rk+1(x) − rk(x) + 1

2Ld(ϕ)
[F(xk+1) − F(x)]

≤ 〈gϕ(xk) − ∇ϕ(xk), x − xk+1〉 − 1

2
βd(xk, xk+1) − 1

2
γd(ϕ)βd(xk, x)

(35)≤ −1

4
γd(ϕ)rk(x) + 〈gϕ(xk) − ∇ϕ(xk), x − xk+1〉

− σp+1(d)

2(p + 1)

(
‖xk − xk+1‖p+1 + 1

2
γd(ϕ)‖xk − x‖p+1

)
.

Since ‖x‖ = ‖ − x‖ for all x in E, the minimum in xk of the expression in brackets
is attained at some xk = (1 − α)xk+1 + αx with α ∈ (0, 1). On the other hand, the
minimum of the function

α p+1 + 1

2
γd(ϕ)(1 − α)p+1, α ∈ [0, 1],

is attained at ᾱ = β
1+β

with β = ( 12γd(ϕ)
) 1
p . This is

ᾱ p+1 + β p(1 − ᾱ)p+1 = ᾱ
β p

(1 + β)p
+ β p

(1 + β)p+1

= β p

(1 + β)p

(11)≥ γd(ϕ)

2p−1(2 + γd(ϕ))
.

Thus,

rk+1(x) − (1 − 1

4
γd(ϕ))rk(x) + 1

2Ld(ϕ)
[F(xk+1) − F(x)]

≤ 〈gϕ(xk) − ∇ϕ(xk), x − xk+1〉 − σp+1(d) γd(ϕ)

2p(p + 1)(2 + γd(ϕ))
‖x − xk+1‖p+1

(34)≤ 2p

p + 1
δ

p+1
p

(
(p + 1)(2 + γd(ϕ))

σp+1(d) γd(ϕ)

) 1
p

.�

Applying inequality (37) with x = x∗ recursively to all k = 0, . . . , T − 1, we get
the following relation:

βd(xT , x∗) + 1

2Ld(ϕ)

T−1∑

k=0

(1 − γ )T−k−1[F(xk+1) − F(x∗)]

≤ (1 − γ )Tβd(x0, x
∗) + ST δ̂, (39)
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where γ = 1
4γd(ϕ), and ST =

T−1∑

k=0
(1 − γ )T−k−1 = 1

γ

(
1 − (1 − γ )T

)
.

Thus, denoting F∗
T = min

0≤k≤T
F(xk), we get the following bound:

F∗
T − F∗ (39)≤ 2γ (1 − γ )T

1 − (1 − γ )T
Ld(ϕ)β(x0, x

∗) + 2δ̂Ld(ϕ), T ≥ 1. (40)

Note that lim
γ↓0

γ (1−γ )T

1−(1−γ )T
= 1

T . Hence, for μd(ϕ) = 0 we get the convergence rate

F∗
T − F∗ (39)≤ 2Ld(ϕ)

(
1

T
β(x0, x

∗) + 2δ̂

)
, T ≥ 1. (41)

��
In our main application, presented in Sect. 4, we need to generate points with small
norm of the gradient. In order to achieve this goal with method (36), we need one more
assumption on the scaling function d(·).

From now on, we consider the unconstrained minimization problems. This means
that in (31) we have ψ(x) = 0 for all x ∈ E.

Definition 3.1 We call the scaling function d(·) norm − dominated on the set S ⊆ E

by some function θS(·) : R+ → R+ if there exists a convex function θS(·) with
θS(0) = 0 such that

βd(x, y) ≤ θS(‖x − y‖) (42)

for all x ∈ S and y ∈ E.

Clearly, if function d(·) is norm-dominated by function θS(·) and ηS(τ ) ≥ θS(τ ) for
all τ ≥ 0, then d(·) is also norm-dominated by function ηS(·).

Let us give an important example of a norm-dominated scaling function.

Lemma 3.2 Function d4(·) is norm-dominated on the Euclidean ball

BR = {x ∈ E : ‖x‖ ≤ R}

by the function

θR(τ ) = 1

4
(τ 2 + 2Rτ)2 + 1

2
R2τ 2 ≤ 1

2
τ 4 + 5

2
R2τ 2, τ ≥ 0. (43)

Proof Let x ∈ BR and y = x + h ∈ E. Then,

βd4(x, y) = 1

4
‖y‖4 − 1

4
‖x‖4 − ‖x‖2〈Bx, y − x〉

= 1

4
[‖x‖2 + 2〈Bx, h〉 + ‖h‖2]2 − 1

4
‖x‖4 − ‖x‖2〈Bx, h〉
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= 1

4
[‖x‖4 + 4〈Bx, h〉2 + ‖h‖4 + 4(‖x‖2 + ‖h‖2)〈Bx, h〉 + 2‖x‖2‖h‖2]

−1

4
‖x‖4 − ‖x‖2〈Bx, h〉

= 1

4
(‖h‖2 + 2〈Bx, h〉)2 + 1

2
‖x‖2‖h‖2.

Thus, we can take θR(τ ) = 1
4 (τ

2 + 2Rτ)2 + 1
2 R

2τ 2. ��
Note that the statement of Lemma 3.2 can be extended onto all convex polynomial

scaling functions.
Norm-dominated scaling functions are important in view of the following.

Lemma 3.3 Let scaling function d(·) be norm-dominated on the level set

Lϕ(x̄) = {x ∈ E : ϕ(x) ≤ ϕ(x̄)}

by some function θ(·). Then, for any x ∈ Lϕ(x̄) we have:

ϕ(x) − ϕ(x∗) ≥ Ld(ϕ) θ∗
(

1

Ld(ϕ)
‖∇ϕ(x)‖∗

)
, (44)

where θ∗(τ ) = max
λ

[λτ − θ(τ )].

Proof Indeed, for any x ∈ Lϕ(x̄) and y ∈ E we have

ϕ(y)
(32)≤ ϕ(x) + 〈∇ϕ(x), y − x〉 + Ld(ϕ)βd(x, y)

(42)≤ ϕ(x) + 〈∇ϕ(x), y − x〉 + Ld(ϕ)θ(‖y − x‖).

Therefore,

ϕ∗ = min
y∈E ϕ(y) ≤ min

y∈E

{
ϕ(x) + 〈∇ϕ(x), y − x〉 + Ld(ϕ)θ(‖y − x‖)

}

= min
r≥0

min
y:‖y−x‖=r

{
ϕ(x) + 〈∇ϕ(x), y − x〉 + Ld(ϕ)θ(r)

}

= ϕ(x) + min
r≥0

{
− r‖∇ϕ(x)‖∗ + Ld(ϕ)θ(r)

}

= ϕ(x) − Ld(ϕ) θ∗
(

1

Ld(ϕ)
‖∇ϕ(x)‖∗

)
.�

Thus, for norm-dominated scaling functions, the rate of convergence in function
value can be transformed into the rate of decrease of the norm of the gradient of
function ϕ(·). This feature is very important for practical implementations of Inexact
Tensor Methods presented in Sect. 2. In the next section, we discuss in details how it
works for inexact third-order methods. ��
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4 Second-Order Implementations of the Third-Order Methods

In this section, we are going to solve the unconstrained minimization problem

min
x∈E f (x), (45)

where the objective function is convex and smooth, using the second-order implemen-
tations of the third-order methods. For the pure second-order methods, the standard
assumption on the objective function in (45) is Lipschitz continuity of the second
derivative (see, for example, [12,17]). We are going to replace it by a stronger assump-
tion, using the following fact.

Lemma 4.1 Let constants M2( f ) and M4( f ) be finite. Then

M3( f ) ≤ √2M2( f )M4( f ). (46)

Proof Let x ∈ dom f . Then, for any direction h ∈ E and τ > 0 small enough, we
have x − τh ∈ dom f and

0 � ∇2 f (x − τh)
(7)= ∇2 f (x) − τD3 f (x)[h] + τ 2

1∫

0

(1 − λ)D4 f (x + λh)[h]2dλ

� ∇2 f (x) − τD3 f (x)[h] + 1

2
τ 2M4( f )‖h‖2B.

Thus, D3 f (x)[h]3 ≤ 1
τ
〈∇2 f (x)h, h〉 + τ

2M4( f )‖h‖4. Minimizing this inequality in
τ > 0 and taking the supremum of the result in h ∈ E, we get (46). ��

Thus, from now on, we assume that

L3( f ) ≡ M4( f ) < +∞. (47)

Assumption M2( f ) < +∞ is not so necessary. We will discuss different variants of
its replacements in Sect. 5.

In our situation, we can apply to (45) the third-order tensor method ATMI3 (see 26).
At each iteration of thismethod,we need tominimize the augmented third-order Taylor
polynomial Ω̂x,3,H (·). As it was shown in [15], this can be done by an auxiliary scheme
based on the relative smoothness condition. This approach is based on the following
matrix inequality (see Lemma 3 in [15]):

− 1

ξ
∇2 f (x) − ξ

2
M4( f )‖h‖2B � D3 f (x)[h] � 1

ξ
∇2 f (x) + ξ

2
M4( f )‖h‖2B, (48)

which is valid for all x ∈ dom f , h ∈ E and ξ > 0.
As compared with [15], our situation is more complicated. Firstly, we are not

going to use the exact minimum of function Ω̂x,3,H (·). And secondly, we are going
to minimize this function using its approximate gradients.
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Let us start from discussion of the second issue. Let us fix a parameter τ > 0 and
for all x, y ∈ E, consider the following vector functions:

hτ
y(x) = 2

τ 2
[∇ f (y + τ(x − y)) − ∇ f (y) − τ∇2 f (x)(y − x)] ∈ E

∗,

gτ
y (x) = 1

τ 2
[∇ f (y + τ(x − y)) + ∇ f (y − τ(x − y)) − 2∇ f (y)] ∈ E

∗,

the finite-difference approximations of third derivative along direction [x − y]2.
Lemma 4.2 For any x, y ∈ E, we have

‖hτ
y(x) − D3 f (y)[x − y]2‖∗ ≤ τ

3
M4( f )‖x − y‖3, (49)

‖gτ
y (x) − D3 f (y)[x − y]2‖∗ ≤ τ

3
M4( f )‖x − y‖3, (50)

‖gτ
y (x) − D3 f (y)[x − y]2‖∗ ≤ τ 2

12
L4( f )‖x − y‖4. (51)

Proof Denote h = τ(x − y). Then, by Taylor formula we have

∇ f (y + h) − ∇ f (y) − ∇2 f (y)h − 1

2
D3 f (y)[h]2

(7)= 1

2

1∫

0

(1 − λ)2D4 f (y + λh)[h]3dλ.

Applying a uniform upper bound for the fourth derivative to the right-hand side of this
representation, we get inequality (49). Further,

∇ f (y − h) − ∇ f (y) + ∇2 f (y)h − 1

2
D3 f (y)[h]2

(7)= 1

2

1∫

0

(1 − λ)2D4 f (y − λh)[−h]3dλ.

Adding these two representations, we get

gτ
y (x) − D3 f (y)[x − y]2

= τ

2

1∫

0

(1 − λ)2
(
D4 f (y + λτ(x − y)) − D4 f (y − λτ(x − y))

)
[x − y]3dλ,

and we obtain inequality (50). If the fourth derivative derivative is Lipschitz continu-
ous, then

123



Journal of Optimization Theory and Applications (2021) 191:1–30 19

‖gτ
y (x) − D3 f (y)[x − y]2‖∗ ≤ τ

2

1∫

0

(1 − λ)2 · 2λτ‖x − y‖4L4( f )dλ,

and this is inequality (51). ��
In this paper, we usually employ the approximation gτ

y (·). Note that

∇Ω̂y,3,H (x) = ∇ f (y) + ∇2 f (y)h + 1

2
D3 f (y)[h]2 + H

6
‖h‖2Bh,

where h = x − y. Thus, we can easily compute approximate gradients of function
Ω̂y,3,H (·) using the first-order information on function f (·). Let us show that this
can help us to minimize the augmented Taylor polynomial of degree three by the
machinery presented in Sect. 3.

At each iteration k of ATMI3, we need to find point xk+1 ∈ N3(yk). For the sake of
notation, let us assume that yk = 0.We need to find a point x+ ∈ N3(0) byminimizing
the function

ϕk(x) = Ω̂0,3,6L3(x)
def= f (0) + 〈∇ f (0), x〉 + 1

2
〈∇2 f (0)x, x〉

+1

6
D3 f (0)[x]3 + L3

4
‖x‖4. (52)

Thus, our auxiliary problem is as follows:

min
x∈E ϕk(x). (53)

Denote x∗
k = argmin

x∈E ϕk(x) and ϕ∗
k = ϕk(x∗

k ). Note that

∇ϕk(x) = ∇ f (0) + ∇2 f (0)x + 1

2
D3 f (0)[x]2 + L3‖x‖2Bx, (54)

∇2ϕk(x) = ∇2 f (0) + D3 f (0)[x] + L3

(
‖x‖2B + 2Bxx∗B

)

= ∇2 f (0) + D3 f (0)[x] + L3∇2d4(x). (55)

Therefore,

∇2ϕk(x)
(48)�

(
1 + 1

ξ

)
∇2 f (0) +

(
1 + ξ

2

)
L3∇2d4(x),

∇2ϕk(x)
(48)�

(
1 − 1

ξ

)
∇2 f (0) +

(
1 − ξ

2

)
L3∇2d4(x), (56)

Now it is clear that in our case a good scaling function is as follows:

ρk(x) = 1

2
〈∇2 f (0)x, x〉 + L3d4(x), x ∈ E. (57)
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Indeed, applying the relations (56) with ξ = √
2, we get

(
1 − 1√

2

)
∇2ρk(x) � ∇2ϕk(x) �

(
1 + 1√

2

)
∇2ρk(x), x ∈ E.

Thus, we can take

μ ≡ μρk (ϕk) = 1 − 1√
2

= 1

2 + √
2
, L ≡ Lρk (ϕk) = 1 + 1√

2
,

and obtain for function ϕk(·) the condition number bounded by a constant:

γ (ϕ)
def= μρk (ϕk)

Lρk (ϕk)
= 1

(1 + √
2)2

= 1

3 + 2
√
2

>
1

6
. (58)

The second condition for applicability of method (36) is the uniform convexity of
the Bregman distance. In our case, this is true since

βρk (x, y) ≥ L3βd4(x, y)
(23)≥ 1

16
L3‖x − y‖4, x, y ∈ E. (59)

Thus, in terms of inequality (35), we have σ4(ρk) = 1
4 L3. This property is important

for bounding the size of the set

Lk = {x ∈ E : ϕk(x) ≤ ϕk(0)}.

Lemma 4.3 For any x ∈ Lk , we have

‖x‖ ≤ 21/3Rk, ‖x∗
k ‖ ≤ Rk

def= 2

(
2 + √

2

L3
‖∇ f (0)‖∗

) 1
3

. (60)

Proof Indeed,

〈∇ f (0), 0 − x∗
k 〉 = 〈∇ϕk(0), 0 − x∗

k 〉 = ϕk(0) − ϕ∗
k + βϕk (0, x

∗
k )

= βϕk (x
∗
k , 0) + βϕk (0, x

∗
k ) ≥ μ[βρk (x

∗
k , 0) + βρk (0, x

∗
k )]

≥ μL3[βd4(x
∗
k , 0) + βd4(0, x

∗
k )]

(23)≥ 2μ
L3

16
‖x∗

k ‖4.

Consequently, we have the following bound:

‖x∗
k ‖ ≤ 2

[
2 + √

2

L3
‖∇ f (0)‖∗

] 1
3

= Rk . (61)

123



Journal of Optimization Theory and Applications (2021) 191:1–30 21

Further, for x ∈ Lk , we have

〈∇ϕk(0), 0 − x〉 = ϕk(0) − ϕk(x) + βϕk (0, x) ≥ βϕk (0, x)

≥ μL3βd4(0, x)
(23)≥ μL3

16
‖x‖4.

Thus, ‖x‖ ≤
[

16
μL3

‖∇ f (0)‖∗
] 1
3 = 21/3Rk . ��

The third condition is the possibility of approximating the gradient of function
ϕk(·). In our case, in view of Lemma 4.2, we can take

gϕk ,τ (x) = ∇ f (0) + ∇2 f (0)x + 1

2
gτ
0 (x) + L3‖x‖2Bx, (62)

where gτ
0 (x) = 1

τ 2
[∇ f (τ x) + ∇ f (−τ x) − 2∇ f (0)]. In this case,

‖gϕk ,τ (x) − ∇ϕk(x)‖∗
(50)≤ τ

3
L3‖x‖3, x ∈ E. (63)

Thus, in order to ensure condition (34) and keep τ separated from zero (this is
necessary for stability of the process), we need to guarantee the boundedness of the
minimizing sequence for function ϕk(·). However, since we know an explicit upper
bound (60) on the size of the optimal point, it is possible to ensure this by introducing
an additional constraint on the size of variables. Let us replace the problem (53) by
the following one:

min
x∈Sk

ϕk(x), Sk
def= {x ∈ E : ‖x‖ ≤ Rk}. (64)

In view of Lemma 4.3, the optimal solutions of problems (53) and (64) coincide.
Consider a variant of method (36) with ψ ≡ 0 and accuracy δ > 0.

Initialization. Given δ > 0, set x0 = 0 and τ = 3δ
8(2+√

2)‖∇ f (0)‖∗
.

For i ≥ 0 iterate:
1. Compute the approximate gradient gϕk ,τ (xi ) by (62).
2. If ‖gϕk ,τ (xi )‖∗ ≤ 1

6‖∇ f (xi )‖∗ − δ, then STOP.
3. Else, compute the new point

xi+1 = arg min
x∈Sk

{
〈gϕk ,τ (xi ), x〉 + 2

(
1 + 1√

2

)
βρk (xi , x)

}
.

(65)

Note that the auxiliary problem in this method has now an additional ball constraint
(64). However, this does not increase significantly its complexity since the Euclidean
norm is already present in the objective function.
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Let us mention the main properties of this minimization process. First of all, since
all points xi belong to Sk , for all i ≥ 0 we have

‖gϕk ,τ (xi ) − ∇ϕk(xi )‖∗
(63)≤ τ

3
L3R

3
k

= δL3

8(2 + √
2)‖∇ f (0)‖∗

8(2 + √
2)

L3
‖∇ f (0)‖∗ = δ. (66)

This means, in particular, that the sopping criterion at Step 2 of method (65) is correct:
if it is satisfied, then

‖∇ϕk(xi )‖∗ ≤ ‖gϕk ,τ (xi )‖∗ + δ ≤ 1

6
‖∇ f (xi )‖∗,

which implies xi ∈ N3(0).
Moreover, we can apply Lemma 3.1 to the following objects:

d(·) = ρk(·), Lρk (ϕk) = 1 + 1√
2
, γρk (ϕk) = 1

6
, σ4(ρk) = 1

4
L3. (67)

Therefore, in our case, inequality (37) with p = 3 can be rewritten as

βρk (xi+1, x) ≤
(
1 − 1

24

)
βρk (xi , x) + 1

2 + √
2
[ϕk(x) − ϕk(xi+1)] + δ̂,

δ̂ = 3

2
δ
4
3

(
208

L3

) 1
3

< δ̂+
def= 9δ4/3

L1/3
3

. (68)

In view of (57), βρk (x0, x) ≤ 1
2 L1R2

k + 1
4 L3R4

k . Hence, by (40) we have

min
0≤i≤T

ϕk(xi ) − ϕ∗
k ≤ (2 + √

2)

⎧
⎨

⎩
L1R2

k + 1
2 L3R4

k

6
[(
1 + 1

23

)T − 1
] + δ̂+

⎫
⎬

⎭
, T ≥ 1, (69)

where L1 is any upper estimate for the value ‖∇2 f (0)‖.
From this bound, we have a natural limit for the number of iterations of method

(65), sufficient for obtaining the following inequality:

ϕk(x̂T ) − ϕ∗
k ≤ 2(2 + √

2)δ̂+, (70)

where x̂T = argmin
x

{
ϕk(x) : x ∈ {0, x1, . . . , xT }

}
∈ Lk . Indeed, for this it is

enough to have

1 + 6

δ̂+
[L1R

2
k + 1

2
L3R

4
k ] ≤ eT /24

(
≤
(
1 + 1

23

)T )
.
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Hence, we have the following bound:

T ≤ Tk(δ)
def= 24 ln

(

1 + 2

3

(
1

δ

)4/3
L1/3
3

[
L1R

2
k + 1

2
L3R

4
k

])

. (71)

However, the upper-level method ATMI3 needs a point with small gradient:

‖∇ϕk(x̂T )‖∗ ≤ 1

6
‖∇ f (x̂T )‖∗. (72)

In order to derive this bound from inequality (70) with an appropriate value of δ̂+,
we use the fact that our scaling function ρk(·) is norm-dominated. Indeed, in view of
Lemma 3.2 and representation (57), this function is norm-dominated on any Euclidean
ball Br by the following function:

θr (τ ) = 1

2
(L1 + 5L3r

2)τ 2 + 1

2
L3τ

4.

Hence, in view of Lemma 4.3, our scaling function ρk(·) is norm-dominated on the
set Lk by θr̂k (·) with

r̂k = 21/3Rk . (73)

Thus, in order to apply Lemma 3.3, we need to estimate from above the inverse to its
conjugate function.

Lemma 4.4 For any r > 0, we have

(
θ∗
r

)−1
(ξ) ≤

√
2(L1 + 5L3r2)ξ + 2L1/4

3

(
2

3
ξ

)3/4
, ξ ≥ 0. (74)

Proof Consider the primal function θ(τ ) = aτ 2

2 + bτ 4
4 with a, b ≥ 0. Then, its

conjugate function is defined as follows:

θ∗(λ) = max
τ

[
λτ − aτ 2

2
− bτ 4

4

]
, λ ≥ 0.

We need to find λ ≥ 0 from the equation ξ = θ∗(λ).
Note that the optimal solution τ = τ(λ) in the above maximization problem can

be found from the equation

λ = aτ + bτ 3. (75)

Therefore,

ξ = θ∗(λ)
(75)= a

2
τ 2(λ) + 3b

4
τ 4(λ)
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Thus, we can write down τ(λ) as a function of ξ :

τ 2(λ) = 4ξ

a +√a2 + 12bξ
≤ min

{

2
ξ

a
,

√
4ξ

3b

}

.

Hence,

λ
(75)≤ √

2aξ + b1/4
(
4ξ

3

)3/4
.

It remains to use the actual values a = L1 + 5L3r2 and b = 2L3. ��
Nowwe canwrite down the condition for our parameter δ, which ensures the desired

inequality (72). Indeed, in view of inequalities (70) and (44), after Tk(δ) inner steps
(see 71) we can guarantee that

‖∇ϕk(x̂T )‖∗ ≤ L · (θ∗
r̂k

)−1
( 2
L

(2 + √
2)δ̂+

)
= L · (θ∗

r̂k
)−1
(
4δ̂+
)
, (76)

where L
(67)= 1+ 1√

2
. In order to stopmethod (65) at thismoment, we need to guarantee

that the norm of the approximate gradient is small enough. Hence, our condition for
parameter δ can be derived from the following reasoning. Since

‖gϕk ,τ (x̂T )‖∗
(66)≤ δ + ‖∇ϕk(x̂T )‖∗

(76)≤ δ + L · (θ∗
r̂k

)−1
(
4δ̂+
)
,

in order to satisfy condition ‖gϕk ,τ (x̂T )‖∗ ≤ 1
6‖∇ f (x̂T )‖ − δ, by Lemma 4.4, it is

sufficient to satisfy inequality

2δ + 2L
√
2(L1 + 5L3r̂2k )δ̂+ + 2L1/4

3

(
8

3
δ̂+
)3/4

≤ 1

6
εg, (77)

where εg > 0 is a lower bound for the norm of the gradients of the objective function
during the whole minimization process. Recall that

r̂k
(73)= 24/3

(
2 + √

2

L3
‖∇ f (0)‖∗

) 1
3

, δ̂+
(68)= 9δ4/3

L1/3
3

.

Hence, this inequality can be rewritten in the following form:

2(1 + (24)3/4)δ + 6Lδ2/3

√
2L1

L1/3
3

+ 10
(
16(2 + √

2)‖∇ f (0)‖∗
)2/3 ≤ 1

6
εg.
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Using the upper integer bounds on the coefficients, it can be strengthened:

24δ + 21δ2/3
√

1

2L1/3
3

‖∇2 f (0)‖ + 36‖∇ f (0)‖2/3∗ ≤ 1

6
εg, (78)

wherewe take L1 = ‖∇2 f (0)‖ since this corresponds to the actual role of this constant
in the complexity analysis of method (65).

This means that, in accordance to (78), we need to choose

δ = O

(
ε
3/2
g

‖∇ f (0)‖1/2∗ + ‖∇2 f (0)‖3/2/L1/2
3

)

. (79)

Since ‖∇ f (0)‖∗ ≥ εg , we always have δ ≤ O(εg).
Note that all coefficients in the condition (78) are known (provided that we have a

good estimate for the Lipschitz constant L3). Thus, we have

Tk(δ) = O

(
ln

G + H

εg

)
,

where G and H are the uniform upper bounds for the norms of the gradients and Hes-
sians computed at the points generated by the main process. Validity of the assumption
on finiteness of these bounds is discussed in Sect. 5.

Let us write down our inexact algorithmic schemes (21) and (26), employing the
inner procedure (65). These methods have only one parameter δ > 0, which must be
chosen in accordance to (78). They need also the constant L3.

We start from the variant of Inexact Basic Tensor Method (21).

Inexact 3rd-Order Tensor Method
Initialization. Given δ > 0, choose x0 ∈ E.
Iteration k ≥ 0.
Compute xk+1 ∈ N3(xk) by method (65) with the following settings:
a) Starting point xk,0 = xk . Step size τ = 3δ

8(2+√
2)‖∇ f (xk )‖∗

.

b) Objective function ϕk(x) = Ω̂xk ,3,6L3(x).

c) Feasible set Sk =
{
x : ‖x − xk‖ ≤ 2

[
2+√

2
L3

‖∇ f (xk)‖∗
] 1
3
}
.

d) Function ρk(x) = 1
2 〈∇2 f (xk)(x − xk), x − xk〉 + L3d4(x − xk).

(80)

At each iteration of this method, we have O
(
ln G+H

εg

)
iterations of the inner

scheme. Each of them needs three calls of oracle of the main objective function (twice
for computing the approximate gradient of function ϕk(·) and once for verifying the
stopping criterion). In viewofTheorem2.2, the rate of convergence of themain process
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is as follows:

f (xk) − f ∗ ≤
(
8

k

)3 [ 7

10
L3R

4(x0) + 1

2
( f (x0) − f ∗)

]
, k ≥ 1. (81)

Thus, the analytical complexity bound of the method (80) is of the order

O

(

R(x0) ·
(
L3

ε f

)1/3
ln

G + H

εg

)

, (82)

where ε f > 0 is the desired accuracy in the function value. Note that this method uses
only the second-order oracle.

Let us look now at the accelerated scheme.

Inexact Accelerated 3rd-Order Tensor Method
Initialization. Choose x0 ∈ E and define Ak by (24) with p = 3.
Define function ψ0(x) = d4(x − x0).

Iteration k ≥ 0.
1. Compute vk = argmin

x∈E ψk(x) and choose yk = Ak
Ak+1

xk + ak+1
Ak+1

vk .

2. Compute xk+1 ∈ N3(yk) by (65) with the following settings:
a) Starting point xk,0 = yk . Step size τ = 3δ

8(2+√
2)‖∇ f (yk)‖∗

.

b) Objective function ϕk(x) = Ω̂yk ,3,6L3(x).

c) Feasible set Sk =
{
x : ‖x − yk‖ ≤ 2

[
2+√

2
L3

‖∇ f (yk)‖∗
] 1
3
}
.

d) Function ρk(x) = 1
2 〈∇2 f (yk)(x − yk), x − yk〉 + L3d4(x − yk).

3. Update ψk+1(x) = ψk(x) + ak+1[ f (xk+1) + 〈∇ f (xk+1), x − xk+1〉].

(83)

As before, each iteration of this method needs at most O
(
ln G+H

εg

)
iterations of

the inner scheme. In view of Theorem 2.3, the rate of convergence of the main process
in (83) is as follows:

f (xk) − f ∗ ≤ 7

60

(
6

k

)4
· L3‖x0 − x∗‖4, k ≥ 1. (84)

Thus, the analytical complexity bound of this method is of the order

O

(

‖x0 − x∗‖ ·
(
L3

ε f

)1/4
ln

G + H

εg

)

, (85)

Recall that method (83) is a second-order scheme.
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5 Bounds for the Derivatives

The complexity analysis in Sect. 4 is valid only if we can guarantee the finiteness of
the constants G and H . The simplest way of doing this consists in considering the
following class of functions:

M1,2,4 = { f ∈ C
4(E) : M1( f ) < +∞, M2( f ) < +∞, M4( f ) < +∞}. (86)

This is a nontrivial class, but it is quite restrictive. In this section, we show that it is
possible to derive the finiteness of G and H from our main assumption (47) and the
properties of the minimization schemes.

Indeed, we can easily bound derivatives at test points from a bounded set. Let us
present a trivial result, which follows from Taylor formula (7).

Lemma 5.1 For any x ∈ BD(x0)
def= {x ∈ E : ‖x − x0‖ ≤ D}, we have

‖∇ f (x)‖∗ ≤ ‖∇ f (x0)‖∗ + ‖∇2 f (x0)‖D + 1

2
‖D3 f (x0)‖D2 + 1

6
M4( f )D

3,

‖∇2 f (x)‖ ≤ ‖∇2 f (x0)‖ + ‖D3 f (x0)‖D + 1

2
M4( f )D

2. (87)

We can use the right-hand sides of inequalities (87) as our constants G and H
provided that the distance between x0 and the test points does not exceed some D <

+∞. Note that we do not use D, G, and H in our methods. They appear only in the
bounds for the number of inner steps and stay inside the logarithm. The important
criterion (78), defining an appropriate value of the parameter δ > 0, is based on the
available information about the first and second derivatives at the current test point.

Thus, we need to prove that the sequences of test points in ourmethods are bounded.
Let us start from Inexact Basic Tensor Method (80). For this method, the situation is
very simple. We have already assumed that the size of the level set R(x0) is finite.
Since the method (80) is monotone, for any xk generated by this scheme, we have

‖xk − x0‖ ≤ ‖xk − x∗‖ + ‖x∗ − x0‖ ≤ 2R(x0), k ≥ 0.

Thus, we can take in (87) D = 2R(x0).
Let us look now at Inexact Accelerated Tensor Method. Actually, for proving the

boundedness of sequences of the test points {yk}k≥0, it is better to consider itsmonotone
variant. The additional Step 4 of this method ensures monotonicity of the sequence
{ f (xk)}k≥0.
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Monotone Inexact Accelerated 3rd-Order Tensor Method
Initialization. Choose x0 ∈ E. Define Ak by (24) with p = 3.
Define function ψ0(x) = d4(x − x0).

Iteration k ≥ 0.
1. Compute vk = argmin

x∈E ψk(x) and choose yk = Ak
Ak+1

xk + ak+1
Ak+1

vk .

2. Compute x̂k+1 ∈ N3(yk) by (65) with the following settings:
a) Starting point xk,0 = yk . Step sizeτ = 3δ

8(2+√
2)‖∇ f (yk)‖∗

.

b) Objective function ϕk(x) = Ω̂yk ,3,6L3(x).

c) Feasible set Sk =
{
x : ‖x − yk‖ ≤ 2

[
2+√

2
L3

‖∇ f (yk)‖∗
] 1
3
}
.

d) Function ρk(x) = 1
2 〈∇2 f (yk)(x − yk), x − yk〉 + L3d4(x − yk).

3. Update ψk+1(x) = ψk(x) + ak+1[ f (x̂k+1) + 〈∇ f (x̂k+1), x − x̂k+1〉].
4. Choose xk+1 = argmin

x

{
f (x) : x ∈ {x0, . . . , xk, x̂k+1}

}
.

(88)

Complexity analysis, presented in Sect. 2, remains also valid for the monotone
variant (88). Indeed, in the right-hand side of the relation (29), we can replace point
xk by any point with better value of the objective function.

Lemma 5.2 Let points {yk}k≥0 be generated by the method (88). Then,

‖yk − x0‖ ≤ (1 + √
2)R(x0), k ≥ 0. (89)

Proof Indeed, choosing in the relation (28) p = 3 and x = x∗, we get

1

16
‖vk − x∗‖4 ≤ 1

4
‖x∗ − x0‖4

At the same time, since f (xk) ≤ f (x0), we have ‖xk − x∗‖ ≤ R(x0). Hence, in view
of the definition of yk at Step 1 in (88),

‖yk − x0‖ ≤ max{‖xk − x0‖, ‖vk − x0‖} ≤ max{2R(x0), (1 + √
2)R(x0)}

= (1 + √
2)R(x0).�

Thus, for accelerated method (88) we can take D = (1 + √
2)R(x0). ��

6 Conclusion

From our results, we conclude that the existing classification of the problem classes,
optimization schemes, and complexity bounds is not perfect. Traditionally, we put in
one-to-one correspondence the type of numerical schemes (classified by its order) and
the problem classes (classified by the Lipschitz condition for the highest derivative). In
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this way, we attach the 1st-order methods to functions with Lipschitz-continuous gra-
dients. The 2nd-order methods correspond to the functions with Lipschitz-continuous
Hessian, etc.

This picture allows us to speak about the optimal methods. For example, we say that
the Fast Gradient Methods (FGM) with the convergence rate O

(
k−2
)
are the optimal

1st-order methods. However, the only reason why FGM could be called optimal is that
they implement the lower bound for a certain problem class, which is considered to
be the natural field of application for the 1st-order methods only.

Now it is clear the above over-simplified picture of the world must be replaced by
something more elaborated. We have seen that there exist problem classes for which
the 2nd- and the 3rd-order methods demonstrate the same rate of convergence. So, the
correct classification of problem classes and optimization methods must be at least
two-parametric. This is, of course, an interesting topic for the further research.

Another interesting question is related to the 1st-order schemes. Indeed, if we
managed to accelerate the 2nd-order methods above their ”natural” complexity limits,
may be there exists a similar possibility for the 1st-order schemes? In our opinion, the
answer is negative. Indeed, the lower complexity bounds for the 1st-order methods are
supported by a worst-possible quadratic function. Quadratic functions already have
zero high-order derivatives. Therefore, any assumptions on the high-order derivatives
cannot eliminate this bad function from the problem class. For the 2nd-order methods,
the worst-case function has discontinuous third derivative (see, for example, Section
4.3.1 in [14]). Therefore, assumptions on the fourth derivative can help.
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