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Abstract
The features that characterize the onset of Huntington disease (HD) are poorly under-
stood yet have significant implications for research and clinical practice. Motivated
by the need to address this issue, and the fact that there may be inaccuracies in clinical
HD data, we apply robust optimization and duality techniques to study support vector
machine (SVM) classifiers in the face of uncertainty in feature data. We present read-
ily numerically solvable semi-definite program reformulations via conic duality for
a broad class of robust SVM classification problems under a general spectrahedron
uncertainty set that covers the most commonly used uncertainty sets of robust opti-
mizationmodels, such as boxes, balls, and ellipsoids. In the case of the box-uncertainty
model, we also provide a new simple quadratic program reformulation, via Lagrangian
duality, leading to a very efficient iterative scheme for robust classifiers. Computational
results on a range of datasets indicate that these robust classification methods allow for
greater classification accuracies than conventional support vector machines in addi-
tion to selecting groups of highly correlated features. The conic duality-based robust
SVMs were also successfully applied to a new, large HD dataset, achieving classifica-
tion accuracies of over 95% and providing important information about the features
that characterize HD onset.
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1 Introduction

Support vector machines (SVMs) are optimization-based numerical methods for
data classification problems [9,24] that are generally formulated as linear or convex
optimization problems. SVMs have become one of the most widely used methods
for binary classification, which separates data into two desired groups, and have
found applications in numerous fields of science [9], engineering [15] and medicine
[12,14,27,46]. These methods are inherently performed in the face of data uncertainty
due to the presence of noise in the training data.

In recent years, robust optimization, which was pioneered in the 1970s for treating
uncertain linear programming problems, has now emerged as a powerful approach for
decision-making in the face of data uncertainty. It treats uncertainty as deterministic
but does not limit data values to point estimates. Two decades since the advent of
robust optimization, in the late 1990s, Ben-Tal et al. [4,5] provided a highly successful
computationally tractable treatment of the robust optimization approach for linear as
well as nonlinear optimization problems under data uncertainty [21,28,45].

In this framework, one associates with the uncertain SVM classification problem
with feature uncertainty its robust counterpart, where the uncertain constraints are
enforced for every possible value of the data within their prescribed uncertainty sets
[6,7,29,41]. In this paper, we consider a broad class of robust SVM classification
problems under general spectrahedron uncertainty sets [10,42]. The spectrahedron
uncertainty set covers the most commonly used uncertainty sets of numerically solv-
able robust optimizationmodels, such as boxes, balls and ellipsoids [4,6,7]. The robust
counterpart, in general, is a hard nonlinear optimization problem with infinitely many
constraints, and we reformulate it as a numerically tractable equivalent conic linear
program using conic duality [3,4] and a support function technique [3,18]. We show
that the robust counterpart reduces to the second-order cone programs for the cases
where the uncertainty sets are ellipsoids, balls or boxes. These second-order cone
programs can be solved more efficiently.

In the case of the box-uncertaintymodel, employing Lagrangian duality [17,19], we
also provide a new robust SVM classifier by transforming the robust counterpart into
a convex quadratic program with non-negative variables, leading to a very efficient
computational scheme via a simple iterative algorithm. This approach, which was
inspired by the Lagrangian support vector machine developed by Mangasarian et
al [16,34], extends the pq-SVM developed by Dunbar et al [14] to robust SVMs.
Computational results on a range of datasets indicate that our methods allow for
greater classification accuracy than conventional SVMs in addition to selecting smaller
groups of highly correlated features.

The conic duality-based robust SVM methods were also applied to a new dataset,
Enroll-HD, which contains 36,953 sets of observations on 32 physical features from
subjects with, or at risk of, Huntington disease (HD). HD is a neurodegenerative
movement disorder withmotor (relating tomovement), cognitive and psychiatricman-
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ifestations caused by an inherited mutation in the Huntingtin (HTT) gene [1,11,33].
Characterizing the onset of the disease in subjects harbouring the causative mutation
in terms of its associated features is of significant clinical and research importance.
Our robust SVM methods also performed well on the Enroll-HD dataset, achieving
accuracies of over 95% and selecting meaningful features for classifying subjects as
having manifest (post-onset) or non-manifest HD.

The outline of the paper is as follows. Section 2 develops robust SVM data classi-
fication models. Section 3 presents equivalent conic program reformulations of these
robust classification models for various classes of uncertainty sets. Section 4 provides
a robust classification scheme in the case of box uncertainty and gives a simple iterative
algorithm to find robust classifiers. Section 5 provides results on the computational
experiments on three publicly available datasets. Section 6 describes the Enroll-HD
dataset, the performance of conic duality-based robust methods on this dataset and the
implications of these results on the characterization of HD onset. Section 7 concludes
with brief discussion on further work. The appendix provides additional technical
details on spectrahedra, lists the features contained in the Enroll-HD dataset and the
proof of (linear) convergence of our iterative algorithm.

2 Robust Optimization-Based Data Classification

In this section, we introduce the SVM formulation and describe the so-called robust
SVM formulations. We begin by fixing the notations that will be used later in the paper.
Given a vector x ∈ R

n , |x | denotes the vector consisting of the absolute value of each
component xi for i = 1, 2, . . . , n. The zero vector inRn is denoted by 0n . For a vector
x ∈ R

n , x ≥ 0n if every component, xi ≥ 0 for i = 1, 2, . . . , n. The n × n identity
matrix is denoted by In (or In×n). The n × n matrix of zeros is denoted by 0n×n (or
simply 0 if the dimension is clear). The vector of all ones in R

n is denoted by en .
We denote by S

n the space of all real-valued n × n symmetric matrices. For a vector

x ∈ R
n , the p-norm, for 1 ≤ p < ∞ is defined as: ‖x‖p = (∑n

i=1 |xi |p
) 1
p with

‖x‖∞ = max1≤i≤n |xi |. For convenience, we also write ‖x‖2 ≡ ‖x‖. For a matrix
A ∈ R

m×n , its norm (or 2-norm) is denoted by ‖A‖, and is given by ‖A‖ = δmax (A)

where δmax (A) is the largest singular value of A. This corresponds to the magnitude
of the largest eigenvalue of A, |λmax (A)| if A ∈ R

n×n and symmetric. For a vector
x ∈ R

n , diag(x) denotes a diagonal matrix in R
n×n whose entries consist of the

elements of x . The gradient of the scalar function f : Rn → R with respect to the
vector x is denoted by ∇x f (x). The closed unit ball of Rn is denoted by Bn .

Consider two sets of data A and B whose elements are vectors in R
s . The SVM

classifier distinguishes between these two datasets by attempting to separate the m
data points into one of two open halfspaces with minimal error —each halfspace
containing only those datapoints that correspond to the setA or B, respectively, where
m is the cardinality of A ∪ B. Each datapoint ui , i = 1, . . . ,m, has a corresponding
class label αi ∈ {−1, 1} according to the set A or B in which it is contained. The
classifier used in the standard (linear) SVM formulation is a hyperplane of the form:
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uTw + γ = 0, (2.1)

where w is the normal to the surface of the hyperplane and γ determines the location
of the hyperplane relative to the origin. To construct the SVM classifier, the margin
(denoted by M = 2/‖w‖) between the planes

uTw + γ = +1 (2.2)

uTw + γ = −1, (2.3)

is maximized, subject to the condition that each plane bounds one of the sets (the
so-called “hard-margin” case). The optimal classifier lies midway between these two
bounding planes.

Often the data are not linearly separable, and so the data cannot be correctly
classified by linear bounding hyperplanes. This situation results in the following “soft-
margin” SVM formulation with the tuning parameter λ (see [4,9]):

(SV M) min
(w,γ,ξ)∈Rs×R×Rm

λ‖w‖22 +
m∑

i=1

ξi

s.t. ξi ≥ 0, αi (u
T
i w + γ ) + ξi ≥ 1, i = 1, . . . ,m,

where (ui , αi ) ∈ R
s × {−1, 1} are the given training data, αi is the class label for

each data ui , and the number of nonzero entries in the slack vector ξ is the number of
errors the classifier makes on the training data.

The soft-margin classification via a doubly regularized support vector machine
(DrSVM) examined in [4, Section 12.1.1][14] can be formulated as:

(DrSV M) min
(w,γ,ξ)∈Rs×R×Rm

λ1‖w‖1 + λ2‖w‖22 +
m∑

i=1

ξi

s.t. ξi ≥ 0, αi (u
T
i w + γ ) + ξi ≥ 1, i = 1, . . . ,m,

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. The (DrSV M) formulation that
incorporates 1-norm is known to generate sparse solutions. When a linear classifier
is used, solution sparsity implies that the separating hyperplane depends on few input
features. This makes the doubly regularized approach a very effective tool for feature
selection in classification problems [8,14,16,24].

The soft-margin SVM model (SV M) is a convex quadratic optimization problem
with finitely many linear inequality constraints. By introducing auxiliary variables,
the doubly regularized support vector machine (DrSVM) can also be equivalently
reformulated as a convex quadratic optimization problem with finitely many linear
inequality constraints.Noting that the feasible regions of these optimizationmodels are
nonempty, the celebrated Frank–Wolfe theorem [2] ensures that the optimal solutions
always exist for these two optimization models.

In practice, the given data ui , i = 1, . . . ,m, are often uncertain. We assume that
these data are subject to the following spectrahedral data uncertainty parameterized
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with the radius parameter ri ≥ 0:

ui ∈ Ui (ri ) = ui + riVi ,

where each Vi , i = 1, . . . ,m, is a bounded spectrahedron given by

Vi = {(vi1, . . . , vis) ∈ R
s : A(i)

0 +
s∑

l=1

vil A
(i)
l � 0},

with A(i)
l , l = 1, . . . , s, being symmetric (p × p) matrices. The spectrahedral

uncertainty encompasses many important commonly used uncertainty sets such as
polyhedral uncertainty sets (where all A(i)

l are diagonal matrices), ball uncertainty
sets, ellipsoidal uncertainty sets and their intersections.We assume that the label αi is
free of uncertainty.

Let r = (r1, . . . , rm). Then, the robust support vector machine can be stated as:

(RSV Mr ) min
(w,γ,ξ)∈Rs×R×Rm

λ1‖w‖1 + λ2‖w‖22 +
m∑

i=1

ξi

s.t. ξi ≥ 0, αi (u
T
i w + γ ) + ξi ≥ 1, ∀ ui ∈ Ui (ri ), i = 1, . . . ,m.

Note that a robust support vector machine model problem is, in general, a semi-
infinite convex optimization problem. Note also that an optimal solution exists for
(RSV Mr ) whenever the robust feasible set F is nonempty where F = {(w, γ, ξ) :
ξi ≥ 0, αi (uTi w + γ ) + ξi ≥ 1, ∀ ui ∈ Ui (ri ), i = 1, . . . ,m}, and the label
sets IA and IB are both nonempty, where IA = {1 ≤ i ≤ m : αi = 1} and
IB = {1 ≤ i ≤ m : αi = −1}. To see this, denote the objective function of (RSV Mr )

by f and let the optimal value of (RSV Mr ) be inf(RSV Mr ). As the robust feasible
set is nonempty and the objective function f is always bounded below by 0, and
so, inf(RSV Mr ) is a non-negative real number. Let (wk, γ k, ξ k) be a minimizing
sequence, that is, (wk, γ k, ξ k) ∈ F and f (wk, γ k, ξ k) → inf(RSV Mr ). From the
definitions of f and the fact that ξ k ∈ R

m+, we see that {wk} and {ξ k} are bounded
sequences. Now, (wk, γ k, ξ k) ∈ F shows that minui∈Ui (ri ){αi uTi wk}+αiγ

k+ξ ki ≥ 1,
i = 1, . . . ,m. Take i ∈ IA and i ′ ∈ IB. Then, γ k = αiγ

k and −γ k = αi ′γ k are
both bounded below. So, {γ k} is bounded, and hence {(wk, γ k, ξ k)} is also a bounded
sequence in F . As F is a closed set and f is a continuous function, it follows that an
optimal solution exists for (RSV Mr ).

Figure 1 presents an illustration for both robust and non-robust SVM classifiers.
On the left, we see the separating hyperplane and two bounding hyperplanes found
by solving a standard (non-robust) SVM; on the right, we see the corresponding
hyperplanes found by solving a robust SVM with box uncertainty: Vi = {v ∈ R

2 :
‖v‖∞ ≤ 1}.

In the next section, we will turn our attention to reformulating the robust SVM
(RSV Mr ) into a numerically tractable optimization problem. Without loss of gener-
ality throughout this paper, we always assume that an optimal solution for the robust
SVM model (RSV Mr ) exists.
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Fig. 1 a Classifier determined by the standard SVM. b Classifier determined by the robust SVM with box
uncertainty. The uncertainty set around each datapoint is shown

3 SDP Formulations for Robust SVM via Conic Duality

In this section, we first show that the robust support vector machine problem under
more general spectrahedron uncertainty can be equivalently reformulated as a semi-
definite programming problem via a support function technique and conic duality
[3,4]. We then derive simple numerically tractable formulations for the cases where
the uncertainty sets are ellipsoids, balls and boxes.

We begin by establishing a simple lemma which shows that the robust support
vector machine problem is equivalent to a nonsmooth convex optimization problem
with finitely many inequality constraints. As we see later in the section, this lemma
allows us to easily achieve an equivalent semi-definite programming reformulation for
(RSV Mr ) . To do this, we define the support function of a closed convex and bounded
set C ⊂ R

s by

σC (x) = max{xT z : z ∈ C}.

Then, the support function, σC (·), is a convex function and closed-form formulae for
the support function are known for various cases of C , such as balls and boxes. For
instance, if C = {z ∈ R

s : ‖z‖p ≤ 1}, then σC (x) = ‖x‖q , where 1/p + 1/q = 1
and p > 1. When p = 1, σC (x) = ‖x‖∞. For details, see [3,4].

Consider the following nonsmooth convex optimization problem which we asso-
ciate with (RSV Mr ):

(APr ) min
(w,γ,t,μ,ξ)∈Rs×R×Rs×R×Rm

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi
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s.t. ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, wl ≤ tl , −wl ≤ tl , l = 1, . . . , s

ξi ≥ 0, σUi (ri )(−αiw) − αiγ − ξi + 1 ≤ 0, i = 1, . . . ,m,

where for each i = 1, 2, . . . ,m, the support function σUi (ri )(·) is a convex function.

Lemma 3.1 (Equivalent nonsmooth convex program) Consider the robust support vec-
tor machine problem (RSV Mr )with a bounded spectrahedron uncertainty set. Then,

min(RSV Mr ) = min(APr ).

Moreover, (w, γ, ξ) ∈ R
s × R × R

m is a solution for (RSV Mr ) if and only if there
exist t ∈ R

s and μ ∈ R such that (w, γ, t, μ, ξ) ∈ R
s × R × R

s × R × R
m is a

solution for (APr ).

Proof The robust SVM problem can be equivalently rewritten as follows:

min
(w,γ,t,μ,ξ)∈Rs×R×Rs×R×Rm

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi

s.t. ‖w‖22 ≤ μ, |wl | ≤ tl , l = 1, . . . , s

ξi ≥ 0, −αi (w
T ui + γ ) − ξi + 1 ≤ 0, ∀ ui ∈ Ui (ri ), i = 1, . . . ,m.

Note that |wl | ≤ tl is equivalent to −wl ≤ tl and wl ≤ tl for all l = 1, . . . , s.
Moreover, ‖w‖22 ≤ μ can be equivalently rewritten in terms of conic constraints as
follows.

‖w‖22 ≤ μ ⇔ ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
.

To finish the proof, we only need to show that for all i = 1, . . . ,m,

αi (u
T
i w + γ )+ ξi ≥ 1, ∀ ui ∈ Ui (ri ) ⇔ σUi (ri )(−αiw)−αiγ − ξi + 1 ≤ 0. (3.1)

To see this, observe that αi (uTi w + γ ) + ξi ≥ 1, ∀ ui ∈ Ui (ri ) is equivalent to the
system,

1 − αi u
T
i w − αiγ − ξi ≤ 0, ∀ ui ∈ Ui (ri ),

which is in turn equivalent to

0 ≥ max
ui∈Ui (ri )

{1 − αi u
T
i w − αiγ − ξi }

= 1 − αiγ − ξi + max{uTi (−αiw) : ui ∈ Ui (ri )}
= 1 − αiγ − ξi + σUi (ri )(−αiw).

This means that (3.1) holds, and so, the conclusion follows. ��
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We now consider the following semi-definite program which can easily be shown
to be equivalent to (RSV Mr ) by conic duality [3,4].

(SDPr ) min
(w,γ,t,μ,ξ)∈Rs×R×R

s×R×R
m

Wi∈Sp , i=1,...,m

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi

s.t. ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, wl ≤ tl , −wl ≤ tl , l = 1, . . . , s

Wi � 0, −αi (w
T ui + γ )

−ξi + 1 + Trace(Wi A
(i)
0 ) ≤ 0, i = 1, . . . ,m

−riαiwl + Trace(Wi A
(i)
l ) = 0, l = 1, . . . , s, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

Theorem 3.1 (Spectrahedral uncertainty: semi-definite program) Consider the robust
support vector machine problem (RSV Mr ) with spectrahedral uncertainty, and
its associated semi-definite program problem (SDPr ). Suppose that for each i =
1, . . . ,m, the interior of the spectrahedron Vi is nonempty, i.e., there exists vi =
(vi1, . . . , vis) ∈ R

s such that A(i)
0 + ∑p

l=1 vil A
(i)
l � 0, i = 1, . . . ,m. Then,

min(RSV Mr ) = min(SDPr ).

Moreover, (w, γ, ξ) is a solution of (RSV Mr ) if and only if there exist Wi � 0,
i = 1, . . . ,m, t ∈ R

s and μ ∈ R such that (w, γ, t, μ, ξ,W1, . . . ,Wm) is a solution
of (SDPr ).

Proof By lemma 3.1, the robust SVM problem is equivalent to

(APr ) min
(w,γ,t,μ,ξ)∈Rs×R×Rs×R×Rm

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi

s.t. ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, wl ≤ tl ,

−wl ≤ tl , l = 1, . . . , s

σUi (ri )(−αiw) − αiγ − ξi + 1 ≤ 0, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m.

Recall that Ui (ri ) = ui + riVi where Vi = {(vi1, . . . , vis) ∈ R
s : A(i)

0 +
∑s

l=1 vil A
(i)
l � 0}, with A(i)

l , l = 1, . . . , s, being symmetric (p × p) matrices.
To see the conclusion, it suffices to show that for each i = 1, . . . ,m,

σUi (ri )(−αiw) − αiγ − ξi + 1 ≤ 0 (3.2)

is equivalent to the existence of Wi � 0 such that

{
−αi (w

T ui + γ ) − ξi + 1 + Trace(Wi A
(i)
0 ) ≤ 0

−riαiwl + Trace(Wi A
(i)
l ) = 0, l = 1, . . . , s.

(3.3)
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Suppose that (3.2) holds. Then, the following implication holds:

A(i)
0 +

s∑

l=1

vil A
(i)
l � 0 �⇒ (−αiw)T (ui + rivi ) − αiγ − ξi + 1 ≤ 0. (3.4)

As the interior point condition holds, it follows from the conic duality theorem [3,4]
that there exists Wi � 0 such that

(−αiw)T (ui + rivi ) − αiγ − ξi + 1 + Trace
(
Wi (A

(i)
0 +

s∑

l=1

vil A
(i)
l )

) ≤ 0,

∀ vi = (vi1, . . . , vis) ∈ R
s . (3.5)

Note that the validity of the affine inequality, aT x +b ≤ 0 for all x ∈ R
s , with a ∈ R

s

and b ∈ R, means that a = 0s and b ≤ 0. Thus, we see that (3.5) is equivalent to (3.3).
Conversely, suppose that for each i = 1, . . . ,m, there existsWi � 0 such that (3.3)

holds. Then, (3.5) holds. Consequently,

σUi (ri )(−αiw) − αiγ − ξi + 1 = max
vi∈Vi

(−αiw)T (ui + rivi ) − αiγ − ξi + 1

≤ max
vi∈Vi

{−Trace
(
Wi (A

(i)
0 +

s∑

l=1

vil A
(i)
l )

)}

≤ 0,

where the last inequality follows from Wi � 0 and vi ∈ Vi (and so, A(i)
0 +

∑s
l=1 vil A

(i)
l � 0). So, (3.2) holds.

Hence, (3.2) is equivalent to the existence of Wi � 0 such that (3.3) holds and the
conclusion follows. ��

We now derive numerically tractable formulations for (RSV Mr ) in terms of the
second-order cone programs, under the uncertainty sets that take the form of an ellip-
soid, ball or box. Although these equivalent formulations and the associated duality
results may be derived from (SDPr ) and Theorem 3.1, respectively, by appropriately
choosing the matrices A(i)

l , l = 1, . . . , s, i = 1, . . . ,m, of the spectrahedron Vi , in the
interest of simplicity, we present the results from the model (APr ) and Lemma 3.1.
Related special cases for the standard robust SVM models, where λ1 = 0 or λ2 = 0,
can be found in [4,6].
Ellipsoidal UncertaintyConsider the case where the uncertainty setsVi are ellipsoids
in the sense that

Vi = {vi ∈ R
s : vTi M

−1
i vi ≤ 1} (3.6)

for some Mi � 0. Let Mi = Li LT
i with Li being an invertible matrix. We associate

with this case the following second-order cone program:

(SOCPr ,E ) min
(w,γ,ξ,t,μ)∈ R

s×R×R
m×R

s×R

λ1

s∑

j=1

t j + λ2μ +
m∑

i=1

ξi
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subject to ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, w j ≤ t j ,

−w j ≤ t j , j = 1, . . . , s

−αi (w
T ūi + γ ) − ξi + 1

+ri‖LT
i w‖2 ≤ 0, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

Proposition 3.1 (Ellipsoidal uncertainty: second-order cone program) For the robust
support vector machine problem (RSV Mr ) under ellipsoidal uncertainty, as defined
in (3.6), and its associated second-order cone problem (SOCPr ,E ), it holds that

min(RSV Mr ) = min(SOCPr ,E ).

Moreover, (w, γ, ξ) is a solution of (RSV Mr ) under ellipsoidal uncertainty if and only
if there exists t ∈ R

s and μ ∈ R such that (w, γ, ξ, t, μ) is a solution of (SOCPr ,E ).

Proof In the case of ellipsoidal uncertainty as defined in (3.6), the support function
σUi (ri )(−αiw) can be expressed as:

σUi (ri )(−αiw) = −αiw
T ui + ri max{(−αiw)T vi : vTi M

−1
i vi ≤ 1}

= −αiw
T ui + ri max{(−αiw)T vi : ‖L−1

i vi‖2 ≤ 1}
= −αiw

T ui + ri max{(−αi )(L
T
i w)T zi : ‖zi‖2 ≤ 1}

= −αiw
T ui + ri‖(−αi )L

T
i w‖2

= −αiw
T ui + ri‖LT

i w‖2,

where the last two equalities follow from the support function formula and αi ∈
{−1, 1}, respectively. Thus, the conclusion follows from Lemma 3.1. ��
Ball Uncertainty We now consider the case where the perturbation sets Vi are unit
balls:

Vi = {vi ∈ R
s : ‖vi‖22 ≤ 1} (3.7)

In this case, we consider the following second-order cone program:

(SOCPr ,B) min
(w,γ,ξ,t,μ)∈ R

s×R×R
m×R

s×R

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi

subject to ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, wl ≤ tl ,

−wl ≤ tl , l = l, . . . , s

−αi (w
T ūi + γ ) − ξi + 1

+ri‖w‖2 ≤ 0, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m.
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Corollary 3.1 (Ball uncertainty: simple second-order cone program) For the robust
support vector machine problem (RSV Mr ) under ball uncertainty, as defined in (3.7),
and its associated second-order cone problem (SOCPr ,B), it holds that

min(RSV Mr ) = min(SOCPr ,B).

Moreover, (w, γ, ξ) is a solution of (RSV Mr ) under ball uncertainty if and only there
exist t ∈ R

s and μ ∈ R such that (w, γ, ξ, t, μ) is a solution of (SOCPr ,B).

Proof The result follows immediately from Proposition 3.1, since ‖vi‖22 = vTi I−1
s vi ,

and so Li = Is . ��
Box Uncertainty Finally, we consider the case where the perturbation sets Vi are unit
boxes:

Vi = {vi ∈ R
s : ‖vi‖∞ ≤ 1} (3.8)

We associate with this case the following second-order cone program (see [6]):

(SOCPr ,∞) min
(w,γ,ξ,t,μ) ∈ Rs×R×Rm×Rs×R

λ1

s∑

l=1

tl + λ2μ +
m∑

i=1

ξi

subject to ‖(w,
1 − μ

2
)‖2 ≤ 1 + μ

2
, wl ≤ tl ,

−wl ≤ tl , l = 1, . . . , s

−αi (w
T ui + γ ) − ξi + 1

+ri‖w‖1 ≤ 0, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m.

Proposition 3.2 (Robust SVM under Box Uncertainty) For the robust support vec-
tor machine problem (RSV Mr ) under box uncertainty, as defined in (3.8), and its
associated second-order cone program problem (SOCPr ,∞), it holds that

min(RSV Mr ) = min(SOCPr ,∞).

Moreover, (w, γ, ξ) is a solution of (RSV Mr ) under polytope uncertainty if and only
if there exist t ∈ R

s and μ ∈ R such that (w, γ, ξ, t, μ) is a solution of (SOCPr ,∞).

Proof In the case of box uncertainty (that is, Ui (ri ) = ui + riVi with Vi = {vi ∈ R
s :

‖vi‖∞ ≤ 1}), the support function σUi (ri )(−αiw) can be expressed as:

σUi (ri )(−αiw) = −αiw
T ui + ri max{(−αiw)T vi : ‖vi‖∞ ≤ 1}

= −αiw
T ui + ri‖(−αi )w‖1

= −αiw
T ui + ri‖w‖1.

Thus, the conclusion follows from Lemma 3.1. ��
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4 A New Robust pq-SVM for Efficient Classification

In this section, we derive an efficient scheme for finding a robust classifier under box
uncertainty by extending the approach in [14,16,27] and using a variable transforma-
tion and Lagrangian duality [18] to reformulate the robust SVM model (SOCPr ,∞)

into a simple non-negative quadratic program.

4.1 QP Reformulation via Lagrangian Duality

Recall that the problem (SOCPr ,∞) can be equivalently rewritten as:

min
(w,γ,ξ)∈Rs×R×Rm

λ1‖w‖1 + λ2‖w‖22 + eTmξ

subject to αi (ū
T
i w + γ ) + ξi − ri‖w‖1 ≥ 1, i = 1, 2, . . . ,m

ξ ≥ 0m . (4.1)

Define vectors p, q ∈ R
s+ by

pi =
{
0, for wi ≤ 0

wi , for wi > 0,
qi =

{
−wi , for wi ≤ 0

0, for wi > 0,
(4.2)

for i = 1, . . . , s. Then, it is easy to see that

w = p − q, p, q ≥ 0s and pT q = 0.

Consequently, we can rewrite ‖w‖22 and ‖w‖1 as ‖w‖22 = ‖p‖22 + ‖q‖22 and ‖w‖1 =
eTs (p + q). So, the problem (SOCPr ,∞) can be defined as:

min
(p,q,γ,ξ)∈Rs×Rs×R×Rm

λ1e
T
s (p + q) + λ2‖p‖22 + λ2‖q‖22 + eTmξ

subject to αi (ū
T
i (p − q) + γ ) + ξi − ri e

T
s (p + q) ≥ 1, i = 1, 2, . . . ,m

p, q ≥ 0s, ξ ≥ 0m .

Now, we define:

y =
⎡

⎣
ξ

p
q

⎤

⎦ ∈ R
m+2s, C =

⎡

⎣
0m×m

λ2 Is
λ2 Is

⎤

⎦ , and b =
⎡

⎣
1
λ1
em
es
es

⎤

⎦ .

Let

D̂ =
[

Im 0m×2s
02s×m 02s×2s

]
(4.3)

123



Journal of Optimization Theory and Applications (2022) 193:649–675 661

and

Û =
[
0m×m U1 U2
02s×m 02s×s 02s×s

]
(4.4)

where

U1 =
⎡

⎢
⎣

α1uT1 − r1eTs
...

αmuTm − rmeTs

⎤

⎥
⎦ ∈ R

m×s and U2 =
⎡

⎢
⎣

−α1uT1 − r1eTs
...

−αmuTm − rmeTs

⎤

⎥
⎦ ∈ R

m×s .

Define further that

A =
⎡

⎢
⎣

α1
. . .

αm

⎤

⎥
⎦ ∈ R

m×m, Â =
[
A−1

02s×2s

]
∈ R

(m+2s)×(m+2s) and

ê =
⎡

⎣
Aem
0s
0s

⎤

⎦ ∈ R
m+2s .

Then, problem (SOCPr ,∞) can be rewritten as the following convex quadratic
programming problem:

min
(y,γ )∈Rm+2s×R

yTCy + λ1b
T y

subject to D̂(Û y + êγ ) + y ≥ Âê

y ≥ 0m+2s,

where b ≥ 0. By removing the linear term of the objective function via regularization,
as in [14,16,27] and by regularizing γ , we arrive at the regularized problem

min
(y,γ )∈Rm+2s×R

1

2
yTCy + 1

2
γ 2 + ν

2
yT y

subject to D̂(Û y + êγ ) + y ≥ Âê,

where ν > 0. Note that the regularization makes the non-negativity condition y ≥
0m+2s redundant. The Lagrangian dual of the regularized problem is given by

max
(y,γ,u)∈Rm+2s×R×Rm+2s

L(y, γ, u) subject to ∇y,γL(y, γ, u) = 0, u ≥ 0m+2s,

where

L(y, γ, u) = 1

2
yT (C + ν Im+2s)y + 1

2
γ 2 − uT (D̂(Û y + êγ ) + y − Âê),
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and

∇yL(y, γ, u) = (C + ν Im+2s)y − ((D̂Û )T + Im+2s)u �⇒ y

= (C + ν Im+2s)
−1(D̂Û + Im+2s)

T u (4.5)

∇γL(y, γ, u) = γ − (D̂ê)T u = 0 �⇒ γ = êT D̂T u. (4.6)

Eliminating the equality constraints, the dual can be written as:

min
u∈Rm+2s

1

2
uT

(
(D̂Û + I )(C + ν Im+2s)

−1(D̂Û + Im+2s)
T + D̂êêT D̂T

)
u − ( Âê)T u

subject to u ≥ 0m+2s .

Define the matrix Q ∈ R
(m+2s)×(m+2s) and the vector η ∈ R

m+2s by

Q = (D̂Û + Im+2s)(C + ν Im+2s)
−1(D̂Û + Im+2s)

T + D̂êêT D̂, η = Âê. (4.7)

Then, a direct verification shows that (D̂Û + Im+2s)
T d = 0m+2s if and only if d =

0m+2s , and so, Q is positive definite. So, we arrive at a simple strictly convex quadratic
programming problem over non-negative orthant:

(QP) min
u∈Rm+2s

1

2
uT Qu − ηT u subject to u ≥ 0m+2s . (4.8)

Notice that (QP) no longer has the hyperparameter λ1 in its formulation. Having
found a solution u of (4.8), we can then retrieve a solution to our original problem,
via the dual equality constraints (4.5) and (4.6), i.e.,

y = (C + ν Im+2s)
−1(D̂Û + Im+2s)

T u, p =
⎡

⎢
⎣

ym+1
...

ym+s

⎤

⎥
⎦ , q =

⎡

⎢
⎣

ym+s+1
...

ym+2s

⎤

⎥
⎦ ,

w = p − q, γ = êT D̂u.

4.2 Efficient Iterative Scheme

To solve (QP), we propose a variation of the LSVM algorithm put forth in [34].
Recall from [34] that the point u is an optimal solution for (QP) if and only if

0m+2s ≤ u ⊥ (Qu − η) ≥ 0m+2s .

Notice that

0m+2s ≤ a ⊥ b ≥ 0m+2s , a, b ∈ R
m+2s ⇐⇒ ∃α > 0 such that a = max(a − αb, 0m+2s),

(4.9)
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where the kth-component of max(z, 0m+2s) = max(zk, 0), k = 1, . . . ,m+2s. Unlike
the LSVM Algorithm where it is taken that a = Qu − η and b = u, we propose
instead to take a = u and b = Qu−η. Therefore, we arrive at the optimality condition

u = max(u − α(Qu − η), 0m+2s), α > 0

from which we derive the simple iterative scheme:

u(i+1) = max(u(i) − α(Qu(i) − η), 0m+2s), i = 0, 1, . . . (4.10)

with a starting point given by u(0) = Q−1η.
The difference between our proposed iterative scheme and the LSVM Algorithm

is that we require only the inversion of the matrix Q once, to define the starting point
for the iteration, whereas the LSVMAlgorithm requires solving a linear system in Q
at each step of the iteration. We also only require a single matrix multiplication per
iteration.

The complete iterative algorithm required to return the optimal solution u∗ of (QP)

is given below, and its proof of (linear) convergence is given in Appendix C.

Algorithm 1: Box-pq-SVM Algorithm

u ← Q−1η;
it ← 0;
uprev ← u + η;
while it < maxiter and ‖uprev − u‖ > tol do

uprev ← u;
u ← max(u − α(Qu − η), 0m+2s);
it ← it +1;

end
return u
Notice that maxiter is a threshold for the maximum number of iterations, tol is

for the convergence tolerance of the algorithm, and α > 0 is a pre-selected constant.

5 Experiments with Real-World Data Sets

In this section, we evaluate several different SVM models, derived from our above
results, against some real-world datasets, which are all available from theUCIMachine
Learning repository [13]. The aim is to compare the models in terms of accuracy,
computational expense and feature selection.

5.1 Experimental Setup

Three datasets are used for the comparison of our models:

• The Wisconsin Breast Cancer (Diagnostic) (WBCD) [13]: this dataset describes
the (binary) classification problem of labelling tumours as either malignant or
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benign. The dataset contains 569 instances, 30 features and a 63/37 split of the
two classes.

• Cylinder Bands (CYLBN) [13]: this dataset describes the problem of mitigating
delays knownas “cylinder bands” in rotogravure printing. It contains 541 instances,
33 features and a 58/42 class split.

• Pima Indians Diabetes (PIMA) [39]: this dataset describes the problem of classi-
fying diabetes in patients. It contains 768 instances, 8 features and a 35/65 class
split.

Each of these datasets had their features standardized and then split into 80%/20%
training and test sets. For each of our models, we then perform the following. We tune
themodel hyperparameters in their cross-validation range via fivefold cross-validation
on the training set. The model is then fitted to the full training set, to obtain optimal
solutionw∗, γ ∗, and the training accuracy is recorded. We next determine the features
selected by the model. This is done by considering the significance (weighting) of
each feature in w∗. More precisely, feature k is considered significant by a model if

∣∣∣∣
∣∣

w∗
k

max
1≤ j≤s

w∗
j

∣∣∣∣
∣∣
> 0.05. (5.1)

Having done this, we set the value of w∗
k to zero for each insignificant feature. Note

that this is a stricter version of the feature selection methods employed in [14,27].
Finally, the model predicts the classification of all datapoints ui in the test set: αi :=
sign(wT ui + γ ), and we record the test accuracy.

5.2 ClassificationMethods

We will apply the following classification methods to each of the datasets. For robust
models, we will assume that the radius of robustness is constant for each datapoint:
ri = r , i = 1, . . . ,m.

• The standard SVM model (SV M). This method does not consider uncertainty in
the datapoints. We refer to this method as SVM.

• The ball uncertainty robust SVM model (SOCPr ,B). We refer to this method as
Ball-SVM.

• The box-uncertainty robust SVM model (SOCPr ,∞). We refer to this method as
Box-SVM.

• The pq-robust SVM over box-uncertainty (QP), which we solved by Algorithm
1. We set maxiter = 1000, tol = 10−4 and α tuned from 10−16 to 10−4. We
refer to this method as Box-pq-SVM.

For our experiments, the cross-validation range for each hyperparameter was deter-
mined as follows. For the first three methods, λ1 and λ2 were tuned over values 2k ,
k ∈ {−10, . . . , 4}. (Note that SVM does not tune the parameter λ1 which is set to 0.)
For the pq-SVM, ν and λ2 were tuned over the range 2 j , j ∈ {−10, 9, . . . , 10}. This
is due to the sensitivity of the pq-SVM to hyperparameters.
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For all of our robust methods (Ball-SVM, Box-SVM, and Box-pq-SVM), the
radius of robustness was tuned as follows. We set a lower bound of 2−20, and an upper
bound given by a simple heuristic: for each datapoint in one class, we calculate the
maximum distance from it to any point in the other class.We then take theminimum of
these distances and finally use as our upper bound the maximum over the two classes.
Formally, we can define our upper bound U as:

U = max

{
min
u∈A

max
v∈B

‖u − v‖2,min
v∈B

max
u∈A

‖u − v‖2
}
.

Having obtained our upper bound on the radius, we then tuned our radius of robustness
within an exponential range over this lower and upper bound.

Our choice of heuristic for the upper bound is justified as follows: for any radius
of robustness larger than this value, consider a (non-trivial) true classifier. It is certain
that every datapoint would simultaneously have a point in its uncertainty set on one
side of the classifier, and another point in its uncertainty set on the other side. In this
case, it is clear that the robust SVM will select a trivial solution, i.e., a majority class
prediction.

5.3 Results

All computations were performed using a 3.2GHz Intel(R) Core(TM) i7-8700 and
16GB of RAM, equipped with MATLAB R2019B. All optimization problems were
solved via the MOSEK software [36], handled through the YALMIP interface [31].

Table 1 shows the results for each of the classification methods on each of the
datasets. The columns are interpreted as follows:

• Dataset: as written.
• Instances: number of instances in the dataset.
• Model: the classification method used.
• Type: either nominal (non-robust) or robust.
• Train Acc: Accuracy obtained on the training set, as a percentage.
• Test Acc: Accuracy obtained on the test set, as a percentage.
• Fit Time (s): CPU time (seconds) taken to solve the final optimization problem,
after cross validation.

• Features: the number of selected features from each model, out of the total number
of features in the dataset.

5.4 Discussion

Overall, it is apparent from Table 1 that on all three datasets, for both testing accuracy
and number of selected features, the standard SVM is outperformed by both Box-SVM
and Ball-SVM robust methods.
Box-SVM–Best performing robust method Regarding best performance in terms of
testing accuracy, this method performs best in this area, producing the highest testing
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Table 1 Results for each classification method on each dataset

Dataset Instances Model Type Train Acc. (%) Test Acc. (%) Fit Time (s) Features

WBCD 569 SVM Nominal 99.34 92.11 0.09 28/30

Ball-SVM Robust 98.46 92.98 1.13 27/30

Box-SVM Robust 98.68 95.61 2.16 21/30

Box-pq-SVM Robust 98.90 94.74 0.03 29/30

CYLBN 541 SVM Nominal 79.40 66.97 0.11 31/33

Ball-SVM Robust 79.63 68.81 2.33 30/33

Box-SVM Robust 79.86 70.64 2.32 25/33

Box-pq-SVM Robust 73.38 69.72 0.04 27/33

PIMA 768 SVM Nominal 77.20 77.27 0.11 7/8

Ball-SVM Robust 77.04 78.57 1.49 7/8

Box-SVM Robust 77.20 78.57 2.15 6/8

Box-pq-SVM Robust 76.71 75.97 0.02 3/8

Columns defined above. The best result(s) for each dataset in each category is given in bold

accuracy on all three datasets. It is also consistently economical in its selection of
features. We see the method as the most consistent of the four.
Box-pq-SVM–Faster robust method This method is remarkably efficient for rea-
sonable sized datasets, and much faster than our other two robust methods.
Robust methods in applications Regarding the choice of which of the three robust
methods to utilize in an application, one should consider which subset of accuracy,
feature selection and computational time ismost desired. No one of our robustmethods
outperforms any other on all three counts. We do note that the Box-pq-SVM method
requires storage of an (m+2s)× (m+2s) size matrix which, even if defined sparsely,
can consume significant amounts of physical memory in computation for very large
datasets.

Finally, we can also compare our results to others in the recent literature on robust
optimization methods for SVMs, namely [6]. Our methods achieve near identical
accuracies compared on WBCD and PIMA to the feature-robust method presented
in [6] (which also is designed for box-uncertainty), with a slightly higher accuracy
achieved by our methods on PIMA.

We do note that whilst the heuristic we use for defining an upper bound on the
radius of robustness tuning range is simple, it is both effective and computationally
efficient even for very large datasets. Characterizing an upper bound on the radius
within a mathematical framework would need to be investigated in a further study.

6 Application to Characterization of Huntington Disease Onset

HD is a neurodegenerative movement disorder caused by a mutation in the HTT gene
with motor, cognitive and psychiatric manifestations [1,11,33]. It is one of the most
common monogenic neurological diseases in the developed world [1]. From its onset,
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typically in the fourth decadeof life, the signs and symptomsofHDprogress inexorably
until certain death. No treatment currently available can alter this course.

Defining the onset of HD is of significant clinical and research importance. Studies
tracking the progression of the motor manifestations of HD over time have shown that
there is an acceleration in motor decline around the time of onset diagnosis [30,32].
Thus, making a clinical diagnosis of HD onset heralds a poor prognosis for the patient
and, in addition to carrying significant emotional weight, can have important implica-
tions for key life decisions such as family planning. Secondly, clearly defining disease
onset is paramount for establishing endpoints in clinical trials where the efficacy of
putative disease-modifying therapies in the future could be measured by their ability
to delay onset in subjects harbouring the HTT mutation [25].

The current formal diagnosis of HD onset or “manifest HD” (mHD) is based on the
motor manifestations of the disease according to the motor component of the Unified
Huntington Disease Rating Scale (UHDRS). The UHDRS has been shown to have a
high degree of internal consistency and interrater reliability [26]. It contains 31 items
relating to characteristic motor abnormalities in HD, which are scored from 0 (normal)
to 4 (significantly abnormal), and their sum, the total motor score (TMS). Based on
these scores, the clinician assigns a “diagnostic confidence level” (DCL) between 0
(normal) and 4 (≥ 99% confidence that the motor abnormalities are unequivocal signs
of HD), representing their confidence that the subject’s motor abnormalities are due
to mHD. A diagnosis of mHD is made when the DCL is 4 [33]. However, there are
currently no rules relating the scores from the 31 items and the TMS to the DCL and so
the DCL rating relies on the clinician’s expertise. Given the significance of making a
diagnosis of HD onset, a standardized and objective means of arriving at the diagnosis
from the motor assessment is needed [11,33].

6.1 Conic duality Methods

We applied the conic duality-based robust SVM methods to data from the Enroll-HD
study consisting of 36,953 sets of motor scores and corresponding DCLs from patients
with HD around the world. Subjects with a DCL of 4 were defined as having mHD,
whilst those with a DCL less than 4 (i.e. 0, 1, 2 and 3) were defined as having non-
manifest HD (nHD). There were 19303 (52%) cases of mHD and 17650 (48%) cases
of nHD defined in this way, a roughly even split between the two groups, minimizing
classification bias. Data from the 31 motor items from the UHDRS and the TMS
(32 features in total) for these subjects were used as potential features to predict
classification by conic duality-based robust SVM models.

Due to the physical memory limitations of our hardware, and the size of the dataset,
Box-pq-SVM was not applied to the Enroll-HD dataset.

6.2 Results

Both box and ball robust SVMmodels achieved similarly high accuracies of over 95%
in both the training and testing phases (Table 2).
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Table 2 Results for each classification method on Enroll-HD dataset

Dataset Model Train acc. (%) Test acc. (%) Features

Enroll-HD Ball-SVM 95.55 95.28 30/32

Box-SVM 95.54 95.21 22/32

Table 3 Motor features selected by the classifier found by each method

Dataset Model Selected motor features

Enroll-HD Ball-SVM Ocularh, ocularv, sacinith, sacinitv, sacvelh, dysarth,

tongue, fingtapr, fingtapl, prosupr, prosupl, luria,

rigarml, brady, dysttrnk, dystrue, dystlue, dystrle,

dystlle, chorface, chorbol, chortrnk, chorrue, chorlue,

chorrle, chorlle, gait, tandem, retropls, motscore.

Box-SVM Ocularh, ocularv, sacinitv, sacvelh, dysarth, tongue,

fingtapr, fingtapl, prosupr, prosupl, luria, rigarml,

brady, chorface, chorbol, chortrnk, chorrue, chorlue,

chorrle, chorlle, tandem, retropls.

The features that were selected by eachmodel for each problem are given in Table 3
above. The descriptions of all features are given later in “Section 8.2 Appendix B”.

6.3 Discussion

In this application, we have used conic duality-based robust SVMmethods to establish
a highly accurate classification of HD disease status based solely on UHDRS motor
scores.

Not all features were selected by the models despite achieving very high clas-
sification accuracies, suggesting that the feature selection aspect of these models
successfully eliminated unnecessary variables that may interfere with prediction. The
Ball-SVM achieved a marginally higher classification accuracy than the Box-SVM at
the expense of selecting more features. All of the features selected by the Box-SVM
were also selected by the Ball-SVM.

The features that were not selected by both models, vertical saccade velocity and
right-sided arm rigidity, are members of two pairs of features examining identical
aspects of motor function on different sides of the body (left/right) or in different
planes (horizontal/vertical). It would not be surprising if only one feature from each
pair was sufficient and more efficient for prediction. Alternatively, this may reflect an
inherent asymmetry in HD [37,44].

Notably, none of the five features relating to dystonia (involuntary muscle contrac-
tions) were selected by the Box-SVM model. This may reflect the particular disease
phenotype or disease stage of the study population. In typical adult-onset HD, chor-
eiform (“dance-like”) movements, which were features that were selected by both
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models, dominate early in the disease course, whereas dystonia is not prominent until
the later stages [1].

Similarly, gait abnormality, which is a composite effect of multiple other motor
abnormalities including late features like dystonia, was not selected by the Box-SVM
model [43]. TMS was also not selected by this model, suggesting that it does not
strongly influence classification when its component items are used as features.

7 Conclusion and Further Work

In this paper, by employing a support function approach and conic duality of convex
optimization, we first presented a readily numerically solvable semi-definite program
reformulation for a general robust SVM data classification problem, where the uncer-
tainty sets are spectrahedra. A spectrahedron, which is an important generalization of
a polyhedron, has played a key role in a range of fields, including algebraic geometry
and semi-definite optimization. It also encompasses the most commonly used uncer-
tainty sets of robust optimization models, such as boxes, balls and ellipsoids. We have
shown that the conic duality-based robust SVMs with box and ball uncertainty sets
achieved classification accuracies of over 95% on the large Enroll-HD dataset and
provided important information about the features that characterize HD onset.

As an alternative to the second-order cone program reformulation of the robust
SVM with box-uncertainty sets, we also presented a new efficient iterative scheme,
Box-pq-SVM, for solving the robust SVM by reformulating it as a simple convex
quadratic optimization problemviaLagrangian duality.Wehave demonstrated through
computational studies on a range of datasets that these robust classification methods
allow for greater classification accuracies than conventional support vector machines
in addition to selecting groups of highly correlated features.

Further work is planned to examine the generalizability of the Enroll-HD robust
classifier on other HD datasets with the aim of producing a simple and reliable clinical
decision support tool to aid in the identification of patients with manifest HD. It would
also be of interest to study how theBox-pq-SVM approach can be extended to treating
large-scale data sets.
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8 Appendix

8.1 Appendix A: Spectrahedra

A spectrahedron 
 ⊂ R
m is the intersection of the cone of positive semi-

definite matrices with an affine-linear space and is represented algebraically by

 := {(x1, . . . , xm) ∈ R

m : A0 + ∑m
j=1 x j A j � 0} for some symmetric matrices

A j , j = 0, 1, . . . ,m. If A j ’s are diagonal matrices, then 
 is known as a polyhedron;
thus, a polyhedron is a spectrahedron and the converse is not true. For instance, a
closed unit ball {(x1, x2) ∈ R

2 : x21 + x22 ≤ 1} is a bounded spectrahedron as it can
be written as:

{(x1, x2) ∈ R
2 :

(
1 − x1 x2
x2 1 + x1

)
� 0}.

A spectrahedron is an important extension of a polyhedron, and it covers many convex
infinite sets arising in a range of applications (see [42]). The reader is directed to [38]
for more details on the links between polyhedra, spectrahedra and semi-definite linear
programming. It is worth noting that in general, a bounded spectrahedron can have
infinitely many faces, whilst a bounded polyhedron has only finitely many faces (see
Fig. 2 for an illustration).

A three-dimensional example of a bounded spectrahedronwhich has infinitelymany
faces is the three-dimensional elliptope [42] which is given by E := {(x1, x2, x3) ∈

R
3 :

⎛

⎝
1 x1 x2
x1 1 x3
x2 x3 1

⎞

⎠ � 0}.

Fig. 2 An illustration of
polytope
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8.2 Appendix B: Motor features of Huntington disease

Table 4 Table caption

Abbreviation Description

Ocularh Ocular pursuit—horizontal

Ocularv Ocular pursuit—vertical

Sacinith Saccade initiation—horizontal

Sacinitv Saccade initiation—vertical

Sacvelh Saccade velocity—horizontal

Sacvelv Saccade velocity—vertical

Dysarth Dysarthria

Tongue Tongue protrusion

Fingtapr Finger taps—right

Fingtapl Finger taps—left

Prosupr Pronation/supination—right

Prosupl Pronation/supination—left

Luria Luria

Rigarmr Arm rigidity—right

Rigarml Arm rigidity—left

Brady Bradykinesia—body

Dysttrnk Maximal dystonia—trunk

Dystrue Maximal dystonia—right upper extremity

Dystlue Maximal dystonia—left upper extremity

Dystrle Maximal dystonia—right lower extremity

Dystlle Maximal dystonia—left lower extremity

Chorface Maximal chorea—face

Chorbol Maximal chorea—mouth

Chortrnk Maximal chorea—trunk

Chorrue Maximal chorea—right upper extremity

Chorlue Chorea—left upper extremity

Chorrle Maximal chorea—right lower extremity

Chorlle Maximal chorea—left lower extremity

Gait Gait

Tandem Tandem walking

Retropls Retropulsion

Motscore Total motor score
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Fig. 3 The three-dimensional
elliptope E

8.3 Appendix C: Convergence of Iterative Scheme (4.10)

Consider the iterative scheme in (4.10)

u(i+1) = max(u(i) − α(Qu(i) − η), 0m+2s), i = 0, 1, . . .

for solving the quadratic programming problem over non-negative orthant (QP):

(QP) min
u∈Rm+2s

1

2
uT Qu − ηT u subject to u ≥ 0m+2s . (8.1)

where

Q = (D̂Û + Im+2s)(C + ν Im+2s)
−1(D̂Û + Im+2s)

T + D̂êêT D̂, η = Âê,

with ν > 0, D̂, Û , Â and ê are given as in (4.3) and (4.4), and Im+2s is the (m + 2s)×
(m+2s) identity matrix. As (QP) is a convex quadratic program with strictly convex
objective function, it has a unique optimal solution. We now have the following linear
convergence result for (4.10) whose proof makes use of similar arguments employed
in [27,34].

Proposition 8.1 Let u∗ ∈ R
m+2s be the solution for (QP). If 0 < α <

2ν
‖Û T D̂+Im+2s‖2+ν‖D̂ê‖2 , then there exists r ∈ (0, 1) such that

‖u(i+1) − u∗‖ ≤ r‖u(i) − u∗‖.

Proof As u∗ is the optimal solution for (QP), 0m+2s ≤ u∗⊥(Qu∗ − η) ≥ 0m+2s . This
together with (4.9) shows that

u∗ = max(u∗ − α(Qu∗ − η), 0m+2s),
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and so,

‖u(i+1) − u∗‖ = ‖max(u(i) − α(Qu(i) − η), 0m+2s) − max(u∗ − α(Qu∗ − η), 0m+2s)‖
≤ ‖

(
u(i) − α(Qu(i) − η)

)
− (

u∗ − α(Qu∗ − η)
) ‖

= ‖(Im+2s − αQ)(u(i) − u∗)‖
≤ ‖Im+2s − αQ‖ · ‖u(i) − u∗‖,

where thefirst inequality is from thenon-expansive property for the projectionmapping
onto the non-negative orthant. To finish the proof, it suffices to show that ‖Im+2s −
αQ‖ < 1. Now, let d ∈ R

m+2s with d �= 0m+2s and let w = (D̂Û + Im+2s)
T d =

(Û T D̂+ Im+2s)d (as D̂ is symmetric). Then, from the definitions of D̂ and Û , a direct
verification shows that w �= 0m+2s . Moreover,

dT (Im+2s − αQ)d = ‖d‖2 − αdT Qd = ‖d‖2 − α
(
wT (C + ν Im+2s)

−1w + ‖êT D̂d‖2
)

.

This gives us that

‖d‖2 > dT (Im+2s−αQ)d ≥ ‖d‖2−α
(
λmax

(
(C + ν Im+2s)

−1)‖w‖2 + ‖êT D̂d‖2
)

.

(8.2)
As C is positive semi-definite, λmax

(
(C + ν I )−1

) ≤ λmax
(
(ν Im+2s)

−1
) = 1

ν
. More-

over, one has ‖w‖ ≤ ‖Û T D̂ + Im+2s‖ ‖d‖ and ‖êT D̂d‖2 ≤ ‖D̂T ê‖2‖d‖2 =
‖D̂ê‖2‖d‖2. It then follows that

λmax
(
(C + ν Im+2s)

−1)‖w‖2 + ‖êT D̂d‖2

≤
(

‖Û T D̂ + Im+2s‖2
ν

+ ‖D̂ê‖2
)

‖d‖2 <
2

α
‖d‖2,

where the last strict inequality follows by our choice of α and the fact that d �= 0m+2s .
So, (8.2) implies that |dT (Im+2s − αQ)d| < ‖d‖2 for all d �= 0m+2s . Hence, all
the eigenvalues of Im+2s − αQ have absolute value strictly less than one, and so,
‖Im+2s − αQ‖ < 1. Thus, the conclusion follows. ��
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