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Abstract
This paper provides new characterizations for the subdifferential of the pointwise
supremum of an arbitrary family of convex functions. The main feature of our
approach is that the normal cone to the effective domain of the supremum (or to
finite-dimensional sections of it) does not appear in our formulas. Another aspect of
our analysis is that it emphasizes the relationship with the subdifferential of the supre-
mum of finite subfamilies, or equivalently, finite weighted sums. Some specific results
are given in the setting of reflexive Banach spaces, showing that the subdifferential of
the supremum can be reduced to the supremum of a countable family.
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1 Introduction

The characterization of the subdifferential of the pointwise supremum of a family of
functions has attracted the attention ofmany researchers. Their interest comes from the
fact that a huge number of important functions in convex analysis and optimization
(like the Fenchel conjugate, the sum, the composition with affine mappings, etc.)
can be expressed as suprema of this type. Accordingly, many publications in the last
decades dealt with supremum functions and their subdifferentials and, among the
most remarkable, we quote here the following ones: Brøndsted [1], Ioffe [9], Ioffe and
Levin [10], Ioffe and Tikhomirov [11], Levin [12], Pschenichnyi [16], Rockafellar
[17], Valadier [19], etc. See [18] to trace out the historical evolution of the topic.

More precisely, given the pointwise supremum f := supt∈T ft of a family of
convex functions ft : X → R ∪ {+∞}, t ∈ T , T being a non-empty and arbi-
trary set, defined on a separated locally convex space X , many authors addressed the
problem of characterizing the subdifferential of the supremum, ∂ f (x), at any point
x ∈ dom f , the effective domain of f . These characterizations are usually given in
terms of (approximate-) subdifferentials of the data functions, ∂ε ft (x), t ∈ T , ε ≥ 0,
and, in the most general cases, in terms also of the normal cone to (finite-dimensional
sections of) the effective domain of f , NL∩dom f (x). For instance, if ft ∈ �0(X),
t ∈ T , where �0(X) is the family of proper convex and lower semicontinuous (lsc, in
brief) functions, then the following key formula is proved in [7, Theorem 4] (see [14,
Theorem 4] and [13] for related formulas):

∂ f (x) = ⋂
L∈F(x),ε>0co

(⋃
t∈Tε(x)∂ε ft (x) + NL∩dom f (x)

)
, (1)

where co stands for the w∗-closed convex hull,

Tε(x) := {t ∈ T : ft (x) ≥ f (x) − ε}, (2)

and

F(x) := {L ⊂ X : L is a finite-dimensional linear subspace such that x ∈ L}.

In the so-called compact setting, which stands for assuming that T is compact
and the mappings t 
→ ft (z), z ∈ X , are upper semicontinuous (usc, in brief),
the following result, involving only the active functions at the reference point x , is
established in [4, Theorem 3.8]:

∂ f (x) = ⋂
L∈F(x),ε>0co

(⋃
t∈T (x)∂ε ft (x) + NL∩dom f (x)

)
, (3)

where T (x) := T0(x) (see (2)).
In order to get simpler formulas, without these normal cones, one possibility is to

impose additional assumptions as the continuity of f at x , in which case (1) gives rise
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to ([7, Corollary 10]; see, also, [20], for normed spaces):

∂ f (x) = ⋂
ε>0co(

⋃
t∈Tε(x)∂ε ft (x)).

The operation of taking the pointwise supremum is exclusive to convex analysis
and has no equivalence in differential calculus. Since the sum operation is fundamental
in classical calculus, many authors have been naturally led to establish a relationship
between these two operations. In other words, they aimed to transform the supremum
into a sum, in order to use the classical tools dealing with differentiable functions like
Fermat’s rule and many others.

In the case of finitely many functions f1, · · · , fn, with f = max1≤k≤n fk, it is
well-known that for every x ∈ X and ε ≥ 0 ([21, Corollary 2.8.11], see also Lemma
11 in Appendix for an alternative proof based on the minimax theorem)

∂ε f (x) =
⋃

η∈[0,ε],λ∈S(x,ε−η)
∂η

(∑

1≤k≤n
λk fk

)
(x), (4)

with

S(x, ε − η) := {λ ∈ �n :
∑

1≤k≤n
λk fk(x) ≥ f (x) + η − ε},

and �n being the canonical simplex in Rn .

The purpose of this paper is to establish new characterizations of ∂ f (x), in which
only the data functions ft ’s appear and without involving the extra term Ndom f (x);
namely, we provide the following more general formulas

∂ f (x) = ⋂
ε>0co

((⋃

t∈Tε(x)
∂ε ft (x)

)
+

(⋃

J∈Tε(x)
{0, ε}∂ε f J (x)

))
, (5)

where

Tε(x) := {J ⊂ T : J finite and max
t∈J

ft (x) ≥ f (x) − ε},

or equivalently, using (4),

∂ f (x) =
⋂

ε>0

co

⎛

⎜
⎜
⎝

⎛

⎝
⋃

t∈Tε(x)

∂ε ft (x)

⎞

⎠ +

⎛

⎜
⎜
⎝

⋃

J∈Tε(x)
λ∈SJ (x,ε)

{0, ε}∂ε

(
∑

t∈J

λt ft

)

(x)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

(6)

where

SJ (x, ε) := {λ ∈ �|J | :
∑

t∈J
λt ft (x) ≥ f (x) − ε}.
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Preliminary results in this direction have been obtained in [5] for the compact
setting.

Both formulas (5) and (6) highlight the role played by the almost active functions at
the reference point, whereas the normal cone which is present in (1) is now replaced by
weighted finite maxima and sums. Formula (6) naturally covers some other formulas
from the literature, as those established in [8, Theorem 2] for the case of exact sub-
differentials (see, also, [15, Theorem 1]). At the same time, we prove that the choice
of the involved convex combinations in (5) and (6) can be made more precise in the
so-called compact setting; in fact, we establish that for any fixed t0 ∈ T (x) we have
that

∂ f (x)= ⋂

ε>0
co

((
⋃

t∈T (x)
∂ε ft (x)

)

∪
(

⋃

t∈T \T (x)
∂ε(ρt,ε ft+(1 − ρt,ε) ft0)(x)

))

, (7)

with

ρt,ε := ε

2 f (x) − 2 ft (x) + ε
, t ∈ T \ T (x), ε > 0.

The paper is structured as follows. After the section devoted to present the notation
and preliminary results used in the paper, Sect. 3 provides, in Theorem 2, a representa-
tion of ∂ f (x), by means of specific convex combinations of the ft ’s which involve at
most two functions. Proposition 3, first result in Sect. 4, dealing with the non-compact
setting, provides the reduction of the index set T to countable subsets. In this section,
Theorems 4 and 5 give non-compact counterparts of the characterizations ofNdom f (x)
and ∂ f (x) established in [5]. Some technical results and/or proofs are transferred to
appendix, with the purpose of simplifying the presentation of the more relevant results
in the paper.

2 Notation and Preliminary Results

Let X be a (real) separated locally convex space (lcs, for short), whose topological dual
space, X∗, is endowed with the w∗-topology; hence, X∗∗ := (X∗)∗ ≡ X . The spaces
X and X∗ are paired in duality by the bilinear form (x∗, x) ∈ X∗ × X 
→ 〈x∗, x〉 :=
x∗(x). The zero vectors in X and X∗ are denoted by θ. We adopt the conventions
(+∞) + (−∞) = (−∞) + (+∞) = +∞ and 0(+∞) = +∞.

Given n ≥ 1, the n-canonical simplex in Rn is

�n := {(λ1, · · · , λn) ≥ 0 : λ1 + · · · + λn = 1} .

Given two sets A and B in X (or in X∗), and 	 ⊂ R, we define

A + B := {a + b : a ∈ A, b ∈ B} and 	A := {λa : λ ∈ 	, a ∈ A} . (8)

By co(A) and cone(A), we denote the convex and the conical convex hulls of the
non-empty set A, respectively. In the topological side, cl(A) and A are indistinctly
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used for denoting the closure of A. When A ⊂ X∗, the closure is taken with respect
to the w∗-topology, unless something else is explicitly stated.

Associated with a non-empty set A ⊂ X , we define the negative dual cone and the
orthogonal subspace of A as follows

A− := {
x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 for all x ∈ A

}
,

A⊥ := (−A−) ∩ A− = {
x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ A

}
,

respectively. Observe that A− = (cone(A))−. These concepts are defined similarly
for sets in X∗. The so-called bipolar theorem establishes that

A−− := (A−)− = cone(A). (9)

If A ⊂ X , we define the normal cone to A at x by

NA(x) :=
{

(A − x)−, if x ∈ A,

∅, if x ∈ X \ A.

If A �= ∅ is convex and closed, A∞ represents its recession cone defined by

A∞ := {y ∈ X : x + λy ∈ A for some x ∈ A and all λ ≥ 0} .

Given a function f : X −→ R∪{±∞}, its (effective) domain is dom f := {x ∈ X :
f (x) < +∞}, and f is proper when dom f �= ∅ and f (x) > −∞ for all x ∈ X . The
closed convex hull of f , denoted by co f , is the largest lsc convex function dominated
by f . If f is convex, then co f = cl f , the closed hull of f . For x ∈ X and ε ≥ 0,
the ε-subdifferential (or the approximate subdifferential) of f at x is

∂ε f (x) = {x∗ ∈ X∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 − ε for all y ∈ X}, (10)

when f (x) ∈ R, and ∂ε f (x) := ∅ when f (x) /∈ R. The subdifferential of f at x is
∂ f (x) := ∂0 f (x). The ε-directional derivative of f at x ∈ f −1(R) in the direction
u ∈ X is defined by

f ′
ε(x; u) := inf

s>0

f (x + su) − f (x) + ε

s
,

so that

dom f ′
ε(x, ·) = R+ (dom f − x) . (11)

If f ∈ �0(X), x ∈ dom f , and ε > 0, then ∂ε f (x) �= ∅ and we have

Ndom f (x) = (∂ε f (x))∞ , (12)
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and

σ∂ε f (x)(·) = f ′
ε(x, ·). (13)

Formula (12) is also valid for ε = 0 provided that ∂ f (x) �= ∅.

The Fenchel conjugate of f is the function f ∗ : X∗ −→ R ∪ {±∞} given by

f ∗(x∗) := sup{〈x∗, x
〉 − f (x) : x ∈ X},

and it is well-known that, for all x ∈ f −1(R) and ε ≥ 0,

∂ε f (x) = {x∗ ∈ X∗ : f (x) + f ∗(x∗) ≤ 〈
x∗, x

〉 + ε},

and ∂ f (x) = ∩ε>0∂ε f (x).
The support and the indicator functions of A ⊂ X are, respectively,

σA(x∗) := sup{〈x∗, x〉 : x ∈ A}, x∗ ∈ X∗,

with σ∅ ≡ −∞, and

IA(x) :=
{
0 if x ∈ A,

+∞ if x ∈ X \ A.

It is known that, if A is a closed convex set,

A∞ = (dom σA)− , (14)

or equivalently, by using (9),

(A∞)− = cl(dom σA). (15)

Next, given a finite family { fk, 1 ≤ k ≤ n} ⊂ �0(X), we consider the maximum
function f = max1≤k≤n fk . We suppose that f is proper and denote

ϕ(λ, x) :=
∑

1≤k≤n
λk fk(x) − IRn+(λ), λ ∈ R

n, x ∈ X . (16)

The adopted convention 0(+∞) = +∞ entails 0 fk = Idom fk . Then ϕ(�n, dom f ) ⊂
R, ϕ(·, x) is concave and usc for every x ∈ dom f , and ϕ(λ, ·) is convex and lsc for
every λ ∈ �n . Thus, since �n is compact in Rn and dom f is non-empty and convex,
the minimax theorem ensures that (see, e.g., [21, Theorem 2.10.2])

max
λ∈�n

inf
x∈dom f

ϕ(λ, x) = inf
x∈dom f

max
λ∈�n

ϕ(λ, x). (17)

Moreover, since

f (x) = max
λ∈�n

ϕ(λ, x), for all x ∈ dom f ,
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relation (17) leads us to

max
λ∈�n

inf
x∈X ϕ(λ, x) = inf

x∈X f (x). (18)

As a consequence of this, for every x ∈ dom f and ε ≥ 0 we obtain that (see Lemma
11 in Appendix)

∂ε f (x) =
⋃

λ∈�n
∂ε+ϕ(λ,x)− f (x)ϕ(λ, ·)(x) (19)

=
⋃

η∈[0,ε],λ∈S(x,ε−η)
∂ηϕ(λ, ·)(x), (20)

where S(x, ε − η) := {λ ∈ �n, η ∈ [0, ε], ϕ(λ, x) ≥ f (x) + η − ε}. Notice that
formula (19) constitutes a slight improvement of [21, Corollary 2.8.11] as it involves
only one precise value of the parameter η.

The arguments used in Lemma 11 to prove (19) and (20) are specific to finite
families of functions, and so they cannot be extended to families with infinitely many
functions, where the following simplices in R

T ,

{
λ ∈ R

T+ : λ(t) ≡ λt = 0 except for finitely many t’s and
∑

λt>0
λt = 1

}
, (21)

may be not compact.

3 The Compact Setting

We give in this section some additional results to those established in [5]. We consider
a non-empty family { ft , t ∈ T } ⊂ �0(X) such that

T is Hausdorff compact,
and, for each z ∈ X , the mapping t 
−→ ft (z) is upper semicontinuous.

(22)

The associated supremum function is

f := sup
t∈T

ft ,

and assumptions (22) ensure that (see [5, Lemma 5])

dom f = ∩t∈T dom ft (23)

and, for every x ∈ dom f ,

R+(dom f − x) = ∩t∈TR+(dom ft − x). (24)
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Moreover, (22) also yields

T (x) := {t ∈ T : ft (x) = f (x)} �= ∅.

Assuming inf t∈T ft (x) > −∞, we have proved in [5, Theorem 12] that

∂ f (x) = ⋂
ε>0co

((⋃
t∈T (x)∂ε ft (x)

)
+

(⋃
t∈T \T (x) {0, ε} ∂ε ft (x)

))
. (25)

This formula involves the active functions ft , t ∈ T (x), as the same time as the non-
active ones ft , t ∈ T \ T (x), but with these last ones being affected by the weighting
parameter ε > 0. The main ingredient we used to establish (25) is the following
relation ([5, Theorem 6])

Ndom f (x) =
[

co

(
⋃

t∈T
∂ε ft (x)

)]

∞
, for every ε > 0.

We give next an equivalent description of the elements in Ndom f (x), which high-
lights the role played by the active and non-active functions.

Lemma 1 Assume that (22) holds. Consider x ∈ dom f and fix t0 ∈ T (x). Then we
have that

Ndom f (x) ⊂
[

co

((
⋃

t∈T (x)
∂ε ft (x)

)

∪
(

⋃

t∈T \T (x)
∂ε(μt ft + (1 − μt ) ft0)(x)

))]

∞
,

(26)

for every ε > 0 and 0 < μt < 1.

Proof We fix ε > 0 and 0 < μt < 1, for all t ∈ T \ T (x), and denote

Eε := ⋃
t∈T ∂ε f̃t (x),

where

f̃t :=
{
ft , if t ∈ T (x),
μt ft + (1 − μt ) ft0 , if t ∈ T \ T (x).

(27)

The sets T (x) and Eε are non-empty thanks to (22) and the lower semicontinuity of
the ft ’s. Since

cl(dom σEε ) = ([co (Eε)]∞)−,

by (15), and (Ndom f (x))− = (dom f − x)−− = cl(R+(dom f − x)), by (9), desired
relation (26) is equivalent to

cl(dom σEε ) ⊂ cl(R+(dom f − x)).

123



Journal of Optimization Theory and Applications (2022) 193:81–106 89

To prove this inclusion we take, using (13),

z ∈ dom σEε = dom
(
σ∪t∈T ∂ε f̃t (x)

)
= dom

(

sup
t∈T

σ
∂ε f̃t (x)

)

= dom

(

sup
t∈T

( f̃t )
′
ε(x; ·)

)

⊂ ∩t∈T dom( f̃t )
′
ε(x; ·). (28)

Hence, since for every t ∈ T \ T (x), by (11),

dom( f̃t )
′
ε(x; ·) = R+(dom f̃t − x)

= R+((dom(μt ft ) ∩ dom((1 − μt ) ft0)) − x)

= R+(
(
dom ft ∩ dom ft0

) − x)

= (R+ dom( ft − x)) ∩ (R+ dom( ft0 − x)),

relation (28) entails

z ∈ (∩t∈T (x) dom( ft )
′
ε(x; ·)) ∩

(
∩t∈T \T (x) dom( f̃t )

′
ε(x; ·)

)

= (∩t∈T (x)R+(dom ft − x)
) ∩ (∩t∈T \T (x) (R+ dom( ft − x)) ∩ (R+ dom( ft0 − x))

)

= ∩t∈TR+ dom( ft − x),

and, so (24) gives rise to

z ∈ ∩t∈TR+ dom( ft − x) = R+(dom f − x) ⊂ cl(R+(dom f − x)).

Hence, dom σEε ⊂ cl(R+(dom f − x)) and the desired inclusion follows. ��
Themain purpose of this section is to obtain another representation of ∂ f (x),which

involves appropriate convex combinations of the non-active ft ’s. In the non-compact
setting, instead of considering two-elements convex combinations as in the compact
framework, we shall appeal to all finite-elements convex combinations of the ft ’s (see
Theorem 5 below).

Theorem 2 Assume that hypothesis (22) fulfills. Consider x ∈ dom f and choose
t0 ∈ T (x). Then we have that

∂ f (x) = ⋂

ε>0
co

((
⋃

t∈T (x)
∂ε ft (x)

)

∪
(

⋃

t∈T \T (x)
∂ε(ρt,ε ft + (1 − ρt,ε) ft0)(x)

))

,

(29)

where

ρt,ε := ε

2 f (x) − 2 ft (x) + ε
, t ∈ T \ T (x), ε > 0.
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Proof Let us suppose, for simplicity, that f (x) = 0, and observe that for each given
ε > 0 we have, for every t ∈ T \ T (x),

0 < ρt,ε < 1 and ρt,ε ft (x) > −ε

2
. (30)

Let us also denote

f̃t,ε :=
{
ft , if t ∈ T (x),
ρt,ε ft + (1 − ρt,ε) ft0 , if t ∈ T \ T (x).

Then, for all t ∈ T \ T (x),

f̃t,ε(x) = ρt,ε ft (x) > −ε

2
,

and so, observing that f̃t,ε ≤ max{ ft , ft0} ≤ f ,

⋃

t∈T \T (x)
∂ε f̃t,ε(x) ⊂ ∂ 3ε

2
f (x) ⊂ ∂2ε f (x).

Thus, since we also have

⋃

t∈T (x)
∂ε f̃t,ε(x) ⊂ ∂ε f (x) ⊂ ∂2ε f (x),

we conclude that

⋃

t∈T
∂ε f̃t,ε(x) ⊂ ∂2ε f (x),

and the inclusion “⊃” follows by taking the closed convex hull and intersecting over
ε > 0.

To establish the inclusion “⊂”, we fix ε > 0 and L ∈ F(x). Next, by applying
Lemma 1 to the family { f̃t,ε, t ∈ T ; IL} we obtain that

NL∩dom f (x) ⊂
[

co

(
⋃

t∈T
∂ε f̃t,ε(x) ∪ L⊥

)]

∞
=

[

co

(
⋃

t∈T
∂ε f̃t,ε(x) + L⊥

)]

∞
,

where the last equality comes from (47). Therefore, by (3),

∂ f (x) ⊂ co
(⋃

t∈T (x)∂ε ft (x) + NL∩dom f (x)
)

= co

(
⋃

t∈T (x)
∂ε ft (x) +

[
co

(⋃
t∈T ∂ε f̃t,ε(x) + L⊥)]

∞

)

⊂ co
(⋃

t∈T ∂ε f̃t,ε(x) + L⊥) = cl
(
co

(⋃
t∈T ∂ε f̃t,ε(x)

)
+ L⊥) .
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Intersecting over the L’s in F(x) we get

∂ f (x) ⊂
⋂

L∈F(x)
cl
(
co

(⋃
t∈T ∂ε f̃t,ε(x)

)
+ L⊥) = co

(⋃
t∈T ∂ε f̃t,ε(x)

)
,

where the last equality is due to the fact that, for every A ⊂ X∗ (see ([3, Lemma 3])),

⋂

L∈F(x)
cl
(
A + L⊥) = cl (A) . (31)

��
In the particular case when all the ft ’s are active at x, that is, T (x) = T , formula

(29) reduces to

∂ f (x) = ⋂

ε>0
co

(
⋃

t∈T
∂ε ft (x)

)

,

which extends the well-known Brøndsted formula [1] to infinite index sets. Another
illustration of Theorem 2 is the alternative proof of formula (51) in Appendix.

4 Non-Compact Framework

This section is devoted to give new characterizations of Ndom f (x) and ∂ f (x),without
any additional assumptions on the family { ft , t ∈ T } ⊂ �0(X).

The first result, whose proof is postponed to Appendix, provides the reduction of
the index set T to countable subsets within the normal cone of dom f .

Proposition 3 Consider a family { ft , t ∈ T } ⊂ �0(X) and f = supt∈T ft . Given
x ∈ dom f and u∗ ∈ Ndom f (x), for each L ∈ F(x) there is a sequence (tn)n ⊂ T
such that

u∗ ∈ Ndom(supn≥1 ftn )∩L(x).

The following result provides the non-compact counterpart of the characterizations
of Ndom f (x) established in [5].

Theorem 4 Consider the family { ft , t ∈ T } ⊂ �0(X) and f := supt∈T ft . Given
x ∈ dom f , for every ε > 0 we have that

Ndom f (x) ⊂
(
co

(⋃

J∈T ∂ε f J (x)
))

∞ , (32)

where T := {J ⊂ T , |J | < +∞} and

f J := max{ ft , t ∈ J }, J ∈ T . (33)
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In addition, (32) becomes an equality when

inf
J∈T

f J (x) > −∞. (34)

Remark 1 (Before the proof ) Condition (34) is not very restrictive, indeed, it suffices
to choose t0 ∈ T and consider the family {max{ ft , ft0}, t ∈ T }. This new family
obviously satisfies condition (34),

inf
J∈T̃

f J (x) ≥ ft0(x),

where T̃ := {J ∈ T : t0 ∈ J }, and, consequently, Theorem 4 yields

Ndom f (x) =
(
co

(⋃

J∈T̃ ∂ε f J (x)
))

∞ .

Proof Take u∗ ∈ Ndom f (x) and ε > 0. Then, by Proposition 3, for every fixed
L ∈ F(x) there exists a sequence (tn)n ⊂ T such that

u∗ ∈ Ndom(supn≥1 ftn )∩L(x).

We denote Jn := {t1, · · · , tn}, n ≥ 1, and introduce the functions

f̂n := f Jn + IL , n ≥ 1,

where f Jn = max{ ft , t ∈ Jn} (see (33)). So, ( f̂n)n is non-decreasing and

supn≥1
(
ftn + IL

) = supn≥1 f̂n and dom
(
supn≥1 ftn

) ∩ L = dom
(
supn≥1 f̂n

)
.

In addition, according to Lemma 12 and (46), we have that

∂ ε
2
(supn≥1 f̂n)(x) =

⋂

δ>0

cl
(⋃

k≥1

⋂

n≥k
∂ ε
2+δ f̂n(x)

)

⊂ cl
(⋃

k≥1
∂ε( f Jk + IL)(x)

)

⊂ cl
(⋃

k≥1
cl(∂ε f Jk (x) + L⊥)

)

⊂ co
(⋃

k≥1
∂ε f Jk (x) + L⊥) .

Therefore, using (12),

u∗ ∈ Ndom(supn≥1 ftn )∩L(x) = (∂ ε
2
(supn≥1 f̂n)(x))∞

⊂
(
co

(⋃

k≥1
∂ε f Jk (x) + L⊥))

∞
,
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that is, for all L ∈ F(x),

u∗ ∈
(
co

(⋃

k≥1
∂ε f Jk (x) + L⊥))

∞
⊂

(
co

(⋃

J∈T ∂ε f J (x) + L⊥))

∞ ,

and so

u∗ ∈
⋂

L∈F(x)

(
co

(⋃

J∈T ∂ε f J (x) + L⊥))

∞
=

(⋂

L∈F(x)
co

(⋃

J∈T ∂ε f J (x) + L⊥))

∞
=

(
co

(⋃

J∈T ∂ε f J (x)
))

∞ ,

where the last equality is a consequence of (31).
For the converse inclusion, observe that (34) implies the existence of a constant M

such that

inf
J∈T

f J (x) ≥ M(> −∞).

Then, for every J ∈ T and x∗ ∈ ∂ε f J (x),

〈
x∗, y − x

〉 ≤ f J (y) − f J (x) + ε

≤ f (y) − f (x) + ( f (x) − M + ε), for all y ∈ X;

in other words, ∂ε f J (x) ⊂ ∂ε+ f (x)−M f (x) and so

(
co

(⋃

J∈T ∂ε f J (x)
))

∞ ⊂ (
∂ε+ f (x)−M f (x)

)
∞ = Ndom f (x),

where the last equality comes from (12). ��
Next, we give the main result in this section, which constitutes a non-compact

counterpart of Theorem 2.

Theorem 5 Consider the family { ft , t ∈ T } ⊂ �0(X) and f := supt∈T ft . Then for
every x ∈ dom f we have that

∂ f (x) = ⋂
ε>0co

((⋃

t∈Tε(x)
∂ε ft (x)

)
+ {0, ε}

(⋃

J∈Tε(x)
∂ε f J (x)

))
, (35)

where

Tε(x) := {J ∈ T : f J (x) ≥ f (x) − ε}. (36)

Proof Fix x ∈ dom f and ε > 0 so that, by formula (1), and whichever L ∈ F(x) we
take, one has

∂ f (x) ⊂ co
(⋃

t∈Tε(x)∂ε ft (x) + NL∩dom f (x)
)

. (37)
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Now we pick t0 ∈ Tε(x), and denote T̂ := {J ∈ T : t0 ∈ J },

f J := max{ ft , t ∈ J } + IL , J ∈ T̂ ,

so that

f J (x) ≥ ft0(x) ≥ f (x) − ε, for every J ∈ T̂ , (38)

and

T̂ ⊂ Tε(x). (39)

Then, by Remark 1, and taking into account (47 ), (48), and (39),

NL∩dom f (x) =
(
co

(⋃

J∈T̂ ∂ε f J (x)
))

∞
⊂

(
co

((⋃
t∈Tε(x)∂ε ft (x)

)⋃(⋃

J∈T̂ ∂ε f J (x)
)))

∞ ⊂ (co (Eε))∞ ,

where we have denoted

Eε :=
(⋃

t∈Tε(x)∂ε ft (x)
)

+ {0, ε}
(⋃

J∈Tε(x)
∂ε f J (x)

)
. (40)

So, (37) gives rise to

∂ f (x) ⊂ co
(⋃

t∈Tε(x)∂ε ft (x) + (co (Eε))∞
)

⊂ co (Eε) ,

that is, the desired inclusion “⊂” follows once we intersect over ε > 0.
To verify the opposite inclusion, by (36) we easily observe that

(⋃
t∈Tε(x)∂ε ft (x)

)⋃(⋃

J∈Tε(x)
∂ε f J (x)

)
⊂ ∂2ε f (x),

and so,

⋂
ε>0co (Eε) ⊂ ⋂

ε>0co (∂2ε f (x) + {0, ε}∂2ε f (x))
⊂ ⋂

ε>0 [1, 1 + ε] ∂2ε f (x) = ∂ f (x).

��
For x ∈ dom f , δ ≥ 0 and J ∈ T , we denote

SJ (x, δ) :=
{
λ ∈ �|J | :

∑

t∈J
λt ft (x) ≥ f (x) − δ

}
.

Observe that

SJ (x, 0) =
{
λ ∈ �|J | :

∑

t∈J
λt ft (x) = f (x)

}
.
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Theorem 5 leads us to the characterization below, involving the finite suprema f J or
sums

∑
t∈J λt ft .

Corollary 6 Consider the family { ft , t ∈ T } ⊂ �0(X) and f := supt∈T ft . Then for
every x ∈ dom f we have that

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈Tε(x)∂ε f J (x)

)
(41)

and, consequently,

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)∂ε

(∑

t∈J
λt ft

)
(x)

)
. (42)

Proof Fix x ∈ dom f and ε > 0. Since {{t} : t ∈ Tε(x)} ⊂ Tε(x),we have that (recall
the definition of Eε in (40))

Eε =
(⋃

t∈Tε(x)∂ε ft (x)
)

+ {0, ε}
(⋃

J∈Tε(x)
∂ε f J (x)

)

⊂ [1, 1 + ε] co
(⋃

J∈Tε(x)
∂ε f J (x)

)
,

and so, by Theorem 5 and Lemma 13 (for the second inclusion),

∂ f (x) ⊂ ⋂
ε>0 [1, 1 + ε] co

(⋃

J∈Tε(x)
∂ε f J (x)

)

= ⋂
ε>0co

(⋃

J∈Tε(x)
∂ε f J (x)

)

⊂ ⋂
ε>0 cl

(⋃

J∈Tε(x)
∂2ε f J (x)

)

⊂ ⋂
ε>0 cl

(⋃

J∈T2ε(x)
∂2ε f J (x)

)
.

Hence, the inclusion “⊂” in (41) follows.
To verify the opposite inclusion, take x∗ ∈ ∂ε f J (x), J ∈ Tε(x), and ε > 0. Then,

for every y ∈ X ,

〈
x∗, y − x

〉 ≤ f J (y) − f J (x) + ε ≤ f (y) − ( f (x) − ε) + ε = f (y) − f (x) − 2ε,

and so ∂ε f J (x) ⊂ ∂2ε f (x). Thus,

⋂
ε>0 cl

(⋃

J∈Tε(x)
∂ε f J (x)

)
⊂ ⋂

ε>0∂2ε f (x) = ∂ f (x),

and we are done with the first statement.
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Finally, using (20), formula (41) implies that

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈Tε(x),η∈[0,ε],λ∈SJ (x,ε−η)∂η

(∑

t∈J
λt ft

)
(x)

)

⊂ ⋂
ε>0 cl

(⋃
J∈Tε(x),λ∈SJ (x,ε)∂ε

(∑

t∈J
λt ft

)
(x)

)

= ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)∂ε

(∑

t∈J
λt ft

)
(x)

)
,

where we use the inclusions SJ (x, ε − η) ⊂ SJ (x, ε) and ∂ηg(x) ⊂ ∂εg(x), for any
convex function g. Moreover, the converse inclusion follows by observing that

∂ε

(∑

t∈J
λt ft

)
(x) ⊂ ∂2ε f (x),

for all J ∈ T and λ ∈ SJ (x, ε). ��
Remark 2 Let us emphasize at this point that the main feature of our approach is to
provide characterizations of ∂ f (x), which are independent of the effective domains
of the involved functions and the associated normal cones. For comparative purposes,
we quote here the following formula, given in [15, Theorem 1],

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)∂ε

(∑

t∈J
λt ft + ID

)
(x)

)
, (43)

with D being any subset of X satisfying

dom f ⊂ D ⊂ ⋂
t∈T dom ft .

Observe that formula (43) requires the use of the augmented functions ft + ID and
not the exact ones ft ’s as in (42). The following example illustrates the difference
between (42) and (43).

Example 1 Consider the support function of a non-empty set T ⊂ X∗,

σT (x) := sup
t∈T

〈t, x〉 .

Here, f = σT = supt∈T ft with ft (x) := 〈t, x〉 , t ∈ T , in �0(X). On the one hand,
for every x ∈ X , formula (42) yields

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)∂ε

(∑

t∈J
λt ft

)
(x)

)

= ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)

(∑

t∈J
λt t

))

= ⋂
ε>0 cl

({
x∗ ∈ co T : 〈x∗, x

〉 ≥ f (x) − ε
})

= ⋂
ε>0

{
x∗ ∈ coT : 〈x∗, x

〉 ≥ f (x) − ε
}
,
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which is well-known (see, for instance, [6, (5) in page 834]); actually, it is a conse-
quence of the Fenchel equality as

σT (x) + IcoT (x∗) ≤ 〈
x∗, x

〉 + ε ⇐⇒ x∗ ∈ ∂εσT (x) for all ε ≥ 0.

On the other hand, if we apply formula (43) choosing D = dom σT , then we obtain
that

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈T ,λ∈SJ (x,ε)

(∑

t∈J
λt t

)
+ Nε

D(x)
)

.

Hence, using Lemma 14, we derive the following alternative representation of ∂ f (x),

∂ f (x) = ⋂
ε>0 cl

{
x∗ + y∗ : x∗ ∈ co T , 〈x∗, x〉 ≥ f (x) − ε,

y∗ ∈ (coT )∞,−ε ≤ 〈y∗, x〉 ≤ 0

}

,

which appeals to the extra term {y∗ ∈ (coT )∞ : −ε ≤ 〈y∗, x〉 ≤ 0}.
We apply Corollary 6 to provide a new proof for the characterization of the normal

cone to sublevel sets given in [8, Corollary 7] (see, also, [2] and references therein).

Corollary 7 Consider a function g ∈ �0(X) and let x ∈ X such that g(x) = 0. Then
we have that

N[g≤0](x) = ⋂
ε>0 cl

(⋃
μ>0∂ε (μg) (x)

)
. (44)

Proof We define the functions

ft := tg, t > 0, and f := sup
t>0

ft .

Obviously, { ft , t ∈ T } ⊂ �0(X) and ft (x) = f (x) = 0 for all t > 0. Therefore,
since that f = I[g≤0], by formula (42) we obtain that

N[g≤0](x) = ∂ f (x)

= ⋂
ε>0 cl

(⋃
J⊂]0,+∞[,|J |<∞,λ∈SJ (x,ε)∂ε

(∑

t∈J
λt tg

)
(x)

)
,

where

SJ (x, ε) =
{
λ ∈ �|J | :

∑

t∈J
λt tg(x) ≥ −ε

}
= �|J | .

Hence,

N[g≤0](x) = ⋂
ε>0 cl

(⋃
J⊂]0,+∞[,|J |<∞,λ∈�|J |∂ε

(∑

t∈J
λt tg

)
(x)

)

= ⋂
ε>0 cl

({⋃
∂ε (μg) (x) : μ =

∑

t∈J
λt t, J ⊂ ]0,+∞[ , |J | < ∞, λ ∈ �|J |

})

= ⋂
ε>0 cl

(⋃
μ>0∂ε (μg) (x)

)
,
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and we are done. ��
The following corollary gives more insight to the conclusion of Corollary 6 in

reflexive Banach spaces.

Corollary 8 If X is a reflexive Banach space, then (41) and (42) also hold when the
closure is taken with respect to the strong (norm) topology.

Proof It suffices to prove formula (41). Given x ∈ dom f , by Corollary 6 we have
that

∂ f (x) = ⋂
ε>0 cl

(⋃
J∈Tε(x)∂ε f J (x)

)

⊂ ⋂
ε>0co

(⋃
J∈Tε(x)∂ε f J (x)

)

= ⋂
ε>0cl

‖·‖∗
(
co

(⋃
J∈Tε(x)∂ε f J (x)

))
,

due to Mazur’s theorem. Next, taking into account (54), we obtain that

∂ f (x) ⊂ ⋂
ε>0cl

‖·‖∗
(⋃

J∈Tε(x)∂2ε f J (x)
)

⊂ ⋂
ε>0cl

‖·‖∗
(⋃

J∈T2ε(x)∂2ε f J (x)
)

.

Hence, using again Corollary 6, and taking into account that cl‖·‖∗(A) ⊂ cl(A), for
any A ⊂ X∗,

∂ f (x) ⊂ ⋂
ε>0cl

‖·‖∗
(⋃

J∈Tε(x)∂ε f J (x)
)

⊂ ⋂
ε>0 cl

(⋃
J∈Tε(x)∂ε f J (x)

)
= ∂ f (x).

��
The following result shows that the subdifferential of the supremum can be reduced

to the supremum of a countable family.

Proposition 9 Assume that X is a reflexive Banach space. Given an arbitrary family
{ ft , t ∈ T } ⊂ �0(X) and f = supt∈T ft , for every x ∈ dom f we have that

∂ f (x) = ⋃
J∈Tc(x)∂ f J (x),

where

Tc(x) := {J ⊂ T : J countable, f J (x) = f (x)}.

Proof Take x∗ ∈ ∂ f (x). Then, by Corollary 8, for each n ≥ 1 there exists Jn ∈ T 1
n
(x)

such that

x∗ ∈ ∂ 1
n
f Jn (x) + 1

n
BX∗ , (45)
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where BX∗ is the closed unit ball in X∗. Moreover, denoting J := ∪n≥1 Jn, for every
z∗ ∈ ∂ 1

n
f Jn (x) we have that

〈
z∗, y − x

〉 ≤ f Jn (y) − f Jn (x) + 1

n

≤ f J (y) − f (x) + 1

n
+ 1

n

≤ f J (y) − f J (x) + 2

n
,

showing that z∗ ∈ ∂ 2
n
f J (x), that is, ∂ 1

n
f Jn (x) ⊂ ∂ 2

n
f J (x). Hence, (45) gives rise to

x∗ ∈ ∂ 2
n
f J (x) + 1

n
BX∗ ,

that is, x∗ = u∗
n + v∗

n , for u
∗
n ∈ ∂ 2

n
f J (x) and v∗

n ∈ 1
n BX∗ , n ≥ 1. Hence, v∗

n → θ and
we obtain, for every y ∈ X ,

〈
x∗, y − x

〉 = 〈
u∗
n + v∗

n , y − x
〉

= lim
n→∞

〈
u∗
n + v∗

n , y − x
〉

= lim
n→∞

〈
u∗
n, y − x

〉

≤ lim sup
n→∞

( f J (y) − f J (x) + 2

n
)

= f J (y) − f J (x),

which shows that x∗ ∈ ∂ f J (x). Moreover, since that

f J (x) ≥ f Jn (x) ≥ f (x) − 1

n
, for all n ≥ 1,

we deduce that f J (x) = f (x), that is, J ∈ Tc(x). We are done since the opposite
inclusion holds straightforwardly. ��

5 Concluding Remarks

This paper is intended to establish new characterizations of the subdifferential of the
pointwise supremum of an arbitrary family of convex functions which are free of
the normal cone to the effective domain of the supremum (or to finite-dimensional
sections of it). These characterizations involve both (almost) active and non-(almost)
active functions, the last ones being affected by a weighting parameter. Main formulas
(5) and (6) highlight the role played by the almost active functions at the reference
point. Formula (6) covers some other formulas in the literature; e.g., [8, Theorem 2]
in the case of exact subdifferentials (see, also, [15, Theorem 1]).
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The first part of the paper deals with the so-called compact scenario in which we
assumed that the index set is compact and that the functions are upper semicontinuous
with respect to the index. In this part, we first provide an explicit representation of the
subdifferential of the supremum in Theorem 2, in terms of the active functions in one
side, plus specific two-elements convex combinations in the other side.

In the second part of the paper, these compactness/upper semicontinuity assump-
tions are removed, and main Theorem 5 constitutes a non-compact counterpart of
Theorem 2.We also aimed in the paper to emphasize the relationship of the subdiffer-
ential of the supremum function with the subdifferential of finite weighted sums. This
is the purpose of (42) in Corollary 6.

Some consequences of the main results in the setting of reflexive Banach spaces
are also analyzed. In particular, it turns out that formulas (41) and (42) are valid when
the closure is taken with respect to the strong (norm) topology. The last proposition in
the paper shows that, in this setting, the subdifferential of the supremum of the whole
family can be reduced to the supremum of a countable subfamilies.
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Appendix

We start this Appendix by recalling the Hiriart-Urruty & Phelps formula (e.g., [21,
Corollary 2.6.7]): for every f , g ∈ �0(X) and x ∈ (dom f ) ∩ (dom g), we have that

∂ε( f + g)(x) = cl

(⋃
ε1,ε2≥0
ε1+ε2=ε

(
∂ε1 f (x) + ∂ε2g(x)

)
)

, for all ε > 0. (46)

The following lemma can be found in [5, Lemmas 2 and 3].

Lemma 10 Given non-empty sets A1, · · · , Ak in X , and m > 0, we have that

[
co(∪i=1,··· ,k Ai )

]
∞ = (co(A1 + · · · + Ak))∞ (47)

= (co(A1 + · · · + Ak−1 + mAk))∞ . (48)

Formulas (50) and (51) in the following lemma can be found, for instance, in [21,
Corollary 2.8.11]. Here, we give an alternative proof based on the minimax theorem
(see (18)). However, it is not clear how this approach can be extended to infinite
families of functions.
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Lemma 11 Consider a finite family { fk, 1 ≤ k ≤ n} ⊂ �0(X), and f =
max1≤k≤n fk . If the function ϕ is defined as in (16), i.e.,

ϕ(λ, x) :=
∑

1≤k≤n
λk fk(x) − IRn+(λ), λ ∈ R

n, x ∈ X ,

then for every x ∈ dom f and ε ≥ 0 we have that

∂ε f (x) =
⋃

λ∈�n
∂ε+ϕ(λ,x)− f (x)ϕ(λ, ·)(x) (49)

=
⋃

η∈[0,ε],λ∈S(x,ε−η)
∂ηϕ(λ, ·)(x), (50)

where S(x, ε −η) := {λ ∈ �n : ϕ(λ, x) ≥ f (x)+η − ε}. In particular, we have that

∂ f (x) =
⋃

λ∈S(x)
∂ϕ(λ, ·)(x), (51)

with S(x) := {λ ∈ �n : ϕ(λ, x) = f (x)}.
Proof Given x̄ ∈ X and ε ≥ 0, we first assume that θ ∈ ∂ε f (x̄). So, x̄ is an ε-
minimizer of the function f , and (18) yields some λ̄ ∈ �n such that

f (x̄) ≤ inf
x∈X f (x) + ε = max

λ∈�n
inf
x∈X ϕ(λ, x) + ε = inf

x∈X ϕ(λ̄, x) + ε,

that is,

ϕ(λ̄, x̄) ≤ inf
x∈X ϕ(λ̄, x) + ε − ( f (x̄) − ϕ(λ̄, x̄)).

Therefore η := ε + ϕ(λ̄, x̄) − f (x̄) ∈ [0, ε] and x̄ is an η-minimizer of the function
ϕ(λ̄, ·), that is, θ ∈ ∂ηϕ(λ̄, ·)(x̄).

More generally, if x∗ ∈ ∂ε f (x̄), then θ ∈ ∂ε( f − x∗)(x̄) and the argument above
yields some λ̄ ∈ �n and η ∈ [0, ε] such that θ ∈ ∂η(ϕ(λ̄, ·) − x∗)(x̄). Hence,
x∗ ∈ ∂ηϕ(λ̄, ·)(x̄) and we conclude that

∂ε f (x) ⊂
⋃

λ∈�n
∂ε+ϕ(λ,x)− f (x)ϕ(λ, ·)(x) (52)

⊂
⋃

λ∈�n ,η∈[0,ε],ϕ(λ,x)≥ f (x)+η−ε
∂ηϕ(λ, ·)(x). (53)

Conversely, if x∗ ∈ ∂ηϕ(λ, ·)(x̄) for some λ ∈ �n and η ∈ [0, ε] such that ϕ(λ, x̄) ≥
f (x̄) + η − ε, then

〈
x∗, y − x̄

〉 ≤ ϕ(λ, y) − ϕ(λ, x̄) + η ≤ f (y) − f (x̄) + ε,

and x∗ ∈ ∂ε f (x̄). In other words, (49) and (50) hold true. ��
The following result is also used in the current work, but it has its own interest.
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Lemma 12 Let ( fn)n ⊂ �0(X) be a non-decreasing sequence, and denote f :=
supn≥1 fn . Then, for all x ∈ dom f and ε ≥ 0,

∂ε f (x) =
⋂

δ>0

cl
(⋃

k≥1

⋂

n≥k
∂ε+δ fn(x)

)
.

Proof Take x∗ ∈ ∂ε f (x) and fix δ > 0. Then

f (x) + f ∗(x∗) ≤ 〈
x∗, x

〉 + ε <
〈
x∗, x

〉 + ε + δ.

We know that

f ∗ = (supn≥1 fn)
∗ = co(infn≥1 f ∗

n ),

and so, since ( f ∗
n )n is non-increasing, the function infn≥1 f ∗

n is convex and f ∗ is the
closed hull of infn≥1 f ∗

n , i.e.,

f ∗ = cl(infn≥1 f ∗
n ).

Then

f (x) + cl(infn≥1 f ∗
n )(x∗) = f (x) + f ∗(x∗) <

〈
x∗, x

〉 + ε + δ,

and, so, there exists a net (x∗
i )i ⊂ X∗ w∗-converging to x∗ such that

f (x) + (
infn≥1 f ∗

n

)
(x∗

i ) <
〈
x∗
i , x

〉 + ε + δ, for all i .

In other words, for each i, there exists k ≥ 1 such that for all n ≥ k

fn(x) + f ∗
n (x∗

i ) ≤ f (x) + f ∗
k (x∗

i ) <
〈
x∗
i , x

〉 + ε + δ,

that is,

x∗
i ∈

⋂

n≥k
∂ε+δ fn(x) ⊂

⋃

k≥1

⋂

n≥k
∂ε+δ fn(x),

and, by taking the limit on i,

x∗ ∈ cl
(⋃

k≥1

⋂

n≥k
∂ε+δ fn(x)

)
.

The direct inclusion follows by intersecting over δ > 0. The opposite inclusion is
straightforward. ��

The following technical lemma is needed in the proof of Corollary 6.
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Lemma 13 For every ε > 0 we have that

co
(⋃

J∈Tε(x)
∂ε f J (x)

)
⊂

⋃

J∈Tε(x)
∂2ε f J (x). (54)

Proof If we take x∗
i ∈ ∂ε f Ji (x) with Ji ∈ Tε(x), i = 1, 2, then, for every α ∈ ]0, 1[ ,

it is straightforward that

x∗ := αx∗
1 + (1 − α)x∗

2 ∈ ∂ε(α f J1 + (1 − α) f J2)(x).

Moreover, for every x∗ ∈ ∂ε(α f J1 + (1 − α) f J2)(x) we have

〈
x∗, y − x

〉 ≤ (α f J1 + (1 − α) f J2)(y) − (α f J1 + (1 − α) f J2)(x) + ε

≤ (max{ f J1, f J2})(y) − α( f (x) − ε) − (1 − α)( f (x) − ε) + ε

= (max{ f J1, f J2})(y) − f (x) + 2ε

≤ (max{ f J1, f J2})(y) − (max{ f J1, f J2})(x) + 2ε,

which shows that

∂ε(α f J1 + (1 − α) f J2)(x) ⊂ ∂2ε(max{ f J1 , f J2})(x).

Hence, (54) follows by taking J := J1 ∪ J2 (∈ Tε(x)). ��
Proof of Proposition 3 Fix positive integers m, n with m > f (x), and take δ > 0.
Since

nu∗ ∈ Ndom f (x) ⊂ NL∩dom f (x),

we have that, for every y ∈ L,

f (y) ≤ m �⇒ 〈
nu∗, y − x

〉 ≤ 0 < δ,

that is,

〈
nu∗, y − x

〉 ≥ δ, y ∈ L �⇒ f (y) > m,

and so

〈
nu∗, y − x

〉 ≥ δ, y ∈ L �⇒ ∃t ∈ T such that ft (y) > m.

In other words,

〈
nu∗, y − x

〉 ≥ δ, y ∈ L �⇒ y ∈
⋃

t∈T
[ ft > m] ,
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and this shows that

{
y ∈ Bδ(x) : 〈nu∗, y − x

〉 ≥ δ
} ⊂ {

y ∈ L : 〈nu∗, y − x
〉 ≥ δ

}

⊂
⋃

t∈T
[ ft > m] , (55)

where Bδ(x) denotes the ball in L centered at x with radius δ (L endowed with the
relative topology of X is isomorphic to an Euclidean space and, consequently, Bδ(x)
is compact). Therefore, since the sets [ ft > m] are open, by the lower semicontinuity

of the ft ’s, due to (55) we find a finite set
{
t (n,m)
1 , · · · , t (n,m)

k(n,m)

}
⊂ T , k(n,m) ≥ 1, such

that

{
y ∈ Bδ(x) : 〈nu∗, y − x

〉 ≥ δ
} ⊂

⋃

i=1,··· ,k(n,m)

[
f
t (n,m)
i

> m
]
.

Equivalently, if we define

g(n,m) := max
i=1,··· ,k(n,m)

f
t (n,m)
i

,

then we have

[
g(n,m) ≤ m

] =
⋂

i=1,··· ,k(n,m)

[
f
t (n,m)
i

≤ m
]

⊂ (X \ Bδ(x)) ∪ {
y ∈ X : 〈nu∗, y − x

〉
< δ

}
.

Also, by denoting

g := sup
n,m≥1

g(n,m),

we have that

[g ≤ m] ⊂
⋂

n≥1

[
g(n,m) ≤ m

]
,

and we obtain

[g ≤ m] ∩ Bδ(x) ⊂
(⋂

n≥1

[
g(n,m) ≤ m

])⋂
Bδ(x)

⊂ {
y ∈ X : 〈nu∗, y − x

〉
< δ

}
. (56)

Hence, since x ∈ [g ≤ m] ∩ Bδ(x) (remember that m > f (x)),

nu∗ ∈ Nδ
[g≤m]∩Bδ(x)(x), for all n ≥ 1,
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and by taking n ↑ +∞ we obtain that

u∗ ∈ N[g≤m]∩Bδ(x)(x) = N[g≤m]∩L(x), for all m > f (x).

Therefore

u∗ ∈
⋂

m> f (x)
N[g≤m]∩L(x)

⊂ N∪m> f (x)[g≤m]∩L(x) = N(dom g)∩L(x),

and we conclude the proof since

g = sup
n,m≥1

g(n,m) = sup
n,m≥1,i=1,··· ,k(n,m)

f
t (n,m)
i

is the supremum of a countable family.

In the following lemma, the result corresponding to ε = 0 can be found in [6, (8)
in page 835].

Lemma 14 Given a non-empty set A ⊂ X , for every x ∈ dom σA and ε ≥ 0 we have
that

Nε
dom σA

(x) = Nε
((coA)∞)−(x) = (coA)∞ ∩ {x∗ ∈ X∗ : −ε ≤ 〈

x∗, x
〉 ≤ 0}. (57)

Proof Fix x ∈ dom σA and ε ≥ 0. The first equality comes from (15). Take x∗ ∈
Nε

((coA)∞)−(x), so that

〈
x∗, αy − x

〉 ≤ ε for all y ∈ ((coA)∞)− and α > 0. (58)

Then, by dividing on α and next making α ↑ +∞we obtain that x∗ ∈ ((coA)∞)−− =
(coA)∞, using again (9). Moreover, by taking y = x in (58), as x ∈ dom σA ⊂
((coA)∞)− (by (15)), we obtain that

〈
x∗, (α − 1)x

〉 ≤ ε, for all α ≥ 0.

Ifα = 0, then−ε ≤ 〈x∗, x〉 , and ifα goes to+∞, then 〈x∗, x〉 ≤ 0.By summarizing,
we have proved that x∗ ∈ (coA)∞ ∩ {x∗ ∈ X∗ : −ε ≤ 〈x∗, x〉 ≤ 0}.

Conversely, if x∗ ∈ (coA)∞ ∩ {x∗ : −ε ≤ 〈x∗, x〉 ≤ 0}, then
〈
x∗, y − x

〉 ≤ 〈
x∗,−x

〉 ≤ ε for all y ∈ ((coA)∞)− ,

and so x∗ ∈ Nε
((coA)∞)−(x).
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