
Journal of Optimization Theory and Applications (2021) 189:164–189
https://doi.org/10.1007/s10957-021-01826-x

Realization of a Framework for Simulation-Based
Large-Scale Shape Optimization Using Vertex Morphing

Aditya Ghantasala1 · Reza Najian Asl1 · Armin Geiser1 · Andrew Brodie2 ·
Efthymios Papoutsis2 · Kai-Uwe Bletzinger1

Received: 17 July 2020 / Accepted: 29 January 2021 / Published online: 11 March 2021
© The Author(s) 2021

Abstract
There is a significant tendency in the industry for automation of the engineering design
process. This requires the capability of analyzing an existing design and proposing
or ideally generating an optimal design using numerical optimization. In this context,
efficient and robust realization of such a framework for numerical shape optimization
is of prime importance. Another requirement of such a framework is modularity, such
that the shape optimization can involve different physics. This requires that differ-
ent physics solvers should be handled in black-box nature. The current contribution
discusses the conceptualization and applications of a general framework for numeri-
cal shape optimization using the vertex morphing parametrization technique. We deal
with both 2D and 3D shape optimization problems, of which 3D problems usually
tend to be expensive and are candidates for special attention in terms of efficient
and high-performance computing. The paper demonstrates the different aspects of the
framework, together with the challenges in realizing them. Several numerical exam-
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ples involving different physics and constraints are presented to show the flexibility
and extendability of the framework.

Keywords Shape optimization · Vertex morphing · Geometric constraints ·
Multi-physics optimization · Additive manufacturing

1 Introduction

Design optimization has been an indispensable part of the engineering design pro-
cess across many disciplines; prominent fields include aerospace and airplane design.
In this context, topology optimization has been used extensively to generate opti-
mal designs under given conditions [2,5,39]. With the developments in recent times,
shape optimization has also gained importance in simulation driven design and opti-
mizations. [4,15,27,29] present some interesting applications of shape optimization.
Traditionally in shape optimization, a parametrization of the shape of the object and
corresponding parameters are used in optimization as design variables. For complex
geometries, this parametrization procedure is tedious and can limit the freedom in
shape optimization. In contrast to the above node-based shape optimization provides a
higher degree of freedom, by taking the nodal coordinates of the discretized geometry
as design variables.

The advantage of using the nodal coordinates as design parameters is twofold;
first, it provides the largest possible design space for optimization, and second, it
eliminates the necessity of using an explicit parametrization of the geometry. Previous
works together with the original paper of [8] and the works [8,35] introducing vertex
morphing regularization in the context of node-based shape optimization have shown
promising results in different applications. Today, thanks to the improvements in the
computational power and hardware, the number of design variables used in shape
optimization have increased by many folds. This increase, along with an expanding
number of application areas, is pushing the performance limits of the optimization
techniques and the frameworks providing optimization and related capabilities.

In the wake of increasing usage and importance of node-based parametrization, an
efficient andflexible frameworkoffering respective functionalities becomes the needof
the hour. The two essential characteristics of such a framework are its ability to include
new algorithms and techniques, and the ability to extend the existing ones. Apart from
these, it is vital that the framework is able to work with external solvers which provide
the primal solution and sensitivity information required for shape optimization.

In this work, we present a variety of multi-disciplinary applications of shape
optimization achieved with the framework along with a description of its important
capabilities. The above-listed requirements of the framework are realized using imple-
mentations in C++, which then are exposed to Python. The implementations in C++
deal with computationally expensive tasks, whereas the python routines steer the opti-
mization process. The python scripting layer gives the necessary flexibility and ability
to prototype different optimization problems and algorithms rapidly.

Previous works on similar tools for a general optimization like pyOpt [31], GEMS
[17], DAKOTA [14] though have several optimization algorithms readily available,
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do not provide functionalities necessary for computing geometrical constraints, which
arise in shape optimization problems. Apart from this, the lack of possibility to deal
with different external solvers and parametrizations in a unified way makes them less
suitable for shape optimization. Recently developed tools put forth like ABCD tool
box [32] come close to the current work, but are developed with focus on specific
applications and especially lack capabilities to handle node-based shape optimization.
Though OpenMDAO [21] frameworks’ objectives are parallel with the current work,
it relies on applications and tools with extensive access to inner data structures to
compute necessary quantities for optimization. modeFRONTIER from ESTECO is a
commercial toolwith a user-friendlyGUI platformwhich has the similar capabilities as
the current work. Ebes + jMetal a tool presented in [38] though can do multi-objective
optimization, lacks capability to customize and specialize the provided objectives or
constraints and depends heavily on external tools for this. On the other hand, tools for
solving coupled multi-physics problems like EMPIRE [36] and preCICE [10] contain
the ability to work with different solvers. However, their focus is on a different set
of problems and are less suitable for advanced and sophisticated shape optimization
problems.

The current framework used in the current work differs from the tools mentioned
above in terms of its focus on requirements for shape optimization using vertex mor-
phing parametrization. It also provides a flexible and generic interface to compute
and include geometrical and other special types of constraints. It also uses a flexible
methodology for the exchange of data required for optimization. These features also
allow the usage of the current framework together with other tools, thus enabling a
multi-physics optimization; more details are presented in Sect. 4.3.1.

The remainder of the paper first presents the theory of shape optimization and vertex
morphing technology used in the optimization. The discussion of software concept
and the details framework follows the theory. The paper concludes with the discussion
of different application cases and results obtained using the framework presented, thus
demonstrating its capabilities.

2 Shape Optimization Problem

The shape optimization problem following the node-based approach described in [26]
may be defined as

min
s�

J (X�(s), Q(X�))

subject to Ai, j s j − X�,i = 0, i = 1, . . . ,m�, j = 1, . . . ,ms .

g j (X�(s), Q(X�)) ≤ 0, j = 1, . . . ,mg.

g�, j (X�g ) ∈ g, j = 1, . . . ,m�g .

h j (X�(s), Q(X�)) = 0, j = 1, . . . ,mh .

h�, j (X�h ) ∈ h, j = 1, . . . ,m�h .

r j (X�(s), Q(X�)) = 0, j = 1, . . . ,m� + m�.

(1)
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where � ⊂ ∂� is the design boundary of the computational domain �; unless noted
otherwise, X� , X ∈ R

3 denotes the vector of nodal coordinates of size 3m�; A is a
generic mapping matrix which performs transformation between the design geometry
X� and the design variables s; J , g and h, respectively, denote the objective function to
beminimized, the vector of inequality constraints and the vector of equality constraints.

�g and�h are the subsets of the boundary� which are subject to geometric inequal-
ity constraints g� and equality constraints h� , respectively. r denotes the residual
of the state/primal governing equations which may be nonlinear and Q denotes the
state/primal vector.

The geometric constraints can be enforced on the optimization problem in multiple
ways. A direct approach is to formulate them point-wise, which means for each mesh
point X�, j , scalar-valued constraints h j and g j are evaluated and satisfied individually.
In context of node-based shape optimization with vertex morphing, this has been
investigated by [4] for no penetration constraints. As an alternative, multiple geometric
constraints of the same type can also be aggregated into one single constraint and
therefore be treated in a weak sense. In such cases, they will not be fulfilled on every
point, but in an average sense. This approach is used in the example presented in
Sect. 4.2.1. A third option is to directly include the geometric constraint into the
design parametrization, and apriori exclude infeasible designs [34].A similar approach
is used in the example from Sect. 4.1. In addition to these geometric constraints,
the optimization problem can be subjected to any number of physics-based equality
and inequality constraints. Literature provides robust methods for enforcing these
constraints [7,11,16].

2.1 Vertex Morphing Technique

Gradient-based first-order optimization methods can be used to solve the node-based
shape optimization problempresented above.Apart frombeing one of the fastestmeth-
ods, they are also robust with minimal effort. Adapting these methods and considering
that for the node-based approach, the solution of optimization problem requires the
gradients, also called sensitivities, of the objectives and constraints with respect to the
design variables s. Since the nodal coordinates are considered as the design variables,
the sensitivity with respect to the nodal coordinates at each node on the design bound-
ary� is required. Formany classical objectives considered in engineering applications,
these nodal sensitivities tend to be noisy and an optimization with noisy sensitivities
produce an undesirable shape of the geometry, though it is optimal. Figure 1 shows and
example noisy adjoint sensitivities calculated for strain energy and the correspond-
ing optimal shape generated. To deal with this problem, in the current framework for
optimization we use the vertex morphing parametrization technique proposed in [8] to
consistently transfer the shape optimization problem from the spatial design space X�

(the geometry space) to a new design space s� , called control space, using a mapping
operation. This will also filter the sensitivity field, thus smoothing it. Unless other-
wise noted, in the following, the control field lives on the same discretization as the
surface of the geometry. This allows the largest design space possible with minimal

123



168 Journal of Optimization Theory and Applications (2021) 189:164–189

Fig. 1 Unfiltered noisy sensitivities and resulting optimal shape

to negligible modeling effort.

s� = [
s�,1, s�,2, . . . , s�,m�

]
(2)

As defined in Eq. 1, the association of the discretized geometry with the discretized
design space is expressed via the operator matrix A. This operator maps s� onto X�

as follows:

X� = A s� (3)

In a continuous space, the three-dimensional geometry at point X0 = (X1
0, X

2
0, X

3
0) of

the optimization surface � is generated from the surface control field s = (s1, s2, s3)
via a smoothing filter operation:

X0 =
∫

�(s,r)

F(X, X0) s ⊗ n · d� =
∫

�(s,r)

F(X, X0) s d� (4)

where F could be any reasonable filter (kernel) function. � is the portion of � which
lies within a sphere of radius r centered at X0, where r is the filter radius (assumed
to be constant); ‖X − X0‖ is the Euclidean distance to the center of the filter X0; n
is the unit normal vector to the surface; d� = nd� is the unit normal component of
the surface element. See Fig. 2 for a schematic of the used notation. For more detailed
information on different filter functions and their effect on the nature of the A matrix,
the readers are referred to [8].

As discussed, the key component required for any gradient-based shape optimiza-
tionmethod is the objective and constraint function gradients with respect to the design
variables d(J,g,h)

ds which will be used to generate the geometry update �s. In case,
the derivatives of the functions J, g, h are computed w.r.t to the spatial coordinates
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Fig. 2 Notional schematic of the design surface (�), the filter function (F), the integration area (�) and the
boundary of � (�)

d(J,g,h)
dX0

, it is required to compute the shape derivative, i.e., the derivative of the surface

coordinatesw.r.t. control field dX0
ds , see Eq. 7. Various establishedmethods for calculat-

ing the sensitivities are in practice; for example [5] shows a discrete adjointmethod, [6]
introduces a semi-analytical method, and [19] among others showcases a continuous
adjoint method this adjoint sensitivity calculation is extended to unsteady problems
in [13]. Some of these methods are already available for usage in commercial and
open-source software packages. An in-depth discussion about the available method-
ologies for calculation of sensitivities is out of scope for the current contribution.
Since the current contribution focuses on different aspects the framework necessary
for shape optimization and the applications themselves, in the following discussion,
we consider the shape sensitivities are given and the computational costs involved are
not considered though they cannot be neglected. In the examples presented in Sect. 4,
the methods used for calculating the sensitivities are explicitly mentioned for each
application as multiple methods are used. This in turn establishes the versatility of the
framework much strongly.

Given the control field and the objective gradients at the kth optimization iteration,
the new set of design variables can be calculated as:

sk+1
� = sk� + �sk� (5)

where �sk� is the update of control field. For a simple steepest descent algorithm, the
computation of the new design can be written as:

sk+1
� = sk� − α ∇sk� (6)

Here α is the optimization step length and ∇sk� is the gradient of the objective J with
respect to the control variables s. Other more advanced algorithms like sequential
quadratic programming [20], front propagating algorithms [28] can also be used to
generate the value of �sk� . In the current contribution, unless otherwise mentioned,
a steepest descent algorithm is used to generate the update of the control field. ∇sk�
can be calculated using the chain rule of differentiation. Thus, the objective derivative
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with respect to the shape controls reads:

dJ

dsk�
= dJ

dXk
�

· dX
k
�

dsk�
(7)

where
dJ

dXk
�

and
dXk

�

dsk�
are the objective derivative with respect to mesh coordinates

and shape derivatives of vertex morphing, respectively. From Eq. 4, the value of
dXk

�

dsk�
can be given by the expression [4,8,9,24]:

dXk
�

dsk�
≈ Ak (8)

Following the above derivations, the shape update can be computed as:

�Xk
� = Ak(Xk

�) · �sk� (9)

Themapping operation in Eq. 9 ensures the smoothness of the shape update calculated.
Finally, it is worth to mention that vertex morphing can preserve the main features of
the design surface. More precisely, it allows shape changes which are not affecting the
“design character” aesthetic and geometrical features [8,23]. Asmentioned previously,
F and r are the design handles which control the feature preservation. A good example
is the preservation of feature lines (sharp edges), which could be achieved by a proper
choice of the filter radius r [23]. The reason for this is that all the features smaller than
the radius r are only subject to a bulk and rigid motion, without considerable shape
deformation. Another example would be the thickness control which results in the no
self-penetration property.

For applying the constraints defined by g, h their derivatives d(g,h)
dX0

are transferred
to the control space by the following operation

d(g, h)

dsk�
= Ak d(g, h)

dXk
�

(10)

and the constraints can be applied using one of the many methods available. In this
work, a version of the gradient projection method introduced in [22, Chapter 5] is used
to apply the constraints. This method satisfies constraints by projecting the descent
direction onto the subspace tangent to the active constraints. Furthermore, a correction
is performed to bring the design update back to the feasible domain.

As a conclusion of this section, Algorithm 1 outlines the steps followed and compu-
tations required for the constrained node-based shape optimization by means of vertex
morphing.
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Algorithm 1 Active-set based constrained shape optimization using vertex morphing
//initialization

1: X0
� ← discretize design surface �

2: discretize bounding surface �b
3: search structures on � and �b

//optimization loop
4: for k = 1, 2, . . . do

// solve state problem using external solvers
5: rk (Xk

�, Q(Xk
�)) = 0

// calculate shape gradients of objective also using external solvers

6:
d J

d(kX�)
// find active inequality constraints

7: gkj ≥ 0, j = 1, . . . ,mga .

// calculate shape gradients of active constraints

8: Ck ←

⎡

⎢⎢
⎣

dk ga
dkX�

dh
dkX�

⎤

⎥⎥
⎦

(mh+mga )×3m�

// calculate mapping matrix

9: Ak ← d(Xk
�,i )

d(sk�)
= ∫

�

F(X, X i ) d�, i = 1, . . . ,m.

// map gradients of objective to control space Eq. 7

10:
d J

d(sk�)
← d J

d(Xk
�)

. Ak

// map gradients of active constraints to control space
11: Ck

m ← Ck . Ak

// calculate feasible search direction using algorithm of choice (Eq. 9, 6 )
12: pc,k ← Calculate search direction

//calculate design update
13: �sk ← α pc,k

//map design update to geometry space
14: �Xk

� ← Ak . �sk�
15: check convergence
16: end for

3 Software Framework

In the fast-evolving design process involving teams from different backgrounds, the
ability to test various ideas with several constraints and objectives is fundamental. For
optimization, this means the ability of the framework to achieve this with minimal
effort from the user. For efficiently solving the optimization problem described in
Algorithm 1, the following vital capabilities of the framework are noteworthy:

Usage of external tools and solvers as black-box In the optimization workflow
described in Algorithm 1, the objective value and its gradient (statement 6), constraint
values and their gradients (statement 8) with respect to the shape are calculated by the
external solvers and provided to the optimization framework. This enables a modular
and black-box treatment of the solvers for evaluating the responses and if necessary
constraints. This approach also allows the framework to performoptimization based on
different physics and design parameters. Based on this rationale, a black-box treatment
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of the solvers is used in this work. For such a design, the communication module with
different external solvers to transfer the quantities as mentioned earlier becomes a vital
part of the optimization framework.

Parametrization techniques In shape optimization, parametrization of geometry is
the procedure to define a set of parameters to control the shape that is optimized.Choice
of a the parametrization can result either in a reduction or an increase in the number
of design variables, thereby effecting the computational effort. Different parametriza-
tion techniques have been previously proposed and used [33]. As not every technique
is suitable, efficient, and possible for every optimization problem, the optimization
framework should have the ability to extend and assimilate different parametriza-
tion techniques quickly. The design structure of the framework allows for different
parametrizations. The current work implements a discrete node-based parametriza-
tion approach described in Sect. 2.1. The versatility of the presented framework is
also demonstrated in its ability to nest between two different parametrizations during
the optimization processes. An example is presented in Sect. 4.1.

Computing geometric and other specialized responses As mentioned previously,
the external physics solvers perform the calculation of state-based responses, con-
straints, and their gradients. In addition to such responses, other types like geometric
[4], stamping constraints presented in Sect. 4.2.1 are also crucial in industrial appli-
cations of shape optimization. Computation of some of these specialized responses
may not be possible with the external solver. In such cases, the possibility to compute
them within the framework is necessary.

These features are critical in enabling the researchers to experiment with algorith-
mic procedures and allow the usage of the framework for industrial applications by
practitioners.

3.1 Implementation

The implementation of the optimization framework is conceptually divided into two
parts: first, the computation and memory intensive part, and second is the algorithmic
part which organizes the data and workflow. Considering the nature of these two parts,
C++ and Python are chosen, respectively, for them. This combination simultaneously
enables efficient computations and improved readability of the algorithmic procedure.
The Python layer also helps with fast and easy prototyping and setup of new and
experimental optimization procedures.

Figure 3 shows the thematic arrangement of different components of the frame-
work and steps in the optimization workflow. It also illustrates the critical aspects
of the framework, of which the distinction between Python and C++ layers and the
interface with the external solvers are noteworthy. The C++ implementation deals
with computationally intensive tasks of formulating the mapping between different
parametrizations (Eq. 1), node-search, linear algebra, and the data structure. The sec-
ond part, implemented in Python, deals with orchestrating the functionalities in an
optimization algorithm.
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Fig. 3 Illustration of the optimization framework

Parameterizations and mappers In the vertex morphing technique described in
Sect. 2, though the design parameters are the nodal coordinates of the discretized
surface, the optimization happens on a different control space s. A transformation
between the geometry coordinates and control parameters is performed using a map-
ping matrix (Eq. 8). This same procedure can be used for transformation between
arbitrary parameterizations. Such generalization allows the possibility of having dif-
ferent parameterizations. Section 4.1 presents a series of nested parameterizations
using this generalization.

Communication with black-box solvers One of the essential features of a general
optimization framework is its ability to work with solvers treating them as “black-
box” and communicate the objective and constraint values, their gradients and the
shape updates. Such black-box treatment of solvers enables the framework to work
on different optimization problems with different physics involved. A novel detached-
interface approach enabling modularity with minimal and framework independent
changes to the solver is developed. The features of this approach are:

– The interaction between the framework and the external “black-box” solver(s) is
done via a solver-wrapper developed to adhere to the interface of the base solver
in the framework. This allows uniform treatment of different solvers-wrappers
and easy switch between them. Together with functions for exchanging data, this
interface also contains functions to control the solver. A solver-wrapper will only
implement the necessary functions depending the degree of control the “black-box”
solver allows. This wrapper can also contain specific routines for communicating
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Fig. 4 List of functions in the solver-wrapper interface

the data with the actual solver. Figure 4 shows the important functions in the
interface.

– The actual data communication between the framework is done via a different
input/output (IO) class object. The functions from Fig. 4, ImportDataField,
ExportDataField, ImportModel, ExportModel are responsible for the
data exchange in the solver-wrapper. These functions are then delegated to the IO
class object. This delegation of data exchange to an interfaced IO class enables
decoupling the IO from the solver-wrapper and thus enables re-usage of existing
IO methodologies and implementations between different solver-wrappers.

– The external “black-box” solver is completely independent from the developed
framework. This implies that the solver can choose and implement any routines to
export the objective or constraint sensitivities together with their values. This will
enable reuse of already existing routines developed for other tools, thus simplifying
the deployment of the solvers on different computing environments.

The following solvers-wrappers for external solvers are implemented in the framework
using the above-described detached interface approach and are readily available for
usage.

• OpenFOAM [37]
• SU2 [30]
• KratosMultiphysics [12,25]
• Altair OptiStruct
• StarCCM
• CARAT++ (Internal structural analysis tool at Chair of Structural Analysis, TUM)
• AVLFire
• Abacus

The usage of the above solver-wrappers is also stated in the numerical examples
presented in Sect. 4. The following are the steps to setup a new solver-wrapper, using
the above-described detached interface, and use a new black-box solver together with
the optimization framework:

– Implement the following routines in the solver

– To output the objectives and their sensitivities.
– To accept the design update from the optimization framework.
– To accept a convergence signal from the optimization framework.

This implementation in the solver has no dependency on the optimization frame-
work whatsoever. Thus, the developers are free to use any tool of their choice and
convenience to achieve this functionality.
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– Use the interface provided by the optimization framework to create a wrapper to
the solver either in C++ or in Python. This wrapper will be responsible for:

– Interacting with the solver and give necessary instructions to the solver to per-
form different computations. For example, to compute the primal or sensitivity
values.

– Provide the design update computed by the optimization framework to the
solver.

Though these operations depend upon the data structure of the optimization frame-
work, these can be customized to the needs specific to the solver. For example,
data transfer via file I/O or in memory transfer using MPI protocols.

The geometric constraints and the procedures presented in Sect. 4 are implemented
following the procedure mentioned above and are included in the framework.

4 Optimal Shape Design Applications and Numerical Results

In the following section, we present different application cases which are optimized
using the above-described optimization framework. Since the objective of the pre-
sented examples is to showcase the capabilities of the framework, description of the
specialized optimization procedures adapted is provided when possible and references
are provided otherwise. Unless explicitly mentioned, all the simulations below have a
numerically stable behavior. The application examples are grouped in different focus
areas, demonstrating capabilities of the framework and the special optimization pro-
cedures applied.

4.1 Focus Area: Multi-physics andMulti-objective Shape Optimization

This application example is a multi-physics problem from BMW Motorsport: Aero-
dynamic and structural shape design of the BMW M8 GTE wheel (Fig. 5). As can
be seen in Fig. 6a, the spinning structure is put in a virtual wind tunnel to evaluate
the aerodynamic performance. A moving reference frame (MRF) is used to account
for the rotation of the wheel. A finite-volume discretization with 8 million cells forms
the fluid domain and is modeled using in-compressible Navier–Stokes equations. The
structural model is made up of approximately 1 million tetrahedral finite elements and
rigid body elements. The fluid and structural models including boundary conditions
are shown in Fig. 6.

OpenFOAM and Altair OptiStruct are used to solve the primal quantities fluid
and structural models, respectively. The outer surface of the spokes is chosen as the
design surface, which is also the interface between the fluid and the structure models.
The surface shape sensitivities of the fluid are calculated using the adjoint solver of
OpenFOAM: adjointOptimizationFoam, and the structural surface shape sensitivities
are calculated using adjoint technology of OptiStruct. The surface mesh from fluid
and structure do not match due to the different mesh requirements for the flow and
structure. The structure interface mesh consists of 28,000 nodes, while the fluid inter-
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Fig. 5 BMW M8 GTE and the corresponding wheel rim

Fig. 6 Computational models of the rim
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face mesh consists of 145,000 nodes. To deal with the non-matching meshes at the
fluid–structure interface, we take advantage of the important property of the vertex
morphing technique presented in Sect. 2.1 of being able to discretize the geometry and
control spaces with different mesh resolutions. For this purpose, the interface mesh
with less resolution, here the structure mesh with 84,000 design variables, should be
chosen as the control mesh. The motivation of this choice comes from the fact that the
representation of design modifications on the coarser mesh on a finer mesh is possible
but not vice versa. Then, the objective functions’ gradients w.r.t. the design variables
(∇s J F ,∇s J S) and the geometries’ updates (�XF

� ,�X S
�) are calculated, respectively,

as

dJ F

dsS�
= dJ F

dXF
�

· dX
F
�

dsS�
= dJ F

dXF
�

.
[
AFS

]

3mF
� ×3mS

�

(11a)

dJ S

dsS�
= dJ S

dX S
�

· dX
S
�

dsS�
= dJ S

dX S
�

.
[
ASS

]

3mS
�×3mS

�

(11b)

and

�XF
� = AFS . �sS� (12a)

�X S
� = ASS . �sS� (12b)

where J F and J S represent objective functions whose spatial gradients on the fluid
surface mesh and the structure surface mesh, respectively. The matrices AFS and ASS

are the operators which define the association between the non-matching interface
meshes and the discretized design space. Based on the derivation of vertex morphing
in Sect. 2.1, the entry in row i and column j of AFS is computed as

AFS
i j = dXF

�,i

dsS�, j

=
∫

�S

F(X, XF
�,i ) d� (13)

where �S is the portion of �S which lies within a sphere of radius r and center XF
�,i .

Multiple response functions quantify the performance of the described problem.
There are multiple ways to deal with multiple objectives in an optimization problem.
Some of them include weighted-sum method, weighted min–max method, lexico-
graphic and Pareto optimization methods. In the framework presented, owing to its
highly effective and simple formulation, a weighted-sum method is used. In this
method, a compromise function is formed as a weighted sum of existing objectives,
the total drag force (J F ) acting on the wheel, and the total strain energy (J S) of the
wheel. This forms a new objective, thus transforming a multi-objective into a single-
objective optimization problem. To give both the objectives equal importance in the
optimization, equal weights are chosen for them in forming the combined objective.
The following geometric constraints act on the shape optimization: (a) an equality
constraint on the inner volume of the wheel (mass) and (b) an n-fold cyclic symmetry
condition on the design surface. While the former is a single scalar-valued constraint,
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Fig. 7 Cyclic symmetry of the wheel and the design surface (Green)

the later results in numerous point-wise geometric constraints. Figure 7 explicitly
focuses on the cyclic symmetry property of the wheel. As can be seen, the wheel
surface � is divided into five identical surfaces �i , i = 1, . . . , 5, each of which is
generated by rotating �1 by θi = (i−1)π

5 around the Y-axis. In the current implementa-
tion, making the shape gradients rotationally symmetric enforces the cyclic symmetry
constraint. The following linear transformation makes the shape gradients rotationally
symmetric:

X� =

⎡

⎢⎢⎢⎢
⎣

X�1

X�2

X�3

X�4

X�5

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

[AP1,1]
[AP2,1]
[AP3,1]
[AP4,1]
[AP5,1]

⎤

⎥⎥⎥⎥
⎦

· X�1 , AP i,1 =

⎡

⎢⎢⎢⎢
⎣

T i 0 . . . 0
0 T i . . . 0
...

...
. . .

...

0 0
. . . T i

⎤

⎥⎥⎥⎥
⎦

3m�i ×3m�1

(14)

where AP i,1, i = 1, . . . , 5 is the transformation matrix from surface �i to �1. T i is
the rotation matrix for each section, and it may be calculated as

T i =
⎡

⎣
cos θi 0 − sin θi
0 1 0

sin θi 0 cos θi

⎤

⎦ (15)

Then the shape variations in the surface � are associated with the shape variations
of the surface �1 as follows:

dX�

dX�1

= AP (16)
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Fig. 8 Initial versus optimized design of the section

Table 1 Summary of the multi-objective optimization of the BMWM8 GTE wheel

Function Change (%)

Total drag −35

Compliance 1 −17.76

Compliance 2 −16.38

Compliance 3 −9.54

Compliance 4 −19.47

Compliance 5 −19.47

Compliance 6 −19.40

Finally, the rotationally symmetric form of objectives’ gradients can be calculated by
using the following equations:

dJ F

dsS�

∣∣∣∣
rs

= dJ F

dXF
�

. AP F . (AP F )T . AFS, AP F = dXF
�

dXF
�1

(17)

dJ S

dsS�

∣∣∣∣
rs

= dJ S

dX S
�

. AP S . (AP S)T . ASS, AP S = dX S
�

dX S
�1

(18)

The above-described process of making the surface gradients symmetric is
implemented in the current frame work taking advantage of it modular nature of
implementing at C++ level shown in Fig. 3. Table 1 and Fig. 8 summarizes the out-
come of the described optimization problem. It shows a clear improvement in drag and
compliance. One can also notice the cyclic symmetry in the resultant design geometry
presented in Fig. 9. This example, in addition to demonstrating the ability to work with
different solvers for physics and using multiple objective functions, also demonstrates
the possibility to introduce geometrical constraints into the parametrization.
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Fig. 9 Optimized shape and the final improvement in the compliance

4.2 Focus Area: Flexibility and Adaptability for Manufacturing Constraints

Real-world industrial applications rarely produce unconstrained shape optimization
problems. Physical and geometric constraints arise naturally due to the limitations
of the physical properties or those of the manufacturing process of the mechanical
component. In such applications, individual manufacturing requirements have to be
fulfilled by the optimized geometry. Those are relevant to the respectivemanufacturing
process, such as casting, molding and stamping. In the newly emerging fields like 3D
printing, new types of constraints arise on the shape of the 3D printed parts.

These different types of constraints and their inclusion in the optimization process
requires a flexible framework. In the following, we present two examples of such
specialized constraints implemented in the current framework to demonstrate its the
flexibility and adaptability.

4.2.1 Stamping

This example presents the inclusion of the stamping constraint. The optimization prob-
lem consists of a load-bearingmember of a car subjected to respective load conditions,
as shown in Fig. 10c. The member is shape-optimized for minimal strain energy. In
addition to a mass constraint, the stamping constraint is applied to the optimiza-
tion problem. Considering the surface of the component as design geometry, Altair
OptiStruct is used for structural calculation of primal and shape sensitivities. A mesh
of 10500 nodes is used for the computation.

There are multiple ways to impose the stamping manufacturability constraint. This
framework approaches the problem from a geometric point of view. The following
condition describes a perfectly stampable geometry: for every node, when a ray trace
is shot from it in the stamping direction, the ray should not collide with any element
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Fig. 10 Stamping test case

of the mesh. In other words, looking at the mesh in the stamping direction, all nodes
should be visible. The volume Vh formed by the hidden parts of the mesh forms the
constraint objective. Such a constraint is called a soft constraint as it is not satisfied
node wise but on average. Figure 10a shows the hidden volume Vh visually. Numeri-
cally, Vh is calculated using ray-tracing. A novel radius search in themesh is employed
to reduce the computational costs induced by ray tracing. Figure 10b shows the opti-
mized cross section of the component with and without stamping constraints. The
described geometric constraint is specifically designed to ensure that the optimized
geometry can be produced using a stamping manufacturing process. Here, the geo-
metric formulation replaces a much more elaborate simulation of the manufacturing
process. This application case shows the ease of integration of such specific constraint
formulations into the optimization process.

4.2.2 Stackability

The emerging and established techniques in the field of additivemanufacturing and 3D
printing impose a vital requirement of stackability on the components being printed.
This requirement is more pronounced when using powder bed-based techniques in
metal printing. A stackable component allows printing of more components per unit
area. This transforms into a geometrical requirement of placing two consecutive parts
as close as possible to each other. In the current framework, this is realized as a
geometric no penetration constraint. The current framework operating at BMWGroup
employs this technique successfully to different 3D-printed geometries.

An exemplary application is presented here. It consists of a structural component
subjected to pseudo-load conditions. As shown in Fig. 11a, the component is to be
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Fig. 11 Stackability test case

stackable in the given direction.AltairOptiStruct is used for simulation of the structural
model with 22,000 nodes. The shape of the component is optimized for minimal strain
energy subjected to constraints on stackability. The stackability constraint is imple-
mented as a solver using the solver interface “SolverWrapper” of the framework. This
solver instead of solving for the primal values will only perform the necessary geomet-
ric operations required for calculating the sensitivities for the constraint. Figure 11b
shows the optimized component after 20 optimization iterations. As seen here, the
shape of the component respects the no penetration with the two adjacent components
and thus is more suitable for mass production using 3D printing technologies.

This application uniquely showcases the re-usability of existing features, in this
case, geometric no penetration constraints, to formulate and realize new optimization
problems to include diverse application fields.

4.3 Focus Area: Communication and Usage of Multiple Solvers

Multi-physics simulations have been an essential tool in understanding complex phys-
ical phenomena. In this context, multi-physics optimization is also equally important.
An effortlessway for performing such optimization is to use the existing primal solvers
for calculations. This approach not only is modular but reuses the expertise of physical
solvers independent of each other without introducing more complexity.

These multi-physics optimization problems introduce a new level of complexity
to the enabling framework as these problems need to work with multiple solvers
simultaneously and choreograph them in a optimization algorithm. The following two
application casesmake evident the capability of the software design of the optimization
framework to work with such complex problems.

4.3.1 FSI Shape Optimization: Flexible ONERAM6Wing

The first example in this focus area is a multi-objective and multi-disciplinary shape
optimization of a flexible ONERA M6 wing immersed in a compressible inviscid
fluid flow. Both the fluid analysis (CFD) and the structural analysis (CSD) assume
steady cruise conditions. For the CFD analysis, the compressible solver from SU2
[30] is used and the CSD analysis is carried out in KratosMultiphysics framework
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Fig. 12 Description and surface discretization of ONERA M6 for FSI. Left: structural model, right: fluid
model

[25]. The wing structure is clamped at the wing root, as shown in Fig. 12. The steady-
state transonic flow over the ONERAM6 wing at Mach 0.8395 and angle of attack of
3.06◦ is computed using nonlinear Euler equations. The wing structure is purposefully
modeled to produce large deformations and uses 4-node tetrahedral nonlinear solid
elements. The flexible structure for the wing introduces fluid–structure interaction into
the model. So the corresponding shape sensitivity analysis becomes an aeroelastic
problem and requires a coupled sensitivity analysis to be performed. The optimization
problem is formulated with the lift to drag ratio (efficiency) from fluid and strain
energy as a weighted objective and the inner volume of the wing constraints this
optimization problem. The shape sensitivities for these objectives are also calculated
in the respective solvers. Naturally, the fluid and the structural domains have two
different levels of refinement. As in the previous application of Sect. 4.1, the coarser
wing surface mesh (structure surface mesh) is used to parametrize the surface using
vertex morphing technique. Therefore, the filtering operations presented in Eqs. 11
and 12 are used in the optimization process.

The optimization resulted in a 32.4% increase in the lift to drag ratio and a 52%
decrease in the total structural strain energy. The optimization history is presented
in Fig. 13. Furthermore, Fig. 14a compares the optimized (scaled deformations) and
initial configuration of thewing. As seen in Fig. 14b, the strong shockwave that existed
along the span is reduced significantly. A detailed discussion about the methodology
followed and results is presented in a parallel publication by one of the authors [3].

This example shows the applicability of the framework even for highly complex
shape optimization with a fully coupled multi-physics problems involved. The shape
update of the non-matching computational meshes is controlled using the vertex mor-
phing method without additional modeling effort.
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Fig. 13 Optimization history for
flexible ONERA M6 wing
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Fig. 14 Results of shape optimization of ONERA M6 wing

4.3.2 Multi-disciplinary Shape Optimization: Spiral Water Jacket

Further expanding upon the use of vertex morphing in multi-disciplinary applications,
the optimization of a spiral water jacket is investigated. Optimal design of an electric
motor water jacket, seen in Fig. 15b, is a de facto multi-disciplinary problem requiring
the consideration of many different physics. The primary role of the water jacket is
to cool the motor. This cooling effect in turn improves power output and the life of
components in and around the motor. The initial geometry, as shown in Fig. 15b,
represents an internal flow region within the motor housing. This application of shape
optimization with vertex morphing considers a simplified optimization considering
only the flow and static structural properties. The objective of the optimization is to
minimize the pressure drop while respecting a maximum stress constraint. Besides,
an internal geometric restriction was placed on the geometry to maintain a minimum
internal wall thickness between the water jacket and the stator located inside the house
as previous runs had shown this to be a problem.

The flow and thermal problem are solved using amonolithic conjugate heat transfer
(CHT) problem using the commercial solver Star-CCM+, while the structural analysis
is carried out in the commercial solver Optistruct. The consideration of the thermal
load in the structural solver was the source of the coupling between the models.
The temperature field calculated in Star-CCM+ is applied to the Optistruct model
via a mapping operation also implemented in optimization framework described. The
design surface is the surface of the water jacket and the 22400 nodal coordinates on
this surface act as control variables.
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Fig. 15 Optimized geometry for the core supports

(a) Normalized Objective. (b) Normalized Constraints.

Fig. 16 Response functions from the optimization of the water jacket

The optimization was carried out for 10 steps before it stops because of mesh-
related issues. Though geometric changes are small, the improvement in the pressure
drop amounted to a reduction of about 30%. The main changes to the geometry are
around the sand core support geometries. This is shown in Fig. 15a. These features
exist due to the sand core casting technique used to manufacture the part. Although
there are improvements in this case, a proper adjoint coupled problem may be more
successful at maintaining stresses below the permissible limit. Additionally, further
constraints and objectives representing the manufacturing technique may be required
as the changes seen here are likely to have a direct impact on themanufacturing process
as well. In this application case, in addition to the communication with two external
solvers, the transfer of the temperature field from fluid to structural models is also
performed using the current framework. This application is a prime example of the
flexibility and generality of the interfaces and the implementation.

4.4 Computational Performance

Quantification of the computational performance of an optimization process is not
straightforward as the components that consume the lion’s share of the computation
time are the individual physics solvers computing the primal, possible response gra-
dients. A discussion on performance of such solvers is a discipline on its own and
is out of scope of current contribution as they are treated as black-boxes. Therefore,
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Fig. 17 Scaling for vertex morphing in the optimization framework

this subsection focuses on the performance of the framework itself; this includes the
operations of 8 till 15 of Algorithm 1. To this extent, an exemplary test case of a
flat square surface with pseudo-sensitivity information is taken to demonstrate the
computational capabilities of the optimization framework. An additional factor that
strongly influences the performance of the implemented vertex morphing technique is
the filter radius illustrated in Fig. 2. This determines the average number of neighbors,
for each node, which are inside the radius. Figure 17a shows the strong scaling plot of
the framework while keeping the average number of neighbors constant. Figure 17b
also shows the performance of the framework for the case with 1,000,000 nodes and
an increasing number of neighbors. As expected, the computational cost increases as
the number of neighbors increases, but only linearly. This shows that the framework
is efficient in both regards.

5 Conclusion and Outlook

In this work, we introduced a concept of a framework for performing shape optimiza-
tion using vertex morphing. The framework offers a flexible interface to use different
external physics solvers. For this, an innovative detached-interface approach is intro-
duced. Multiple commercial and open-source tools used in the applications give an
insight into the generality of this approach. It also has the possibility to include geomet-
ric and other special constraints in the optimization process.Wide range of application
cases with different levels of the complexity, especially involving multi-physics sim-
ulations together with geometrical constraints, prove the flexibility and robustness of
the framework presented. This design of the framework drawing on the object-oriented
features of C++, and the scripting nature of Python programming languages provide a
high degree of flexibility for the developers and practitioners to realize new optimiza-
tion problems. The efficiency and the capability of the framework in handling a large
number of design variables are also showcased with the applications.

As an outlook, coupled adjoint sensitivities are planned be used in the example
presented in Sect. 4.3.2 to achieve more improvement in the objective. A constant
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effort in including more commercial solver is done to increase the number of applica-
tions. Further additions to the specific industrial production constraints are in progress
together with industry partners.
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