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Abstract
We study minimization of a structured objective function, being the sum of a smooth
function and a composition of a weakly convex function with a linear operator. Appli-
cations include image reconstruction problems with regularizers that introduce less
bias than the standard convex regularizers.Wedevelop a variable smoothing algorithm,
based on the Moreau envelope with a decreasing sequence of smoothing parameters,
and prove a complexity of O(ε−3) to achieve an ε-approximate solution. This bound
interpolates between theO(ε−2) bound for the smooth case and theO(ε−4) bound for
the subgradient method. Our complexity bound is in line with other works that deal
with structured nonsmoothness of weakly convex functions.

Keywords Variable smoothing · Weakly convex · Composite minimization

1 Introduction

We study minimization of the sum of a smooth function and a nonsmooth, weakly
convex function composed with a linear operator. The case in which the nonsmooth
regularizer is convex has been studied extensively; see [1,2]. Weakly convex functions
(which can be expressed as the difference between a convex function and a quadratic)
share some properties with convex functions but include many interesting nonconvex
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cases, as we discuss in Sect. 2.1. For example, any smooth function with a uniformly
Lipschitz continuous gradient is a weakly convex function.

Our approach makes use of a smooth approximation of the weakly convex function
known as theMoreau envelope, parametrized by a positive scalar μ. Since evaluation
of the gradient of the Moreau envelope is obtained by applying a proximal operator
to the function, our method is suitable for problems where this proximal operator can
be evaluated at reasonable cost. Our method requires O(ε−3) iterations to obtain an
ε-approximate stationary point.

The remainder of the paper is organized as follows. Section 2 is concernedwith other
problem formulations related to ours and describes specific problems with weakly
convex regularizers. In Sect. 3, we give the necessary mathematical preliminaries
including a detailed discussion about the notion of stationarity we use. Section 4
describes our approach and its convergence properties. In Sect. 5, we highlight the
difference between the variable smoothing technique and a simple proximal gradient
approach, for the case in which the linear operator is not present in the weakly smooth
term.

2 Problem Class and Algorithmic Approach

The problem we address in this paper has the form

min
x∈Rd

F(x) := h(x) + g(Ax), (1)

for a smooth function h : Rd → R, a weakly convex function g : Rn → R (generally
nonsmooth) and a matrix A ∈ R

n×d . For some ρ ≥ 0, we say that

g : Rn → R is ρ − weakly convex if g + ρ

2
‖·‖2 is convex.

When g is a smooth function with a uniformly Lipschitz continuous gradient, with
Lipschitz constant L , then g is weakly convex with ρ = L . Other interesting weakly
convex functions are discussed in Sect. 2.1.

TheMoreau envelope gμ is a smooth approximation of g, parametrized by a positive
scalar μ. The Moreau envelope and the closely related proximal operator are defined
as follows.

Definition 2.1 For a proper, ρ-weakly convex and lower semicontinuous function g :
R
n → R, the Moreau envelope of g with the parameter μ ∈]0, ρ−1[ is the function

from R
n to R defined by

gμ(y) := inf
z∈Rn

{
g(z) + 1

2μ
‖z − y‖2

}
.
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The proximal operator of the function μg is the argmin of the right-hand side in this
definition, that is,

proxμg (y) := argmin
z∈Rn

{
g(z) + 1

2μ
‖z − y‖2

}
= argmin

z∈Rn

{
μg(z) + 1

2
‖z − y‖2

}
.

Note that proxμg (y) is defined uniquely by this formula, because the function being
minimized is strongly convex. We describe in Lemma 3.1 the relationship between
∇gμ(y) and proxμg (y), which is key to our algorithm.

Steps of our algorithm have the form

x ← x − γ∇(h + gμ ◦ A)(x),

for some step length γ . Accelerated versions of these approaches have been proposed
for convex problems in [3–5]. The use of acceleration makes the analysis more com-
plicated than for the gradient case; see [6,7].

2.1 Composite Problems

We discuss several instances of problems of the form (1).
Regularization with ‖ · ‖1 (LASSO). Functions that are “sharp” around zero have a
long history as regularizers that induce sparsity in the solution vector x . Foremost
among such functions is the vector norm ‖ · ‖1, which is used for example in sparse
least-squares regression (also known as LASSO [8]):

min
x

1

2
‖Bx − b‖2 + ‖x‖1. (2)

This formulation is convex and forms a special case of (1) in which A is given by the
identity. Regularization with the norm ‖ · ‖1 is used also in logistic regression [9].
Other Convex Regularizers. The case of problems (1) in which g is nonsmooth and
convex (with possible smooth and/or nonsmooth additive terms) has received a great
deal of attention in the literature on convex optimization and applications; see for
example [1,4,10–12]. The most notable applications are found in inverse problems
involving images. In particular, discrete (an)isotropic Total Variation (TV) denoising
has the form

min
x

1

2
‖x − b‖2 + ‖∇x‖1,

where b is the observed (noisy) image and ∇ denotes the discretized gradient in two
or three dimensions. TV deblurring problems have the form

min
x

1

2
‖Bx − b‖2 + ‖∇x‖1,

where B is the blurring operator; see [1,13].
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Other examples of convex problems of the form (1) include generalized convex
feasibility [4] and support vector machine classification [5]. A typical formulation
of the latter problem has h(x) = (λ/2)‖x‖2 and g(Ax) = ∑n

i=1 φ(yiaTi x), where
φ(s) = max{−s, 0} is the hinge loss and the rows of A are yiaTi , i = 1, 2, . . . n, where
(yi , ai ) ∈ {−1, 1} × R

d are the training points and their labels.
Weakly Convex Regularizers. The use of the �1 regularizer in (2) tends to depress the
magnitude of nonzero elements of the solution, resulting in bias. This phenomenon is
a consequence of the fact that the proximal operator of the 1-norm, often called the
soft thresholding operator, does not approach the identity even for large arguments.
For this reason, nonconvex alternatives to ‖ · ‖1 are often used to reduce bias. These
include �p-norms (with 0 < p < 1) which are not weakly convex, and several weakly
convex regularizers, which we now describe. The minimax concave penalty (MCP),
introduced in [14] and used in [15,16], is a family of functions rλ,θ : R → R+
involving two positive parameters λ and θ , and defined by

rλ,θ (x) :=
{

λ|x | − x2
2θ , |x | ≤ θλ,

θλ2

2 , otherwise.

(Note that this function satisfies the definition of ρ-weak convexity with ρ = θ−1.)
The proximal operator of this function (called firm threshold in [17]) can be written
in the following closed form when θ > γ :

proxγ rλ,θ
(x) =

⎧⎪⎨
⎪⎩
0, |x | < γλ,
x−λγ sgn(x)
1−(γ /θ)

, γ λ ≤ |x | ≤ θλ,

x, |x | > θλ.

The fractional penalty function (cf. [16,18]) φa : R → R+ (for parameter a > 0) is

φa(x) := |x |
1 + a|x |/2 .

The smoothly clipped absolute deviation (SCAD) [19] (cf. [16]) is defined for param-
eters λ > 0 and θ > 2 as follows:

rλ,θ (x) =

⎧⎪⎨
⎪⎩

λ|x |, |x | ≤ λ,
−x2+2θλ|x |−λ2

2(θ−1) , λ < |x | ≤ θλ,

(θ+1)λ2

2 , |x | > θλ.

(This function is (θ − 1)−1-weakly convex.)
Since these functions approach (or attain) a finite value as their argument grows in

magnitude, they do not introduce as much bias in the solution as does the �1 norm,
and their proximal operators approach the identity for large arguments.
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The regularizers of this section, and the convex ‖ · ‖ regularizer, have been used
mostly in the simple additive setting

min
x∈Rd

h(x) + g(x)

for a smooth data fidelity term h and nonsmooth regularizer g, for example in least
squares or logistic regression [15] and compressed sensing (cf. [17]).
Weakly convex composite losses The use of weakly convex functions composed with
linear operators has been explored in the robust statistics literature. An early instance
is the Tukey biweight function [20], in which g(Ax) has the form

g(Ax) =
n∑

i=1

φ(Ai ·x − bi ), where φ(θ) = θ2

1 + θ2
, (3)

where Ai · denotes the i th row of A. This function behaves like the usual least-squares
loss when θ2 
 1 but asymptotes at 1. It is ρ-weakly convex with ρ = 6.

A slightly different definition of the Tukey biweight function appears in [21, Sec-
tion 2.1]. This same reference also mentions another nonconvex loss function, the
Cauchy loss, which has the form (3) except that φ is defined by

φ(θ) = ξ2

2
log

(
1 + θ2

ξ2

)
,

for some parameter ξ . This function is ρ-weakly convex with ρ = 6.

2.2 Complexity Bounds forWeakly Convex Problems

To put our results in perspective, we provide a review of the literature on complexity
bounds for optimization problems related to our formulation (1), including weakly
convex functions. In all cases, these are bounds on the number of iterations required
to find an approximately stationary point, where our measure of stationarity is based
the norm of the gradient of the Moreau envelope (a smooth proxy).

The best-known complexity for black box subgradient optimization for weakly
convex functions is O(ε−4). This result is proved for stochastic subgradient in [22],
but as in the convex case, there is no known improvement in the deterministic setting.
As in convex optimization, subgradient methods are quite general and implementable
for weakly convex functions. However, when more structure is present in the func-
tion, algorithms that achieve better complexity can be devised. In particular, when the
proximal operator of the nonsmooth weakly convex function can be calculated ana-
lytically, complexity bounds of O(ε−2) can be proved (see Sect. 5), the same bounds
as for steepest descent methods in the smooth nonconvex case. This means that the
entire difficulty introduced by the nonsmoothness can be mitigated as long as the
nonsmoothness can be treated by a proximal operator.

For convex optimization problems, bounds ofO(ε−1) can be obtained for gradient
methods on smooth functions and O(ε−1/2) for accelerated gradient methods. These
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same bounds can also be obtained for nonsmooth problems provided that the nons-
mooth term is handled by a proximal operator. When the explicit proximal operator
is not available and subgradient methods have to be used, the complexity reverts to
O(ε−2).

It is possible to keep theO(ε−2) rate when just a local model of the weakly convex
part is evaluated by a convex operator. The paper [23] studies optimization problems
of the type

min
x

h(x) + g(c(x))

where h is convex, proper and closed; g is convex and Lipschitz continuous; and c
is smooth. (Under these assumptions, the composition g ◦ c is weakly convex.) The
O(ε−2) bound is proved for an algorithm in which the (convex) subproblem

min
y

h(y) + g(c(x) + ∇c(x)(y − x)) + 1

2t
‖y − x‖2 (4)

is solved explicitly. In themore realistic case inwhich (4)must be solved by an iterative
procedure, a bound of Õ(ε−3) is obtained in [23]. (The symbol Õ hides logarithmic
terms.)

Functions of the form g(c(x)) have also been studied in [24] for the case of a smooth
nonlinear vector function c and a prox-regular g. This formulation is more general
than those considered in this paper, both in the fact that all weakly convex functions
are prox-regular, and in the nonlinearity of the inner map c. The subproblems in [24]
have a form similar to (4), and while convergence results are proved in the latter paper,
it does not contain rate-of-convergence results or complexity results.

A differentweakly convex structure is explored in [25], inwhich theweak convexity
stems from a smooth saddle point problem. This paper studies the problem

min
x

max
y∈Y l(x, y),

for a compact set Y ⊂ R
m , where l(x, ·) is concave, l(·, y) is nonconvex, and l(·, ·) is

smooth. An iteration bound of Õ(ε−3) is proved for a method that uses only gradient
evaluations.

In light of the considerations above, the complexity bound ofO(ε−3) for our algo-
rithm seems almost inevitable. It interpolates between the setting without structural
assumptions about the nonsmoothness (black box subgradient) and the perfect struc-
tural knowledge of the nonsmoothness (explicit knowledge of the proximal operator).

In Sect. 5, we treat the simpler setting in which the linear operator from (1) is the
identity, so that F(x) = h(x)+g(x). Similar problems have been analyzed before, for
example, in [15,17]. However, it is assumed in [17] that convexity in the data fidelity
term h compensates for nonconvexity in the regularizer g such that the overall objective
function F remains convex. (We make no such assumption here.) The paper [15] does
not make such restrictive assumptions and proves convergence but not complexity
bounds.
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3 Preliminaries

The concept of subgradient of a convex function can be adapted to weakly convex
functions via the following definition.

Definition 3.1 (Fréchet subdifferential) Let g : Rn → R be a function and ȳ a point
such that g(ȳ) is finite. Then, the Fréchet subdifferential of g at ȳ, denoted by ∂g(ȳ),
is the set of all vectors v ∈ R

n such that

g(y) ≥ g(ȳ) + 〈v, y − ȳ〉 + o(‖y − ȳ‖) as y → ȳ. (5)

Modifying the convex case, inwhich subgradients are the slopes of linear functions that
underestimate g but coincide with it at ȳ, Fréchet subgradients do so up to first order.
This definition makes sense for arbitrary functions, but for lower semicontinuous ρ-
weakly convex functions, more can be said. For example, for this class of function we
know that subgradients satisfy the following stronger version of (5), for all v ∈ ∂g(ȳ),

g(y) ≥ g(ȳ) + 〈v, y − ȳ〉 − ρ

2
‖y − ȳ‖2, ∀y ∈ R

n .

Further, if we assume the weakly convex function to be continuous at a point y, then
its subdifferential is nonempty at y. Both of these claims can be verified directly by
adding ρ

2 ‖ · ‖2 to g and considering the convex subdifferential; see [26, Lemma 2.1].
Another nice property of weakly convex functions is that the definition of aMoreau

envelope (seeDefinition 2.1) extendswithoutmodification toweakly convex functions,
subject only to a restriction on the parameterμ. The proximal operator ofDefinition 2.1
also extends to this setting, and this operator and the Moreau envelope fulfil the same
identity as in the convex setting.

Lemma 3.1 ([27, Corollary 3.4]) Let g : Rn → R be a proper, ρ-weakly convex, and
lower semicontinuous function, and letμ ∈]0, ρ−1[. Then, the Moreau envelope gμ(·)
is continuously differentiable on Rn with gradient

∇gμ(y) = 1

μ

(
y − proxμg (y)

)
, for all y ∈ R

n .

This gradient ismax
{
μ−1,

ρ
1−ρμ

}
-Lipschitz continuous. In particular, a gradient step

with respect to the Moreau envelope corresponds to a proximal step, that is,

y − μ∇gμ(y) = proxμg (y) , for all y ∈ R
n . (6)

Lemma 3.1 not only clarifies the smoothness of theMoreau envelope, but also gives
a way of computing its gradient via the prox operator. Obviously, a smooth representa-
tion whose gradient could not be computed would be of only limited usefulness from
an algorithmic standpoint. The only difference between the weakly convex and convex
settings is that the Moreau envelope need not be convex in the former case.
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3.1 Stationarity

We say that a point x̄ is a stationary point for a function if the Fréchet subdifferential
of the function contains 0 at x̄ . The concept of nearly stationary is not quite so
straightforward. We motivate our approach by looking first at the simple additive
composite problem, also discussed in Sect. 5, which corresponds to setting A = I
in (1), that is,

min
x

h(x) + g(x). (7)

Stationarity for (7) means that 0 ∈ ∂(h + g)(x̄), that is, −∇h(x̄) ∈ ∂g(x̄). A natural
definition for ε-approximate stationarity would thus be

dist(−∇h(x), ∂g(x)) ≤ ε, (8)

where dist denotes the distance between two sets and is given for a point x ∈ R
d and

a set A ⊂ R
d by dist(x,A) := inf y∈A {‖x − y‖}. However, since we are running

gradient descent on the smoothed problem, our algorithm will naturally compute and
detect points with that satisfy a threshold condition of the form

‖∇h(x) + ∇gμ(x)‖ ≤ ε. (9)

The next lemma helps to clarify relationship between these two conditions.

Lemma 3.2 Let g : Rn → R be a proper, ρ-weakly convex, and lower semicontinuous
function; and let μ ∈]0, ρ−1[. Then,

∇gμ(x) ∈ ∂g(proxμg (x)). (10)

Proof From Definition 2.1, we have that

0 ∈ ∂g(proxμg (x)) + 1

μ
(proxμg (x) − x),

from which the result follows when we use (6). ��
(This result is proved for the case of g convex in [23, Lemma 2.1], with essentially
the same proof.)

This lemma tells us that when (9) holds, then (8) is nearly satisfied, except that
in the argument of ∂g, x is replaced by proxμg (x). In general, however, proxμg (x)
might be arbitrarily far away from x . We can remedy this issue by requiring g to be
Lipschitz continuous also.

Lemma 3.3 Let g : R
n → R be a ρ-weakly convex function that is Lg-Lipschitz

continuous, and letμ ∈]0, ρ−1[. Then, theMoreau envelope gμ is Lipschitz continuous
with

‖∇gμ(x)‖ ≤ Lg (11)

and
‖x − proxμg (x) ‖ ≤ μLg, ∀x ∈ R

n . (12)
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Proof Lipschitz continuity is equivalent to bounded subgradients [28], so by (10), we
have for all x ∈ R

n

‖∇gμ(x)‖ ≤ sup
{
‖v‖ : v ∈ ∂g(proxμg (x))

}
≤ Lg,

proving (11). The bound (12) follows immediately when we use the fact that x −
proxμg (x) = μ∇gμ(x) from Lemma 3.1. ��

When x ∈ R
n satisfies (9), ∇h is L∇h-Lipschitz continuous, g is Lg Lipschitz

continuous, we have

dist(−∇h(proxμg (x)), ∂g(proxμg (x)))

≤ ‖∇h(proxμg (x)) − ∇h(x)‖ + dist(−∇h(x), ∂g(proxμg (x)))

≤ L∇h‖x − proxμg (x) ‖ + ε (from (9) and (10))

≤ L∇h Lgμ + ε (from (12)).

Thus, if μ is sufficiently small and x satisfies (9), then proxμg (x) is near-stationary
for (7).

3.2 Stationarity for the Composite Problem

It follows immediately from (10) in Lemma 3.2 that for μ ∈]0, ρ−1[, we have for all
x ∈ R

d

∇(gμ ◦ A)(x) = A∗∇gμ(Ax) ∈ A∗∂g(proxμg (Ax)). (13)

Extending the results of the previous section to the case of a general linear operator A
in (1) requires some work. Stationarity for (1) requires that 0 ∈ ∇h(x) + A∗∂g(Ax),
so ε-near stationarity requires

dist(−∇h(x), A∗∂g(Ax)) ≤ ε. (14)

Our method can compute a point x such that

∥∥∇h(x) + ∇(gμ ◦ A)(x)
∥∥ ≤ ε

which by (13) implies that

dist(−∇h(x), A∗∂g(z)) ≤ ε, where z = proxμg (Ax) , (15)

where provided that g is Lg-Lipschitz continuous, we have

‖Ax − z‖ ≤ Lgμ. (16)

The bound in (15)measures the criticality, while the bound in (16) concerns feasibility.
The bounds (15), (16) are not a perfect match with (14), since the subdifferentials of
h and g ◦ A are evaluated at different points.
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Surjectivity of A. When A is surjective, we can perturb the x that satisfies (15), (16)
to a nearby point x∗ that satisfies a bound of the form (14). Since z = proxμg (Ax) is
in the range of A, we can define

x∗ := argmin
x ′∈Rd

{‖x − x ′‖2 : Ax ′ = z}, (17)

which is given explicitly by

x∗ = x − A∗(AA∗)−1
(Ax − z) = x − A†(Ax − z)

where A† := A∗(AA∗)−1 is the pseudoinverse of A. The operator norm of the pseu-
doinverse is bounded by the inverse of the smallest singular value σmin(A) of A, so
when g is Lg-Lipschitz continuous, we have from (16) that

‖x − x∗‖ ≤ σmin(A)−1‖Ax − z‖ ≤ σmin(A)−1Lgμ. (18)

The point x∗ is approximately stationary in the sense of (14), for μ sufficiently small,
because

dist(−∇h(x∗), A∗∂g(Ax∗))
≤ ‖∇h(x∗) − ∇h(x)‖ + dist(−∇h(x), A∗∂g(z)) (since Ax∗ = z)

≤ L∇h‖x − x∗‖ + ε (from (15))

≤ L∇hσmin(A)−1Lgμ + ε (from (18)). (19)

By choosing μ small, x∗ will be an approximate solution in the stronger sense (14)
and not just the weaker notion of (15), (16), which is the case if A is not surjective.

4 Variable Smoothing

We describe our variable smoothing approaches for the problem (1), where we assume
that h is L∇h-smooth; g is possibly nonsmooth, ρ-weakly convex, and Lg-Lipschitz
continuous; and A is a nonzero linear continuous operator. For convenience, we define
the smoothed approximation Fk : R

d → R based on the Moreau envelope with
parameter μk as follows:

Fk(x) := h(x) + gμk (Ax).

We note from Lemma 3.1 and the chain rule that

∇Fk(x) = ∇h(x) + 1

μk
A∗(Ax − proxμk g (Ax)). (20)

The quantity Lk defined by

Lk := L∇h + ‖A‖2 max

{
μ−1
k ,

ρ

1 − ρμk

}
(21)
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is a Lipschitz constant of the gradient of ∇Fk ; see Lemma 3.1. When ρμk ≤ 1/2, the
maximum in (21) is achieved by μ−1

k , so in this case we can define

Lk := L∇h + ‖A‖2/μk . (22)

4.1 An Elementary Approach

Our first algorithm takes gradient descent steps on the smoothed problem, that is,

xk+1 = xk − γk∇Fk(xk), (23)

for certain values of the parameter μk and step size γk . From (20), the formula (23) is
equivalent to

xk+1 = xk − γk

μk
A∗(Axk − proxμk g (Axk)) − γk∇h(xk).

Our basic algorithm is described next.

Algorithm 1 Variable Smoothing

Require: x1 ∈ R
d ;

for k = 1, 2, 3, . . . do
Set μk ← (2ρ)−1k−1/3, define Lk as in (22), set γk ← 1/Lk ;
Set xk+1 ← xk − γk∇Fk (xk );

end for

We now state the convergence result for Algorithm 1. This result and later results
make use of a quantity

F∗ := lim inf
k→∞ Fk(xk), (24)

which is finite if F is bounded below (and possibly in other circumstances too).
(When F∗ = −∞, the claim of the theorem is vacuously true.) We also make use of
the following quantity:

x∗
j := x j − A†(Ax j − proxμ j g

(
Ax j

)
). (25)

Theorem 4.1 Suppose that Algorithm 1 is applied to the problem (1), where g is ρ-
weakly convex and ∇h and g are Lipschitz continuous with constants L∇h and Lg,
respectively. We have

min
1≤ j≤k

dist(−∇h(x j ),A
∗∂g(proxμ j g

(
Ax j

)
))

≤k−1/3
√
L∇h + 2ρ‖A‖2

√
F1(x1) − F∗ + (2ρ)−1L2

g,

123



Journal of Optimization Theory and Applications (2021) 188:628–649 639

where
‖Ax j − proxμ j g

(
Ax j

) ‖ ≤ j−1/3(2ρ)−1Lg,

and F∗ is defined as in (24). If A is also surjective, then for x∗
k defined as in (25), we

have

min
1≤ j≤k

dist(−∇h(x∗
j ), A

∗∂g(Ax∗
j ))

≤k−1/3
(√

L∇h + 2ρ‖A‖2
√
F1(x1) − F∗ + (2ρ)−1L2

g + L∇hσmin(A)−1Lg

)

and ‖x j − x∗
j ‖ ≤ σmin(A)−1Lgμ j = σmin(A)−1Lg(2ρ)−1 j−1/3.

Before proving this theorem, we state and prove a lemma that relates the function
values of two Moreau envelopes with two different smoothing parameters. In the
convex case, such statements are well known, but in the nonconvex case this result is
novel.

Lemma 4.1 Let g : Rn → R be a proper, closed, and ρ-weakly convex function, and
let μ2 and μ1 be parameters such that 0 < μ2 ≤ μ1 < ρ−1. Then, we have

gμ2(y) ≤ gμ1(y) + 1

2

μ1 − μ2

μ2
μ1‖∇gμ1(y)‖2.

If, in addition, g is Lg-Lipschitz continuous, we have

gμ2(y) ≤ gμ1(y) + 1

2

μ1 − μ2

μ2
μ1L

2
g.

Proof By using the definition of the Moreau envelope, together with Lemma 3.1, we
obtain

gμ2(y)

= min
u∈Rn

{
g(u) + 1

2μ2
‖y − u‖2

}

= min
u∈Rn

{
g(u) + 1

2μ1
‖y − u‖2 + 1

2

(
1

μ2
− 1

μ1

)
‖y − u‖2

}

≤ g(proxμ1g (y)) + 1

2μ1
‖y − proxμ1g (y) ‖2 + 1

2

(
1

μ2
− 1

μ1

)
‖y − proxμ1g (y) ‖2

= gμ1(y) + 1

2

(
μ1 − μ2

μ2

)
μ1‖∇gμ1(y)‖2,

proving the first claim. The second claim follows immediately from (11). ��
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Proof of Theorem 4.1 Since Lk = 1/γk is the Lipschitz constant of ∇Fk , we have for
any k = 1, 2, . . . that

Fk(xk+1) ≤ Fk(xk) + 〈∇Fk(xk), xk+1 − xk〉 + 1

2γk
‖xk+1 − xk‖2.

By substituting the definition of xk+1 from (23), we have

Fk(xk+1) ≤ Fk(xk) − γk

2
‖∇Fk(xk)‖2. (26)

From Lemma 4.1, we have for all x ∈ R
d

Fk+1(x) ≤ Fk(x)+ 1

2
(μk −μk+1)

μk

μk+1
‖(∇gμk )(Ax)‖2 ≤ Fk(x)+ (μk −μk+1)L

2
g,

where we used in the second inequality that μk
μk+1

≤ 2. We set x = xk+1 and substitute
into (26) to obtain

Fk+1(xk+1) ≤ Fk(xk) − γk

2
‖∇Fk(xk)‖2 + (μk − μk+1)L

2
g.

By summing both sides of this expression over k = 1, 2, . . . K , and telescoping, we
deduce that

K∑
k=1

γk

2
‖∇Fk(xk)‖2 ≤ F1(x1) − FK (xK ) + (μ1 − μK )L2

g

≤ F1(x1) − F∗ + μ1L
2
g. (27)

Since

γk = μk

μk L∇h + ‖A‖2 ≥ k−1/3 (2ρ)−1

(2ρ)−1L∇h + ‖A‖2 = k−1/3 1

L∇h + 2ρ‖A‖2 .

we have from (27) that

1

L∇h + 2ρ‖A‖2 min
1≤ j≤K

‖∇Fj (x j )‖2 1
2

K∑
k=1

k−1/3 ≤ F1(x1) − F∗ + (2ρ)−1L2
g. (28)

Now we observe that

K∑
k=1

k−1/3 ≥
K∑

k=1

∫ k+1

k
x−1/3 dx =

∫ K+1

1
x−1/3 dx = 3

2

(
(K + 1)2/3 − 1

)

≥ (K + 1)2/3 − 1 ≥ 1

2
K 2/3, K = 1, 2, . . .
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where the final inequality can be checked numerically. Therefore, by substituting
into (28), we have

min
1≤ j≤K

‖∇Fj (x j )‖2 ≤ 4
L∇h + (2ρ)‖A‖2

K 2/3

(
F1(x1) − F∗ + (2ρ)−1L2

g

)
,

and so

min
1≤ j≤K

‖∇Fj (x j )‖ ≤ C

K 1/3 , (29)

where C := 2
√
L∇h + (2ρ)‖A‖2

√
F1(x1) − F∗ + (2ρ)−1L2

g . By combining this

bound with (15), and defining z j := proxμ j g

(
Ax j

)
, we obtain

min
1≤ j≤k

dist(−∇h(x j ), A
∗∂g(z j )) ≤ min

1≤ j≤k
‖∇Fj (x j )‖ ≤ C

k1/3
, (30)

where we deduce from (12) that

‖Ax j − z j‖ ≤ (2ρ)−1Lg

j1/3
, for all j ≥ 1. (31)

The second statement concerning surjectivity of A follows from the consideration
made in (17) to (19). ��

There is a mismatch between the two bounds in this theorem. The first bound
(the criticality bound) indicates that during the first k = O(ε−3) iterations, we will
encounter an iteration j at which the first-order optimality condition is satisfied to
within a tolerance of ε. However, this bound could have been satisfied at an early
iteration (that is, j 
 ε−3), for which value the second (feasibility) bound, on
‖Ax j −proxμ j g

(
Ax j

) ‖, may not be particularly small. The next section describes an
algorithm that remedies this defect.

4.2 An Epoch-Wise Approach with Improved Convergence Guarantees

We describe a variant of Algorithm 1 in which the steps are organized into a
series of epochs, each of which is twice as long as the one before. We show that
there is some iteration j = O(ε−3) such that both ‖Ax j − proxμ j g

(
Ax j

) ‖ and

dist(−∇h(x j ), A∗∂g(proxμ j g

(
Ax j

)
)) are smaller than the given tolerance ε.

Theorem 4.2 Consider solving (1) using Algorithm 2, where h and g satisfy the
assumptions of Theorem 4.1 and F∗ defined in (24) is finite. For a given tolerance
ε > 0, Algorithm 2 generates an iterate x j for some j = O(ε−3) such that

dist(−∇h(x j ), A
∗∂g(z j )) ≤ ε and ‖Ax j − z j‖ ≤ ε,

where z j = proxμ j g

(
Ax j

)
.
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Algorithm 2 Variable Smoothing with Epochs

Require: x1 ∈ R
d and tolerance ε > 0;

for l = 0, 1, . . . do
Set Sl ← ∞, Set jl ← 2l ;
for k = 2l , 2l + 1, . . . 2l+1 − 1 do

Set μk ← (2ρ)−1k−1/3, define Lk as in (22), set γk ← 1/Lk ;
Set xk+1 ← xk − γk∇Fk (xk );
if ‖∇Fk+1(xk+1)‖ ≤ Sl then

Set Sl ← ‖∇Fk+1(xk+1)‖; Set jl ← k + 1;
if Sl ≤ ε and ‖Axk+1 − proxμk+1g

(
Axk+1

) ‖ ≤ ε then
STOP;

end if
end if

end for
end for

Proof As in (27), by usingmonotonicity of {Fk(xk)} and discarding nonnegative terms,
we have that

2l+1−1∑
k=2l

γk

2
‖∇Fk(xk)‖2 ≤ F1(x1) − F∗ + (2ρ)−1L2

g.

With the same arguments as in the earlier proof, we obtain

2l+1−1∑
k=2l

k−1/3 ≥
2l+1−1∑
k=2l

∫ k+1

k
x−1/3 dx =

∫ 2l+1

2l
x−1/3 dx

= 3

2

(
(2l+1)

2/3 − (2l)
2/3

)
= 3

2

(
22/3 − 1

)
(2l)

2/3 ≥ 1

2
(2l)

2/3
.

Therefore, we have

min
2l≤ j≤2l+1−1

‖∇Fj (x j )‖ ≤ C

(2l)1/3
,

withC = 2
√
L∇h + 2ρ‖A‖2

√
F1(x1) − F∗ + (2ρ)−1L2

g as before. Noting that z j :=
proxμ j g

(
Ax j

)
, we have as in (30) that

min
2l≤ j≤2l+1−1

dist(−∇h(x j ), A
∗∂g(z j )) ≤ C

(2l)1/3
, (32)

as previously. Further, we have for 2l ≤ j ≤ 2l+1 − 1 that

‖Ax j − z j‖ ≤ Lgμ ≤ (2ρ)−1Lg

j1/3
≤ (2ρ)−1Lg

(2l)1/3
. (33)

From (32) and (33),we deduce thatAlgorithm2must terminate before the end of epoch
l, that is, before 2l+1 iterations have been completed, where l is the first nonnegative
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integer such that
2l ≥ max{C3, (2ρ)−3L3

g}ε−3.

Thus, termination occurs after at most 2max{C3, (2ρ)−3L3
g}ε−3 iterations. ��

For the case of A surjective, we have the following stronger result.

Corollary 4.1 Suppose that the assumptions of Theorem 4.2 hold, that A is also sur-
jective, and that the condition ‖Axk+1 − proxμk+1g (Axk+1) ‖ ≤ ε in Algorithm 2
is replaced by ‖xk+1 − x∗

k+1‖ ≤ ε, where x∗
k+1 is defined in (25). Then, for some

j ′ = O(ε−3), we have that

dist (−∇h(x∗
j ′), A

∗∂g(Ax∗
j ′)) ≤ ε

and ‖x j ′ − x∗
j ′ ‖ ≤ ε.

Proof With the considerations made in the previous proof as well as the one made
in (17) to (19), we can choose l to be the smallest positive integer such that

2l+1 ≥ 2max{C3, σmin(A)−3L3
g(2ρ)−3}ε−3.

The claim then holds for some j ′ ≤ 2l+1. ��

Although Algorithm 2 seems more complicated than Algorithm 1, the steps are the
same. The only difference is that for the second algorithm, we do not search for the
iterate that minimizes criticality across all iterations but only across at most the last
k/2 iterations, where k is the total number of iterations.

Remark 4.1 For both versions of our proposed method we use an explicit choice of
smoothing parameters, choosingμk to be a multiple ofO(k−1/3). This specific depen-
dence on k achieves a balance between criticality and feasibility. As can be seen
from (29) (criticality measure) and (31) (feasibility measure) both measures decrease
like k−1/3. A slower decrease in μk would result in a faster decrease in the criticality
measure but a slower decrease in the feasibility measure—and vice versa.

Remark 4.2 Our technique does not adapt in an obvious way to the case in which
g is actually convex. Typically, we know in advance whether or not h and g in (1)
are convex, and if they are, we could choose one of the well-established methods
that make use of gradients, proximal operators, and possibly acceleration. See, for
example the proximal accelerated gradient approach of [3], which achieves a rate of
O(k−1). A method in the spirit of [29], which automatically adapts to convexity and
simultaneously achieves the optimal rates for both nonconvex and convex problems
would be desirable, but is outside the scope of this work.
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5 Proximal Gradient

Here we derive a complexity bound for the proximal gradient algorithm applied to the
more elementary problem (7) studied in Sect. 3.1, that is,

min
x∈Rd

F(x) := h(x) + g(x), (34)

for h : Rd → R a L∇h-smooth function and g : Rd → R a possibly nonsmooth, ρ-
weakly convex function. Such a bound has not been made explicit before, to the
authors’ knowledge, though it is a fairly straightforward consequence of existing
results. The bound makes an interesting comparison with the result in Sect. 4, where
the nonsmoothness issue becomes more complicated due to the composition with a
linear operator. In this section, we assume that a closed-form proximal operator is
available for g, and we show that the complexity bound of O(ε−2) is the same order
as for gradient descent applied to smooth nonconvex functions.

Standard proximal gradient applied to problem (34), for a given step size λ ∈
]0,min{ρ−1/2, L−1

∇h}] and initial point x1, is as follows:

xk+1 := arg min
x∈Rd

{
g(x) + 〈∇h(xk), x − xk〉 + 1

2λ
‖x − xk‖2

}
,

= proxλg (xk − λ∇h(xk)) , k = 1, 2, . . . (35)

where the choice of λ ensures that the function to be minimized in (35) is (λ−1 − ρ)-
strongly convex, so that xk+1 is uniquely defined.

We have the following convergence result.

Theorem 5.1 Consider the algorithm defined by (35) applied to problem (34), where
we assume that g is proper, lower semicontinuous and ρ-weakly convex and that
∇h is Lipschitz continuous with constant L∇h. Supposing that the step size λ ∈
]0,min{ρ−1/2, L−1

∇h}], we have for all k ≥ 1 that

min
2≤ j≤k+1

dist(0, ∂(h + g)(x j )) ≤ k−1/2
√
2(F(x1) − F∗) λ−1 + L∇h√

λ−1 − ρ
,

where F∗ is defined in (24).

Proof Note first that the result is vacuous if F∗ = −∞, so we assume henceforth that
F∗ is finite. We have for every x ∈ R

d that

g(xk+1)+h(xk)+〈∇h(xk), xk+1−xk〉 + 1

2λ
‖xk+1−xk‖2+1

2
(λ−1 − ρ)‖x − xk+1‖2

≤ g(x) + h(xk) + 〈∇h(xk), x − xk〉 + 1

2λ
‖x − xk‖2.
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By applying the inequality

h(xk+1) ≤ h(xk) + 〈∇h(xk), xk+1 − xk〉 + 1

2λ
‖xk+1 − xk‖2, for all x ∈ R

d ,

obtained from the Lipschitz continuity of ∇h and the fact that λ ≤ L−1
∇h , we deduce

that

F(xk+1)+ 1

2
(λ−1−ρ)‖x−xk+1‖2 ≤ g(x)+h(xk)+〈∇h(xk), x−xk〉+ 1

2λ
‖x−xk‖2,

for every x ∈ R
d . By setting x = xk , we obtain

F(xk+1) + 1

2
(λ−1 − ρ)‖xk − xk+1‖2 ≤ F(xk),

which shows, together with the definition (24), that

∞∑
k=1

‖xk − xk+1‖2 ≤ 2(F(x1) − F∗)
λ−1 − ρ

. (36)

From the optimality conditions for (35), we obtain

0 ∈ ∇h(xk) + ∂g(xk+1) + λ−1(xk+1 − xk)

which also shows that

wk+1 := 1

λ
(xk − xk+1) + ∇h(xk+1) − ∇h(xk) ∈ ∂(h + g)(xk+1), (37)

so that

‖wk+1‖2 ≤ (λ−1 + L∇h)
2‖xk − xk+1‖2.

By combining this bound with (36), we obtain

∞∑
k=1

‖wk+1‖2 ≤ 2(F(x1) − F∗) (λ
−1 + L∇h)

2

λ−1 − ρ
.

from which it follows that

min
1≤ j≤k

‖w j+1‖ ≤ √
2(F(x1) − F∗) (λ−1 + L∇h)√

λ−1 − ρ
.

The result now follows from (37), when we note that
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min
1≤ j≤k

dist(0, ∂(h + g)(x j+1)) ≤ min
1≤ j≤k

‖w j+1‖. ��

This theorem indicates that the proximal gradient algorithm requires atmostO(ε−2)

to find an iterate with ε-approximate stationarity. This bound contrasts with the bound
O(ε−3) of Sect. 4 for the case of general A. Moreover, the O(ε−2) bound has the
same order as the bound for gradient descent applied to general smooth nonconvex
optimization.

6 Conclusions

We consider a standard problem formulation in which a linear transformation of the
input variables is composed with a nonsmooth regularizer and added to a smooth
function. In most works, the regularizer is assumed to be convex, but we extend here
to the case in which it is only weakly convex. This extension allows for functions
which introduce desired properties, such as sparsity, without causing a bias. [Two
examples from robust statistics are minimax concave penalty (MCP) and smoothly
clipped absolute deviation (SCAD)],We propose a novel method based on the variable
smoothing framework and show a complexity of O(ε−3) to obtain an ε-approximate
solution. This iteration complexity falls strictly between the iteration complexity of
smooth (nonconvex) problems (O(ε−2)) and that of the black box subgradient method
for weakly convex function (O(ε−4)) which assumes no knowledge of the structure
of the nonsmoothness.

A performance comparison between our smoothed approach and the black-box
subgradient algorithm on an image denoising problem that uses anMCP total variation
regularizer is shown in Figs.1.
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Fig. 1 Progress of our smoothing algorithm and a naive subgradient algorithm on an image denoising
problem, where minimax concave penalty is used instead of the 1-norm in the anisotropic total variation,
showing better performance by the smoothing approach. Top: The difference of consecutive iterates scaled
by the inverse of the stepsize, representing the norm of the (sub)gradient used at each iteration. Middle:
Relative difference between the objective function at the current iterate and an approximate minimum.
Bottom: The quality of the resulting reconstruction measured via the structural similarity index measure,
see [30]

Acknowledgements Research of the first author was supported by the doctoral program Vienna Graduate
School onComputational Optimization (VGSCO), FWF (Austrian Science Fund), projectW1260. Research
of the second authorwas supported byNSFAwards 1628384, 1634597, and 1740707; Subcontract 8F-30039
from Argonne National Laboratory; and Award N660011824020 from the DARPA Lagrange Program.

Funding Open Access funding provided by University of Vienna.

123



648 Journal of Optimization Theory and Applications (2021) 188:628–649

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

2. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D
60(1–4), 259–268 (1992)
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