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Abstract
Weconsider the game of a holonomic evader passing between two holonomic pursuers.
The optimal trajectories of this game are known. We give a detailed explanation of
the game of kind’s solution and present a computationally efficient way to obtain
trajectories numerically by integrating the retrograde path equations. Additionally, we
propose a method for calculating the partial derivatives of the Value function in the
game of degree. This latter result applies to differential games with homogeneous
Value.

Keywords Game theory · Optimal strategies · Differential games · Pursuit-Evasion

Mathematics Subject Classification 49N75

1 Introduction

Pursuit-evasion (PE) games began to be investigated intensively in the middle of the
twentieth century, primarily formilitary purposes. In this period,Rufus Isaacs’ defining
work, differential games [8], was born, in which he lays the theoretical foundations of
PE games and, more generally, Differential Games. Today, there is a growing interest
in the topic due to the proliferation of self-driving vehicles and drones, as PE game
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theory can also be used effectively for collision avoidance [6] and other applications
of unmanned vehicles such as protecting a region from intruders [10,11].

Isaacs’ method of solving two-player differential games is based on the idea of
semipermeable surfaces. These are surfaces in the state space which both players
strive to penetrate in the opposite direction, but both are prevented from doing so
by the opponent. Hence, optimal trajectories are running on such surfaces. Optimal
trajectories can be obtained by integrating path equations in retrograde time, from
an endstate. In some cases, this can be done analytically. In the simplest cases, even
feedback strategies can be given analytically [3,12], which means that in any state,
each player’s best control decision is obtainable.

Isaacs’ work has been the starting point for many researchers. For a precise and
more general formulation of its base ideas, refer to [1]. The many types of singular
surfaces introduced by Isaacs have been further investigated in [2], which will be of
use in this paper.

With the advancement of computational techniques, previously impossible prob-
lems became solvable. Instead of analytically solving the integration and then giving
strategies, one can numerically evaluate each (relevant) state in a discretized state space
using the Hamilton–Jacobi–Isaacs equation [14]. This solution concept suffers from
the curse of dimensionality, and we often settle for a suboptimal solution, especially
when the number of agents—and therefore, the dimensionality of the state space—is
high [5].

The game we are analyzing in this paper has three agents and simple dynamics. It
is a relatively simple pursuit-evasion game example; in fact, Hagedorn and Breakwell
have been able to give an analytical solution in 1976[7]. However, the analytic form of
the optimal trajectories includes elliptic integrals; thus, the agents’ feedback strategies
could not be given. We take a different route: we give the path equations in a simple
form and integrate numerically. Doing so allows us to efficiently compute the agents’
optimal strategies, whichwewill present in a subsequent paper. Kumkov et al. write on
Hagedorn and Breakwell’s work: "Computations (...) are very complicated. It would
be reasonable to check them and, possibly, to rewrite in an easier way" [9], which we
also hope to have accomplished.

In the next section, we formulate the game. In Sects. 3 and 4, we present the path
equations inside the playable state space and at the boundary. The complete solution
of the game of kind, where the outcome is binary, is given in Sect. 5. In Sect. 6, we
give the game of degree - continuous outcome - counterpart of the game based on the
game of kind. This logic was also followed by Hagedorn and Breakwell [7], but we
also provide the derivatives of the Value. Results are summarized, and future work is
inspected in Sect. 7.

2 The Game of Kind

In the game considered, there are three players: two cooperating pursuers and a faster
evader. The game is played in the plane without borders or obstacles. Each agent
is omnidirectional—it can change direction instantaneously—and has fixed velocity.
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The joint six-dimensional state of the system is governed by

f (φ1, φ2, ψ) = ẋ =
⎡
⎣
ẋ p1
ẋ p2
ẋe

⎤
⎦ =

⎡
⎣

vpφ1
vpφ2
veψ

⎤
⎦ (1)

where xp1 , xp2 and xe are two-dimensional column vectors that correspond to the
planar coordinates of pursuer 1 (P1), pursuer 2 (P2) and the evader (E), respectively.
The constant scalar velocities are denoted by vp and ve for the pursuers and evader,
with ve > vp. The control variables of the agents are φ1, φ2 and ψ two-dimensional
unit vectors.

The goal of the evader is to pass between the two pursuers—in either direction—
without getting captured. The objective of the pursuers is the opposite. They win either
by approaching each other and thus preventing the evader from passing between or
by capture. Capture means approaching E closer than a given dc capture distance as
formalized by

di = ||xe − xpi || < dc for any i ∈ {1, 2} (2)

Note that capture may occur after the evader has crossed the line segment between
the pursuers.

A very similar setting is examined in [15]. The problem also has some similarities
with region protection like in [11], with the evader being the intruder. However, a sig-
nificant difference is that the pursuers (defenders) are not constrained to the boundary
of a region, allowing for much more complex optimal solutions even with just a few
agents. Let us point out that the source of the complexity of the game under study is
the superiority of the evader, as opposed to similar situations, e.g., in [3,12] where a
slower evader (target) enables closed-form solutions.

2.1 Terminal Surfaces

To make the following analysis more transparent, we visualize the playing area. This
requires the reduction of the six-dimensional state space, which is possible without
loss of information because the game is inherently invariant to translation and rotation
of the agents’ joint configuration. Let us introduce the "XYZ" reduced space. We
relocate the base of the coordinate system such that the pursuers are always located
on the x axis, with the origin halfway between them. Then, the X and Y refer to the
relative coordinates of the evader and Z to the distance between the pursuers. This way,
we can transform any state unambiguously to the three-dimensional reduced space.

Since the evader is allowed to cross between the pursuers in any direction, without
loss of generality, we will consider states with reduced coordinate Y < 0 as prior to
crossing. States where Y > 0 are considered such that E has already passed between
and may yet have to escape.

Based on the previous description, the game can terminate in one of the following
three ways: the evader is captured, the pursuers close the gap by coming within a
distance of 2dc of each other (before the evader has crossed, i.e., Y < 01), or the

1 When Y > 0, the evader has passed, and closing the gap no longer hinders escape.
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Fig. 1 Regions of the terminal surfaces related to capture, in the reduced space with ve/vp = 1.1

evader gets through and reaches a safe state. The first two cases will correspond to
terminal surfaces—penetration of which leads to an immediate win for the pursuers.
The third is not well defined, but later we will see that a precise formalization is not
necessary. In fact, we will only need the surfaces corresponding to capture, depicted in
Fig. 1 in the "XYZ" space. They form oblique cylinders with radius dc: these are states
where the inequality in (2) becomes an equation. Neglecting the other two possibilities
for termination will be justified in Sect. 5.

The critical attribute of a region on a terminal surface is its usability. A region is
usable if the player who prefers penetration of the surface can apply such control that
the opponent is unable to prevent it. The condition of usability can be given generally
as

min
φ1,φ2

max
ψ

νT f (φ1, φ2, ψ) < 0

where ν is the normal to the surface, directed to the playing space2.
To follow the traditional way, we would have to either obtain the surfaces in six

dimensions, or the state equations in the reduced space. Instead, we will determine
usability of capture surfaces by noting that capture occurs if and only if di = dc and
ḋi < 0 for any i ∈ {1, 2}.

When di = dc holds for only one pursuer, the usability criterion is written as

min
φi

max
ψ

ḋi < 0 (3)

2 The playing space can be defined as the set of states where the game has not concluded yet.
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Fig. 2 Configuration at the
usable part

P1

E
φ

P2

dc

Let us introduce
pi = xe − xpi
ṗi = ẋe − ẋ pi = veψ − vpφi

(4)

Then, writing the derivative of the length of a two-dimensional vector:

ḋi = d||pi ||
dt

= ṗTi pi
||pi || (5)

and (3) can be written as

min
φi

max
ψ

(
veψ − vpφi

)T
pi

||pi || < 0 (6)

Note that ψ and φi are unit vectors and ve > vp, therefore the direction of the
vector (veψ − vpφi ) is decided by the evader. Hence, E can always make ḋi positive.
The surface is nonusable, except in the following case.

On the section of the two nonusable cylindrical surfaces, the configuration of the
agents is similar to that in Fig. 2: both pursuers are at distance dc from the evader, with
the parameter γ being the angle difference between P1E and the symmetry axis (the
bisector of P1P2). Now the usability criterion is inspected regarding to both pursuers
simultaneously; thus, (3) modifies to

min
φ1,φ2

max
ψ

min
i

ḋi < 0, i ∈ {1, 2} (7)

and (6) modifies to

min
φ1,φ2

max
ψ

min
i

(
veψ − vpφi

)T
pi

||pi || < 0 (8)

Optimal (minimizing) control of the pursuers is still heading along pi , toward the
evader. In contrast to the single pursuer case, because of symmetry, the evader can, at
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best, move on the perpendicular bisector of the pursuers’ points, as shown in Fig. 2.
The condition (8) then further reduces to

ve cos γ − vp < 0

We conclude that the section is usable for γ > cos−1(vp/ve) and nonusable for
γ < cos−1(vp/ve). The boundary of the usable part (BUP) is the pointwhere γ = γ =
cos−1(vp/ve). Configuration in this point is as in Fig. 2, with γ = γ ; corresponding
to the relative coordinates shown in Fig. 1. Importance of this point is stated in the
next section.

3 Solution in the Open Space

According to Isaac’s principle, [8], the state space can be split into two parts, from
one of which capture can be guaranteed through optimal play of the pursuers (capture
zone, CZ). For states in the other part, the evader can ensure escape if it plays optimally
(escape zone, EZ). In this case, closing the gap is treated similarly to capture. The two
parts are separated by a barrier. Optimal play of both players on the barrier leads to
an edge case between capture and escape, with trajectories staying on the barrier.

The payoff of the game can be defined at terminal states, which is positive if the
evader wins and negative if the pursuers win. The payoff of the edge case, which
terminates in the BUP, is zero. We now define the Value (V ) of the game as a function
over the playable space that equals the eventual payoff assuming optimal play on both
sides3; hence it is positive for states in EZ, negative for states in CZ, and zero on the
barrier. By definition, it is evident that through optimal play, the game’s state follows
a trajectory along which the Value is constant. As a consequence, the gradient of the
Value is normal to any optimal trajectory and thus normal to the barrier.

Following Isaac’s protocol, we try to create a family of optimal paths with V = 0
that generate the barrier. On one side of the barrier, the Value will be negative and
positive on the other. We generate the barrier by integrating paths in retrograde time,
starting from the terminal state with zero Value, the BUP. To obtain these paths, we
need to simultaneously integrate states and the partial derivatives of V (but not V
itself). Hence, we need the differential equations in time for x and the gradient of V .
We will also need the state and derivatives at the endpoint, the BUP.

Let us make a remark on dimensionality. In general differential games, the n − 1-
dimensional barrier separating an n dimensional state space is integrated starting from
an n − 2-dimensional manifold. In this case, however, we only found an n − 3-
dimensional boundary of the usable part—a point in the reduced space. Still, we will
see that it is sufficient: trajectories ending in this point form a surface in the reduced
space, which will indeed be the barrier.

3 In terms of the conventional annotation[1] this means that the Lagrangian is zero.
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3.1 Optimality Condition

The Value function is assumed to be twice differentiable in x . For clarity, let us define
the gradient of V as a six-dimensional row vector in the form

∇V =
[

∂V
∂xp1

∂V
∂xp2

∂V
∂xe

]
= [

Vp1 Vp2 Ve
]

The instantaneous goal of the agents is to minimize (maximize) the current Value.
This is expressed by the first main equation, also including the fact that optimality
results in constant V ,

min
φ1,φ2

max
ψ

V̇ = min
φ1,φ2

max
ψ

H (∇V , φ1, φ2, ψ) = 0 (9)

where

H (∇V , φ1, φ2, ψ) = ∇V f (φ1, φ2, ψ) = vpVp1φ1 + vpVp2φ2 + veVeψ (10)

Optimal controls will be the unit vectors aligning with the corresponding Value
derivatives:

ψ∗ = V T
e

||Ve||

φ∗
1 = − V T

p1

||Vp1||

φ∗
2 = − V T

p2

||Vp2||

(11)

Substituting (11) into (9) gives the second main equation

∇V f
(
φ∗
1 , φ

∗
2 , ψ

∗) = −vpVp1

V T
p1

||Vp1|| − vpVp2

V T
p2

||Vp2|| + veVe
V T
e

||Ve|| = 0

or
ve||Ve|| − vp(||Vp1|| + ||Vp2||) = 0 (12)

Differentiating the left side by any agent’s coordinates—ξ ∈ {p1, p2, e}—gives

ve

∂Ve
∂xξ

V T
e

||Ve|| − vp

∂Vp1
∂xξ

V T
p1

||Vp1|| − vp

∂Vp2
∂xξ

V T
p2

||Vp2|| = ve
∂Ve
∂xξ

ψ∗ + vp
∂Vp1

∂xξ

φ∗
1 + vp

∂Vp2

∂xξ

φ∗
2

= ve
∂Vξ

∂xe
ψ∗ + vp

∂Vξ

∂xp1
φ∗
1 + vp

∂Vξ

∂xp2
φ∗
2

= ∂Vξ

∂xe
ẋe + ∂Vξ

∂xp1
ẋ p1 + ∂Vξ

∂xp2
ẋ p2

= V̇ξ

(13)
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using (11), (1) and the interchangeability of the second derivatives ofV . Differentiating
by the time is considered along the optimal path.

The right side of (12) is zero everywhere, therefore

V̇ξ = 0 (14)

This means that the derivatives of the Value are constant. Considering (11), the optimal
controls are thus also constant, which causes all agents to move along straight lines.

3.2 Boundary of the Usable Part

We already determined the configuration of the agents at the BUP. Again referring
to invariance to translation and rotation, we can choose the state to match the XY Z -
transformation by placing the pursuers on the x axis. Considering Fig. 2, this gives
us

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

−dc sin γ

0
dc sin γ

0
0

dc cos γ

⎤
⎥⎥⎥⎥⎥⎥⎦

Now we need to determine ∇V . In the game of kind, the Value—and therefore its
derivatives—is only defined up to a scalar multiplier. Hence, we can choose ||Vp1|| =
1. From (12)

ve||Ve|| = vp
(||Vp1|| + ||Vp2||

)

and because of symmetry ||Vp1|| = ||Vp2||, so

||Ve|| = 2vp

ve
= 2 cos γ

since γ = cos−1(vp/ve).
Now, we know the lengths of vectors Vξ . Their directions can be deduced based

on (11): they are aligned with the control unit vectors of the agents shown in Fig. 2,
oppositely directed for the pursuers. Hence, the Value derivatives at the BUP are

∇V = [
Vp1 Vp2 Ve

] = [− sin γ − cos γ sin γ − cos γ 0 2 cos γ
]

Using these initial values and the differential Eqs. (11) and (14), we can integrate
a single optimal path on the barrier, which runs in the interior of the playable space.
To obtain a family of optimal trajectories, we need additional considerations.
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Fig. 3 An optimal trajectory with parameters: ve = 1.1, vp = 1, dc = 1, t1 = 10, t2 = 10

4 Solution on the Nonusable Part

In the previous section, we assumed twice continuous differentiability of V . However,
this is not true along the nonusable parts (NUP, refer to Fig. 1): they are surfaces
that separate an immediate capture zone from a space of states with various Values.
Therefore, the deduction of (13) and so (14) are not valid on the surface. In this section,
we will give the path equations of possible paths along the nonusable surfaces.

Before expounding on the curved paths, let us describe how curved and straight
parts form optimal trajectories. In reversed time, every optimal trajectory starts from
the boundary of the usable part. Applying the previous results at this point, a straight
trajectory is acquired, which runs in the interior of the playing space, where V is
differentiable; thus (13) and (14) remain valid, and the controls remain constant. On the
other hand, the BUP is on both nonusable surfaces (corresponding to capture); hence,
the trajectory may start (in reverse time) along such a surface. After an arbitrary4 time,
the trajectory diverges from the surface and, being in the interior, obeys the equations
derived previously. We state without proof that both di distances strictly increase (still
in retrograde time) after such a junction point; therefore, the trajectory will never meet
a nonusable surface again. Hence, we can summarize in forward time: every optimal
trajectory starts with a straight phase lasting until the state reaches a nonusable surface.
Then, the state evolves along that surface up until the BUP. The duration of the straight
and curved phases is denoted by t2 and t1, respectively. An example trajectory is shown
in Fig. 3.

We will consider P1 to be the pursuer threatening E from here on. For P2, a
symmetrical solution applies.

4 We will see at the end of this section that there is an upper limit.
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When moving along the capture surface of a pursuer, the game may have no saddle
point. If the evader’s optimal strategy in a given time instant is such that P1 has a
control decision that results in immediate capture, it will apply it and win. But if E
knows this beforehand, it can take countermeasures, and this way, V might increase.
Optimality is retained by defining the upper saddle point[2] as a solution where E
has instantaneous informational advantage, i.e., its control is defined as function of
P1’s control: ψ(φ1). This solves the ambiguity of the optimal controls, but we have
to modify the first main equation.

Let us introduce θ = ∠(xe − x1) and

e(θ) =
[
cos θ

sin θ

]

Now the surface where d1 = ||xe − xp1 || = dc can be parameterized by

s =
⎡
⎣
xp1
xp2
θ

⎤
⎦

five-dimensional vector, with

x = σ(s) =
⎡
⎣

xp1
xp2

xp1 + dce(θ)

⎤
⎦

As ∇V generally does not exist on the NUP, the normal to the barrier can instead
be given as its limit at the straight and curved paths’ junction

λ = lim
τ→0

∂V (σ (s) − τ f ∗)
∂x

= [
λp1 λp2 λe

]

where f ∗, being constant in the open space along the trajectory, has no arguments.
We can write the main equation as

min
φ1,φ2

max
ψ∈ψ̃(φ1)

(
vpλp1φ1 + vpλp2φ2 + veλeψ(φ1)

)

= min
φ1,φ2

max
ψ∈ψ̃(φ1)

H (λ, φ1, φ2, ψ(φ1)) = 0 (15)

where ψ̃(φ1) is the set of the reactive strategies of E that ensure its safety:

ψ̃(φ1) = {ψ : veψ
T e(θ) ≥ vpφ

T
1 e(θ)} (16)

where veψ
T e(θ) is the speed at which the evader moves away from the pursuer, and

vpφ
T
1 e(θ) is the speed at which P1 moves toward E .
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4.1 Controls at the Junction

We will now derive the optimal controls of the agents at the junction between the
straight and curved part of an optimal trajectory. Notice that in (15), P2 minimizes
independently, therefore its optimal control is (with some abuse of notation), similarly
to (11),

φ∗
2 = − λp2

||λp2||

The optimal reactive strategy of the evader is given by

ψ∗(φ1) =
{

ψ∗ = λe||λe|| , if λe||λe|| ∈ ψ̃(φ1)

some ψ̃∗ ∈ ψ̃(φ1) otherwise

Let us also define

φ∗
1 = − λp1

||λp1||

which minimizes H without considering the constraint onψ . We will indirectly prove
that this is the optimal control also when applying the constraint on ψ . We will also
see that the second branch of ψ∗(φ1) can be neglected.

Let us assume that P1 can exploit the nonusable surface, i.e., there exists a φ1 such
that

H
(
λ, φ1, φ

∗
2 , ψ

∗(φ1)
)

< H
(
λ, φ∗

1 , φ
∗
2 , ψ

∗(φ∗
1 )

)

The presence of a capture surface can only benefit the pursuer, thus

H
(
λ, φ∗

1 , φ
∗
2 , ψ

∗(φ∗
1 )

) ≤ H
(
λ, φ∗

1 , φ
∗
2 , ψ

∗)

where the right-hand side replicates the open-space solution: at the state x → σ(s),
∇V = λ based on the similarity between (11) and the previously redefined controls
we can write the results of the open space as

H
(
λ, φ∗

1 , φ
∗
2 , ψ

∗) = 0

Summarizing the inequalities, we get

H
(
λ, φ1, φ

∗
2 , ψ

∗(φ1)
)

< 0

which contradicts the definition of the barrier. Therefore, both inequalities have to be
equalities,φ∗

1 is the optimal control in the junction for P1, andψ∗(φ∗
1 ) = ψ∗. However,

φ∗
1 may not be unique. We will not prove that no other φ1 values exist for which
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H(λ, φ1, φ
∗
2 , ψ

∗(φ1)) = 0, but it is simple to check numerically and is also suggested
by the fact thatwe can construct the full barrier using only this straightforward solution.

In backward time, the optimal trajectory can leave the nonusable surface at any
time t1. Hence, any point on the curved path can be a junction, for which the optimal
solution is as derived. This means that the agents’ controls will be φ∗

1 , φ∗
2 , and ψ∗

throughout the optimal trajectory. To integrate, we now need the differential equations
for λ.

4.2 Obtaining Path Equations

In the next part, we will follow the methods of [2].
Let us define the Value on the nonusable surface as a twice continuously differen-

tiable function of the parametrization s

U (s) = V (σ (s)) = lim
τ→0

V
(
σ(s) − τ f ∗)

where the limit is only needed to obtain the derivatives

∂U (s)

∂s
= lim

τ→0

∂V (σ (s) − τ f ∗)
∂s

= lim
τ→0

∂V (σ (s) − τ f ∗)
∂x

∂σ(s)

∂s

Thus,

∂U (s)

∂s
= λ

∂σ(s)

∂s

with

∂σ(s)

∂s
=

⎡
⎣
I 0 0
0 I 0
I 0 dce(θ + π/2)

⎤
⎦ (17)

being a six-by-five matrix. The second derivative of σ is zero except for ∂2σ(s)
∂θ2

which
means that

∂2U (s)

∂si∂s j
= ∂λ

∂si

∂σ(s)

∂s j
= ∂λ

∂s j

∂σ(s)

∂si
(18)

for any i �= j . Since λ is the normal to the barrier, along an optimal path we can write

λ f ∗ = 0 (19)

Then, for any element of s

λ
∂ f ∗

∂si
= λ

∑
u∈{φ1,φ2,ψ}

∂ f ∗

∂u

∂u

∂si
=

∑
u∈{φ1,φ2,ψ}

∂H

∂u

∂u

∂si
= 0

because f is only a function of the controls, and—as shown in the previous section—
φ∗
1 , φ

∗
2 , ψ

∗(φ∗
1 ) supply the unconstrained minimum for H . Hence, differentiating (19)
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gives

∂λ

∂si
f ∗ = 0

Using that f ∗ can be written on the surface as

f ∗ = ∂σ(s)

∂s

ds

dt
=

5∑
j=1

∂σ(s)

∂s j

ds j
dt

and using (18),

∂λ

∂si
f ∗ = ∂λ

∂si

5∑
j=1

∂σ(s)

∂s j

ds j
dt

=
5∑
j=1

∂λ

∂si

∂σ(s)

∂s j

ds j
dt

=
5∑
j=1

∂λ

∂s j

∂σ(s)

∂si

ds j
dt

=
⎛
⎝

5∑
j=1

∂λ

∂s j

ds j
dt

⎞
⎠ ∂σ(s)

∂si

= λ̇
∂σ (s)

∂si
= 0

This gives us for i = {1, 2}, i = {3, 4} and i = 5—the columns of the block matrix
in (17)

λ̇1 + λ̇e = 0

λ̇2 = 0

λ̇edce(θ + π/2) = 0

(20)

From (20), we can deduce that both λ̇1 and λ̇e are parallel to e(θ), and all derivatives
of λ are defined up to a scalar multiplier. We will express this as

λ̇1 = α p (21)

where—and later on—p refers to p1 from (4).
To obtain α, first let us write—refer to (5) for the derivative of vector length

dψ∗

dt
= d λe||λe||

dt
= λ̇e||λe|| − λe

λTe λ̇e
||λe||

||λe||2 = λ̇e

||λe||
(
I − ψ∗ ◦ ψ∗T )

(22)
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and

dφ∗
1

dt
=

d
(
− λ1||λ1||

)

dt
= − λ̇1||λ1|| − λ1

λT1 λ̇1
||λ1||

||λ1||2 = − λ̇1

||λ1||
(
I − φ∗

1 ◦ φ∗T
1

)
(23)

Next, let us reformulate the condition of staying on the surface—see (8) and (16)

veψ
T p = vpφ

T
1 p (24)

then, using ṗ1 from (4) as ṗ,

(
veψ − vpφ1

)T
p = ṗT p = 0

which we derivate as

d
((

veψ
T − vpφ

T
1

)
p
)

dt
=

(
ve

λ̇T
e

||λe||
(
I − ψ ◦ ψT

)

+vp
λ̇T
p1

||λp1||
(
I − φ1 ◦ φT

1

))
p +

(
veψ

T − vpφ
T
1

)
ṗ

= λ̇T
p1

(
− ve

||λe||
(
I − ψ ◦ ψT

)

+ vp

||λp1||
(
I − φ1 ◦ φT

1

))
p + ṗT ṗ = 0

using (20), (22) and (23).
Now substituting (21) and solving for α:

α = ṗT ṗ

pT
(

ve||λe||
(
I − ψ ◦ ψT

) − vp
||λp1||

(
I − φ1 ◦ φT

1

))
p

which we can calculate at any point. Now (21) and (20) are sufficient to calculate the
derivatives of λ. Using the controls from the previous subsection, we can numerically
integrate optimal trajectories along the nonusable surface.

4.3 Brief Analysis

Integrating backward from the BUP, maintaining Isaacs’ main equations gives us
optimal trajectories of the game. In Fig. 4, an optimal trajectory with no straight phase
(t2 = 0) is shown. This trajectory may seem suboptimal for the pursuers because P1
implements a swerve maneuver instead of simply heading toward P2 to close the gap.
However, it can be shown that greedily closing the gap would benefit the evader by
allowing for significantly earlier crossing.
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Fig. 4 Curved part with parameters: ve = 1.5, vp = 1, dc = 1

Two conditions constrain the duration of the curved phase. First, at some point
during the integration of the curved path, we arrive at a state where the first pursuer’s
movement direction is aligned with EP1; it moves away from the evader. This config-
uration is shown in Fig. 4 as initial state x(0). If we integrate beyond this point, the
curvature of P1’s path changes sign, and, depending on the parameters, we may arrive
at a singularity where the numerical integration fails. Second, according to Sect. 2.1,
in states where the reduced coordinate Y is positive, the evader is assumed to have
already crossed the line between the pursuers. The sign of Y changes at Y = 0, when
all three agents are located on a straight line. Hence, configurations prior to the edge
configuration—marked in Fig. 4 with dashed lines—are not part of the optimal tra-
jectory5. Even without our condition on Y , such configurations would not be part of
the optimal trajectory because the evader would choose to cross between the pursuers
in the other direction.

We need to show that the second condition is more strict, i.e., to obtain paths that
are optimal given our problem statement, integration beyond the singularity is never
needed—regardless of parameters.

In Fig. 4, we see that for ve/vp = 1.5, the singular point appears beyond the edge
configuration. We will give intuitive proof for general velocity ratios. Let us consider
the limit case where ve/vp → ∞, shown in Fig. 5. In the limit, the evader compasses
the pursuer, which is moving toward the final position of E . The singular state—where
P1 is moving away from E—is exactly when the agents form a line. We argue that for
any other velocity ratio 1 < ve/vp < ∞, the structure is more similar to that in Fig.
4, and we never have to integrate up to the singular point regardless of parameters ve,
vp.

5 In other words, our problem formulation is such that the evader will only cross the pursuers’ line once—it
does not have to go around the first pursuer for more than 180 degrees before passing between.
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Fig. 5 Curved trajectory in the limit case: ve/vp → ∞, dc = 1

Changing parameter dc would proportionally scale all coordinates but not change
the structure of the solution; therefore, the optimal trajectories can be integrated for
any parameters.

Note that in [7], Hagedorn and Breakwell give the optimal solution as a function
of the first pursuer’s control. Therefore, their solution is inherently constrained by the
singular point.

5 The Barrier

From the boundary of the usable part, with given dc, we can integrate in retrograde
time any optimal trajectory that runs for t1 time along one of the nonusable surfaces
and then for t2 time in the open space. We may use any ordinary differential equation
solver. An example is shown in Fig. 6. The numerical results agree with those of [7].

Calculating such paths with t1 ∈ [0, t1,max ] gives us the barrier, shown in Fig. 7.
Here, the t1 value which corresponds to the edge configuration introduced earlier is
denoted t1,max . For states above and in front (in positive Y direction) of the barrier,
escape can be guaranteed. Although optimal strategies are only defined on the barrier,
agents following those specified optimal strategies sufficiently near the barrier will
cause the state to evolve parallel to it. In the CZ, the state will either end up on the UP
of the section or arrive at the terminal surface where the pursuers meet. In the EZ, after
passing the BUP, the evader has some trivial escape strategies, moving away from the
pursuers.

Figure 8 shows sections of the barrier to visualize escape and capture zones better.
Here, blue circles correspond to states where the evader has already been captured.
From the definition, crossing has already occurred in states with Y > 0; hence, the
black lines separating EZ and CZ. In the section with Z = 2.2, there are states where
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Fig. 6 An optimal trajectory with parameters: ve = 1.1, vp = 1, dc = 1, t1 = 10, t2 = 10

Fig. 7 The barrier for parameters: ve = 1.5, vp = 1, dc = 1

even though the evader has already crossed, the pursuers can capture it. In the last
subfigure, the barrier wraps around the pursuers; however, the Y > 0 part is neglected
due to the problem definition.

Now let us justify neglecting the two termination possibilities besides capture,
mentioned in Sect. 2.1. First, note that the entire Y < 0, Z = 2∗dc surface—winning
condition for the pursuers—lies on the CZ side of the barrier. Therefore, trajectories
in the escape zone will never end on this surface; the outcome is not influenced by it.
On the other hand, the evader’s safe region still does not have to be defined precisely.
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Fig. 8 Sections of the barrier

Let it be some Y = Ỹ plane where Ỹ > dc. This is valid because on the EZ side,
following the barrier, the evader can reach a state with Y > 0 and γ < γ , meaning that
neither closing the gap or capture poses a threat to its escape. Then, simply moving
away from the pursuers eventually gets the state to Y = Ỹ . When starting from the
CZ, the evader would have to either illegally cross Y = 0 outside the pursuers’ gap or
cross the barrier to get to the Y = Ỹ surface, which is also impossible. Hence neither
this type of terminal surface influences the capture and escape regions of the game.

6 The Game of Degree

We will now define the continuous-payoff counterpart (GoD) of the previously ana-
lyzed game. The agents’ dynamics are the same, but in this game, there is no capture.
The evader tries to pass between the pursuers while maintaining the highest possi-
ble distance from both of them. The pursuers try to approach the evader as close as
possible. Formally, we can define the payoff as

J = min
t

min
i

di (t) = min
t

min
i

||xe(t) − xpi (t)||
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for t ∈ [0,∞] and i ∈ {1, 2}. The Value of the game can be interpreted as the eventual
payoff with optimal play on both sides. As opposed to previously, it will be written as
a function of the state, with GoD in the lower index.

The game of degree can be informally defined as the following question: for a state
x , what is the longest dc distance such that escape occurs in the game of kind? Thus,
VGoD(x) = dc if and only if the state x is on the barrier of the game of kind with dc
capture distance. Note that the Value in the GoK is zero in such states; hence, V and
VGoD(x) are not interchangeable. The GoD can be treated as the family of games of
kind with all possible —positive—dc values.

In the GoD, optimal trajectories run along semipermeable surfaces according to
Isaacs’ theory. VGoD is constant along these trajectories. The semipermeable surface
withVGoD ≡ dc corresponds to the barrier of the gameof kindwithdc capture distance,
with the same optimal trajectories. Using the previous results, we can integrate such
trajectories: both the state and the normal to the surface previously denoted as λ.

In the game of degree, as opposed to the GoK, the exact Value has significance, and
we may want to calculate its gradient. We know that this gradient is aligned with the
normal to the semipermeable surface, λ, but it may have to be scaled. This can be done
by recognizing that the Value is a homogeneous function of the state. Namely, if we
shrink or enlarge the game bymultiplying the state by a scalar value, wewill obtain the
same optimal solution on a different timescale, with proportionally modified Value.
Formally,

VGoD(ax) = aVGoD(x)

for any a > 0 scalar. Applying Euler’s homogeneous function theorem gives us

∇VGoD(x)x = VGoD(x)

which can be used to obtain ∇VGoD(x) when knowing its direction. Therefore, for
given dc = VGoD(x), t1 and t2 parameters, we can integrate the optimal trajectories
and then obtain ∇VGoD(x) values by rescaling the λ resulting from the integration.
Note that homogeneity also applies to other games with holonomic dynamics and
without obstacles.

The analogy of the two games allows us the calculate the optimal trajectories in
the game of degree for states that have a counterpart on the barrier. Not all states
do so, however. In Fig. 9, the contour plot of VGoD is shown on a Z -section in the
XY Z space. The lowest contour is that of VGoD(x) = 0, which means that in the
terminating state, all three agents meet at one point—game of kind with point capture.
Initial states below result in the pursuers meeting before the evader could pass through,
for which the VGoD is negative but not defined. On the sides, two curved lines of states
are marked for which the optimal trajectory has no straight part. Outside of the inner
region are the nonoptimal states: the evader is already too close to one of the evaders,
making the payoff lower even though the other pursuer poses no threat. In these states,
there is no optimal strategy.
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Fig. 9 Contour plot of the Value in a Z-section. The stars mark the positions of the pursuers

7 Conclusions

In this work, we have provided an efficient way of obtaining optimal trajectories in the
game of passing between two pursuers. We can calculate optimal paths for states in a
region in the six-dimensional state space from six parameters: translation and rotation
of the endstate, the capture distance (the Value in the GoD), and the lengths of the
straight and curved parts. In this process, we also get the derivatives of the Value of
the game, scaled in the game of degree. This scaling is based on a general concept and
applies to a variety of similar games.

The next step in our research is to provide optimal feedback strategies. For this, we
will reverse the connection: calculate the path parameters from the initial state. In the
future, we aim to use these results in solving a game where the superior evader has
been encircled by three (or more) pursuers and has to escape[4,13].
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