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Abstract
In this article, we propose a shape optimization algorithmwhich is able to handle large
deformations while maintaining a high level of mesh quality. Based on the method
of mappings, we introduce a nonlinear extension operator, which links a boundary
control to domain deformations, ensuring admissibility of resulting shapes. The major
focus is on comparisons between well-established approaches involving linear-elliptic
operators for the extension and the effect of additional nonlinear advection on the set
of reachable shapes. It is moreover discussed how the computational complexity of the
proposed algorithm can be reduced. The benefit of the nonlinearity in the extension
operator is substantiated by several numerical test cases of stationary, incompressible
Navier–Stokes flows in 2d and 3d.

Keywords Aerodynamic shape optimization · Method of mappings · Nonlinear
extensions

Mathematics Subject Classification 35Q93 · 49Q10 · 35R30 · 49K20 · 65K10

1 Introduction

In the field of optimization constrained by partial differential equations (PDEs), there
is a large class of problems where not only optimal controls are to be found but also an
optimal shape of the experimental domain. Here, the contour of the domain �, where
the PDE models the effects of interest, plays the role of the optimization variable.
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Possible variants are that the outer shape of � is to be determined, e.g., when �

represents a solid body, or interior interfaces, which separate spatially discontinuous
coefficients such as material properties. Shape optimization in general is nowadays an
active field of research with applications ranging from magnetostatics [8], interface
identification in transmission processes [12,22,27], fluid dynamics [2,9,25], acoustics
[31], image restoration and segmentation [14] and composite material identification
[23,28] to nano-optics [15].

In this article, we focus on shape optimization in fluid dynamics, which is also
one of the pioneering applications in this field [11,17,20]. In general, the optimization
problem can be formulated as

min
�∈Gadm

j(y,�)

s.t. E(y,�) = 0 (1)

where j is a shape functional depending on a state variable y and the shape of the
domain �. Moreover, y fulfills the PDE constraint E , which itself depends on �. A
typical example is an obstacle specimen �obs in a flow tunnel � as depicted in Fig. 1.
One of the main questions is an appropriate choice of the set of admissible shapes
Gadm, in which optimization takes place. For problems of this type, two prominent
approaches can be identified in the literature. On the one hand, the Hadamard–Zolésio
structure theorem is applied, which allows to trace back changes in the objective j
solely to variations of the boundary �obs (see for instance [3,30]). It is thus possible
to define directional shape derivatives via variations of �obs in a direction normal to
the boundary. Together with the choice of an appropriate shape and tangent space,
this allows to represent the sensitivity for j w.r.t. �obs as a gradient. This is then
interpreted as a deformation to �obs and a new discretization mesh for the resulting
domain can be computed. By this step, the mesh quality of the deformed domain can
be ensured as pursued in, e.g., [6,32]. Alternatively, the definition of shape and tangent
space includes the surrounding domain �, which immediately results in deformation
information for the entire mesh (e.g., [7,8,26]) and makes the additional call to a mesh
generator superfluous. Typical approaches consider interpreting the shape sensitivity
as a force term in linear elastic models described over �. The resulting displacement
field is then applied as amesh deformation. Especially in recent works (see for instance
[4,5,13]), linear elastic extension equations are considered and, in particular, a very
small or even zero first Lamé constant is favored.

Moreover, a descent method allows to control the mesh quality from one iteration to
the next, i.e., for one deformation. Yet, in the limit of the sequence of design updates,
quality is typically lost. This effect is described in, e.g.,[23], where variable interfaces
must be prevented from overlapping.

In this article, we follow a different approach, which gives a higher level of control
on the quality of the mesh around the optimal shape. Based on themethod of mappings
(cf. to [21]), the question for admissible shapes Gadm := {F(�) : F ∈ Fadm} in (1)
is translated to the choice of appropriate function spaces, in which a deformation
from reference to the optimal configuration is to be found. Here, Fadm denotes a
set of admissible mappings. Starting from a reference configuration �, it is then
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optimized over the transformations F(�) yet without explicitly performing mesh
deformations. For this purpose, the PDE constraint is transformed to the virtual domain
as E(y, F(�)). The optimization problem then turns into a classical optimal control
in the form of

min
F∈Fadm

j(y, F(�))

s.t. E(y, F(�)) = 0. (2)

This approach is a recent field of studies and applied in, e.g., [2,19,29]. Also based on
this approach is the investigation in [13], which is the starting point for the consider-
ation in the present article. Here, the problem in (2) is formulated as

min
c∈L2(�obs)

j(y, F(�)) + α

2
‖c‖2L2(�obs)

s.t. E(y, F(�)) = 0

F = id+w in �

det(DF) ≥ ηdet in �

w = S(c,�) (3)

in terms of a regularization parameter α > 0 and a bound ηdet > 0 on the determinant
of the derivative of the mapping function F . The focus of the investigations therein
is on the extension operator S. It is suggested to choose S to be the composition of
mappings c �→ b �→ w. Here, c �→ b is realized via the solution operator of a Laplace–
Beltrami equation on �obs. The mapping to the actual displacement, i.e., b �→ w, is
then chosen to be the solution operator of a vector-valued elliptic equation, such as
a linear elastic model. It is proven that—under certain circumstances—the domain
mapping F is locally a C1(�̄,Rd)-diffeomorphism provided that det(DF) ≥ ηdet is
fulfilled.

Alternatively, one could tackle problem (1) with an iterative descent algorithm. This
would mean to find a suitable deformation for � leading to a descent in the objective
j . Assume a resulting sequence of domains

� =: �1 F1→ �2 F2→ �3 · · · Fk→ �k+1 (4)

Together with the extension operator S and the condition det DFi ≥ ηdet, for all i ,
it would be possible to guarantee the quality of deformations in each step. Yet, the
composition of deformations F̃k := Fk◦· · ·◦F1 would potentially violate the condition
det DF̃k ≥ ηdet and thus lead to bad mesh quality in �k+1.

The main focus of our present article is a numerical study of different choices of
the extension operator S. It turns out that optimization settings with expected larger
deformations are a limiting factor for linear operators S. This limitation is due to the
fact that the structure of a shape space, that is as large as possible, can hardly be linear
since this would require to explain what scalar multiples or sums of shapes are. Yet,
with the method of mappings and a linear extension operator S we approximate the
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Fig. 1 Sketch of the holdall domain G = � ∪ �obs

set of admissible shapes locally by a linear function space of admissible deformations
to a reference configuration.

We thus suggest a nonlinear extensionmapping and present numerical studies on the
applicability. It should be mentioned that the theory developed so far is not applicable
in this case. It only applies to the linear choice of S, which is a special case of the
more general consideration in this article.

Themotivation for the choice of S in this present work is the observation that, on the
one hand, via the condition det(DF) ≥ ηdet the local injectivity of F can be ensured.
But on the other hand, this limits significantly the subset of admissible transformations
Fadm and thus affects optimal shapes as outlined in the last section of this article. It
is thus the task to find an operator S which prevents det(DF) ≥ ηdet from becoming
active even for large deformations. We also discuss cases where the reference domain
is not of circular shape and illustrate the performance of the extension and influence
on the mesh quality in a deformed domain. The intention of this experiment is to
demonstrate that the set of shapes Gadm, which is constructed via the mappings from
Fadm, can be extended significantly and its dependence on the choice of a reference
domain � is reduced. In particular, the studies illuminate whether large deformations
in the optimization are possible for general reference configurations, which do not
fulfill certain properties like convexity or an injective normal vector field.

This article is structured as follows: In Sect. 2 the shape optimization problem is
set up and formulated in terms of the method of mappings. Section 3 is devoted to the
nonlinear extension model and, furthermore, the derivation of necessary optimality
conditions and the presentation of an optimization algorithm. In Sect. 4, numerical
studies are conducted and discussed. The article closes in Sect. 5 with a conclusion of
the results.
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2 Optimization Problem

We carry out our considerations based on a classical optimization problem in the
field of fluid dynamics described in [20]. In a d-dimensional, bounded domain �

with Lipschitz boundary, as sketched in Fig. 1, we consider the minimization of the
following energy dissipation functional

min
�obs

j(v, �obs) = ν

2

∫
�

d∑
i, j=1

(
∂vi

∂x j

)2

dx (5)

where the contour �obs of the obstacle �obs is assumed to be variable. Here �obs is
non-empty, connected set and �obs is a smooth and compact Riemannian manifold
without a boundary. The spatial dimension is chosen as d ∈ {2, 3}. In (5), the velocity
field denoted by v is given in terms of the stationary, incompressible Navier–Stokes
equations

− ν�v + (v · ∇)v + ∇ p = 0 in �

div v = 0 in �

v = v∞ on �in

v = 0 on �obs ∪ �wall

pn − ν
∂v

∂n
= 0 on �out. (6)

Together with �obs the fluid domain � is allowed to change, but the outer boundaries,
i.e., �in, �out and �wall, of the experiment are fixed. In (6), p denotes the pressure, v∞
describes the velocity profile at the inflow boundary, n is the outer normal vector and
ν the viscosity. Here, v∞ ∈ H1(�) is assumed to satisfy the compatibility condition

∫

�in

v∞ · n = 0. (7)

Furthermore, we assume that �in and �obs have positive Lebesgue measure, �obs ∩
(�in ∪ �wall ∪ �out) = ∅ holds during the entire optimization.

For the shape optimization of a specimen�obs with respect to functionals of type (5),
it is essential to exclude trivial solutions. Here, shrinking�obs to a point or translations
toward �wall represents undesired descent directions. Thus, the optimization problem
has to be additionally constrained to geometrical conditions. Our benchmark problem
is to find optimal shapes of a specimen with a given volume, which remains located
in the center of the flow tunnel. This is achieved by fixing barycenter and volume of
the obstacle �obs with the constraints

vol(�obs) =
∫

�obs

1 dx = const, (8)
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bc(�obs) = 1

vol(�obs)

∫
�obs

x dx = const. (9)

Since the computation for the barycenter involves the volume of �obs itself, these
conditions are coupled in principle. Yet, if (8) is fulfilled, the term vol(�obs)

−1 in (9)
is constant and can thus be factored out. By further assuming that the barycenter of
the specimen �obs is 0 ∈ R

d , it is thus sufficient to require
∫
�obs

x dx = 0.

In the following, for a vector-valued function f : Rd → R
d , we denote by Df the

Jacobian matrix with the ordering Df =
(

∂ fi
∂x j

)
i, j=1,...,d

∈ R
d×d . Let further

V := {v ∈ H1(�,Rd) : div(v) = 0, v|�in = v∞, v|�wall∪�obs = 0 a.e.},
V0 := {v ∈ H1(�,Rd) : div(v) = 0, v|�in∪�wall∪�obs = 0 a.e.},
Q := {p ∈ L2(�) :

∫
�

p dx = 0} (10)

and consider the weak formulation of the PDE constraint (6):
Find (v, p) ∈ V × Q such that

ν

∫
�

Dv : Dδv + (Dv v) · δv − p Tr(Dδv) dx = 0,

−
∫

�

δp Tr (Dv) dx = 0 (11)

for all test functions (δv, δp) ∈ V0 × Q. Note that within this article we are using the
symbol δ· for test functions associated with a given variable.

In order to reformulate the optimization problem (5)–(9) as an optimal control
problem in appropriate function spaces, we consider from now on the domain � as
a fixed reference configuration. Let F = id+w with w ∈ W 1,∞(�,Rd) such that
F results in an admissible deformation for �. For the method of mappings, we then
consider the state (11), objective (5) and the corresponding state variable v in terms
of F(�).

By means of standard computations, we obtain the weak formulation of the opti-
mization problem pulled back to the reference domain � by

min
F∈Fadm

j(v, F(�)) = ν

2

∫
�

(
Dv(DF)−1

)
:
(
Dv(DF)−1

)
det(DF) dx (12)

s.t.
∫

�

[
ν

(
Dv(DF)−1

)
:
(
Dδv(DF)−1

)
+ (Dv(DF)−1v) · δv

− p Tr
(
Dδv(DF)−1

)]
det(DF) dx = 0, (13)

−
∫

�

δp Tr(Dv(DF)−1) det(DF) dx = 0, (14)
∫

�obs

det(DF) − 1 dx = 0, (15)
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∫
�obs

F det(DF) dx = 0 (16)

for all test functions (δv, δp) ∈ V ×Q. The optimization problem (12)–(16) still leaves
open the question for the set of admissible mappings Fadm. We thus follow the same
approach as in [13] and translate it into the form of (3). By reformulating the constraint
det(DF) ≥ ηdet as a penalty term, we obtain the final optimal control problem

min
c∈L2(�obs)

J (v, c) := j(v, F) + α

2

∫
�obs

c2 ds + β

2

∫
�

((ηdet − det(DF))+)2 dx

s.t. (13) to (16)

F = id+w

w = S(c), (17)

where (·)+ denotes the positive-part function. The missing piece is nowmapping from
a scalar-valued boundary control c to admissible deformation fields w, which is the
subject of the next section.

3 Nonlinear Extension Operators

Consider the optimal control problem (17). The core of the reformulated shape opti-
mization is the choice of the extension operator S, which links a scalar-valued boundary
control c living on �obs to a vector-valued displacement field w in �. A domain trans-
formation mapping F = id+w is then obtained by the so-called perturbation of
identity. In particular, w has to fulfill certain regularity properties as investigated in
[13]. It yet turns out in Sect. 4 that for large deformations, i.e., when the reference
domain and the optimal configuration differ significantly, linear operators S do not
lead to satisfying results. Note that the choice of S significantly influences the set of
reachable shapes Gadm determined via Fadm. It is thus our intention to find S which
allows for large deformations without significantly restricting Gadm. Simultaneously,
the corresponding mesh deformations F(�) should exhibit high element qualities for
further usage in numerical simulations.

The focus of the present article is thus to propose and study nonlinear extensions
S given in terms of the solution operator of the coupled PDEs

b − ��obsb = cn on �obs

− div(∇w + ∇w) + ηext(w · ∇)w = 0 in �

(∇w + ∇w) · n = b on �obs

w = 0 on �wall ∪ �in ∪ �out (18)

In the equation above, ��obs denotes the vector-valued Laplace–Beltrami operator.
Note that by solving (18) the scalar-valued control c ∈ L2(�obs) is mapped to a vector-
valued quantity b ∈ H2(�obs). The benefit of this particular extension operator, and
especially the nonlinearity ηext(w · ∇)w, which is in the focus of this article, becomes
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particularly visible for experiments with large deformations as pointed out in Sect. 4.2.
A popular choice, as discussed in the introduction, is to define the extension only via
the linear term div(∇w + ∇w). Yet, this restricts the set Fadm significantly. This
is visible especially for problems in fluid dynamics, as pointed out in Sect. 4, where
the reference shape is of spherical type, but the optimum to be found is stretched and
approximates non-smooth tip and back.

Problems arise due to strong compressions of finite elements in the discretization
orthogonal to the main deformation direction. This observation motivates to add the
nonlinear advection term ηext(w · ∇)w, which—geometrically speaking—promotes
displacements w where nodes move along large gradients. This results in a homoge-
neous distribution of finite elements even around approximately non-smooth regions
of �obs.

Firstly, we derive the weak form of Laplace–Beltrami equation, i.e., the first equa-
tion of (18):

Find b ∈ H2(�obs) :
∫

�obs

b · δb + D�obsb : D�obsδb ds =
∫

�obs

cn · δb ds (19)

for all δb ∈ H2(�obs).
For the second equation in (18), which specifies the mapping from vector-valued

function b to the domain deformation, we follow the argumentation in [13] and obtain
the weak formulation in the space

W :=
{
w ∈ H

7
2 (�,Rd) : w|�in∪�wall∪�out = 0 a.e.

}

as follows:
Find w ∈ W such that

∫
�

(Dw + Dw) : Dδw + ηext(Dw w) · δw dx =
∫

�obs

bδw ds (20)

for all δw ∈ W and in terms of ηext ≥ 0.
Here, D�obs denotes the derivative tangential to �obs. In (19) the scalar-valued

boundary control c is multiplied with the outer normal vector field n to � at �obs.
Then, a vector-valued Laplace–Beltrami equation is solved over �obs. This is coupled
with nonlinear (20) where the influence of the advection term is controlled via ηext.
Note that the linear extension operators investigated in [13] arise as a special case of
system (19) and (20).

Now that the extension operator is chosen, we can combine the optimization prob-
lem (17) with the extension operator (19) and (20) to obtain the Lagrangian

L(w, v, p, b, c, ψw,ψv, ψp, ψb, ψvol, ψbc) = ν

2

∫
�

(
Dv(DF)−1

)
:

(
Dv(DF)−1

)
det(DF) dx + α

2

∫
�obs

c2 ds
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+β

2

∫
�

((ηdet − det(DF))+)2 dx −
∫

�

[
ν

(
Dv(DF)−1

)
:

(
Dψv(DF)−1

)
+ (Dv(DF)−1v) · ψv − p Tr

(
Dψv(DF)−1

)]
det(DF) dx

+
∫

�

ψp Tr(Dv(DF)−1) det(DF) dx

−
∫

�

(Dw + Dw) : Dψw + ηext(Dw w) · ψw dx +
∫

�obs

b · ψw ds

−
∫

�obs

b · ψb + D�obsb : D�obsψb ds +
∫

�obs

cn · ψb ds

−ψbc ·
∫

�

(x + w) det(DF) dx − ψvol

∫
�

det(DF) − 1 dx, (21)

where ψ· denotes for each variable the associated multiplier. Note that there is no
variable corresponding to the multipliers ψvol ∈ R and ψbc ∈ R

d . These are the finite
dimensional multipliers for the barycenter and volume condition (8) and (9).

Lemma 3.1 The first-order optimality system associated with the LagrangianL in (21)
is given by the derivatives Lw,Lv,Lp,Lb,Lψw,Lψv ,Lψp ,Lψb ,Lc,Lψvol ,Lψbc as

Lwδw = −ν

∫
�

(Dv(DF)−1) : (Dv(DF)−1Dδw(DF)−1) det(DF) dx

+ν

2

∫
�

(Dv(DF)−1) : (Dv(DF)−1)Tr((DF)−1Dδw) det(DF) dx

−β

∫
�

(ηdet − det(DF))+ Tr((DF)−1Dδw) det(DF) dx

+ν

∫
�

(Dv(DF)−1Dδw(DF)−1) : (Dψv(DF)−1) det(DF) dx

+ν

∫
�

(Dv(DF)−1) : (Dψv(DF)−1Dδw(DF)−1) det(DF) dx

−ν

∫
�

(Dv(DF)−1) : (Dψv(DF)−1)Tr((DF)−1Dδw) det(DF) dx

+
∫

�

(Dv(DF)−1Dδw(DF)−1 v) · ψv det(DF) dx

−
∫

�

(Dv(DF)−1 v) · ψv Tr((DF)−1Dδw) det(DF) dx

−
∫

�

p Tr(Dψv(DF)−1Dδw(DF)−1) det(DF) dx

+
∫

�

p Tr(Dψv(DF)−1)Tr((DF)−1Dδw) det(DF) dx

+
∫

�

ψp Tr(Dv(DF)−1Dδw(DF)−1) det(DF) dx

−
∫

�

ψp Tr(Dv(DF)−1)Tr((DF)−1Dδw) det(DF) dx
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−
∫

�

(Dδw + Dδw
) : Dψw + ηext((Dδw w) + (Dw δw)) · ψw dx

+β

∫
�

(ηdet − det(DF))+ Tr((DF)−1Dδw) det(DF) dx

−ψbc ·
∫

�

δw det(DF) + (x + w)Tr((DF)−1Dδw) det(DF) dx

−ψvol

∫
�

Tr((DF)−1Dδw) det(DF) dx = 0, (22)

Lψwδψw = −
∫

�

(Dw + Dw) : Dδψw + ηext(Dw w) · δψw dx +
∫

�obs

b · δψw ds = 0,

(23)

Lvδv = ν

∫
�

(
Dδv(DF)−1) : (

Dv(DF)−1) det(DF) dx

−ν

∫
�

(
Dδv(DF)−1) : (

Dψv(DF)−1) det(DF) dx

−
∫

�

(Dδv(DF)−1v) · ψv + (Dv(DF)−1δv) · ψv det(DF) dx

−
∫

�

ψp Tr(Dδv(DF)−1) det(DF) dx = 0, (24)

Lψv δψv = −ν

∫
�

(
Dv(DF)−1) : (

Dδψv (DF)−1) det(DF) dx

−
∫

�

(Dv(DF)−1v) · δψv det(DF) dx

+
∫

�

p Tr(Dδψv (DF)−1) det(DF) dx = 0, (25)

Lpδp = −
∫

�

δp Tr
(
Dψv(DF)−1) det(DF) dx = 0, (26)

Lψpδψp =
∫

�

δψp Tr
(
Dv(DF)−1) det(DF) dx = 0, (27)

Lbδb = −
∫

�obs

δb · ψb + D�obsδb : D�obsψb ds +
∫

�obs

δb · ψw ds = 0, (28)

Lψbδψb = −
∫

�obs

b · δψb + D�obsb : D�obsδψb ds +
∫

�obs

cn · δψb ds = 0, (29)

Lcδc = α

∫
�obs

cδc ds +
∫

�obs

δcn · b ds = 0, (30)

Lψvolδψvol = −δψvol

∫
�

det(DF) − 1 dx = 0, (31)

Lψbcδψbc = −δψbc ·
∫

�

(x + w) det(DF) dx = 0, (32)

for all test functions δw ∈ W, δv ∈ V , δp ∈ Q, δb ∈ H2(�obs), δψw ∈ W, δψv ∈ V0,
δψp ∈ Q, δψb ∈ H2(�obs), δc ∈ L2(�obs), δψvol ∈ R, and δψbc ∈ R

d .
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Proof The derivatives of L are obtained by utilizing standard rules of differentiation
and taking into account the definition of a domain transformationmapping F = id+w.
Note that we particularly use the following identities

∂ det(DF)

∂w
δw = Tr((DF)−1δw) det(DF) and

∂(DF)−1

∂w
δw = −(DF)−1Dδw(DF)−1.

For the derivative of the penalty term, we utilize that

∂

∂w
((ηdet − det(DF))+)2(w) δw = 2(ηdet − det(DF))+ χ{ηdet>det(DF)}

∂

∂w
det(DF)(w)δw

= 2(ηdet − det(DF))+ Tr((DF)−1δw) det(DF).

��
Recall that the condition det(DF) ≥ ηdet in the problem formulated in (3) is

realized via the penalty term β
2

∫
�
((ηdet − det(DF))+)2 dx . The corresponding term

in (22) of the optimality system in (3.1) is non-differentiable due to the positive-
part function (·)+. Following the discussions in [13, sec. 3.5], the mapping w �→
−β

∫
�
(ηdet − det(DF))+ Tr((DF)−1Dδw) det(DF) dx is semismooth and one can

compute an element from the generalized derivative in direction δ′ as

(δw, δ′) �→ β

∫
�

χ{ηdet>det(DF)} Tr((DF)−1Dδ′)Tr((DF)−1Dδ′) det(DF)2

+(ηdet − det(DF))+ Tr((DF)−1Dδ′(DF)−1Dδw) det(DF)

−(ηdet − det(DF))+ Tr((DF)−1Dδw)Tr((DF)−1Dδ′) det(DF) dx .

In the following, we briefly present a solution algorithm for the optimality sys-
tem (22)–(32). For this purpose, we pursue a similar approach as in [13]. The
core of this method is to solve the nonlinear shape optimization problem (17) for
a decreasing sequence of regularization parameters αk , starting from α0 = αinit
until the desired level αtarget is reached. Because each subsequent optimization prob-
lem k is nonlinear, this approach benefits from utilizing the known values yk :=
(w, v, p, b, c, ψw,ψv, ψp, ψb, ψvol, ψbc)k as initial guess in the (k + 1)-th iteration.
Algorithm 1 summarizes this procedure. Since parts of the optimality system are non-
differentiable, we apply a semismooth Newton’s method.

In Sect. 4, we show how to choose the parameter αinit, αdec and αtarget and illustrate
their influence.

4 Numerical Results

This section is devoted to different numerical case studies of stationary, incompressible
Navier–Stokes shape optimization problems. The purpose is to illuminate features
of the nonlinear extension operator S proposed in Sect. 3. In particular, the benefit
for optimization benchmark problems, which involve large deformations from the
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Algorithm 1 Direct optimization algorithm
Require: 0 < αtarget ≤ αinit, 0 < αdec < 1
1: Set y0 to zero
2: k ← 0
3: αk ← αinit
4: while αk ≥ αtarget do
5: Solve (22) to (32) for yk+1 with semismooth Newton’s method, yk as initial guess

and regularization parameter αk
6: αk+1 ← αdecαk
7: k ← k + 1
8: end while

reference configuration to optimal shapes, is numerically investigated. It is moreover
discussed how the local injectivity can be extended to globally injective transformation
mappings by adding an artificial volume to the aerodynamic specimen. Furthermore,
algorithmic solvability of the optimality system (22)–(32) is addressed in the end of
this section.

The experimental settings for the tests are chosen to be comparable in 2d and 3d,
respectively. The holdall domain G ∈ {G2d,G3d}, which reflects the flow tunnel in
the experiment, is chosen as

G2d := [−7, 7] × [−3, 3] and G3d := {x ∈ R
3 : −7 ≤ x1 ≤ 7,

√
x22 + x23 ≤ 3}.

Let ρ denote the diameter of the flow tunnel G. We then fix the velocity at the inflow

boundary �in by v∞ =
(
cos( 2π‖x‖2

ρ
), 0, . . . , 0

) ∈ R
d . In all experiments where the

specimen �obs is a circle or sphere, the radius is given by r = 0.5 and bc(�obs) =
0 ∈ R

d .
The discretization of all appearing PDEs is carried out with standard, piecewise

linear P1 finite elements. In order to guarantee stability, we follow the pressure sta-
bilized Petrov Galerkin approach (see for instance [16]), which utilizes an additional
term for the pressure p and its adjoint variable ψp. The system under consideration is
thus enriched by the two equations

gp := μ
∑
T∈Th

h2T

∫
T

(
(DF)−1∇ p

)
·
(
(DF)−1∇δp

)
det(DF) dx

gψp := μ
∑
T∈Th

h2T

∫
T

(
(DF)−1∇ψp

)
·
(
(DF)−1∇δψp

)
det(DF) dx

where Th denotes the set of all finite elements and hT measures the longest edge of
element T . For each of the subsequent experiments, μ = 0.1 is chosen.

All computations related to the finite element method are carried out using the
GETFEM++ library [24]. We utilize a parallel version of the library, which relies
on PARMETIS [18] for mesh partitioning and load balancing. All linear systems are
handled via the parallel factorization solver MUMPS [1]. Both 2d and 3d discretiza-
tion meshes are produced with the GMSH toolbox [10] and the Delaunay algorithms
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Fig. 2 Magnitude of velocity v computed on reference domain � (left) and deformed F(�) (right)

therein. If not stated otherwise, all 2d experiments follow the strategy of Algorithm 1
with the choice αinit = 1e − 4, αdec = 1e − 1 and αtarget = 1e − 10.

4.1 Non-convex Shapes with Large Deformations

Our first numerical study demonstrates the nonlinear extension equation for large
deformations of a non-convex shape. The reference domain � is chosen such that the
specimen is described by a B-spline curve �obs given in terms of 6 control nodes. The
situation is depicted in Figs. 2 and 3.

The relevance of this test case is to investigate the performance of the proposed
approach for reference domains where the normal vector field n does not homoge-
neously point in all directions as for a circular shape. The influence of the normal vector
is significant since it initially links the scalar-valued control c to a vector-valued quan-
tity as can be seen in (18). Section 4.3 is devoted to an experiment where several
directions are underrepresented in the discretization of the normal vector n due to the
shape of �obs.

In Fig. 2, the magnitude of velocity ‖v‖2, computed in the undeformed state �,
i.e., when c = 0, is depicted. The right-hand side shows the velocity according to
deformation F = id+w in terms of the optimal control c after solving the optimality
system given by (22)–(32). Furthermore, the optimal mapping F can be seen in Fig. 3
in the displacement and deformation of discretization elements. The relocation of
triangles shows the effect of the nonlinear advection in the extension operator. A
deeper look on this effect and the resulting mesh quality is provided in Sect. 4.5.

In this experiment, the viscosity of the fluid is chosen as ν = 0.01. The holdall
domain G is as described above. It consists of 382 surface segments on �obs and
10196 triangles in �. Barycenter and volume of �obs in the reference configuration
are given by bc(�obs) = (0.0307784,−0.035759) and vol(�obs) = 0.809041.
Thus, an optimal shape also undergoes a small translation since bc(F(�obs)) = 0 is
required.

The essential settings in terms of shape optimization are the parameter ηdet and ηext.
Here, we choose ηext = 3.0, which leads to the condition det(DF) ≥ ηdet with ηdet =
5e − 2 being inactive. We can explain the homogeneously and smoothly deformed
mesh due to this fact. In contrast, Sect. 4.2 shows examples where det(DF) ≥ ηdet is
active close to the tip of the optimal shape and how the displacement w and thereby
the mesh quality in F(�) is affected.
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Fig. 3 Mesh quality preserving shape optimization experiment with large deformation from reference to
optimal configuration

4.2 Influence of Factors�det and�ext

In this section, we visualize the influence of the choice of ηdet and ηext on the
optimization. This illustrates how the set of admissible shapes Fadm is determined
thereby. The underlying experiment is a flow inG over a circular specimen as described
at the beginning of Sect. 4. The viscosity is again chosen to be ν = 0.01. The domain
is discretized with 244 segments on �obs and 12,640 triangles in �.

First, we observe the influence of ηdet on the set of admissible shapesFadm. Figure 4
visualizes how the condition det(DF) ≥ ηdet acts on the optimal shape F(�obs). Here,
we choose ηdet ∈ {0.5, 0.25, 0.2, 0.1} beginning with the largest and then decreasing
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Fig. 4 Optimal shapes F(�obs) in terms of different ηdet ∈ {0.5, 0.25, 0.2, 0.1}. The value ηdet decreases
from top to bottom

Table 1 Optimal objective
function values depending on
ηdet

ηdet 0.5 0.25 0.2 0.1

J 0.202894 0.189423 0.187834 0.186138

The results correspond to Fig. 4

values. This condition can be interpreted such that the allowed, local change of volume
in � is relaxed from top to bottom in Fig. 4. In this experiment, it turns out that in the
last computation with ηdet = 0.1 the condition is inactive. Here, ηext = 3.0 is fixed in
all computations.With decreasing ηdet, we observe a decrease in the objective function
J (cf. (17)) as shown in Table 1. For comparison, J evaluated for the reference shape
with c = 0, and thus F = id, is 0.285233.

The next experiment follows the same setup with the only difference that ηdet =
5e − 2 is now fixed and ηext ∈ {0.0, 0.25, 0.5, 1.0, 2.0, 3.0} takes increasing values.
Themesh deformations, resulting from the optimal solution F = id+w, are visualized
in Fig. 5. Each of the subfigures shows a clip of size 0.1 × 0.08 around the tip of the
optimal shape. Similarly to the previous experiment, but now with increasing factor
ηext, we observe a decrease in the objective function J as shown in Table 2.

Besides the significantly improved mesh qualities and more adequate set Fadm, we
also observe that the Newton solver benefits from the appropriate choice of ηdet and
ηext. As soon as the condition det(DF) ≥ ηdet becomes active, the optimality system
(22)–(32) is not differentiable any further and the solver switches to semismooth
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Fig. 5 Experiments with ηdet = 0.05 constant and variable ηext factor

Table 2 Optimal objective function values depending on ηext

ηext 0.0 0.25 0.5 1.0 2.0 3.0

J 0.204225 0.201071 0.197188 0.192438 0.188153 0.186632

The results correspond to the experiment shown in Fig. 5
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Fig. 6 Close-up visualization of the discretization around the tip of the ellipse experiment

Fig. 7 Flow over ellipsoidal reference shape and optimal solution with visualization of auxiliary grid in
�obs. Color denotes norm of velocity field ‖v‖2

Newton’s method. This effect is already documented in [13] for the case of Stokes
flows and linear extension operator S.
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4.3 Extending the Local-Only Injectivity

This section focuses on an effect that is likely to appear for non-spherical reference
domains. In particular, for the aerodynamic experiments considered in this article it
might happen that the upper surface of the obstacle overlaps the lower one. Especially
for large deformations from reference to optimal shape and for shapes that are stretched
parallel to the flow axis, we encounter effects as depicted in Fig. 6a for the experiment
shown in Fig. 7. In other words, � �→ F(�) is not globally injective in this situation.
This is due to the fact that the condition det(DF) ensures injectivity of F only locally
but not globally.

In the following, we propose a modification of the extension operator S in order
to extend the injectivity. Recall that in the setting followed up to here the obstacle
domain �obs is treated as void and there is no discretization within. We now consider
the operator S on the entire holdall domain G = � ∪ �obs in contrast to the state
equation that remains in �. Moreover, the condition det(DF) ≥ ηdet > 0 is now
required on G. Thus, the displacement field is defined by w ∈ H1

0 (G,Rd). Moreover,
we reformulate the weak formulation of the extension operator S given in (20) to

∫
G
(Dw + Dw) : Dδw + ηext(Dw w) · δw dx =

∫
�obs

bδw ds (33)

for all δw ∈ H1
0 (G,Rd) and appropriate ηext ≥ 0. Simultaneously, the penalty term,

which enforces the local injectivity, in (21) changes to

β

2

∫
G
((ηdet − det(DF))+)2 dx . (34)

For this experiment, we choose ν = 0.01 as in the previous sections. The holdall G
has the same outer dimension, and the specimen�obs is an ellipse with semimajor-axis
r1 = 2.7, semiminor-axis r2 = 0.2 and barycenter bc(�obs) = (0, 0). Its surface is
subdivided in 884 segments. Further, G is discretized by 36,360 triangles, 29,930 in
� and 6430 in �obs.

Figure 6 visualizes the effect of the mapping F on the discretization grid. In Fig. 6a,
the optimal solution for α = 1e − 2 is shown. Note that in this particular case we stop
the optimization for a larger value, since this already leads to singularities. Figure 6
depicts det(DF), which is again bound away from zero by ηdet = 5e − 2. It can be
seen that, although this condition is inactive, the non-injective mapping cannot be
prevented.

The same experiment is then conducted with the changes proposed in the beginning
of this section, which leads to the values of det(DF) shown in Fig. 6c. Now �obs is
discretized and S also acts on the interior of the specimen. Here, the optimization is
performed with the setting αinit = 1e − 4, αdec = 5e − 1 and αtarget = 1e − 10. The
resulting optimal solution is visualized in Fig. 7 where Fig. 7a shows the reference
domain and the velocity field computed for this configuration. Figure 7b depicts the
domain F(G) and the velocity field computed on F(�). The result illustrates that by
discretizing the obstacle domain �obs we have prevented elements from overlapping.
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Note that the relatively fine grid is chosen at the front and the back of the shape due
to the large curvature of �obs in these regions. This experiment turns out to be more
challenging than, e.g., a spherical reference shape since on coarse grids the normal
vector field in these areas tends to be underresolved. From a computational point
of view, it is attractive to have a coarse grid in �obs, as chosen in the center of the
specimen, to reduce cost for the solution of the operator S.

4.4 Three-Dimensional Results

In this section, we perform a three-dimensional optimization experiment as an illus-
tration of the proposed methodology. As already observed in [13] for the Stokes
experiment, more care has to be taken for the decrease strategy of α in Algorithm 1.
Especially the semismooth Newton solver shows to be challenging w.r.t. to conver-
gence when the condition det(DF) ≥ ηdet becomes active.

The experiment shown in Fig. 8 is within the framework described at the beginning
of Sect. 4. The flow tunnel � is discretized by 632,093 tetrahedrons and the surface of
the spherical specimen in the reference configuration �obs consist of 8558 triangles.
Further, the viscosity is chosen to be ν = 0.01 and in Algorithm 1 we set αinit =
1e − 4, αdec = 5e − 1 and αtarget = 1e − 6. The results shown here are obtained with
an extension factor of ηext = 15 and ηdet = 0.05. We visualize the impact of the
optimization on the fluid by stream lines of the velocity field in Fig. 8. This figure also
shows the effect of the particular operator S on the quality of the surface mesh when it
undergoes the optimal deformation F . The combination of Laplace–Beltrami (19) and
the nonlinear extension equation (19) leads to a homogeneous distribution of triangles
on the surface �obs. It can be observed that this is due to tangential components in
w|�obs . This is a benefit of a vector-valued extension equation over approaches which
utilize a static extension of the normal vector field in order to extend the boundary
control to the surrounding volume. Furthermore, Fig. 9 shows a zoom-in to the tip of
the deformed domain F(�). Here, we can see a crinkled clip in the x1x2-plane with
x3 = 0, which shows the quality of the tetrahedrons.

4.5 Quantification of the Influence of�ext onMesh Quality

This section presents numerical experiments which investigate the influence of the
nonlinear extension operator S on themesh quality in 2d and 3d (cf. Fig. 10). Recall that
the discretization mesh is not actually deformed within the optimization. In principle,
mesh deformations are not a part of our method. Despite that, in this section, we apply
mesh deformation and compute the mesh quality to illustrate the properties of the
extension operator. The mesh quality is important in case one would like to further
perform the finite element simulations. The 2d experiment is conducted on the same
computational domain as before with a circular specimen, 312 surface segments and
6168 triangles in�. The fluid viscosity is chosen to be ν = 0.01. Figure 10a visualizes
the influence of ηext ∈ [0, 1] on the mesh quality of F(�). It is measured by the ratio
of radii of largest inscribed and smallest circumscribed circle, where the plot shows
the value of the worst triangle.
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Fig. 8 Velocity stream lines computed on reference and optimal domain together with visualization of
surface discretization

This experiment quantifies the effect which is already visualized in Fig. 5. For a
shape optimization with large deformations from reference to optimal configuration,
i.e., ‖w‖L2(�obs)

is relatively large, a pure linear extension operator S does not reliably
lead to satisfying mesh qualities. Moreover, it can be seen that in this particular exper-
iment there is a saturation effect of the nonlinearity in S starting at approximately
ηext ≈ 1.5. Figure 10b shows the results of a similar experiment in 3d. Here, a mesh
is chosen with 6040 surface triangles on �obs and 147 385 tetrahedrons in �. Note
that we decrease the viscosity to ν = 0.1 in this experiment in order to be able to
obtain results for ηext < 3.0. In 3d, quality is measured by the radius ratio of smallest
circumscribed sphere to the largest inscribed one. Again the worst element is visual-
ized. Also note that the y-axis is in log-scale. In this setting, it turns out that the effect
of compressed cells near the tip and back of the shape, which is stretching due to a
decrease in α, is stronger than in 2d. Consequently, the solver fails to converge after
reaching a certain value of α. This can be explained by the semismoothness in the
optimality system that becomes active in a significant number of finite elements in
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Fig. 9 Crinkled clip of x1x2-plane with x3 = 0 showing deformed mesh F(�) together with surface
elements F(�obs)

this situation. However, it can be observed that, starting with approximately ηext ≈ 8,
a saturation is possible, where the mesh quality of F(�) remains adequate for further
numerical computations.

4.6 An Iterative Optimization Algorithm

Algorithm 2 Iterative optimization algorithm
Require: 0 < αtarget ≤ αinit, 0 < αdec < 1, 0 < ε

1: Set y0 to zero
2: k ← 0, � ← 0
3: αk ← αinit
4: while αk ≥ αdec do
5: repeat
6: Set y� as initial guess
7: Solve (25) and (27) for (v, p)�+1
8: Solve (24) and (26) for

(
ψv, ψp

)
�+1

9: Solve (22), (23) and (28), (29), (30), (31), (32) for (w, b, c, ψw,ψb, ψvol, ψbc)�+1
with semismooth Newton’s method and regularization parameter αk

10: � ← � + 1

11: until
‖c�+1−c�‖L2(�obs)‖c�+1‖L2(�obs)

< ε

12: αk+1 ← αdecαk
13: k ← k + 1
14: end while
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(a)

(b)
Fig. 10 Quality of worst element (triangle in 2d or tetrahedron in 3d) after applying optimal deformation
for a range of extension factors ηext
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Fig. 11 Iterative solution strategy according to Algorithm 2with αinit = 1, αdec = 0.5 and αtarget = 2e − 7

In the previous sections, we solve the nonlinear, non-smooth optimality systemwith
the direct solution strategy given in Algorithm 1. Moreover, a direct solver library is
applied to the resulting linear systems within semismooth Newton’s method. This
approach is clearly limited due to the high memory requirement. Especially, when
the state equation results from a time-dependent problem, this procedure becomes
impracticable. Hence, in this section we focus on a numerical study of decoupling
system (22)–(32). This approach is summarized in Algorithm 2.

We demonstrate that it is possible to decouple the solution process of state (25) and
(27), adjoint (24) and (26) and shape related equations, i.e., (22), (23) and (28), (29),
(30), (31), (32), from each other. On the one hand, this allows to reuse existing solvers
for the state equation and embed them into the shape optimization framework. On the
other, the memory requirement for linear solvers significantly reduces. Moreover, the
semismooth part (22) is split from the other equations and a solver can be particularly
tailored for this purpose.

Algorithm 2 operates on the nonlinear optimality system as a fixed-point strategy.
In an outer loop, it is again iterated over a decreasing regularization parameter α as in
Algorithm 1. Thus, approximate solutions for the optimization problem according to
αk are utilized as initial guess for the nonlinear solver in iteration k + 1. Yet, unlike in
the direct approach, the subproblems are only solved approximately by a fixed-point
iteration, which solves the decoupled equations of the optimality system in turns. The
termination criterion for this inner loop is the relative change in the control variable c
measured in the L2(�obs)-norm.

In Fig. 11, the results of one run of Algorithm 2 are shown. The underlying opti-
mization experiment is a 2d computation on the same grid as in Sect. 4.5 with 312
surface segments and 6168 triangles in �, αdec = 0.5, αinit = 1.0, αtarget = 2e − 7,
ν = 0.1 and ηext = 1.5. Note that the initial value of α is significantly larger than the
choices made for Algorithm 1. Figure 11 shows the required inner iterations until the
condition ‖c�+1 − c�‖L2(�obs)

‖c�+1‖L2(�obs)

< ε
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is fulfilled for ε = 1e − 2. Furthermore, the value of the objective J (cf. (17)) is
visualized. It is computed in Algorithm 2 in line 10 at the end of one inner loop. Notice
the jumps in the objective function between iteration 5 and 20. In our experiments, it
turns out that this is an effect that both influences the minimal possible αdec and αinit.

In this setting, a total number of 53 inner iterations, i.e., solutions of the state
equation, are required to reach the optimal shape. This numerical study can thus be
seen as an illustration of how to reduce the computational costs of the large, coupled,
nonlinear system (22)–(32). Thus, the proposed method is applicable to more complex
problems, such as non-stationary Navier–Stokes flows.

Furthermore, despite the high computational cost of the system with the proposed
nonlinear extension equation, the overall complexity it not increased significantly. This
is due to the fact that the model PDE in general is also nonlinear and time-dependent.

5 Conclusion

In this article,we have proposed and numerically illustrated choices of nonlinear exten-
sion operators within the method of mappings for aerodynamic shape optimization.
These operators are based on the idea that an additional, nonlinear advection term leads
to a rearrangement of discretization cells along the major direction of deformations.

The main goal we have achieved is to circumvent mesh degeneracy effects that
appear under large deformations when the extension of the boundary control is chosen
according to linear elastic models. Especially in the underlying aerodynamic drag
minimization, where optimal shapes tend to become stretched in flow direction and
compressed in the orthogonal directions, we have numerically investigated how mesh
quality can be preserved.

We have also demonstrated one possibility to decouple the solution process of the
optimality system in order to overcome issues of computational complexity. More-
over, we have studied how the set of admissible shapes depends on the nonlinearity
of the operator and how the local injectivity of mappings can be extended to large
deformations. Since the proposed methodology is formulated in function spaces with-
out taking a specific discretization into account, another benefit of this approach is
that it naturally allows to introduce concepts like adaptivity. An important field for
future investigations is a detailed description of properties of the set Fadm, which is
constructed in terms of the nonlinear extension operator S.
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