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Abstract

A reformulation of cardinality-constrained optimization problems into continuous
nonlinear optimization problems with an orthogonality-type constraint has gained
some popularity during the last few years. Due to the special structure of the con-
straints, the reformulation violates many standard assumptions and therefore is often
solved using specialized algorithms. In contrast to this, we investigate the viability of
using a standard safeguarded multiplier penalty method without any problem-tailored
modifications to solve the reformulated problem. We prove global convergence towards
an (essentially strongly) stationary point under a suitable problem-tailored quasinor-
mality constraint qualification. Numerical experiments illustrating the performance of
the method in comparison to regularization-based approaches are provided.

Keywords Cardinality constraints - Augmented Lagrangian - Global convergence -
Stationarity - Quasinormality constraint qualification

1 Introduction

In recent years, cardinality-constrained optimization problems (CCOP) have received
an increasing amount of attention due to their far-reaching applications, including
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portfolio optimization [11,12,15] and statistical regression [11,22]. Unfortunately,
these problems are notoriously difficult to solve, even testing feasibility is already
NP-complete [11].

A recurrent strategy in mathematics is to cast a difficult problem into a simpler one,
for which well-established solution techniques already exist. For CCOP, the recent
paper [17] was written precisely in this spirit. There, the authors reformulate the prob-
lem as a continuous optimization problem with orthogonality-type constraints. This
approach parallels the one made in the context of sparse optimization problems [23].
It should be noted, however, that due to its similarities with mathematical programs
with complementarity constraints (MPCC), the proposed reformulation from [17] is,
unfortunately, also highly degenerate in the sense that even weak standard constraint
qualifications (CQ) such as Abadie CQ are often violated at points of interest. In
addition, sequential optimality conditions like AKKT (approximate KKT) are known
to be satisfied at any feasible point of cardinality-constrained problems, see [32],
and therefore are also useless to identify suitable candidates for local minima in this
context.

These observations make a direct application of most standard nonlinear program-
ming (NLP) methods to solve the reformulated problem rather challenging, since they
typically require the fulfillment of a stronger standard CQ at a limit point to ensure sta-
tionarity. To overcome difficulties with CQs, CCOP-tailored CQs were introduced in
[17,19]. Regularization methods, which are standard techniques in attacking MPCC,
were subsequently proposed in [15,17], where convergence towards a stationarity point
is proved using these CQs. This is not the path that we shall walk on here. In this paper,
we are interested in the viability of ALGENCAN [2,3,13], a well established and open-
source standard NLP solver based on an augmented Lagrangian method (ALM), to
solve the reformulated problem directly without any problem-specific modifications.

ALMs belong to one of the classical solution methods for NLPs. However, up
to the mid 2000s, their popularity was largely overshadowed by other techniques,
in particular, the sequential quadratic programming methods (SQP) and the interior
point methods. Since then, beginning with [2,3], a particular variant of ALMs, which
employs the Powell-Hestenes—Rockafellar (PHR) augmented Lagrangian function
as well as safeguarded multipliers, has been experiencing rejuvenated interest. The
aforementioned ALGENCAN implements this variant. For NLPs it has been shown that
this variant possesses strong convergence properties even under very mild assumptions
[4,6]. It has since been applied to solve various other problems, including MPCC
[7,26], quasi-variational inequalities [27], generalized Nash equilibrium problems
[16,29], and semidefinite programming [8,14].

Due to the structure of the reformulated problems, particularly relevant to us is the
paper [26], where authors prove global convergence of the method towards an MPCC-
C-stationarity point under MPCC-LICQ; see also [5] for a more recent discussion
under weakened assumptions. However, even though the problems with orthogonality-
type constraints resulting from the reformulation of CCOP can be viewed as MPCC
in case nonnegativity constraints are present [19], we would like to stress that the
results obtained in our paper are not simple corollaries of [26]. For one, we do not
assume the presence of nonnegativity constraints here, making our results applicable
in the general setting. Moreover, even in the presence of nonnegativity constraints, it
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was shown in [19, Remark 5.7 (f)] that MPCC-LICQ, which was used to guarantee
convergence to a stationary point in [26], is often violated at points of interests for
the reformulated problems. Instead, we therefore employ a CCOP-analogue of the
quasinormality CQ [10], which is weaker than CCOP-CPLD introduced in [17], to
prove the global convergence of the method.

To this end, we first recall some important properties of the CCOP-reformulation
in Sect. 2 and define a CCOP-version of the quasinormality CQ. The ALM algorithm
is introduced in Sect. 3, and its convergence properties under said quasinormality
CQ are analyzed in Sect. 4. Numerical experiments illustrating the performance of
ALGENCAN for the reformulated problem are then presented in Sect. 5. We close with
some final remarks in Sect. 6.

Notation: For a given vector x € R", we define the two index sets

Ie(x):={ief{l,....,n} | xi 20} and Io(x):={i €{l,...,n}|x; =0}

Clearly, both sets are disjoint and we have {1,...,n} = I+(x) U Ip(x). For two
vectors a, b € R”, the terms max{a, b}, min{a, b} € R" denote the componentwise
maximum/minimum of these vectors. A frequently used special case hereof is ay :=
max{a, 0} € R". We denote the Hadamard product of two vectors x, y € R" with
x oy, and we definee :=(1,..., )T e R".

2 Preliminaries
In this paper, we consider cardinality-constrained optimization problems of the form

min x)st.g(x) <0, h(x)=0,
min f(x) st () <0, h() o
lxllo <,

where f € CI(R",R), g € CL(R",R™), h € C'(R", RP), and ||x||op denotes the
number of nonzero components of a vector x. Occasionally, this problem is also
called a sparse optimization problem [36], but sparse optimization typically refers to
programs, which have a sparsity term within the objective function.

Throughout this paper, we assume s < n, since the cardinality constraint would be
redundant otherwise. Following the approach from [17], by introducing an auxiliary
variable y € R”, we obtain the following relaxed program

min  f(x) st g(x) <0, h(x)=0,
x,yeR"

n—ely<s, 2.2)
y =<e,
xoy=0.

Observe that the relaxed reformulation we use here is slightly different from the one in
[17], because we omit the constraint y > 0, leading to a larger feasible set. Nonetheless,
one can easily see that all results obtained in [17, Section 3] are applicable for (2.2)
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as well. We shall now gather some of these results, which are relevant for this paper.
Their proofs can be found in [17].

Theorem 2.1 Let X € R". Then the following statements hold:

(a) X is feasible for (2.1) if and only if there exists y € R" such that (x, ) is feasible
for (2.2).

(b) X is a global optimizer of (2.1) if and only if there exists y € R" such that (X, y)
is a global minimizer of (2.2).

(¢) If x € R" is a local minimizer of (2.1), then there exists y € R" such that (x, y)
is a local minimizer of (2.2). Conversely, if (x, y) is a local minimizer of (2.2)
satisfying || X|lo = s, then X is a local minimizer of (2.1).

Theorem 2.1 shows that the relaxed problem (2.2) is equivalent to the original problem
(2.1) in terms of feasible points and global minima, whereas the equivalence of local
minima requires some extra condition (namely the cardinality constraint to be active).
Hence, essentially, the two problems (2.1) and (2.2) may be viewed as being equivalent,
and it is therefore natural to solve the given cardinality problem (2.1) via the relaxed
program (2.2).

Let us now recall the stationarity concepts introduced in [17].

Definition 2.2 Let (x, y) € R"” x R” be feasible for (2.2). Then (x, y) is called

(a) CCOP-M-stationary, if there exist multipliers A € R™, u € R?,and y € R" such
that

o 0=Vf(&) + Ve + VA@) u+ 7,
e A>0and A;g;(x) =0foralli =1,...,m,
e y; =0foralli € IL(X).

(b) CCOP-S-stationary, if (x, y) is CCOP-M-stationary with y; = O foralli € I(3).

As remarked in [17], CCOP-S-stationarity corresponds to the KKT condition of (2.2).
In contrast, CCOP-M-stationarity does not depend on the auxiliary variables y and is
the KKT condition of the following tightened nonlinear program TNLP(X)

rrkin f(x) st g(x) <0, h(x) =0,

. 2.3)
xi =0 Vi € Ip(X).

Observe that every local minimizer of (2.1) is also a local minimizer of (2.3). This

justifies the definition of CCOP-M-stationarity. Suppose now that (x, y) € R" x R”

is feasible for (2.2). By the orthogonality constraint, we clearly have I.(x) € Ip(9)

(with equality if ||x|lo = s). Hence, if (x, y) is a CCOP-S-stationary point, then it is

also CCOP-M-stationary. The converse is not true in general, see [17, Example 4].

It was shown in [19] that a CCOP-tailored version of Guignard CQ, which is the
same as standard Guignard CQ for (2.2), is sufficient to guarantee CCOP-S-stationarity
of local minima local minima of (2.2). This is a major difference to MPCCs, where
one typically needs MPCC-LICQ to guarantee S-stationarity of local minima and has
to rely on M-stationarity under weaker MPCC-CQs. Since local minima of (2.2) are
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CCOP-S-stationary under CCOP-CQs, CCOP-M-stationary points seem to be undesir-
able solution candidates. Fortunately, if (X, y) is CCOP-M-stationary, one can simply
replace y with another auxiliary variable 7 € R” such that (%, z) is CCOP-S-stationary,
as the next proposition shows. Note that the proof of this result is constructive.

Proposition 2.3 Let (%, y) € R" x R” be feasible for (2.2). If (x, y) is a CCOP-M-
stationary point, then there exists 7 € R" such that (x, z) is CCOP-S-stationary.

Proof By Theorem 2.1, X is feasible for (2.1). Now define Z € R" such that

R 0 ifi e IL(R),
Zi =
' 1 ifi € Ip(R).

Then (x, Z) is obviously feasible for (2.2), cf. also the proof of [17, Theorem 3.1].
By assumption, there exists (A, i, y) € R™ x R” x R” such that (x, $) is CCOP-M-
stationary. And since I+ (¥) = Io(2), using Definition 2.2, we can conclude that (X, )
is CCOP-S-stationary with (A, i, y) from before as corresponding multipliers. O

This shows that the difference between S- and M-stationarity in this setting is not as
big as for MPCCs. More precisely, a feasible point x of (2.1) is CCOP-M-stationary if
and only if there exists z such that the pair (x, Z) is CCOP-S-stationary. Consequently,
any constraint qualification which guarantees that a local minimum x of (2.1) satisfies
CCOP-M-stationarity, also yields the existence of a CCOP-S-stationary point (X, ).
Numerically, it implies that any method which generates a sequence converging to a
CCOP-M-stationary point only, essentially gives a CCOP-S-stationary point.

Utilizing (2.3), CCOP-tailored CQs were introduced in [17]. We shall now follow
this approach and introduce a CCOP-tailored quasinormality condition.

Definition 2.4 A point X € R”, feasible for (2.1), satisfies the CCOP-quasinormality
condition, if there exist no (A, u, y) € R” x R? x R" \ {(0,0,0)} such that the
following conditions are satisfied:

(@) 0=Vg®r+ Vi) +y,

(b) A >0and A;g;(x) =0foralli =1,...,m,

(¢) yi =0foralli € I1(x),

(d) I{x*} € R" with {x¥} — % such that, for all k € N, we have

e Vie{l,...,m}withA; >0: kigi(xk) > 0,
o Vie{l,...,pywithpu; #0: uihi(x*) >0,
o Vie{l,....n}withy; #0: yxF > 0.

Obviously, CCOP-quasinormality corresponds to the (standard) quasinormality CQ
of (2.3). By [1], CCOP-CPLD introduced in [17] thus implies CCOP-quasinormality.
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3 An Augmented Lagrangian Method

Let us now describe the algorithm. For a given penalty parameter ¢ > 0 the PHR
augmented Lagrangian function for (2.2) is given by

L((x,y), A, 8,m,v50) := f(x) +am((x,y), A, 0, &, m, 75 )

with (A, 1, ¢, 1, 7) € R x R? x Ry x R’} x R" and

(g +2), ?
h(x)+ £
RN R RIS n—ey—s+ 9.1
y—e+ )
x0y+y 2

is the shifted quadratic penalty term, cf. [13, Chapter 4]. The algorithm is then stated
below.

Algorithm 3.1 (Safeguarded Augmented Lagrangian Method)

(So) Initialization: Choose parameters Amax > 0, min < KUmax> Cmax > 0, max > 0,
Ymin < Ymax, T € (0, 1), 0 > 1 and {e;} C Ry such that {€;} | 0.
Choose initial values 1} € [0, Amax]™, ' € [tmin, tmax1?, &' € [0, Cmax )
7' € [0, Nmax)™ 7' € [Vmins Ymax]"> @1 > 0, and set k < 1.

(S1) Update of the iterates: Compute (x*, y*) as an approximate solution of

min _ L((x, y), 25, @5, o5 7%, 75 o)
(x,y)eR2n

satisfying B B
IV LR, Y6, 7K G5 25 7%, 755 an)ll < ex. (3.1)

(S2) Update of the approximate multipliers:

W= (g (h) + X")+

pk = aph(x¥) + i

k= ((n —eTyk —5) + b4
(e (YF — e) + 754

= Othk o yk + )7k

¢

n*
X
(S3) Update of the penalty parameter: Define

Ok

wk .= min{ — (yk —e), %}

Uk = min { — g(xh), &}7 Vi :=min { — (n —elyt =), g‘_k}’
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Ifk=1or

max {|UX][, IAGY N, Vel WL 1% o v 1}
k-1 k—1 k-1 k=1 k-1 (3.2)
< tmax {|[U, IhGEDIL Vil WAL I o y = 1)1)
set ag4+1 = ak. Otherwise set a1 = 0 Q. B
(S4) Update of the safeguarded multipliers: Choose WL e [0, Amax ], @5 e
[Amin, Mmax]‘”, ;k—H € [0, Zmax], f]k-H € [0, nmax]n: ?k—H € [Vmin, Vmax]n-
(S5) Setk < k + 1 and go to (51).

Note that Algorithm 3.1 is exactly the safeguarded augmented Lagrangian method
from [13]. The only difference to the classical augmented Lagrangian, see, e.g., [9,34],
is in the more careful updating of the Lagrange multipliers: The safeguarded method
contains the bounded auxiliary sequences 2K /lk , ..., which replace the multiplier
estimates A%, X, ... in certain places. Note that these bounded auxiliary sequences
are chosen by the user and that there is quite some freedom for their choice. In principle,
one can simply take 2* = 0, i¥ = 0, ... for all k € N, in which case Algorithm 3.1
boils down to the classical quadratic penalty method. A more practical choice is to com-
pute AKT1 ZK+1 by taking the projections of the multiplier estimates A%, u*, ...
onto the respective sets [0, Amax 1™, [4min, 4max]?, - - .- This implies that, for suffi-
ciently large parameters Amax, Mmin, Mmaxs - - - the safeguarded ALM often coincides
with the classical ALM. Differences occur, however, in those situations where the
classical ALM generates unbounded Lagrange multiplier estimates. This has a signif-
icant influence on the (global) convergence theory of both methods: While there is a
very satisfactory theory for the safeguarded method, see [13], a counterexample from
[30] shows that these properties do not hold for the classical approach.

We have not specified a termination condition for the algorithm here. However, the
convergence analysis in the next section suggests to stop the algorithm, e.g., if the
M-stationarity conditions are satisfied up to a given tolerance.

In the subsequent discussion of the convergence properties of this algorithm, we
often make use of the fact that the PHR augmented Lagrangian function is continuously
differentiable with the gradient

VXL((X7 y)’ )"7 M’ {7 ns ya a)
V) +a [Vg(x) (8() + 2), + VAG) (h(0) + £) + (xoy + L) o y] ,
V}’L((xv )’), )‘-a M» é" 77, ya C()
:oz[—(n—eTy—s—i—g)Jre—i—(y—e—i—g)+e+(xoy+§)ox],
where Vg(x) and Vh(x) denote the transposed Jacobian matrices of g and & at x,
respectively. Consequently, the multipliers in (S2) are chosen exactly such that

Ve LK, y0), 25, 7%, 2k, ik, 78 an) = Vi) + Ve Rk + VRGR) ik + yF o 5,
Vy LK, y6), 25, 75 ok gk, phs an) = —cfe + ik F yh ot
holds for all £k € N.

@ Springer



800 Journal of Optimization Theory and Applications (2021) 189:793-813

4 Convergence Analysis

The aim of this section is to prove global convergence of Algorithm 3.1 to CCOP-M-
stationary points under the fairly mild CCOP-quasinormality condition. To this end,
we begin with an auxiliary result, which states that the sequence {y} remains bounded
on any subsequence, where {x*} itself is bounded. In particular, if {x*} converges on
a subsequence, this then allows us to extract a limit point of the sequence {(x¥, y%)}.

Proposition 4.1 Ler {x*} C R" be a sequence generated by Algorithm 3.1. Assume
that {x*} is bounded on a subsequence. Then the auxiliary sequence {y*} is bounded
on the same subsequence.

Proof In order to avoid taking further subsequences, let us assume that the entire
sequence {x*} remains bounded. We then show that also the whole sequence (YK} is
bounded. Define, for each k € N,

BX := VyL((xh, y6), 2K, @k, oF 7k ph an) = —cfe 4 f R okl @)

By (3.1), we know that {B¥} — 0. We first show that the sequence {y*} is bounded
from above and then verify that it is also bounded from below.

{(y*} is bounded above We claim that there exists a ¢ € R such that y¥ < ce for
all k € N. Suppose, by contradiction, that there is an index j € {l,...,n} and a
subsequence {y?l} such that {yjfl} — +o00. Since oy > « > O forall k € N and ﬁ];’
is bounded by definition, we then obtain

{o 8 = 1)+ 77} — +oo. 4.2)

This implies r]l;l = ay, (yf’ - 1)+ ﬁl;.’ for all [ € N sufficiently large and, hence, by

(4.2), we have {nl;f } = +o0. Observe that, for each / € N sufficiently large, we have

ki k ki _k —ki\ _k kiN2 Kk -k _k -k _k
y ikt (Olk,leyjl n le)le — ag, (K2R g ke s
From (4.1), we then obtain for these [ € N that B?’ = ¢k 4 n];’ + yj]»(’xf’ >
—cki 4 77];.’ + 77]].(’ x?’ , which is equivalent to £¥ > 77];’ + )7]].(’ x;f’ - B;f’ . Since {Bf’ }—0

and {)7;(’ xf’ } is bounded, the right-hand side converges to +00. Consequently, we have

{¢h} — +o00. The definition of {¢¥'} therefore yields {ax, (n — e Y9 — s) + &t} —
+00. Since {Zy,} is a bounded sequence, we get {ay, (n — eT y¥ — 5)} — +o0. We
therefore have

n—ely" —s >0 VI e N sufficiently large. (4.3)

We now claim that
Jie{l,...,n}\{j}: {yfl} is unbounded from below. 4.4)
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Assume there exist d € R such that yf’ >dforalli € {1,...,n}\{j}andalll € N.
We then obtain

n
n—elyh —s=n— Y 3yl —s<n—m—1d -y -5 > —c0.
i=1ij

We therefore get n —e” y& —s < O forall/ € N sufficiently large, but this contradicts
(4.3), hence (4.4) holds. For this particular index i, we can construct a subsequence

{y {("} such that {yf”} — —o0. Since {ij;}¥ is bounded, we then have {ak,t (yf e

+7n i } — —o00. This implies 171].(" = (O forallt € N sufficiently large. We therefore
obtaln from (4.1) that

B/(] ki, k[, ki, —ki, )xk[,

k kK
= by = _fkl"*‘Villi = _fk]"*‘(“kuxi[’yih‘*‘y i

i
_k k
= M 4 o, ()2 4 x :

< {klt +y '

l

for all t € N large enough. Since {)7ikl’ xf "} is a bounded sequence and {cky — 400,

we get {Bf"} — —00, which leads to a contradiction. Thus, {y*} is bounded above.

{y¥} is bounded below We claim that there exists a d € R such that y* > de for all
k € N. Assume, by contradiction, that there is an index j € {l,...,n} such that
{y?l} — —o00 on a suitable subsequence. Then, we have yfl < 0and n" = 0 for
all I € N large enough and similar to the previous case, it therefore follows that

Bk’ < —chi4y _kl ! This can be rewritten as ;“kl < yk’ ];l

bounded and {B } — 0, the sequence {y x B " is bounded This implies, in
particular, that {;k’ } is bounded above, i.e.,

B Smce{y x’}ls

IreRVIeN: M <r, 4.5)
On the other hand, we already know y* < ce for all k € N. We therefore get
n—ely —s>n— (- 1)c—y§’ — 5 — +o00.

This implies
{otk, (n —eTyk — s) + Ekz] — 400

due to the boundedness of the sequence {Ek,} and ax > oy > 0 for all k € N. The
definition of £% then yields

e =y, (n —elyk — s) + {y = +o0,
which contradicts (4.5). Hence, {y*} is bounded below. m|
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As for all penalty-type methods, one has to distinguish two aspects in a corresponding
global convergence theory, namely the feasibility issue and an optimality statement.
Without further assumptions, feasibility of the limit point cannot be guaranteed (for
nonconvex constraints). However, there is a standard result in [13], which shows that
the limit point of our stationary sequence is at least a stationary point of the constraint
violation. To this end, we measure the infeasibility of a point (x, y) € R" x R" for
(2.2) by using the unshifted quadratic penalty term

mo,1(x, y) == m((x,y),0,0,0,0,0; I).

Clearly (x, y) is feasible for (2.2) if and only if 7 1 (x, §) = 0. This, in turn, implies
that (X, ) minimizes 7o 1 (x, y). In particular, we then ought to have Vg ; (x, y) = 0.

Theorem 4.2 Let (%, ) € R" xR" be alimit point of the sequence {(x*, y*)} generated
by Algorithm 3.1. Then Vo 1 (X, y) = 0.

We omit the proof here, since it is identical to [ 13, Theorem 6.3] and [31, Theorem 6.2].
Instead, we turn to an optimality result for Algorithm 3.1. Suppose that the sequence
{x*} generated by Algorithm 3.1 has a limit point £. Proposition 4.1 then suggests that
we can extract a limit point (£, ) of the sequence {(x*, y*)}. Under the additional
assumptions that X satisfies CCOP-quasinormality and (X, y) is feasible for (2.2), we
can show that (X, y) is a CCOP-M-stationary point.

Theorem 4.3 Let (%, §) € R" x R" be a limit point of {(x*, yX)} generated by Algo-
rithm 3.1 that is feasible for (2.2) and where X satisfies CCOP-quasinormality. Then
(X, 9) is a CCOP-M-stationary point.

Proof To simplify the notation, we assume, throughout this proof, that the entire
sequence {(x*, y¥)} converges to (%, 9). For each k € N, we define

AR = VL, y0), 7 B 2R R 7R )
= Vb + VerE 4+ VA pk 4y o yk.

Furthermore, let BX be given as in (4.1). By (3.1) and since {€;} | 0, we know that
{Ak} — 0 and {Bk} — 0. Observe that, by (5>), we have {Ak} C R’].. Furthermore,
by (S3), the sequence of penalty parameters {«} satisfies ax > o1 > O forall k € N.
Let us now distinguish two cases.

Case 1 {oy} is bounded. Then {ay} is eventually constant, say oy = ag forall k > K
with some sufficiently large K € N. Now, let us take a closer look at ($>). The
boundedness of {o;} immediately implies that the sequences {1} and {y* o y¥} are
bounded. By passing onto subsequences if necessary, we can assume w.l.o.g. that
these sequences converge, i.e. {uX} — f and {y*¥ o y*} — p.Foralli € I+ (%) the
feasibility of (X, y) implies y; = 0. Since, in this case, we have {yf‘} — 0, it follows
that

%= lim y*yF = lim apxf 5?4+ tim pAk =ag -0+ lim pFF =0 vie ().
k— 00 k— 00 k— o0 k—o00
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Next, observe that, for each i € {1, ..., m}, we have 0 < ké‘ < |orgi (xk) + )_»i.‘| for
all k € N. Thus, {Af} is bounded as well and has a convergent subsequence. Thus,

we can assume w.l.o.g. that {Af} — % on the whole sequence. Now, the boundedness
of {ax} and (S3) also imply {||Uk||} — 0. Leti ¢ Ig()?). Since, by definition, {Ak}

. FL
is bounded, {i} is bounded as well and therefore has a convergent subsequence.

Assume w.]l.0.g. that this sequence converges to some limit point a;. Then

0= klglgo IUF Il = | min{—g; (). a;}Il = min{—gi(£).a;} =0.
Since —g;(x) > 0, we get a; = 0. This implies
{g,«x") + *—} — G®) +a =g <0.
Thus, by (S2) we have
kf? = max {0, o gi (xk) + )_»f‘} =0 Vk € N sufficiently large. 4.6)

As its limit, we then also have )A»l- = 0. Letting k — o0, the definition of A¥ then
yields

0=Vf@E) +Vg®i+VhENA+ 7.

Altogether, it follows that (£, y) is a CCOP-M-stationary point.
Case 2 {oy} is unbounded. Then, we have {a;} — +00. Now define, foreach k € N,

= ykyk vie{l,... n).

We claim that the sequence {(AK, uk, 7%, %, n¥)} is bounded. By contradiction,
assume that {||(A%, 1k, 7%, % n%)|l} — oo, w.lo.g. on the whole sequence. The

(AE k7R R
([N D]
again w.l.o.g. on the whole sequence, convergent to a (nontrivial) limit, i.e.

(f\M)?Z" N BT
{H( 1k, )||] (h 7. 8.5) #0.

We show that this limit, together with the sequence {xk }, contradicts CCOP-
quasinormality in X: Since A% > 0 for all k, it follows that 2 > (. Now, take an index
i ¢ I,(%),ie. g (£) < 0. Since {1¥} is bounded, it follows that {ayg; (x*) + 25} —
—o0. This implies kf‘ = 0 for all k € N sufficiently large, hence we get

corresponding normalized sequence } is bounded and therefore,

- . Ak . .
; :klgrolo ] =0 Vig¢l(R). 4.7)
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Next take an index i € I+ (X). Since (x, y) is feasible, we then have y; = 0. The
boundedness of {i}*} therefore yields {ay (y¥ — 1) + 7¥} — —o0. Consequently, we
obtain

175»C =0 Vi € I.(x) Vk € N sufficiently large. 4.8)

Now, we claim that y; = 0 holds for such an index i. Suppose not. Then )7ik # 0 for
all k € N sufficiently large. Since 77ik = yl.k y{‘ , this implies y{‘ # 0 for all k € N large
enough. We then have

k

4.8) Vi
L T LGPy Lo gy LS y—‘kx," (4.9)
i

Rearranging and dividing (4.9) by || (Ak, uk, k. ok, nk) || then gives

BF + ¢k _ 78 AL 4o
T I | I T T ) I

Observe that the left-hand side of (4.10) converges. On the other hand, since

~k
Yi L -
{W”whﬁxhﬁwﬁ}ﬁ”m#o

and { yf} — 0, the right-hand side diverges. This contradiction shows that
7 =0 VielL(x). (4.11)

Now, we claim that ()1, L, ¥) % 0. Suppose not. Then, since (X, n,y, g:, F;) # 0, it
follows that (E, ﬁ) # 0. Consider an index i € I(§). Since {y¥} — §; and (7"} is

a bounded sequence, we have {oy vk —1) +qf } — —o0. Just like before, we can
then assume w.l.0.g. that

=0 Viely() VkeN (4.12)

which implies 7; = 0. Hence, we have
(5, i (i€ Ii(ﬁ))) # 0. (4.13)

Now leti € IL(9). Since y; # 0 and {yf} — ¥;, we can assume w.l.0.g. that yf #0
for all k € N. We then get, for each k € N, that

BF = —ck ok yhxl = ok gk 4 Dxk, (4.14)
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Rearranging and dividing (4.14) by || (A%, uk, 7%, ¢, n*) | yields

Bf +¢* _ n n 7t kL
Ly A e B (Y A | I [V AN S0l B
(4.15)

By assumption, y; = 0. Consequently, letting k — oo in (4.15) yields

- B 1 B
§=ni+0~xi-§=m. (4.16)
i

From (4.13) we then obtain ¢ # 0and 7; = ¢ #0foralli € I+(). Since ¥ > 0 for
all k € N, we have ¢ > 0 and, therefore, ¢ > 0. Hence, we can assume w.l.o.g. that
¢% > 0forall k € N. This implies ¢¥ = o (n —elyk — s) + ¢*. We then have

__ ¢k
0<¢= lim
O N TR R )]
_ Tk _ -k
gim oy s ¢

koo [|(RK, pk, K, gk k) |
i o (n —eTyk — s)

= lim ,
koo || (2K, b, 7R gk k)|

koo || (1K, wk, K, gk k) |

since {¢*} is bounded by definition. Consequently, we can assume w.l.0.g. that
T k
n—e y —s>0 VkeN. 4.17)

By assumption, (£, 9) is feasible and, hence, n — e’ § — s < 0. Thus, we obtain from
(4.17) that n — eTyk —8s>n— esz — s and, therefore,

e’y >elyk VkeN. (4.18)
Furthermore, since E > 0, by (4.16), we also have that #; > 0 for all i € IL(y).

This implies nf.‘ > 0 for all sufficiently large k € N. Consequently, we have nf.‘ =
ak (y¥ — 1) + ii* for all k € N large enough. We then obtain

0 <= lim ui
e [N D]
At B i
TR O )] R TR )]
1l )

k—oo ||(Wk, pk, 7k, gk k) |0
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since {ﬁf.‘ } is bounded by definition. Hence, we can assume w.l.0.g. that ylk > 1 for all
k € N. On the other hand, the feasibility of (X, y) implies y; < 1foralli € {1,...,n}.
Consequently, we obtain

$i < y¥ Vieli(d)VkeN. (4.19)

Together, this implies

dodi=epeey = > v+ D = DY i+ Do

iel+(9) iel+() ielo(d) i€l+(y) iel(y)

— ¥ t<0
iel(3)

for all k € N. By passing to a subsequence, we can therefore assume w.1.0.g. that there
exists a j € Ip(y) with yj? < 0 forall k € N. Since j € Ip(p), by (4.12), we have

nlj‘. = Oforall k € Nand, hence, B;f =—ck4 yj].‘x;? or, equivalently, Bf +ck = y]].‘xj?.

Since yj? < 0, we then have
- 2 - -
b = (onatoh + 78) 55 = eyt + 7 < 7
Consequently, we have Bf + {k < ?;?xf and, therefore,

By + ¢t yixh
< .
|k, PR gk k)| T (K, b, gk ek b |

Since {f}‘x’; } is bounded, letting k — oo then yields the contradiction 0 < E < 0.

Hence we have (&, i, ) # 0.
Dividing Ak by || (Ak, /Lk, 77k, ;k, nk) || and letting k — oo then yields

m )4 n
0= LiVa@® + Y uVhi®) + ) fie
i=1

i=1 i=1

where (A, 1, 7) # O and, in view of (4.7) and (4.11), A € R™, %; = 0 for all
i ¢ I,(x),and y; = O for all i € I4(%). This shows that X satisfies properties (a)—(c)
from Definition 2.4. We now verify that also the three conditions from part (d) hold.

For this purpose, leti € {1, ..., m} such that X,- > 0 holds. Then, we can assume
w.l.o.g. that kf > 0 for all k € N and, thus, )Lf? = apgi (x%) + )_\f. Consequently, we
have

— A
0= H = O TR w5 )]
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— lim aggi () ol ik
koo | (1K, b,y gk k) [ ko [ (RF b, R, ek k) |
= lim g ()

koo || (1K, b, 7k, ¢k k) |

by the boundedness of {)_»5.‘}. Thus, we have g; (x¥) > O forall k € N sufficiently large
and, therefore, also iigi (x*) > 0 for all these k € N.

Next consider an index i € {1, ..., p} such that i; # 0. The boundedness of {/15.‘}
then implies

i = lim i — lim aghi (x*)
l k=00 ”()\‘k”uk’ ?kv Ckv nk)” k—o00 |’()‘k’ﬂk,)7k,§k,r)k)||
ak
+ lim L
koo || (&K, uk, 7, ok nk) |
. axhi (x¥)
= lim

koo || (Wk, puk, 7k, gk k)|

Since ax > 0, this implies that 1; # 0 and hi (x*) have the same sign for all k € N
sufficiently large, i.e. faihi(x¥) > 0.

Finally, consider an index i € {1,...,n} such that y; # 0. The boundedness of
{7} yields

k\k
= = lim Yi Ji

koo || (1K, b, R gk k) | koo [ (K, ik, KL gk k) |
(i yi + 7y

= lim
koo [| (2K, wk, 7K, ¢k k) |
k (kN2 k&
= lim akxi~(yi ) + hm yi~yi
k=00 ” ()“k’ /'l“k’ yk’ Cka 77k)” k— 00 ” ()\,k, ﬂk, )/k, Ck, nk)”
. arxk(yh)?
= lim

koo ||(Wk, pk, 7k, gk k)|

Hence, y; # 0 and xf also have the same sign for all k € N large, i.e. ?ix{‘ > 0.

Altogether, this contradicts the assumed CCOP-quasinormality of x. Thus,
{(Ak, uk, gk, ok, nk)} is bounded and therefore has a convergent subsequence.
Assume w.l.0.g. that the whole sequence converges, i.e.,

A A

a(iv :&v yvgv 77) : {(Ak, /-’Lk9 J;kv Ck» Uk)} g (5‘7 ﬁ“’ );, 25 ﬁ)

Since {A*} € R™, we also have A € R”. Consider an index i ¢ I(X). Then, just like
for i,-, one can show that )A»,- = 0. Similarly, fori € I1(x), following the argument for
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i, one also gets y; = 0. Taking k — o0 in the definition of A¥ we then obtain
0=VfQ&E) +Vg®h+VaEi+7,

where A; = 0 forall i ¢ I4(%) and p; = O for all i € I4(%). Thus, we conclude that
(%, y) is CCOP-M-stationary. O

It is known from [6, Corollary 4.2] that accumulation points (X, y) of Algorithm 3.1,
where standard quasinormality holds, are KKT points and thus CCOP-S-stationary.
To compare this result with Theorem 4.3, first note that CCOP-quasinormality only
depends on X, whereas standard quasinormality for (2.2) depends on both (X, ). In
case {i | ¥; # 0} = Ip(X), standard quasinormality in (X, y) is equivalent to CCOP-
quasinormality in x, and CCOP-S- and CCOP-M-stationarity coincide. Thus, in this
situation, the statement from Theorem 4.3 can also be derived via [6, Corollary 4.2].
However, in case {i | y; # 0} C Ip(x), standard quasinormality is always violated in
(%, ¥) and thus [6, Corollary 4.2] cannot be applied. In the latter situation, in general, we
can only guarantee CCOP-M-stationarity of limits (X, y). But, using Proposition 2.3,
it is still possible to ensure CCOP-stationarity of a potentially modified point (x, Z).

Corollary 4.4 Let (%, 9) € R" x R" be a limit point of {(x*, y*)} generated by Algo-
rithm 3.1 that is feasible for (2.2) and where x satisfies CCOP-quasinormality. Then
there exists Z € R" such that (%, Z) is a CCOP-S-stationary point.

5 Numerical Results

In this section, we compare the performance of ALGENCAN with the Scholtes regular-
ization method from [15] as well as the Kanzow—Schwartz regularization method from
[17]. All experiments were conducted using Python together with the Numpy library.
We used ALGENCAN 2.4.0 compiled with MAS7 library [25] and called through its
Python interface with user-supplied gradients of the objective functions, sparse Jaco-
bian of the constraints, as well as sparse Hessian of the Lagrangian. As a subsolver
for the two regularization methods, we used the (for academic use) freely available
SQP solver WORHP version 1.14 [18] called through its Python interface. For the
Scholtes regularization method, WORHP was called with user-supplied sparse gra-
dients of the objective functions, sparse Jacobian of the constraints, as well as the
sparse Hessian of the Lagrangian. On the other hand, for the Kanzow—Schwartz reg-
ularization method, since the analytical Hessian does not exist as the corresponding
NCP-function is not twice differentiable, we called WORHP with user-supplied sparse
gradients of the objective functions and sparse Jacobian of the constraints only. The
Hessian of the Lagrangian was then approximated using the BFGS method. Through-
out the experiments, both ALGENCAN and WORHP were called using their respective
default settings.

We applied ALGENCAN directly to the relaxed reformulation of the test problems as
in (2.2), i.e. without a lower bound for the auxiliary variable y. In contrast, following
[15,17], for both regularization methods, we bounded y from below by 0. For each test
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problem, we started both regularization methods with an initial regularization param-
eter tp = 1.0 and decreased 7 in each iteration by a factor of 0.01. The regularization
methods were terminated, if either 7y < 1078 or |[x* o y¥ ”OO <1079,

5.1 Pilot Test

Let us begin by considering the following academic example

min x; 4+ 10x s.t. (x — %)2 + - <1, xfo <1
xeR?

which is taken from [17]. This problem has a local minimizer in (O, 1— %ﬁ) and

an isolated global minimizer in (% O). Following [17], we discretised the rectangle
[~1.3] x [~31.2] resulting in 441 starting points for the considered methods. For
each of these starting points, ALGENCAN converged towards the global minimizer
(% 0). The same behaviour was also observed for the Scholtes regularization method.
On the other hand, the Kanzow—Schwartz regularization method was slightly less
successful, converging in 437 cases towards the global minimizer. In the other 4 cases,
the method converged towards the local minimizer. This behaviour might be due to
the performance of the BFGS method used by WORHP in approximating the Hessian
of the Lagrangian. Indeed, running the Scholtes regularization method without user-
supplied Hessian of the Lagrangian, letting the Hessian be approximated by the BFGS
method instead, yielded in a convergence towards the global minimizer in only 394
cases. In the other 47 cases, the Scholtes regularization method only managed to find
the local minimizer.

5.2 Portfolio Optimization Problems
Following [17], we consider a classical portfolio optimization problem

min xTQx S.t. ,uTx > p, efx<1,0<x<u,
xeRn (5.1
Ixllg <'s,

where Q and  are the covariance matrix and the mean of 2 possible assets and e’ x < 1
is the budget constraint, see [12,20]. We generated the test problems using the data
from [24], considering s = 5, 10, 20 for each dimension n = 200, 300, 400, which
resulted in 270 test problems, see also [17]. Here, we considered six total approaches:

e ALGENCAN without a lower bound on y

e ALGENCAN with an additional lower bound y > 0

e Scholtes and Kanzow—Schwartz regularization for cardinality-constrained prob-
lems [15,17] with a regularization of both upper quadrants x; > 0, y; > 0 and
xi <0,y =0

e Scholtes and Kanzow—Schwartz regularization for MPCCs [28,35] with a regular-
ization of the upper right quadrant x; > 0, y; > 0 only.
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Fig. 1 Comparing the performance of ALGENCAN and the regularization methods for (5.1)

As discussed before, introducing a lower bound y > 0 in (2.2) is possible without
changing the theoretical properties of the reformulation. Similarly, due to the constraint
x > 01in (5.1), the feasible set of the reformulated problem actually has the classi-
cal MPCC structure, and thus only one regularization function in the first quadrant
suffices. This motivates the modifications of both ALGENCAN and the two regulariza-
tion methods described above, which should theoretically not have any effect on the
performance of the solution algorithms.

For each test problem, we used the initial values x° = 0 and y = e. As a per-
formance measure for the considered methods we compared the attained objective
function values and generated a performance profile as suggested in [21], where we
set the objective function value of a method for a problem to be oo, if the method
failed to find a feasible point of the problem within a tolerance of 107°.

As can be seen from Fig. 1, ALGENCAN worked very reliable with regards to
feasibility of the solutions. It often outperformed the regularization methods in terms
of objective function value of the solution, especially for larger values of s. Although
introducing the lower bound y > 0 does not have any theoretical effect on ALGENCAN,
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the numerical results suggest that it could bring slight improvements to ALGENCAN’s
performance.

6 Final Remarks

This paper shows that the safeguarded augmented Lagrangian method applied
directly and without problem-specific modifications to the continuous reformulation
of cardinality-constrained problems converges to suitable (M-, essentially even S-)
stationary points under a weak problem-tailored CQ called CCOP-quasinormality. On
the other hand, it is known that this safeguarded ALM generates so-called AKKT
sequences (AKKT = approximate KKT) which, under suitable constraint qualifica-
tions, lead to KKT points and, hence, to S-stationary points. In the context of cardinality
constraints, however, the AKKT concept is useless as an optimality criterion since any
feasible point is known to be an AKKT point, cf. [32].

On the other hand, there are some recent reports, which define a problem-tailored
AKKT-type condition for cardinality constrained problems, see [32,33] (the latter in
a more general context). Algorithmic applications of these AKKT-type conditions are
not discussed in these papers. We therefore plan to investigate this topic within our
future research. Note that a corresponding convergence theory based on AKKT-type
conditions for cardinality constrained problems will be different from our current
theory, based on CCOP-quasinormality, since it is already known from standard NLPs
that quasinormality and AKKT regularity conditions are two independent concepts,
cf. [4].
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