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Abstract
Structural monitoring plays a central role in civil engineering; in particular, optimal
sensor positioning is essential for correct monitoring both in terms of usable data and
for optimizing the cost of the setup sensors. In this context, we focus our attention
on the identification of the dynamic response of beam-like structures with uncertain
damages. In particular, the non-localized damage is described using a Gaussian dis-
tributed random damage parameter. Furthermore, a procedure for selecting an optimal
number of sensor placements has been presented based on the comparison among the
probability of damage occurrence and the probability to detect the damage, where the
former can be evaluated from the known distribution of the randomparameter, whereas
the latter is evaluated exploiting the closed-form asymptotic solution provided by a
perturbation approach. The presented case study shows the capability and reliability
of the proposed procedure for detecting the minimum number of sensors such that the
monitoring accuracy (estimated by an error function measuring the differences among
the two probabilities) is not greater than a control small value.
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1 Introduction

Strategic constructions, such as bridges and tower buildings, during their lifetime are
inexorably subjected to degradation and damage of various kinds. For this reason,
careful monitoring is required for profitable maintenance and for activation of safety
protocols in case of danger (“early warning” systems). The main problem, that dis-
courages the use of large-scale structural health monitoring (SHM) system, is its high
cost, directly related to the cost of the instrumentation and in particular the number of
sensors used.

In this framework, dynamic approaches—mainly concerned with output-only
techniques—have been successfully adopted to locate and quantify structural damages
for historical [1,2] and recent construction [3,4]. Other methods have been proposed
for the damage detection such as data-driven [5,6] and statistical method [7].

As reported by many authors, when structural responses of dynamic systems are
exploited to trace the signature of the damage, one dealswith an inverse problem,where
damage influence is recognized starting from its effect. On the one hand, techniques not
model based, see for instance [8,9], are able to directly detect the alterations due to any
variation, but their mechanical interpretation is often cumbersome. On the other hand,
model-based approaches, such as the techniques based on one-dimensional elements
[10,11], usually need to rely on accurate structural modeling and to select proper
response signals. Damage effects have been also investigated, using non-classical
continuum approaches, developed for materials with microstructure, by investigating
displacement fields and wave propagation [12–14].

Evidently, a well position of the sensor network defines the suitability of dynamic
behavior of the analyzed structure.

Therefore, a correct treatment that aims at reducing the number of sensors by lim-
iting the cost of SHM without compromising the quality of monitoring is desirable.
For this reason, optimal sensor placement (OSP) is an opening challenge in engineer-
ing [15,16] and many different strategies have been proposed by several authors. The
review paper [17] reports a comprehensive overview of a number of criteria for evalu-
ating different sensor setups such asmodal assurance criterion (MAC), the information
entropy (IE) [18–21], singular value decomposition ratio (SVDR) [22], Fisher infor-
mation matrix (FIM) [23,24], system-realization method [25] and multi-setup modal
analysis [26]. A Bayesian framework for model-based optimal sensor placement for
response predictions has been presented in [27,28]. A comparison of several methods
for optimal sensors placement has been proposed in [29] applied to a real case study
of a suspended bridge. In a recent work [30] a study of optimal sensor placement for
timber frame structure has been developed. In [31] the conditions for the invertibil-
ity of linear system models have been discussed. In these methods, an optimization
process has been performed to minimize an objective function. In order to solve the
optimization process, different methodologies have been adopted such as improved
genetic algorithms [32,33], and discrete optimization [34].

In the above-mentioned works, attention is paid to experimental modal analysis;
however, there are few works on the identifiability of damage processes suffered by a
structure. The recent work [35] focused on searching the weakest part of the structure
in a random context. In this work, non-localized damages are adopted, which are in
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general more difficult to identify than narrow damages [36,37]. Damages are modeled
as a perturbation of the healthy system and therefore a perturbation approach can
properly describe the effect of the damage, both for standard [38] and state-space
dynamic analysis [39,40]. In [41], a perturbationmethod has been proposed by some of
the authors to derive the asymptotic eigensolution of a vibrating beam with uncertain
damage. Then, the statistics of the random damage parameter have been obtained
by means of an objective function minimizing the difference among analytical and
experimental fractiles of the eigenvalues. The results obtained by the authors show
the importance of considering the second order terms of the perturbation approach in
order to achieve a significant increase in the identifiability of stochastic damages.

Starting from this model, we here propose a technique for obtaining an optimized
solution of sensors placement. The proposed approach aims at exploiting the closed-
form asymptotic solution of the inverse problem to compare more combinations of
number and placement of the sensors. These comparisons rely on an error function
measuring the deviation from the analytical probability of damage occurrence. Due
to the asymptotic nature of the research pattern, the performance of the proposed
placement optimization technique has a low computational effort. Some preliminary
results have been shown in [42]; the peculiarities and the capabilities of the technique
are here deepened.

The main novelty of the technique, with respect to the cited bibliography, concerns
the closed form evaluation of the identifiability of uncertain (local or widespread)
damages. Even if the technique has been so far developed only for vibrating beams,
the methodology is generally suitable for all cases when the dynamics of a structural
system can be described through analytical solutions.

The paper is organized as follow: In Sect. 2, the details of the proposed optimal
sensor placements have been presented. In Sect. 3, a numerical example, exploiting
the capabilities of the proposed method, has been shown. Finally, in Sect. 4, some final
remarks and future developments are reported.

2 Proposed Procedure

2.1 Beam and DamageModel

We consider in this work the classical beam model of the Euler–Bernoulli in which
the shear deformation effect is assumed negligible. The governing equation of the free
flexural undamped vibration reads:

∂2

∂x2

(
B(x, ε)

∂2v

∂x2

)
+ ρ(x, ε)

∂v2

∂t2
= 0 x ∈ [0, L] , (1)

where B is the flexural stiffness and ρ = ρV A is the mass density per unit length
(ρV and A being the volume mass density of the material and the area of the cross
section, respectively). x is the abscissa along the beam, of length L , v is the transversal
displacement, and ε is a random variable related to damage (Fig. 1). In addition, the
following assumptions were considered.
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Fig. 1 Sketch of the beam model

1. Negligible changes of the mass, i.e., ρ(x, ε) = ρ. That is a fairly common hypoth-
esis when one deals with damage identification.

2. Gaussian distribution of the random parameter ε with mean value με and standard
deviation σε, i.e., ε ∼ N (με, σε). The random parameter ε defines the damage
state of the beam and the related damage probability Pd can be evaluated as:

Pd = P(ε > 0) =
∫ ∞

0
f (ε) dε , (2)

where f (ε) is the probability density function of ε. In detail, since the random
parameter ε has been assumed Gaussian distributed, the probability of damage Pd
depends only on the ratio among the standard deviation σε and the mean value με,
that is, Pd is a function of the so-called coefficient of variation CVε = σε/με.

3. Linear decomposition of the flexural stiffness as follow:

B(x, ε) = B0 + εB1(x) = B0 − ε B0e
− (x−μb)

2

2σ2b︸ ︷︷ ︸
B1(x)

, |ε| � 1 , (3)

where μb characterizes the position around which the damage is centred and σb
is the relevant extension. The ‘small’ perturbation parameter ε linearly scales
the stiffness variation B1(x) of an initial (uniform) bending stiffness B0. In our
applications we pose a negative function B1(x), so that the random parameter ε can
be regarded as a random damage, where ε = 0 implies an healthy beam, whereas a
positive value of the parameter indicates a damage state (the higher the parameter,
the greater the damage). We remark that B1(x) is a function establishing where
the damage is located and how wide it is, and that the resolutive equations shown
below are still true even for functions other than the bell-shaped one proposed
here.

These positions reduce the entirety of the problem, they provide a useful simplification,
allowing for a proper description of stochastic reductions (damage) and increases
(reinforcement) of the beam stiffness [42].

With these assumptions and expanding all the terms in Eq. (1) one gets:

ε
∂2B1(x)

∂x2
∂2v

∂x2
+ 2ε

∂B1(x)

∂x

∂3v

∂x3
+ (B0 + εB1(x))

∂4v

∂x4
+ ρ

∂2v

∂t2
. (4)
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For the sake of simplicity, we adopt the following notation for the spatial (•)′ =
∂ (•) /∂x and time ˙(•) = ∂ (•) /∂t derivatives, respectively.

Introducing of the modal projection:

v(x, t, ε) =
inf∑
i=1

φ(x, ε)qi (t, ε) , (5)

where qi (t, ε) = Ci sin(ωi (ε)t+θi ) andφi (x, ε) are themode shapes (eigenfunctions)
and ωi (ε) the relevant (circular) frequencies related to the eigenvalues λi : ωi (ε) =
λ2i (ε)

√
B0/ρ. The governing equation in the modal space reads:

ω2
i (ε) = − q̈i (t, ε)

qi (t, ε)

= εB ′′
1 (x)φ′′

i (x, ε) + 2εB ′
1(x)φ

′′′
i (x, ε) + (B0 + εB1(x)) φ′′′′

i (x, ε)

ρφi (x, ε)
.

(6)

Since ε is a small parameter, Eq. (6) can be solved through a perturbation approach.
Moreover, the dynamic system under investigation is non-defective, and therefore, the
eigensolution admits a perturbation series of integer powers of the small parameter:

λi (ε) = λ0i + ελ1i + ε2λ2i + . . . ,

φi (x, ε) = φ0i (x) + εφ1i (x) + ε2φ2i (x) + . . .
(7)

Defining the operator L[•] = −B0λ
4
0(•)+ B0(•)′′′′ and balancing the same powers

in ε, Eqs. (6) and (7) can be written as a series of equations as follows (where the
dependence on i has been omitted):

ε0 : L[φ0(x)] = 0

ε1 : L[φ1(x)] = 4B0λ
3
0λ1φ0(x) − B ′′

1 (x)φ′′
0 (x)+

− 2B ′
1(x)φ

′′′
0 (x) − B1(x)φ

′′′′
0 (x)

ε2 : L[φ2(x)] = 6B0λ
2
0λ

2
1φ0(x) + 4B0λ

3
0λ2φ0(x)

+ 4B0λ
3
0λ1φ1(x) − B ′′

1 (x)φ′′
1 (x)

+ 2B ′
1(x)φ

′′′
1 (x) + B1(x)φ

′′′′
1 (x)

. . .

(8)

The solution of Eq. (8)1—so-called generating equation—is the well-known one:

φ0i (x) = C1 cos(λ0i x) + C2 sin(λ0i x) + C3 cosh(λ0i x) + C4 sinh(λ0i x) . (9)

The boundary conditions posed (BC) allow us to compute the eigenvaluesλ0i and three
of the four constantsC j , j = 1, . . . , 4 (the fourth one is a generic constant scaling the
mode). Once the pair (λ0i ;φ0i (x)) are known, Eq. (8)2 gives (λ1i ;φ1i (x)), Eq. (8)3
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gives (λ2i ;φ2i (x)) and so on. After some algebra, the expressions of the eigenvalues
and the eigenfunctions for the first and second order terms can be calculated:

λ1i =
∫ L
0 φ0i (x)B ′′

1 (x)φ′′
0i (x)dx + 2

∫ L
0 φ0i (x)B ′

1(x)φ
′′′
0i (x)dx

4B0λ
3
0i

∫ L
0 φ2

0i (x)dx

+λ40i

∫ L
0 B1(x)φ2

0i (x)dx

4B0λ
3
0i

∫ L
0 φ2

0i (x)dx

λ2i = −3λ21i
∫ L
0 φ2

0i (x)dx − 2λ0iλ1i
∫ L
0 φ0i (x)φ1i (x)dx

2λ0i
∫ L
0 φ2

0i (x)dx

+
∫ L
0 φ0i (x)B ′′

1 (x)φ′′
1i (x)dx + 2

∫ L
0 φ0i (x)B ′

1(x)φ
′′′
1i (x)dx

4B0λ
3
0i

∫ L
0 φ2

0i (x)dx

+
∫ L
0 φ0i (x)B1(x)φ′′′′

1i (x)dx

4B0λ
3
0i

∫ L
0 φ2

0i (x)dx
(10)

for the first and second order terms of the eigenvalues, and:

φ1i (x) = αi iφ0i (x) +
∞∑
k=1
k �=i

αikφ0k(x)

αik =
∫ L
0 φ0k(x)B ′′

1 (x)φ′′
0i (x)dx + 2

∫ L
0 φ0k(x)B ′

1(x)φ
′′′
0i (x)dx

B0
(
λ40i − λ4ok

) ∫ L
0 φ2

0k(x)dx

+λ40i

∫ L
0 φ0k(x)B1(x)φ0i (x)dx

B0
(
λ40i − λ4ok

) ∫ L
0 φ2

0k(x)dx

φ2i (x) = βi iφ0i (x) +
∞∑
k=1
k �=i

βikφ0k(x)

βik = −4B0λ
3
0iλ1i

∫ L
0 φ0k(x)φ1i (x)dx + ∫ L

0 φ0k(x)B ′′
1 (x)φ′′

1i (x)dx

B0
(
λ40i − λ40k

) ∫ L
0 φ2

0k(x)dx

+2
∫ L
0 φ0k(x)B ′

1(x)φ
′′′
1i (x)dx + ∫ L

0 φ0k(x)B1(x)φ′′′′
1i (x)dx

B0
(
λ40i − λ40k

) ∫ L
0 φ2

0k(x)dx
(11)

for the first- and second-order terms of the eigenfunctions.

2.2 Optimal Sensor Placement (OSP)

Let us focus on a beam defined by its stiffness B(x, ε), linearmass density ρ(x, ε) = ρ

and length L , such as described in Sect. 2.1. The solution of Eq. (7) gives a closed-
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form expression of the eigenvalues and eigenfunctions here adopted to estimate the
identifiability of damages in the vibrating uncertain beam.Moreover, the damage state
of the beam is governed by the random parameter ε, that has been assumed gaussian
distributed (see Sect. 2.1), and the probability of damage Pd , defined in Eq. (2) is a
function of the coefficient of variation CVε = σε/με.

The probability to detect the damage resorting to a statistical dynamic analysis is
related to the reduction of the eigenvalues:

Pddi = P(λi (ε) < λ0i ) = P(λi (ε) − λ0i < 0) i = 1, . . . , nλ (12)

being nλ the number of the first (measured) eigenvalues (related to sampling fre-
quency of the sensors). Using Eq. (7)1, the differences λi (ε) − λ0i can be written
as: ελ1i + (ε/σε)

2 σ 2
ε λ2i , where ε is gaussian distributed, ε ∼ N (με, σε), whereas

the term (ε/σε)
2 has a noncentral chi-squared distribution X 2(kχ , λχ ), with a unitary

degree of freedom kχ and non-centrality parameter λχ equals to (με/σε)
2. Therefore,

the probability density function of the term λi (ε) − λ0i is a mixture of two known
distributions. For the sake of brevity, the relevant probability Pddi is here explicitly
evaluated only in the case when the two derivatives λ1i and λ2i are both negative
(which is the most usual case):

Pddi = γ1iw1i
1

2

(
1 + Erf

[
1√
2CVε

]
+ Erfc

[
λ1i + λ2iμε√
2CVελ2iμε

])
+ γ2iw2i , (13)

with i = 1, . . . , nλ and where Erf and Erfc are the error function and the comple-
mentary error function, respectively. The two weights w1i and w2i can be expressed
as:

w1i = |λ1i |
|λ1i | + σ 2

ε |λ2| , w2i = σ 2
ε |λ2i |

|λ1i | + σ 2
ε |λ2i | . (14)

The penalty indexes affecting the first and the second order term are: γ1i = 1 −
| Ã1i − A1i |/A1i and γ2i = 1 − | Ã2i − A2i |/A2i , respectively. These two indexes
are introduced to describe in a synthetic way the accuracy in the reconstruction of
the variations encountered by the mode shapes. Several definitions can be adopted for
this purpose. In this work, penalty is related to the discretization error of experimental
mode shapes, i.e., γ1i and γ2i are evaluated comparing the continuous (analytical)
mode shapes and the discretized (measurable by the network) ones. A1i and A2i are
the analytical absolute values of the areas under the graph of |φ1i (x)| and |φ2i (x)|,
respectively, whereas Ã1i and Ã2i are the discretized counterparts:

A1i =
∫ L

0
|φ1i (x)| dx , A2i =

∫ L

0
|φ2i (x)| dx , (15)
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Fig. 2 Representation of |φ1i (xk )| for different values of the number ns of sensors

and

Ã1i =
ns∑
s=1

|φ1i (xk)| xk+1 − xk−1

2
,

Ã2i =
ns∑
s=1

|φ2i (xk)| xk+1 − xk−1

2
,

with: x0 = 0, xns+1 = L , (16)

where xk and ns are the positions of sensors along the beam axis and the number of
sensors, respectively.

An example of the areas under the graph of |φ1i (xk)| for different values of the
number of sensors is reported in Fig. 2, which shows that γ1i and γ2i tend to 1 (which
implies no penalty) when the number ns of the sensors tends to infinity.

The discrepancy between the probability of damage occurrence, Pd defined in
Eq. (2), and the probability to detect the damage, Pddi defined Eq. (13), measures the
capabilities of the sensor network to detect the changes in eigenvalues and eigenfunc-
tions due to structural damages (that is, the damage):

ΔP =
nλ∑
i=1

1

nλ

(Pd − Pddi ) . (17)

Eq. (17) is a function of the number nλ of measured eigenvalues, the positions xk of
sensors along the beam axis and the number ns of sensors, i.e.,ΔP = ΔP(nλ, ns, xk).

Assuming that an optimal sensors placement is the one requiring less sensors, the
best sensors network for a given number nλ of measured eigenvalues can be defined
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through the following constrained optimization problem, where the objective function
is not-strictly convex and constraint is an “hard-like” nonlinear inequality:

determine min F (ns) = ns subjected to:

ΔP (ns, xk) ≤ Tol ,

with the bounds on the unknowns:

ns > 0 ,

xk ≥ 0, xk ≤ L, k = 1, . . . , ns

(18)

where Tol = ΔP is a chosen threshold value for the difference among the probability
of damage and the probability of detecting the damage. The proposed procedure is
resumed in the flowchart of Fig. 3, where E0 is the initial value of the Young’s modulus
and I0 the initial value of the cross-sectional moment of inertia (so that the undamaged
bending stiffness B0 is equal to E0 I0).

3 Application

3.1 Case Study

The case study is a simply supported beam, which geometry and material in the
undamaged scenario (the input values of the flowchart) are: Young’s modulus E0 =
30 · 109 Pa, volume mass density ρV = 2500 hboxkg/m3, length L = 6 m and
rectangular cross section of base 0.30 m and height 0.60 m (hence the initial moment
of inertia I0 = 0.0054 m4); see Fig. 4. Assuming these values, a linear mass density
of ρ = 450 kg/m and an initial bending stiffness of B0 = E0 I0 = 162 · 106 N
m2 are found. We note that these values are quite typical for a 6-m-long concrete
beam. Equation (9) plus the proper boundary conditions leads to the well-known
eigensolution of the undamaged beam: λ0i = iπ/L , for the eigenvalues, and φ0i =
sin(λ0i x), for the (unitary scaled) mode shapes.

The stiffness variation, and therefore the damage as postulated in Sect. 2.1, is
obtained using Eq. (3).

For the shape of the damage, that is, for B1(x), we assume that the damage is
centred at the midspan of the beam, whence μb = L/2, but with three different
values of the relevant extension σb = {L/60, L/30, L/15}. For the random parameter
ε, the mean value is set to με = 0.20 and three standard deviations are imposed
σε = {0.04, 0.20, 0.36}; these three values of the standard deviation σε correspond to
the following three values of the coefficient of variation CVε = {0.2, 1.0, 1.8}.

With these values we intend to represent usual real-life cases: when one needs to
set a sensor network to monitor the health of a structure (beam-like in our case), both
the position in which the damage is likely to occur and its magnitude can be postulated
or estimated quite easily (for instance, with nonlinear models in ultimate limit state
conditions). From this standpoint, the central section is certainly the most prone to
damage for a simply supported beam (hence the value L/2 for μb); at the same time,
a 20 % reduction in stiffness (με of 0.20) is also a typical and reasonable value.
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Fig. 3 Flow-chart of the proposed procedure

Fig. 4 Case study
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Fig. 5 Beam stiffness for a damage centred at midspan (μb = L/2) with three different extensions σb =
{L/60, L/30, L/15}

Conversely, it is difficult to model and calculate the spatial amplitude σb of the
damage and the scattering (uncertainty) σε of its magnitude. For this reason, here we
assume a wide range of possible values for σb (from L/60 to L/15) and σε (from 0.04
to 0.36).

To give an idea of the damage that is being considered, Fig. 5 shows the trend of the
bending stiffness B(x, ε) with the variation of the spatial amplitude σb (considering
for the random parameter intensity ε a value of 0.20), whereas in the case where σb
is equal to L/60, the damage is practically concentrated at the center section, for σb
equal to L/15 the damage extends for almost a third of the beam.

As regards the chosen values of the standard deviation σε of the random parameter
ε, the relevant probability of damage Pd is shown with the help of Fig. 6: when the
coefficient of variation attains the values CVε = {0.2, 1.0, 1.8}, the probability of
damage Pd is equal to 100, 84, and 71 %, respectively. It clearly turns out that the first
case can be assimilated to a deterministic damage.

To run the flowchart of Fig. 3, two other parameters must be set:

– the tolerance value Tol for the probability discrepancy ΔP . Here we use a value
of 10 %, which seems to be a good compromise between the wish of prediction
accuracy and the need to contain the number of sensors;

– the number of measured eigenvalues nλ. Three values are here adopted, nλ =
{2, 4, 8}, well representative of the number of eigenvalues typically measured in
real beams.
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Fig. 6 Variation of the probability of damage Pd with the coefficient of variation CVε ; red dots are the
values chosen for the application (CVε = {0.2, 1.0, 1.8})

3.2 Results

In this section, we show the results of the constrained optimization problem in Eq. (18).
Since three different values have been assumed for the coefficient of variationCVε, for
the spatial amplitude of the damage σb and for the number of measured eigenvalues
nλ, a total amount of 27 runs are here performed. As also shown in the flow-chart
of Fig. 3, the results of the technique are provided in terms of the minimum number
of sensors ns and their position xk, k = 1, . . . , ns along the beam axis. To pose a
computationally simpler problem, we assume hereafter that networks are composed
of equally spaced sensors: under this hypothesis, the solution is just given as ns , i.e.,
the minimum number of sensors.

With reference to the case of four measured eigensolutions (nλ = 4) and coefficient
of variation of 0.20 (CVε = 0.20), Fig. 7 shows the variation of the percentage
probability difference ΔP (Eq. (17)) when ns ranges from 1 to 10. When the number
of sensors is increased, there is a “physically sound” reduction of the percentage
difference; moreover, as even suggested by the mechanical meaning of the spatial
amplitude σb, the reduction with ns is more pronounced when σb is greater, that is,
when the damaged area is increased. Recalling the adopted threshold Tol of 10 %,
for all these three cases, we obtain as optimal (equally spaced) sensors placement the
one considering eight sensors.

Table 1 shows the results obtained for the 27 runs of the constrained optimization
problem. In detail, the table shows the minimum number of sensors ns needed to
ensure a percentage probability difference ΔP less than the adopted threshold Tol
of 10 %. As a general comment, within the ranges of variation considered in this
application, the minimum number of sensors ns changes from 6 to 10; the plots shown
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Fig. 7 Selection of the optimal number of sensors for the cases: four eigensolutions (nλ = 4), coefficient
of variation equal to 0.20 (CVε = 0.20) and three different spatial amplitudes σb = {L/60, L/30, L/15}

in the previous Fig. 7 are related to the values highlighted in the table through a gray
background. Some significant remarks can be collected:

– following the previous comments on Fig. 7, for a given number nλ of eigenvalues
and a given coefficient of variationCVε, theminimum number ns tends to decrease
if the damage is more widespread (i.e., when σb is increased);

– for a given number nλ of eigenvalues and a given spatial amplitude σb of the
damage, theminimumnumber ns tends to decrease if the damage ismore uncertain
(i.e., when the coefficient of variation CVε is increased). This evidence is to be
connected to a simple circumstance: as the coefficient of variation CVε increases,
the probability of damage Pd decreases, therefore, having imposed a constant
tolerance Tol (between the probability Pd and the probability to detect the damage
Pddi ), the minimum number ns must necessarily decrease;

– the last condition to be analyzed is the one revealed considering a given spatial
amplitude σb of the damage and a given coefficient of variationCVε of the random
parameter ε. The results show that when the number of eigenvalues nλ increases,
also the required minimum number of sensors ns increases. At a first glance, this
result may seem counterintuitive, because one would expect that as the number of
information (the number of eigenvalues) of the single sensor increases, the network
consequently needs fewer sensors to achieve a certain performance. In truth, the
result here obtained is fully consistent with the proposed procedure. Indeed, our
technique provides as criterion for selecting the minimum number of sensors ns ,
the evaluation of a difference in probability which is an average value considering
all the contributions of the measured eigenvalues (see Eq. (13) and Eq. (17)).
Taking into account that these contributions of the individual eigensolution are
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Table 1 Optimal (minimum) number of sensors ns for different combination of: number of eigensolutions
nλ, coefficient of variation CVε of the random parameter ε and spatial amplitude σb of the damage

weighted on the discretization error of the perturbed mode shapes (see the penalty
indexes of Eq. (13)), it is evident that as the number of eigenvalues is increased,
even the required minimum number of sensors ns increases (because it is required
to describe higher, “more distorted”, modes). In other words, to see a benefit linked
to a greater number of measured eigenvalues, a different relation should be used
for the difference in probability Eq. (17), for example, instead of the average value,
the minimum value of the difference between the damage probability Pd and the
probability to detect the damage Pddi could be considered.

4 Conclusions

The main goal of this paper was the damage identification in transversely vibrating
beams with uncertain stiffness. The beam model is non-deformable for any shear
deformation and changes in mass due to structural damages are assumed negligible.
Damage is then introduced as a “small” perturbation of the uniform initial bending
stiffness. In detail, the damaged scenario is described with two terms: a bell-shaped
function, ruling the position around which the damage is centred and its extension;
and the “small” random parameter, which controls the intensity of the damage. Then,
the adoption of a modal projection in conjunction with a perturbation technique allows
us to achieve the eigensolutions in closed-form.

Moving towards the sensor network, the hypothesis of Gaussian distribution of the
damage random parameter leads to a robust procedure for an optimal placement of
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sensors. It is based on the comparison among the probability of damage occurrence,
evaluated from the known distribution of the random parameter, and the probability to
detect the damage, evaluated exploiting the closed-form asymptotic solution described
above. This comparison brings us to a constrained optimization problem, where the
constraint is ruled by an error function encompassing three parameters: the number of
measured eigenvalues, the positions of the sensors along the beam axis and the number
of sensors.

A simple and paradigmatic case study, whose behavior is well known and clear, was
considered to highlight the advantages and disadvantages of the proposed technique.
The parametric investigation of a simply supported beam with rectangular cross sec-
tion showed how the proposed approach is a suitable tool to collect and compare the
performance of different sensors configurations. On the other hand, the main limita-
tion of the proposed technique is the adoption of analytical solutions. This approach
excludes its generalization to structures more general or complex than beam-like, for
which closed form solutions are not pervasive.

Starting from the procedure here developed, there are some future developments
capable of improving and generalizing the procedure itself. In particular:

– here the optimization refers to a given, expected, damaged scenario, but more
plausible damage models would be desirable;

– a penalty index taking into account the sensitivity of the sensors should be intro-
duced to describe in the procedure the lower frequency shift detectable by the
sensors;

– the definition used to measure the accuracy of the sensor networks, based on an
average difference (Eq. (17)), could be “weaken” or “strengthen” (looking at the
lower or at the greater difference of the summation); the relevant effects on the
optimal sensors placements are being analyzed;

– an extension of the proposed methodology for 2D continua is under investigation
in order to consider structural elements more general than beam-like (slabs, plates,
shells, and so on).
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