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Abstract
The expectation functionals, which arise in risk-neutral bi-level stochastic linear
models with random lower-level right-hand side, are known to be continuously dif-
ferentiable, if the underlying probability measure has a Lebesgue density. We show
that the gradient may fail to be local Lipschitz continuous under this assumption. Our
main result provides sufficient conditions for Lipschitz continuity of the gradient of the
expectation functional and paves the way for a second-order optimality condition in
terms of generalized Hessians. Moreover, we study geometric properties of regions of
strong stability and derive representation results, whichmay facilitate the computation
of gradients.

Keywords Bi-level stochastic linear programming · Risk-neutral model ·
Second-order optimality conditions · Lipschitz gradients

Mathematics Subject Classification 90C15 · 91A65

1 Introduction

We study bi-level stochastic linear programs with random right-hand side in the lower-
level constraint system. The sequential nature of bi-level programming motivates a
setting where the leader decides nonanticipatorily, while the follower can observe
the realization of the randomness. A discussion of the related literature is provided
in the recent [1]. A central result of [1] states that evaluating the leader’s random
outcome by taking the expectation leads to a continuously differentiable functional
if the underlying probability measure is absolutely continuous w.r.t. the Lebesgue
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measure. This allows to formulate first-order necessary optimality conditions for the
risk-neutral model. The main result of the present work provides sufficient conditions,
namely boundedness of the support and uniform boundedness of the Lebesgue density
of the underlying probability measure, that ensure Lipschitz continuity of the gradient
of the expectation functional. Moreover, we show that the assumptions of [1] are
too weak to even guarantee local Lipschitz continuity of the gradient. By the main
result, second-order necessary and sufficient optimality conditions can be formulated
in terms of generalized Hessians. As part of the preparatory work for the proof of
the main result, we in particular show that any region of strong stability in the sense
of [1, Definition 4.1] is a finite union of polyhedral cones. This representation is of
independent interest, as itmay facilitate the calculation or estimation of gradients of the
expectation functional and thus enhance gradient descent-based approaches. The paper
is organized as follows: The model and related results of [1] are discussed in Sect. 2,
while themain result and a variationwithweaker assumptions are formulated inSect. 3.
Sections 4 and 5 are dedicated to geometric properties of regions of strong stability
and related projections that appear in the representation of the gradient. Results of
these sections play an important role in the proof of the main result that is given in
Sect. 6. A second-order sufficient optimality condition is formulated in Sect. 7. The
paper concludes with a brief discussion of the results and an outlook in Sect. 8.

2 Model and Notation

Consider the optimistic formulation of a parametric bi-level linear program

min
x

{
c�x + min

y
{q�y : y ∈ Ψ (x, z)} : x ∈ X

}
, (1)

where z ∈ R
s is a parameter and the data comprise a nonempty polyhedron X ⊆ R

n ,
vectors c ∈ R

n , q ∈ R
m and the lower-level optimal solution set mapping Ψ :

R
n × R

s ⇒ R
m defined by

Ψ (x, z) := Argmin
y

{d�y : Ay ≤ T x + z}

with A ∈ R
s×m , T ∈ R

s×n and d ∈ R
m . By [1, Lemma 2.1], the extended real-valued

mapping f : R
n × R

s → R := R ∪ {±∞} given by

f (x, z) := c�x + min
y

{q�y : y ∈ Ψ (x, z)}.

is real valued and Lipschitz continuous on the polyhedron

F = {(x, z) ∈ R
n × R

s : ∃y ∈ R
m : Ay ≤ T x + z}

if dom f is nonempty. Let Z : � → R
s be a random vector on some probability space

(�,F , P) and denote the induced Borel probability measure by μZ = P ◦ Z−1 ∈
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P(Rs). Furthermore, we introduce the set

FZ := {x ∈ R
n : (x, z) ∈ F ∀z ∈ supp μZ }.

If dom f is nonempty and we impose the moment condition

μZ ∈ M1
s :=

{
μ ∈ P(Rs) :

∫
Rs

‖z‖ μ(dz) < ∞
}

,

the mapping F : FZ → L1(�,F , P) given by F(x) := f (x, Z(·)) is well defined and
Lipschitz continuous by [1, Lemma 2.4]. In a situation where the parameter z in (1)
is given by a realization of the random vector Z that the follower can observe while
the leader has to decide x nonanticipatorily, the upper-level outcome can be modeled
by F(x). If we assume X ⊆ FZ and the leader’s decision is based on the expectation,
we obtain the risk-neutral stochastic program

min
x

{E[F(x)] : x ∈ X} . (2)

The following is shown in [1, Theorem 3.1, Corollary 4.7]:

Theorem 2.1 Assume dom f = ∅ and that μZ ∈ M1
s is absolutely continuous w.r.t.

the Lebesgue measure. Then, the mapping QE : FZ → R defined by QE(x) =
E[F(x)] is well defined, Lipschitz continuous and continuously differentiable at any
x0 ∈ int FZ .

We shall discuss some key ideas of the proof and introduce the relevant notation:
Set

q̂ :=
⎛
⎝ q

−q
0s

⎞
⎠ , ŷ :=

⎛
⎝y+
y−
t

⎞
⎠ , d̂ :=

⎛
⎝ d

−d
0s

⎞
⎠ , and Â := (A,−A, Is),

and then, f admits the representation

f (x, z) = c�x + min
ŷ

{
q̂� ŷ : ŷ ∈ Argmin

ŷ′
{d̂� ŷ′ : Â ŷ′ = T x + z, ŷ′ ≥ 0}}. (3)

Remark 2.1 The subsequent analysis does not depend on the specific structure of q̂, d̂
and Â and applies whenever (3) holds with some matrix Â satisfying rank Â = s.

As the rows of Â are linearly independent, the set

A := { ÂB ∈ R
s×s : ÂB is a regular submatrix of Â}

of lower-level base matrices is nonempty. A base matrix ÂB ∈ A is optimal for the
lower-level problem for a given (x, z) if it is feasible, i.e.,
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Â−1
B (T x + z) ≥ 0, and the associated reduced cost vector d̂�

N − d̂�
B Â−1

B ÂN is

nonnegative. Furthermore, for any optimal basematrix ÂB′ ∈ A, there exists a feasible
base matrix ÂB ∈ A satisfying

Â−1
B′ (T x + z) = Â−1

B (T x + z) and d̂�
N − d̂�

B Â−1
B ÂN ≥ 0.

Set

A∗ := { ÂB ∈ A : d̂�
N − d̂�

B Â−1
B ÂN ≥ 0}

and assume dom f = ∅, and then,

f (x, z) = c�x + min
ÂB

{
q̂�
B Â−1

B (T x + z) : Â−1
B (T x + z) ≥ 0, ÂB ∈ A∗}

holds for any (x, z) ∈ F . A key concept is the region of strong stability associated
with a base matrix ÂB ∈ A∗ given by the set

S( ÂB) := {(x, z) ∈ F : Â−1
B (T x + z) ≥ 0, c�x + q̂�

B Â−1
B (T x + z) = f (x, z)},

on which f coincides with the affine linear mapping

f (x, z) = c�x + q̂�
B Â−1

B (T x + z).

Under the assumptions of Theorem 2.1, we have

F =
⋃

ÂB∈A∗
S( ÂB)

and the gradient of QE admits the representation

∇QE(x) = c� +
∑
Δ∈D

μZ [W(x,Δ)]Δ ∀x ∈ int FZ (4)

where D := {q̂�
B Â−1

B T : ÂB ∈ A∗}, and the set-valued aggregation mappings
W,W : R

n × D ⇒ R
s are given by

W(x,Δ) :=

⎧⎪⎨
⎪⎩z ∈ R

s (x, z) ∈
⋃

ÂB∈A∗: q̂�
B Â−1

B T=Δ

int S(AB)

⎫⎪⎬
⎪⎭

and W(x,Δ) :=

⎧⎪⎨
⎪⎩z ∈ R

s (x, z) ∈
⋃

ÂB∈A∗: q̂�
B Â−1

B T=Δ

cl int S(AB)

⎫⎪⎬
⎪⎭ ,
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respectively (cf. [1, Theorem 4.3, Corollary 4.7]). Continuity of the∇QE follows from
the fact that the outer semicontinuity of W and

∑
Δ∈D

μZ [W(x,Δ)] = 1 ∀(x,Δ) ∈ int FZ × D

imply continuity of the weight functional MΔ : R
n → R,

MΔ(x) := μZ [W(x,Δ)] = μZ [W(x,Δ)]. (5)

for any Δ ∈ D.

3 Main Result

We shall first show that the assumptions of Theorem 2.1 are too weak to guarantee
Lipschitz continuity ∇QE.

Example 3.1 Consider the case where

d̂ = (0, 0, 0, 0)�, Â =
(
1 0 1 1
0 1 3

2
1
2

)
and T = (0, 1)�.

The feasible set of the lower-level problem is compact for any parameters in the
polyhedral cone F = {(x, z) ∈ R × R

2 : z1 ≥ 0, x + z2 ≥ 0}, which implies that
dom f coincides with F for any q̂ ∈ R

4. As the objective function is constant, any
feasible base matrix is optimal for the lower-level problem. Denote the elements of
A = A∗ by Â1, . . . , Â6, and let

Θi = {(x, z) ∈ R
n × R

s : Â−1
i (T x + z) ≥ 0}

be the set of parameters forwhich Âi is feasible for the lower-level problem.A straight-
forward calculation shows that we have

Â1 =
(
1 0
0 1

)
, Â−1

1 =
(
1 0
0 1

)
, Θ1 = {(x, z) ∈ R × R

2 : z1 ≥ 0, x + z2 ≥ 0},

Â2 =
(
1 1
0 3

2

)
, Â−1

2 =
(
1 − 2

3
0 2

3

)
, Θ2 = {(x, z) ∈ R × R

2 : 0 ≤ x + z2 ≤ 3

2
z1},

Â3 =
(
1 1
0 1

2

)
, Â−1

3 =
(
1 −2
0 2

)
, Θ3 = {(x, z) ∈ R × R

2 : 0 ≤ x + z2 ≤ 1

2
z1},

Â4 =
(
0 1
1 3

2

)
, Â−1

4 =
(− 3

2 1
1 0

)
, Θ4 = {(x, z) ∈ R × R

2 : 0 ≤ 3

2
z1 ≤ x + z2}

Â5 =
(
0 1
1 1

2

)
, Â−1

5 =
(− 1

2 1
1 0

)
, Θ5 = {(x, z) ∈ R × R

2 : 0 ≤ 1

2
z1 ≤ x + z2}
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and

Â6 =
(
1 1
3
2

1
2

)
, Â−1

6 =
(− 1

2 1
3
2 −1

)
,Θ6 = {(x, z) ∈ R × R

2 : 1

2
z1 ≤ x + z2 ≤ 3

2
z1}.

Set q̂ = (0, 0,−5,−3)�, and let q̂i denote the part of upper-level objective function
that is associated with Âi . We have

q̂�
1 Â−1

1 T = 0, q̂�
2 Â−1

2 T = −10

3
, q̂�

3 Â−1
3 T = −6,

q̂�
4 Â−1

4 T = 0, q̂�
5 Â−1

5 T = 0, q̂�
6 Â−1

6 T = −2

and a straightforward calculation yields

S( Â1) = {(x, z) ∈ R × R
2 : z1 = 0, x + z2 ≥ 0}

∪ {(x, z) ∈ R × R
2 : z1 ≥ 0, x + z2 = 0}

= bd Θ1,

S( Â2) = {(x, z) ∈ R × R
2 : 0 = x + z2 ≤ 3

2
z1}

∪ {(x, z) ∈ R × R
2 : 0 ≤ x + z2 = 3

2
z1}

= bd Θ2,

S( Â3) = Θ3, S( Â4) = Θ4, S( Â6) = Θ6 and

S( Â5) = {(x, z) ∈ R × R
2 : 0 = 1

2
z1 ≤ x + z2}

∪ {(x, z) ∈ R × R
2 : 0 ≤ 1

2
z1 = x + z2}

= bd Θ5.

Let the density δZ : R
2 → R of Z be given by

δZ (t1, t2) =
{ 1

2
√

1
2 t1−t2

, if 3 ≤ t1 ≤ 4 and 1
2 t1 − 1 ≤ t2 < 1

2 t1

0, else

and set c = 0. We have supp μZ ⊂ W(0,−6), and it is easy to see that

W(x,−6) ∩ supp μZ = {z ∈ R
2 : 3 ≤ z1,≤ 4,

1

2
z1 − 1 ≤ z2 ≤ 1

2
z1 − x}

and W(x,−2) ∩ supp μZ = {z ∈ R
2 : 3 ≤ z1,≤ 4,

1

2
z1 − x ≤ z2 <

1

2
z1}

hold true whenever x ∈]0, 1] (Fig. 1).
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1
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W(14 ,−2)

W(14 ,−6)

W(14 , 0)

z1

z 2

Fig. 1 In Fig. 1, the darker square depicts the intersection of supp μZ and W( 14 ,−2), while the lighter

square is W( 14 , −6) ∩ supp μZ . The distance between the dotted lines is x = 1
4

Thus, supp μZ ⊂ W(x,−6) ∪ W(x,−2) holds for any x ∈ [0, 1] and a simple
calculation shows that

∇QE(x) = −6μZ [W (x,−6)] − 2μZ [W (x,−2)]
= −6(1 − √

x) − 2
√
x = 4

√
x − 6

is not locally Lipschitz continuous at x = 0.

Our main result is the following sufficient conditions for Lipschitz continuity of
∇QE:

Theorem 3.1 Assume dom f = ∅ and let μZ be absolutely continuous w.r.t. the
Lebesguemeasure and have a bounded support aswell as a uniformly bounded density.
Then, QE is differentiable on int FZ with Lipschitz continuous gradient.

Note the density in Example 3.1 is not bounded. The proof of Theorem 3.1 requires
some preliminary work and will be given in Sect. 6. If the support ofμZ is unbounded,
we still obtain a weaker estimate for the gradients:

Theorem 3.2 Assume dom f = ∅ and let μZ be absolutely continuous w.r.t. the
Lebesgue measure and have a uniformly bounded density. Then, QE is differentiable
on int FZ and for any ε > 0 there exists a constant L(ε) > 0 such that

|∇QE(x) − ∇QE(x ′)| ≤ L(ε)‖x − x ′‖ + ε

holds for all x, x ′ ∈ int FZ .
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4 On the Geometry of Regions of Strong Stability

In view of (4) and (5), the gradient ∇QE(x) is given by a weighted sum of the
probabilities of the sets W(x,Δ) or W(x,Δ) for Δ ∈ D. As these sets are defined
using regions of strong stability, we shall first study properties of the sets S( ÂB) with
ÂB ∈ A∗.

Remark 4.1 Example 3.1 shows that regions of strong stability are not convex in gen-
eral.

Proposition 4.1 Assume dom f = ∅, then

S( ÂB) = S( ÂB) + ker(T , Is)

holds for any ÂB ∈ A∗.

Proof The above result immediately follows from the fact that the quantities involved
in the definition of S( ÂB) only depend on T x + z. ��
Corollary 4.1 Assume dom f = ∅ and n ≥ 1, then no region of strong stability has
any extremal points.

Proof Let (x, z) be an arbitrary point of some region of strong stability S( ÂB). The
n-dimensional kernel of (T , Is) contains some nonzero element (x0, z0), and we have
(x − x0, z − z0), (x + x0, z + z0) ∈ S( ÂB) by Proposition 4.1. Thus, (x, z) =
1
2 (x − x0, z − z0) + 1

2 (x + x0, z + z0) is no extremal point of S( ÂB). ��

Our main result on the structure of S( ÂB) is the following:

Theorem 4.1 Assume dom f = ∅, then any region of strong stability is a union of at
most (s + 1)|A∗| polyhedral cones and at most (s + 1)|A∗|−1 of these cones have a
nonempty interior. Moreover, the multifunction S : A∗ ⇒ R

n × R
s is polyhedral, i.e.,

gph S is a finite union of polyhedra.

Before we get to proof of Theorem 4.1, we will establish the following auxiliary
result:

Lemma 4.1 Let W := {ξ ∈ R
k : V ξ < 0} with V ∈ R

l×k be nonempty, then

cl W = W := {ξ ∈ R
k : V ξ ≤ 0}.

Proof The inclusion cl W ⊆ W is trivial. Moreover, for any ξ0 ∈ W = int W and
ξ ∈ W the line segment principle (cf. [6, Lemma 2.1.6]) implies [ξ0, ξ) ⊆ W and
thus ξ ∈ cl W . ��

We are now ready to prove Theorem 4.1.
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Proof (Proof of Theorem 4.1) Denote the elements of the finite setA∗ by Â1, . . . , Âl

and the associated parts of the objective function by q̂1, . . . , q̂l . Fix any index i ∈
{1, . . . , l}; then for any (x, z) ∈ F satisfying Â−1

i (T x + z) ≥ 0, the constraint

c�x + q̂�
i Â−1

i (T x + z) = f (x, z) in the definition of S( Âi ) can be reformulated as

((
q̂�
i Â−1

i − q̂�
j Â

−1
j

)(
T x + z

) ≤ 0 ∨ Â−1
j (T x + z) � 0

)
∀ j = 1, . . . , l.

Introducing the sets

Θi := {(x, z) ∈ F : Â−1
i (T x + z) ≥ 0}

: = {(x, z) ∈ R
n × R

s : Â−1
i (T x + z) ≥ 0},

	i j0 := {(x, z) ∈ R
n × R

s : (
q̂�
i Â−1

i − q̂�
j Â

−1
j

)(
T x + z

) ≤ 0} and

	i jk := {(x, z) ∈ R
n × R

s : e�
k Â−1

j (T x + z) < 0}

with indices j = 1, . . . , l and k = 1, . . . , s and using the fact that S( Âi ) is closed by
the Lipschitz continuity of f , we obtain the representation

S( Âi ) = cl

⎛
⎝Θi ∩

⋂
j=1,...,l

⋃
k=0,...,s

	i jk

⎞
⎠

=
⋃

α∈{0,...,s}l ,
Θi ∩ ⋂

j=1,...,l 	i jα j =∅

cl

⎛
⎜⎜⎝Θi ∩

⋂
j=1,...,l,
α j=0

	i j0 ∩
⋂

j=1,...,l,
α j =0

	i jα j

⎞
⎟⎟⎠ .

As Θi ∩ ⋂
j=1,...,l, α j=0 	i j0 is convex and closed, while

⋂
j=1,...,l, α j =0 	i jα j is

convex and open, [6, Proposition 2.1.10] yields

S( Âi ) =
⋃

α∈{0,...,s}l ,
Θi ∩ ⋂

j=1,...,l 	i jα j =∅

⎛
⎜⎜⎝Θi ∩

⋂
j=1,...,l,
α j=0

	i j0 ∩ cl
⋂

j=1,...,l,
α j =0

	i jα j

⎞
⎟⎟⎠

The sets Θi ∩ ⋂
j=1,...,l, α j=0 	i j0 are obviously polyhedral cones, and Lemma 4.1

implies

cl
⋂

j=1,...,l,
α j =0

	i jα j

=
{
(x, z) ∈ R

n × R
s : e�

α j
Â−1
j (T x + z) ≤ 0 ∀ j = 1, . . . , l : α j = 0

}
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=
⋂

j=1,...,l,
α j =0

cl 	i jα j .

Moreover, for any αi ∈ {1, . . . , s} we have e�
αi
Â−1
i = 0 and thus

int

⎛
⎝Θi ∩

⋂
j=1,...,l

cl 	i jα j

⎞
⎠

⊆ int
(
Θi ∩ cl 	i iαi

)

⊆ int

{
(x, z) ∈ R

n × R
s : (e�

αi
Â−1
i T , e�

αi
Â−1
i )

(
x
z

)
= 0

}

= ∅.

The second part of the theorem is an immediate consequence of the finiteness of A∗.
��

Corollary 4.2 Assume dom f = ∅, then any region of strong stability is star shaped
and contains the n-dimensional kernel of (T , Is).

Proof Radial convexity is an immediate consequence of Theorem 4.1, as any region
of strong stability contains the line segments from the origin to any feasible point. The
second statement directly follows from Proposition 4.1. ��

Two-stage stochastic programming can be understood as the special case of bi-level
stochastic programming where the objectives of leader and follower coincide. In this
case, any region of strong stability is a polyhedral cone and thus convex:

Proposition 4.2 Assume dom f = ∅ and q̂ = αd̂ for some α > 0. Then, any region
of strong stability is a polyhedral cone.

Proof We shall use the notation of the proof of Theorem 4.1 and denote the part
of d̂ associated with Âi by d̂i . Fix any (x, z) ∈ F and consider any base matrices
Âi , Â j ∈ A∗ that are feasible and thus optimal for the lower-level problem. As

q̂�
i Â−1

i (T x + z) = αd̂�
i Â−1

i (T x + z) = αd̂�
j Â

−1
j (T x + z) = q̂�

j Â
−1
j (T x + z),

both base matrices are also optimal with respect to the upper-level objective function.
Thus, S( Âi ) coincides with the polyhedral cone Θi . ��

Remark 4.2 As d̂ = (0, 0, 0, 0)� holds in Example 3.1, we see the assumption q̂ = αd̂
for some α ∈ R in Proposition 4.2 cannot be replaced with the weaker condition that
{q̂, d̂} is linearly dependent.
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5 Properties of the AggregationMappings

We shall now study the aggregation mappings W and W defined in Sect. 2. The
following result is the counterpart of Theorem 4.1:

Theorem 5.1 Assume dom f = ∅, then the multifunctionW is polyhedral. Moreover,
W(x,Δ) is a finite union of polyhedra for any (x,Δ) ∈ R

n × D.

The proof of Theorem 5.1 will be based on the following auxiliary result:

Lemma 5.1 Let C1, . . . ,Cl ⊆ R
k be closed and convex. Then,

cl int
⋃

i=1,...,l

Ci =
⋃

i=1,...,l: int Ci =∅
Ci .

Proof As the sets C1, . . . ,Cl are closed and the interior of a union is contained in the
union of the interiors, we have

⋃
i=1,...,l: int Ci =∅

Ci ⊇ cl int
⋃

i=1,...,l: int Ci =∅
Ci ⊇ cl

⋃
i=1,...,l: int Ci =∅

int Ci

=
⋃

i=1,...,l: int Ci =∅
cl int Ci =

⋃
i=1,...,l: int Ci =∅

Ci ,

where the first equality is due to the fact that the closure of a union equals the union
of the closures and the second equation is a direct consequence of the line segment
principle. Thus,

cl int
⋃

i=1,...,l

Ci ⊇ cl int
⋃

i=1,...,l: int Ci =∅
Ci =

⋃
i=1,...,l: int Ci =∅

Ci .

For the reverse inclusion, suppose that there is some

x ∈
⎛
⎝cl int

⋃
i=1,...,l

Ci

⎞
⎠
∖ ⋃

i=1,...,l: int Ci =∅
Ci .

By definition, there are sequences {xn}n∈N ⊂ R
k and {εn}n∈N ⊂ R>0 satisfying

xn → x and Bεn (xn) ⊆ ⋃
i=1,...,l Ci for all n ∈ N. As

⋃
i=1,...,l: int Ci =∅ Ci is closed,

there exists some N ∈ N such that xn /∈ ⋃
i=1,...,l: int Ci =∅ Ci for all n ≥ N . Together

with the previous considerations, the strong separation theorem (cf. [9, Theorem 11.4])
yields the existence of some δN ∈ (0, εN ] such that

BδN (xN ) ⊆
⎛
⎝ ⋃

i=1,...,l

Ci

⎞
⎠∖ ⋃

i=1,...,l: int Ci =∅
Ci =

⋃
i=1,...,l: int Ci=∅

Ci .
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As any Ci with int Ci = ∅ is contained in an affine subspace of dimension strictly
smaller than k (cf. [2, Section 2.5.2]), we obtain the contradiction

∅ = int BδN (xN ) ⊆ int
⋃

i=1,...,l: int Ci=∅
Ci = ∅.

Thus,

⎛
⎝cl int

⋃
i=1,...,l

Ci

⎞
⎠∖ ⋃

i=1,...,l: int Ci =∅
Ci = ∅,

which completes the proof. ��
Corollary 5.1 Let C ⊆ R

k be a finite union of polyhedra (polyhedral cones). Then,
cl int C is a finite union of polyhedra (polyhedral cones).

Proof The above statement is an immediate consequence of Lemma 5.1. ��
Proof (Proof of Theorem 5.1) As D is finite, it is sufficient to consider the multifunc-
tions W(·,Δ) : R

n ⇒ R
s for fixed Δ ∈ D. We have

gph W(·,Δ) =
⋃

ÂB∈A∗: q̂�
B Â−1

B T=Δ

cl int S( ÂB),

which is a finite union of polyhedra by Corollary 5.1. Similarly, W(x,Δ) admits the
representation

W(x,Δ) =
⋃

ÂB∈A∗: q̂�
B Â−1

B T=Δ

{z ∈ R
s : (x, z) ∈ cl int S( ÂB)}.

By Theorem 4.1 and Corollary 5.1, the set

{z ∈ R
s : (x, z) ∈ cl int S( ÂB)}

is the intersection of a finite union of polyhedral cones and the affine subspace
{(x ′, z′) ∈ R

n × R
s : x ′ = x} and thus a finite union of polyhedral cones for

any x ∈ R
n and any ÂB ∈ A∗. ��

The following result on W is a simple consequence of the fact that the constraint
system describing a region of strong stability only imposes conditions on (T x + z).

Proposition 5.1 Assume dom f = ∅, then

W(x,Δ) = W(x ′,Δ) + {T (x − x ′)}

holds for any x, x ′ ∈ R
n and Δ ∈ D.
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Proof Fix any x, x ′ ∈ R
n , z ∈ R

s and set z′ = z+ T (x − x ′), then T x + z = T x ′ + z′
and thus

f (x, z) − c�x = min
y

{
q�y : y ∈ Argmin

y′
{d�y′ : Ay′ ≤ T x + z}}

= f (x ′, z′) − c�x ′.

Similarly, for any ÂB ∈ A∗, (x, z) ∈ S( ÂB) holds if and only if

1. there exists some y ∈ R
m such that Ay ≤ T x + z = T x ′ + z′,

2. Â−1
B (T x ′ + z′) = Â−1

B (T x + z) ≥ 0 and
3. q̂�

B Â−1
B (T x ′ + z′) = q̂�

B Â−1
B (T x + z) = f (x, z) − c�x = f (x ′, z′) − c�x ′,

i.e., if and only if (x ′, z′) ∈ S( ÂB). We conclude that

z ∈ W(x,Δ) ⇔ ∃ ÂB ∈ A∗ : Δ = q̂�
B Â−1

B T , (x, z) ∈ int S( ÂB)

⇔ ∃ ÂB ∈ A∗ : Δ = q̂�
B Â−1

B T , (x ′, z′) ∈ int S( ÂB)

⇔ z′ ∈ W(x ′,Δ)

holds for any Δ ∈ D, which completes the proof. ��

6 Proof of theMain Result

We are finally ready to prove Theorem 3.1 based on the results of Sects. 4 and 5 as
well as the two following auxiliary results:

Lemma 6.1 Assume dom f = ∅, and let μZ ∈ P(Rs) be absolutely continuous w.r.t.
the Lebesgue measure, then

μZ
[W(x,Δ) \ (W(x,Δ) + {t})] ≤ μZ

[W(x,Δ) \ (W(x,Δ) + {t})]

holds for any x ∈ R
n, Δ ∈ D and t ∈ R

s .

Proof By the arguments used in the proof of [1, Lemma 4.2], we have

W(x,Δ) ⊆ W(x,Δ) ⊆ W(x,Δ) ∪ Nx ,

where Nx ⊂ R
s is contained in a finite union of hyperplanes. Consequently,

W(x,Δ) \ (W(x,Δ) + {t})
⊆

[
W(x,Δ) \ (W(x,Δ) + {t})] ∪

[(W(x,Δ) + {t}) \ (W(x,Δ) + {t})]

=
[
W(x,Δ) \ (W(x,Δ) + {t})] ∪

[(W(x,Δ) \ W(x,Δ)
) + {t}

]

⊆
[
W(x,Δ) \ (W(x,Δ) + {t})] ∪

[
Nx + {t}

]
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and the above statement is a direct consequence of the fact that the Lebesgue measure
of Nx equals zero. ��
Lemma 6.2 Assume dom f = ∅ and let μZ be absolutely continuous w.r.t. the
Lebesguemeasure and have a bounded support aswell as a uniformly bounded density.
Then, the weight functional MΔ is Lipschitz continuous on int FZ for any Δ ∈ D.

Proof By definition of W(x,Δ), Proposition 5.1 and Lemma 6.1,

|μZ
[W(x,Δ)

] − μZ
[W(x ′,Δ)

]|
= |μZ

[
W(x,Δ)

]
− μZ

[
W(x,Δ) + {

T (x ′ − x)
}]|

≤ μZ

[
W(x,Δ) \

(
W(x,Δ) + {

T (x ′ − x)
})]

+ μZ

[(
W(x,Δ) + {

T (x ′ − x)
}) \ W(x,Δ)

]

≤ μZ

[
W(x,Δ) \

(
W(x,Δ) + {

T (x ′ − x)
})]

+ μZ

[(
W(x,Δ) + {

T (x ′ − x)
}) \ W(x,Δ)

]

holds for any fixed Δ ∈ D. As both

W(x,Δ) \
(
W(x,Δ) + {

T (x ′ − x)
})

and
(
W(x,Δ) + {

T (x ′ − x)
}) \ W(x,Δ)

are contained in

Hx,x ′ := {
v + l · T (x ′ − x) : v ∈ bd W(x,Δ), l ∈ [−1, 1]}

and there exists a finite upper bound α ∈ R for the Lebesgue density of μZ , we have

|μZ
[W(x,Δ)

] − μZ
[W(x ′,Δ)

]| ≤ 2αλs
[Hx,x ′ ∩ supp μZ

]
,

where λs denotes the s-dimensional Lebesguemeasure. ByTheorem 5.1, the boundary
of W(x,Δ) is contained in a finite union of lower-dimensional polyhedra. Let Hx

denote a set of such cones with minimal cardinality. It is a straightforward conclusion
from the proofs of Theorem 4.1, Theorem 5.1 and Lemma 5.1 that the cardinality of
Hx can be bounded by a constant K ∈ N that does not depend on x . Moreover, as any
H ∈ Hx is contained in some hyperplane, the s − 1-dimensional Lebesgue measure
of H ∩ supp μZ is at most diam(supp μZ )s−1. Thus,

|μZ
[W(x,Δ)

] − μZ
[W(x ′,Δ)

]|
≤ 2α

∑
H∈Hx

λs
[{v + l · T (x ′ − x) : v ∈ H , l ∈ [−1, 1]} ∩ supp μZ

]

≤ 4αK · diam(supp μZ )s−1 · ‖T ‖L(Rn ,Rs )‖x ′ − x‖,

by Cavalieri’s principle, which completes the proof. ��
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Proof (Proof of Theorem 3.1) Continuous differentiability on int FZ is a direct con-
sequence of [1, Corollary 4.7]. Fix any x, x ′ ∈ int FZ ; then, (4) and Lemma 6.2
yield

‖∇QE(x) − ∇QE(x ′)‖
≤

∑
Δ∈D

|μZ
[W(x,Δ)

] − μZ
[W(x ′,Δ)

]| · ‖Δ‖

≤ 4αK |D| · diam(supp μZ )s−1 · max
Δ∈D ‖Δ‖ · ‖T ‖L(Rn ,Rs )‖x ′ − x‖

and thus the desired Lipschitz continuity. ��
Proof (Proof of Theorem 3.2) Fix any κ > 0. As μZ is tight by [3, Theorem 1.3],
there exists a compact set C(κ) ⊂ R

s such that μZ [Rs \ C(κ)] < κ . Combining this
with the estimate from the first part of the proof of Lemma 6.2 and using the same
notation established therein, we see that

|μZ [W(x,Δ)] − μZ [W(x,Δ)]| ≤ 2μZ [Hx,x ′ ]
= 2μZ [Hx,x ′ ∩ C(κ)] + 2μZ [Hx,x ′ \ C(κ)]
≤ 2αλs[Hx,x ′ ∩ C(κ) ∩ supp μZ ] + 2κ

holds for any Δ ∈ D. Thus,

|μZ
[W(x, Δ)

] − μZ
[W(x ′, Δ)

]|
≤ 2κ + 2α

∑
H∈Hx

λs
[{v + l · T (x ′ − x) : v ∈ H , l ∈ [−1, 1]} ∩ C(κ) ∩ supp μZ

]

≤ 2κ + 4αK · diam(C(κ) ∩ supp μZ )s−1 · ‖T ‖L(Rn ,Rs )‖x ′ − x‖.

We therefore have

‖∇QE(x) − ∇QE(x ′)‖
≤

∑
Δ∈D

|μZ
[W(x,Δ)

] − μZ
[W(x ′,Δ)

]| · ‖Δ‖

≤ 4αK |D|diam(C(κ) ∩ supp μZ )s−1 max
Δ∈D ‖Δ‖ · ‖T ‖L(Rn ,Rs )‖x ′ − x‖ + 2|D|κ

and choosing κ = ε
2|D| yields the desired estimate. ��

Remark 6.1 The constant L(ε) derived in the proof of Theorem 3.2 depends on ε. If
the support of μZ is unbounded, we have L(ε) → ∞ as ε ↓ 0.

7 A Sufficient Second-Order Optimality Condition

Under the conditions of Theorem 3.1,∇QE is Lipschitz continuous on int FZ and thus
differentiable almost everywhere on int FZ byRademacher’s theorem.LetD ⊆ int FZ
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denote the set of points at which ∇QE is differentiable, then generalized Clarke’s
Hessian of QE at some x ∈ int FZ is the nonempty, convex and compact set

∂2QE(x) = conv
{
H ∈ R

n×n : ∃{xk}k∈N ⊆ D : xk → x, ∇2QE(xk) → H
}

.

We have ∂2QE(x) = {∇2QE(x)} whenever x ∈ D.
Let the feasible set of (2) be given by X = {x ∈ R

n : Bx ≤ b} with some
B ∈ R

k×n and b ∈ R
k . The following second-order sufficient condition is based on

[7]:

Theorem 7.1 Assume dom f = ∅, X ⊆ int FZ and let μZ be absolutely continu-
ous w.r.t. the Lebesgue measure and have a bounded support as well as a uniformly
bounded density. Moreover, let (x̄, ū) be a KKT point of (2), i.e.,

∇QE(x̄) + B�ū = 0, Bx̄ ≤ b, ū�(Bx̄ − b) = 0, ū ≥ 0

and assume that any H ∈ ∂2QE(x̄) is positive definite on

{
h ∈ R

n : e�
i Bh = 0 ∀i : ūi > 0

e�
j Bh ≤ 0 ∀ j : ū j = e�

j Bx̄ = 0

}
.

Then, x̄ is a strict local minimizer with order 2 of (2), i.e., there exist a neighborhood
U of x̄ and a constant L > 0 such that

QE(x) > QE(x̄) + L‖x − x̄‖2

holds for any x ∈ X ∩U.

Proof This is a straightforward conclusion from [7, Theorem 1]. ��
Remark 7.1 There are various other approaches for optimization problems with data
in the class C1,1, which consists of differentiable functions with locally Lipschitzian
gradients. For instance, second-order optimality conditions can also be formulated
based on Dini (cf. [5, Section 4.4]) or Riemann (cf. [8]) derivatives.

8 Conclusions

We have derived sufficient conditions for Lipschitz continuity of the gradient of the
expectation functional arising from a bi-level stochastic linear program with random
right-hand side in the lower-level constraint system. Invoking the structure of the upper
level constraints, we used this result to formulate a second-order sufficient optimality
condition for the risk-neutral bi-level stochastic program in terms of the generalized
Hessian ofQE.Moreover, themain result on the geometry of regions of strong stability
and its counterpart for the aggregation mapping W may facilitate the computation or
sample-based estimation of gradients of the expectation functional, which enhances
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gradient descent-based methods. As any region of strong stability is a finite union of
polyhedral cones, a promising approach is to employ spherical radial decomposition
techniques to calculate ∇QE (cf. [4, Chapter 4]). The details are beyond the scope of
this paper but shall be addressed in future research.

Acknowledgements The author thanks the Deutsche Forschungsgemeinschaft for its support via the Col-
laborative Research Center TRR 154.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Burtscheidt, J., Claus, M., Dempe, S.: Risk-averse models in bilevel stochastic linear programming.
SIAM J. Optim. 30(1), 377–406 (2020)

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Camebridge University Press, Cambridge (2004)
3. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd

edn. Wiley, New York (1999)
4. Genz, A., Bretz, F.: Computation of multivariate normal and t probabilities. In: Lecture Notes in Statis-

tics, vol. 195. Springer, Heidelberg (2009)
5. Ginchev, I., LaTorre,D., Rocca,M.:Ck,1 functions, characterization, Taylor’s formula and optimization:

a survey. Real Anal. Exch. 35(2), 311–342 (2009/2010)
6. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)
7. Klatte,D., Tammer,K.:On second-order sufficient optimality conditions for c1,1-optimization problems.

Optimization 19(2), 169–179 (1988)
8. La Torre, D., Rocca, M.: C1,1 functions and optimality conditions. J. Concr. Appl. Math. 3(1), 41–54

(2005)
9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	A Second-Order Sufficient Optimality Condition for Risk-Neutral Bi-level Stochastic Linear Programs
	Abstract
	1 Introduction
	2 Model and Notation
	3 Main Result
	4 On the Geometry of Regions of Strong Stability
	5 Properties of the Aggregation Mappings
	6 Proof of the Main Result
	7 A Sufficient Second-Order Optimality Condition
	8 Conclusions
	Acknowledgements
	References




