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Abstract
We review and discuss results obtained through an application of tools of nonlinear
optimal control to biomedical problems. We discuss various aspects of the model-
ing of the dynamics (such as growth and interaction terms), modeling of treatment
(including pharmacometrics of the drugs), and give special attention to the choice of
the objective functional to be minimized. Indeed, many properties of optimal solutions
are predestined by this choice which often is only made casually using some simple
ad hoc heuristics. We discuss means to improve this choice by taking into account the
underlying biology of the problem.

Keywords Optimal control · L1- and L2-type objectives · Mathematical modeling ·
Cancer therapies · Pharmacometrics

Mathematics Subject Classification 49K15 · 92C50

1 Introduction

Optimal control is a methodology to obtain well thought through solutions to practical
problems for dynamical processes. It has found numerous applications in the sciences
andhas becomea staple of engineering design, but applications to biomedical problems
are less well known. Yet, optimal control as a tool in the analysis of mathematical
models of cancer chemotherapy dates back to the 1970s and 1980s (e.g., see [1–6]),
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and these efforts have continued actively throughout the years to the present day (e.g.,
see [7–14] and the many references in [15]).

In the modeling, considerable attention is given to the formulation of the underly-
ing dynamics. Based on the tremendous progress that has been made over the years in
understanding biomedical problems, and cancer in particular, even minimally param-
eterized models are generally well thought through and realistic. As a matter of fact,
however, considerably less effort is made when the objective is formulated that will
be imposed on the process. Omnipresent are the papers in which the formulation of
the criterion at best is a mere after-thought rested in questionable heuristics based
on the notion of a “systemic cost”—whatever that may be. Naturally, the choice of
the objective in an optimal control problem is a very important aspect of the over-
all approach and quite often it is here where what will be eventual properties of the
optimal solution are already determined. One should not confuse this with obtaining
meaningful information on the underlying biological problem.While, on the one hand,
it is not that straightforward to come up with a proper objective criterion in biological
problems, on the other hand, choosing the objective based onmathematical tractability
with disregard of its meaning will not pass muster.

In this paper, which is intended as a review and discussion, using mathematical
models for cancer treatments as the main vehicle of presentation, we discuss the
main aspects that enter into the modeling of biomedical problems as optimal control
problems. We give some attention to the formulation of the dynamics (such as growth
and interaction terms for the population) and treatment aspects, but our emphasis
will be on the formulation of the objective to be minimized. We stress the need for
a meaningful interpretation of the objective. This should be related to side effects of
the treatment in models for cancer therapies and/or to the actual cost. Yet, such costs
are not always easily quantifiable. Just think of ‘social distancing’ during an epidemic
and its effects on the economy. Using examples from our work, we illustrate how
information from the underlying biology or medically relevant limitations can be used
to formulate the optimization criterion so that optimal solutions then give meaningful
information for the underlying biomedical problem. We point out some pitfalls to be
avoided, but also make useful simplifications in the modeling, both in the dynamics
and the objective.

2 Typical Structure of the Dynamics for Biomedical Therapies

In this section, a general model is formulated which represents a class of dynamical
systems common in the modeling of biomedical therapies. These models are affine in
the controls u ∈ R

m with states x ∈ R
n+. The components xi , i = 1, . . . , n, of the

state x are nonnegative numbers which, in a typical example, represent volumes or
cell counts of various populations (compartments) of cells relevant to the underlying
biomedical condition or, in epidemiological models, population counts in various
stages of the disease. The controls u j , j = 1, . . . ,m, stand for possible external
interventions and strategies such as drug therapy in cancer treatments or vaccination
efforts in epidemiological models. Mathematically, the general structure we consider
in this paper is of the form
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ẋ = F(x) + G(x)u, x ∈ R
n+, u ∈ U ⊂ R

m, (1)

with F and G typically nonlinear vector fields called the drift and control vector
fields, respectively, and U the control set which represents restrictions on the size of
the controls.

2.1 The Uncontrolled Dyamics: Model of the Underlying System

The drift vector field F describes the underlying dynamics of the system without any
outside interventions. It generally consists of various terms which should include the
following aspects: growth terms of the populations aswell as transition and interaction
terms between the various compartments.

2.1.1 Growth Terms

These terms describe the mechanisms behind the increase in all or some of the popu-
lations in the compartments that define the state. These mechanisms can be modeled
in various ways taking into account whether or not such growth saturates or not.
The simplest model for a single population x ∈ R is given by exponential growth,
ẋ = ax , with a a constant representing the growth rate. The same expression with
a < 0 describes a basic death term of the population and, more generally, these two
processes can be combined with a describing the net effect. While this is an adequate
model for some phases of the dynamics, often used in short-term models or in epi-
demiology, over longer time periods saturation effects need to be taken into account.
Here, the most common models are logistic growth, ẋ = ax

(
1 − x

K

)
, with K denot-

ing a fixed carrying capacity of the population. Another saturation type model, which
has been verified empirically as the model for late-stages in breast cancer [16,17], is
Gompertzian growth of the form ẋ = −ax ln

( x
K

)
. Logistic growth is often preferred

because of its simpler mathematical structure. Other growth models exist, but are less
common (e.g., see [18]).

2.1.2 Transitions Between the Compartments

Transition terms model the exchanges between populations. For example, in cell-
cycle specific models for cancer chemotherapy [8], quiescent and proliferating cells
are distinguished and proliferating cells move through growth phases, synthesis and
mitosis, all represented by different coordinates of the state vector x . Similarly, inmod-
els including drug resistance, random changes from sensitive to resistant cells occur
which, in cases of cancer chemotherapy, also may be reversible. In epidemiological
models, transitions between sensitive, exposed, infectious and recovered individuals
are crucial to understand the spread of the disease. All such transitions are generally
modeled by linear transition rates of the form

ẋi = −αi xi +
∑

j �=i

βi j x j ,
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with αi ≥ 0 representing the outflow from the ith compartment and βi j ≥ 0 for i �= j
representing the inflow from the jth into the ith compartment.

2.1.3 Interactions Between the Compartments

Cells in various compartments stimulate and/or inhibit cells in other compartments.
Often these interactions are modeled by the law of mass actions leading to products of
terms representing the cell counts or volumes in various compartments. This generates
expressions of the form xi x j or, more generally, expressions which include powers
of the variables. The simplest structure shows up in epidemiological models when
susceptible and infectious populations S and I interact generating an outflow of the
formβSI from the susceptible compartmentwhich becomes an inflow to the infectious
population I with β accounting for the probability of such interactions. Powers arise,
for example, in a model for angiogenic signaling by Hahnfeldt et al. [19] where the
interactions are between the tumor surface through which angiogenic inhibitors need
to be released and the carrying capacity of the vasculature. If both tumor volume and
the carrying capacity are modeled by volumes p and q, respectively, this generates

an interaction term of the form p
2
3 q. In a classical model by Stepanova of tumor

immune system interactions [20], the fact that the immune system is able to control
small tumors, but increasingly becomes overwhelmed by large tumors is modeled by
an interaction term of the form α

(
x − βx2

)
y where x represents the tumor volume

and y a non-dimensional, order of magnitude variable related to the actions of the
immune system called the immunocompetent cell density. Here, x = 1

β
corresponds

to a threshold beyond which the immunological system becomes depressed by the
growing tumor. The coefficients α and β are used to calibrate these interactions and
collectively describe state-dependent interactions between the cancer cells and the
immune system. Limiting effects of the interactions between various compartments
can be taken into account by so-called Michaelis–Menten terms. As an example, in a
model for CML (chronic myeloid leukemia) [21] which includes proliferating cancer
cells P and effector cells E of the immune system, this leads to terms of the type

Pmax · P
PC50 + P

· E

with Pmax denoting the maximum possible effect and PC50 the concentration of pro-
liferating cancer cells for which half of the maximum effect is realized. Similar terms
describe stimulating or inhibiting effects of such interactions depending on the nature
of the variables.

2.1.4 Multi-stability and Regions of Attractions

Important aspects of the uncontrolled dynamics are multi-stability and the geom-
etry of the regions of attraction of locally stable equilibria. We illustrate these
features using two classical models for tumor growth and its interactions with the
tumor micro-environment: the model for angiogenic signaling by Hahnfeldt et al.
[19] and Stepanova’s model for tumor immune-system interactions [20,22,23]. These

123



Journal of Optimization Theory and Applications (2020) 187:305–335 309

models also serve as illustrations for the general elements of the dynamics described
above.
(a) angiogenic signaling In this model by Hahnfeldt et al. [19], the spatial aspects of
the underlying consumption-diffusion process that stimulate and inhibit angiogenesis
are incorporated into a non-spatial 2-compartment model with the primary tumor
volume, p, and the carrying capacity of the vasculature, q, as its principal variables.
The dynamics consists of two ODEs that describe the evolution of the tumor volume
and its carrying capacity which are given by

ṗ = −ξ p ln

(
p

q

)
, (2)

q̇ = bp − dp
2
3 q − μq. (3)

Thus, aGompertzian growth term is used tomodel tumor growth.The carrying capacity
q and tumor volume p are balanced for p = q, while the tumor volume shrinks for
inadequate vascular support (q < p) and increases if this support is plentiful (q > p).
Different from traditional approaches, the carrying capacity is not considered constant,
but becomes a state variable whose evolution is governed by a balance of stimulatory
and inhibitory effects. The term bp represents the stimulation of the vasculature by

the tumor and is taken proportional to the tumor volume. The term dp
2
3 q models the

inhibition of the vasculature by the tumor which, as mentioned above, is represented
as an interaction term between the tumor surface and the vasculature. The coefficients
b and d are mnemonically labeled for birth and death, respectively. The last term−μq
simply represents a natural death term related to the vasculature.

This model has a unique equilibrium at

p̄ =
(
b − μ

d

) 3
2 = q̄ (4)

which is globally asymptotically stable (relative to the natural state-space D =
{(p, q) : p > 0, q > 0}) [24] (see Fig. 1). The dynamics has a strong differential-
algebraic character with the q-dynamics of the vasculature fast and the p-dynamics for
the tumor volume slow. Essentially, the system follows the corresponding null-cline
(defined by the equation q̇ = 0) into the unique equilibrium point. For realistic values
of the parameters, this equilibrium is not biologically viable and therapy is needed
to lower or even eradicate this equilibrium point. In the later case, the objective then
becomes to drive the state of the system toward the singular point (p, q) = (0, 0).

(b) Tumor immune system interactions In this by now classical mathematical model
of Stepanova [20], two ordinary differential equations formulate the aggregated inter-
actions between cancer cell growth and the activities of the immune system during the
development of cancer. Precisely because of its simplicity—a few parameters incorpo-
rate many medically important features—the underlying equations have been widely
accepted as a basic model. Themain features of tumor immune system interactions are
aggregated into just two variables, the tumor volume, p, and the immunocompetent
cell densities, r , a non-dimensional, order of magnitude quantity related to various
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Fig. 1 Phase portrait for the dynamical systems (2)–(3) for the parameter values ξ = 0.192, μ = 0.02,
b = 5.85 and d = 0.00873. The parameter values are based on biologically validated data for Lewis
lung carcinoma in mice [19], a fast growing cancer. The almost horizontal segments indicate a strong
differential-algebraic character with trajectories eventually following the q̇-nullcline defined by q̇ = 0

types of immune cells (T-cells) activated during the immune reaction. The resulting
dynamics takes the following form:

ṗ = ξ pF(p) − θ pr , (5)

ṙ = α(p − β p2)r + γ − δr , (6)

with F a tumor growth function. Greek letters denote constant coefficients which
model the main interactions of the tumor with the immune system. Various organs
such as the spleen, thymus, lymph nodes and bone marrow, each contribute to the
development of immune cells in the body and the parameter γ in Eq. (6) models a
combined rate of influx of T-cells generated through these primary organs; δ is simply
the rate of natural death of the T-cells. The first term in this equation models the
proliferation of lymphocytes. For small tumors, it is stimulated by tumor antigen and
this effect is taken to be proportional to the tumor volume p. Large tumors suppress the
activity of the immune system, mostly because of a general suppression of immune
lymphocytes. This feature is expressed in the model through the inclusion of the
term −β p2. Thus, 1/β corresponds to a threshold beyond which the immunological
system becomes depressed by the growing tumor. The coefficients α and β are used to
calibrate these interactions and collectively describe state-dependent influence of the
cancer cells on the stimulation of the immune system. The first equation, (5), models
tumor growth with ξ a tumor growth coefficient that has been separated from the
qualitative behavior of the growth function F . The second term, −θ pr , models the
beneficial effects of the immune system reaction on the cancer volume and θ denotes
the rate at which cancer cells are eliminated through the activity of T-cells.

The dynamical behavior of this system is fundamentally different from themodel for
angiogenic signaling. For a typical set of parameter values, the dynamics ismulti-stable
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(a)

(b)

(d)
(c)

Fig. 2 Phase portraits for the system (5)–(6) for the parameter values given in Table 1 and varying growth
functions F . The following growth functions were used in the respective panels: a Gompertzian growth:

FG(p) = − ln
(

p
p∞

)
, b logistic growth: FL(p) = 1− p

p∞ , c generalized logistic growth with exponent 2:

FGL(p) = 1 −
(

p
p∞

)2
, and d exponential growth: FE(p) ≡ 1. The points (pb, rb) and (pm , rm ) are the

locally stable benign and malignant equilibria, respectively, and (ps , rs ) denotes the unstable saddle point.
The dashed red curve is the stable manifold of this saddle

and the system has both locally asymptotically stable microscopic and macroscopic
equilibrium points as well as an unstable saddle point. Figure 2 shows phase portraits
of the system for the parameter values listed in Table 1 for four different growthmodels
which qualitatively all exhibit the samemulti-stability. At themicroscopic equilibrium
point, the tumor volumes are small and immuno-competent cell densities are upreg-
ulated. This corresponds to a situation when the immune system is controlling the
tumor. We denote the corresponding equilibrium point by (pb, rb) and call it benign.
Themacroscopic equilibrium point is characterized bymore than tenfold higher tumor
volumes and depressed immunocompetent cell densities. In these solutions, the tumor
has suppressed the immune system and it almost reached its carrying capacity. We
denote the corresponding equilibrium point by (pm, rm) and call itmalignant. Both of
these equilibria are locally asymptotically stable, (pb, yb) a stable focus and (pm, rm)

a stable node. We call the regions of attraction associated with the benign and malig-
nant equilibria the benign, respectively, the malignant region. For the model with an
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Table 1 Variables and parameters used for the phase portraits shown in Fig. 2

Variable parameters Interpretation Numerical value References

p Tumor volume [20]

p∞ Fixed tumor carrying capacity 780 [22]

r Immuno-competent cell density [20]

α Tumor stimulated proliferation rate 0.00484 [22]

β Inverse threshold for tumor
suppression

0.00264 [22]

γ Rate of influx of T-cells 0.1181 [22]

δ Death rate 0.37451 [22]

θ Tumor–immune interaction rate 1 [22]

ξ Tumor growth parameter 0.5618

exponential growth function, the tumor size is not limited and in this case no malig-
nant equilibrium exists, but the malignant region is characterized by the fact that the
p-component of the trajectories diverges to ∞, while the r -component converges to
0. The benign and malignant regions are separated by the stable manifold (shown
as a dashed red curve in each diagram) of a saddle point which forms the common
boundary of these regions.

These phase portraits represent a snapshot of the true dynamics: a stationary sit-
uation for fixed parameter values. Because of unmodeled aspects of the dynamics
and/or random events, however, this situation will constantly change in time. Thus,
it is intuitively clear that a benign equilibrium solution can be disrupted by events
affecting the immune system which were not included in the mathematical modeling
which then may lead to a transition of the state into the malignant region. How likely
this becomes is related to the size of the region of attraction of this equilibrium: If
the benign region is small, even minor events may bring up the disease, whereas the
immune system may be able to control the disease if this region is large. While there
exist good reasons to believe that the immune system is able to control some tumors
initially, over a longer period of time, the neoplasm will develop various strategies to
evade the actions of the immune system (immuno-editing) and this allows the tumor to
recommence growing into clinically apparent tumors and eventually reach its carrying
capacity [25]. Tumor–immune system interactions thus exhibit a multitude of dynamic
properties that include persistence of both benign and malignant scenarios. From a
practical point of view, the question then becomes how to move an initial condition
that lies in the malignant region into the benign region. This requires therapy and can
naturally be formulated and analyzed as an optimal control problem.

2.2 The Controlled Dynamics: Mathematical Models for Therapy and Other
Interventions

Besides the underlying dynamics represented by the drift vector field F , the other
essential ingredient in biomedical problems is a mathematical model for outside inter-
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ventions. These comprise therapies aimed at curing a patient in cancer treatment or
actions to limit the spread of an epidemic.Within the general structure (1) of themodel
considered in this paper, the effects of these actions are modeled linearly through the
control vector fields

G(x)u =
m∑

i=1

Gi (x)ui . (7)

Here the control variables ui , i = 1, . . . ,m, represent various therapy options such
as chemotherapy, radiotherapy, immunotherapy in mathematical models for cancer
treatments and/or other available actions to influence the state of the system such as,
for example, social distancing measures in epidemiological models. The components
gi j , j = 1, . . . n, of the vector field Gi , i = 1, . . .m, model the effects which the jth
intervention modality u j has on the ith compartment xi of the state.

Generally, the number m of different modalities for outside interventions in a
biomedical problem setting is small and m typically lies in the range of m = 1, 2, 3.
Even for the current COVID-19 pandemic, in essence, all efforts to limit the spread
of the pandemic are related to social distancing measures in an attempt to lower the
probabilities of infection. If available, vaccination would be a different second inter-
vention strategy, but, clearly, the overall number of options is not very large. Similarly,
in cancer therapy, the number of possible qualitatively different treatments options is
small. If one ignores surgery, as this is an option that would be pursued at the onset
prior to any time frame that typically would be modeled mathematically, the main
modalities are chemotherapy, radiotherapy and immunotherapy. If chemotherapy is
given through a cocktail of drugs (and this is the common procedure), then it is still
typically advantageous tomodel the effects of the combination of all the drugs together
and one may have m = 1, while the case m > 1 often is reserved for true combina-
tion therapies that combine, for example, chemo- or radiotherapy with antiangiogenic
treatment. Thus, the typical scenario is that the number m of controls in the system is
small.

2.2.1 Strengths and Limitations of Control Affine Models

The particular mathematical structure considered in Eq. (7)—linear in u—clearly does
not cover the full range of possibilities, but it is worth emphasizing that this is by far
the most common, most important, and, in many aspects, most natural structure.

Essentially, whether or not a control affine model (7) is valid depends on the choice
of what the controls represent. If the controls are tied in with the effects of treatment
(e.g., the control represents the concentration of an agent rather than its dose rate),
then this model may not be appropriate. If, however, the controls ui are related to
the administration of the therapies (dose rates) and are separated from their effects,
these models will be linear in the controls. Below we shall discuss in more detail
mathematical models for drug therapies, but we want to mention at least in passing
the main model for radiotherapy, the so-called linear quadratic model.

In this model, the probability of cell survival is represented in the form
exp

(−αD − βD2
)
where D denotes the total radiation dose and α and β are radiosen-

sitive parameters. Briefly, the rationale for the model is as follows [15,26]: Radiation
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causes abnormalities (lesions) that correspond to ruptures of the molecular bonds on
the double-stranded DNA. This damage is made up of two components: (i) simulta-
neous breaks in both DNA strands that are caused by a single particle and (ii) adjacent
(both in location and time) breaks on separate strands. While a double-strand break
leads to a loss of proliferative abilities, a single-strand breakage is not considered lethal
since DNA has the ability to repair it. Only if a second adjacent break occurs on the
other strand before the first one can be repaired, this will lead to loss of proliferation
properties. Both scenarios (i) and (ii) are considered lethal in the sense that the cell
is no longer able to proliferate. The first situation leads to a linear term in the cell
survival model, while the second one contributes quadratic terms. This is accounted
for by the parameters α and β which are called the LQ parameters.

Repair of DNA damage generally is incomplete. Once this is taken into account as
well, then the surviving fraction of cancer cells can be represented in the form

exp

(
−α

∫ T

0
u(t)dt − 2β

∫ T

0

∫ t

0
u(t)u(s)e−ρ(t−s)dsdt

)

with u denoting an arbitrary, time-varying dose rate, u = u(t) ≥ 0, over the therapy
interval [0, T ] and ρ the tissue repair rate. The total dose D is given by D = ∫ T

0 u(t)dt .
This model can be written in a control-affine form [15,27] as follows:

ṗ = pF(p) − (α + 2βr)pu, p(0) = p0, (8)

ṙ = −ρr + u, r(0) = 0. (9)

Here, p once more represents the tumor volume and the equation for r models the
temporal effects of tissue repair;α andβ are the LQparameters. The specific parameter
values depend on the tissue treated, and there will be separate equations modeling
the effects on cancerous and healthy tissue. The control u represents a time-varying
fractionated radio-therapy dose rate. The linear model in u represents the way therapy
is administered, and this almost always is adequately modeled by a linear term. The
quadratic effects of radiotherapy are subsumed at the expense of introducing the extra
state variable r .

Similarly, while the actions of different treatmentmodalities clearly are interrelated,
this concerns their effects, not the way the therapies are administered. If chemotherapy
is consideredwithmultiple drugs, then synergistic or antagonistic effects which cannot
be modeled linearly become important. Aside from the fact that such interactions
often are far from being understood, it also matters what the control u represents. If
the control represents drug concentrations, then such interactions enter into the model
through the controls and a linear model is inadequate. On the other hand, if the controls
represent the dose rates of the various agents, then the concentrations of these agents
merely become additional states and these interactions enter into the drift vector field
F of a generally already nonlinear dynamics. This then preserves the control linear
structure (7).

In essence, if the controls ui , i = 1, . . . ,m, represent the administration of the
therapies (dose rates) and as variables are separated from the effects of the actions
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(which, for example, depend on the concentrations), then a model which is linear in
the controls is not only adequate, but is the correct one.

We expand further on this for the case of chemotherapy and, as amatter of simplicity
of the presentation, focus on the case of a single control u.

2.2.2 Pharmacodynamics: Modeling Drug Therapies Through Drug Concentrations

Pharmacodynamics is the branch of pharmacology which quantifies the effects which
a drug has at concentration c. According to the law of mass action, the speed of a
chemical reaction is proportional to the product of the active masses (concentrations)
of the reactants. If a drug is administered, in an ideal situation it has been postulated
that cell death under cancer drugs follows first-order kinetics [28], i.e., the decrease in
the number of cancer cells per unit of time is proportional to the number of cancer cells
with the rate depending on the concentration of the anti-cancer drug. Any functional
relation of the form e = s(c)x with x denoting the cells in a compartment on which the
drug is acting (e.g., tumor cells, immune system, healthy cells, etc.) and the coefficient
s(c) representing the concentration dependent killing rate of the drug is considered
a pharmacodynamic model. A linear model of the form s(c) = ϕc with ϕ a positive
constant, the so-called linear log-kill hypothesis based on Skipper’s paper [28], is the
most commonly used form. Incorporating this structure into a standard growth law
results in the following growth model under chemotherapy,

ṗ = pR(p) − ϕcp. (10)

If the concentration c is considered the control u in the system, u = c, then the
linear log–kill model fits the general linear form (7). The product represents an inter-
action term as discussed in Sect. 2.1.3. Such terms can be both inhibiting (minus sign)
and stimulating (plus sign). Clearly, in the example considered above, the action is
inhibiting as the agent is cytotoxic and kills the cells. On the other hand, in Stepanova’s
model the action of an immune stimulatory agent (such as interleukin-2, IL-2, rep-
resenting immunotherapy) would be included through the addition of a positive term
+ρru into Eq. (6).

While a linear model s(c) = ϕc is applicable over a specified range of the concen-
tration c, it is not valid for low or high drug concentrations. This simply stems from
the fact that most drugs have little to no effect if their concentrations are too low and,
on the other hand, their effectiveness saturates at high concentrations. If side effects
allow, drugs are preferably given in the upper range of this dose–effect curve and an
Emax model of the form

s(c) = Emaxc

EC50 + c
, (11)

describes the effect of “fast” acting drugs more accurately for high concentrations.
Here, EC50 denotes the concentration at which half of the maximum effect Emax is
realized. Sigmoidal functions also capture the behavior at lower concentrations. In
these cases, if the drug concentrations are used as the control, after normalization this
leads to terms of the form u

1+u which no longer fit the proposed structure (7). This,
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however, is merely caused by using the concentrations as the controls. It can easily be
removed by changing the model to treat the dose rates of the drug administration as
the control.

2.2.3 Pharmacokinetics: Modeling Drug Therapies Through Drug Dose Rates

The secondmajor aspect of drug delivery is pharmacokinetics. Pharmacokinetic equa-
tions model the time evolution of a drug’s concentration in the blood plasma. The
standard model that describes the concentration c = c(t) of the drug in the blood-
stream in response to a continuous dose rate u = u(t) is one of exponential growth
and decay given by

ċ = −ρc + u, c(0) = 0, (12)

with ρ the clearance rate of the drug. More generally, if the concentrations in the
bloodstream are separated from the concentrations in a peripheral compartment (such
as tissue or an organ of interest) and the interactions between those compartments
are taken into account, a two-dimensional linear system with positive eigenvalues is
used. Higher-dimensional compartmental models are used less frequently, but arise,
for example, if the peripheral compartment is divided further into a ‘shallow’ and
‘deep’ compartment. For example, a 3-compartment model is often used for insulin
pumps [29].

All these models, however, are described by linear time-invariant systems with real
eigenvalues. If one therefore introduces the drug dose rates as the controls, then the
associated drug concentrations c become state variables and thus become an integral
part of the modeling of the uncontrolled dynamics that enters the form of the drift
vector field F . In particular, all the nonlinearities that arise because of saturation
effects or because of synergistic properties of drug administration are subsumed in
the drift vector field F , which, as the example for angiogenic signaling shows, may
already be a highly nonlinear vector field to begin with. Actual drug administration,
however, is described by linear models.

3 Significance of the Choice of the Objective

Once medical professionals have decided on a course of action, a number of natural
questions need to be answered: (1) HOW MUCH of the agent should be given? (2)
WHEN and HOW OFTEN should drugs be given? (3) IN WHAT ORDER should
the treatments be applied? All these questions can naturally be answered within the
framework of an optimal control problem. Clearly, we are only dealing with a math-
ematical model and no claims are made that the real problem could be solved in this
way. But interesting and useful information can be obtained. To give a concrete exam-
ple, chemotherapy needs the tumor vasculature to deliver cytotoxic agents that kill the
tumor cells. It therefore was conventional wisdom to first give chemotherapy when
antiangiogenic treatments and chemotherapywere combined in the treatment of cancer.
This notion, however, was challenged by Jain et al. [30,31] who argued that a normal-
ization of the vasculature (“pruning”) prior to the administration of chemotherapy is
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beneficial for the delivery of the cytotoxic agents and that it gives better results. These
findings can be strongly supported through a mathematical analysis of the Hahnfeldt
model with both chemotherapy and antiangiogenic therapy [32]. Thus, while optimal
control cannot provide the ultimate answers to the underlying problems, it can become
a valuable tool in understanding these processes.

3.1 A General Form for the Objective

The ultimate aim in biomedical problem formulations is to find a safe and reasonable
strategy to solve the underlying medical problem. By adopting an optimal control
formulation, we are aiming for what in a certain way can be considered the “best
possible” solution. What this best possible solution should be, however, is often up to
wide interpretations. It is here that the role of the objective functional chosen to min-
imize matters greatly—sometimes to the extent that this choice already preprograms
the eventual solution. This choice then is the third essential aspect of the problem
formulation.

The following general form encompasses a wide range of possibilities:

minimize J (u) =
∫ T

0

⎛

⎝L(x(t)) +
m∑

j=1

θ j u
k
j (t)

⎞

⎠ dt + ϕ(x(T )), k = 1 or 2.

(13)
Here, L is a sufficiently smooth function of the state called the Lagrangian, the coef-
ficients θ j , j = 1, . . . ,m, are nonnegative weights and ϕ is a penalty function on
the terminal state. The terminal time T can be fixed or free. The minimization is
over a class U of admissible controls u which are locally bounded Lebesgue measur-
able functions such that the associated controlled trajectory (x, u) satisfies all other
constraints imposed on the system. These generally include control-constraints and
terminal point constraints, but could also come from a wide variety of other restric-
tions imposed possibly by state-space constraints or other limitations inherent to the
problem formulation. We discuss the significance of each of the terms starting with
the controls.

3.2 Modeling Toxicities as a Soft Constraint: L1 Versus L2 Approaches

Generally, and without loss of generality, we make the assumption that the controls
represent nonnegative quantities (e.g., dose rates or concentrations). Thus, the control
term

∑m
j=1 θ j ukj (t) in the objective (13) for k = 1 or k = 2 represents a weighted

L1- or L2-norm, respectively. Including such a positive and increasing term in the
objective represents what in the engineering literature would be called a soft modeling
of control constraints. Clearly, medical treatments, especially the strong treatment
options that need to be pursued in cancer treatment such as chemo- or radiotherapy,
have significant side effects and these need to be taken into account in the modeling.
Including the control term in the objective to be minimized inherently limits the use
of the controls. This represents an attempt to make a reasonable compromise between
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maximizing the tumor kill which requires to give a large amount of drugs and limiting
the side effects of treatment (these are measured indirectly through the integral of the
control) which requires to limit this amount of drugs. Whether the optimal control
does this adequately, then becomes an after-thought that always needs to be checked
and, if the optimal solution is still inadequate, the weights need to be adjusted. If
the weights on the drugs are too small, optimal solutions will simply give drugs all
the time at full dose; if the weights are too high, no drugs will be given. It is clearly
necessary to calibrate the weights to obtain meaningful results. Such back-and-forth
approaches are quite common in engineering and they simply reflect the fact that the
form of the objective, and especially the weights that appear, are variables of choice
in such problems. Generally, and this is the typical application of optimal control in
engineering, various choices of the weights will be tested until a solution has been
found which appears adequate, possibly also with respect to other criteria which were
not included in the mathematical model.

The choice of taking an L1- or L2-norm, however, is not irrelevant. Generally
speaking, an L1-formulation is to be preferred from a modeling perspective while the
L2-formulation offers significant mathematical and numerical advantages.

In chemotherapy, there exists a clear interpretation for the integral
∫ T
0 u(t)dt related

to the total dose given regardless of whether u represents the dose rate of the drug
or its concentration. This is an essential pharmacological quantity also referred to as
the AUC (area under the curve), and it plays a major role in interpreting the overall
efficacy and side effects of a drug. Thus, making the choice of an L1-formulation as
the penalty of the control leads to a realistic modeling. The handicap of an L1-type
approach lies with the fact that the mathematical analysis generally becomes difficult.
Optimal solutions need to be synthesized from concatenations of bang and singular
controls (and we shall discuss this more in the next section) and reliable numerical
methods to solve such problems do not exist.

It is for this reason—and in our opinion, for this reason only—that the use of an
L2-criterion in the literature is wide-spread. For, in this case, the application of the
necessary conditions for optimality of the Pontryagin maximum principle [33–36]
leads to a closed form formula for the control as a function of state and multiplier that
can easily be solved numerically. This, however, does not guarantee that a numeri-
cally computed solution is optimal as only extremals (pairs of controlled trajectories
and multipliers which satisfy the first-order necessary conditions for optimality) are
obtained, a fact often understated bymany researchers. Indeed, the projection from the
space of extremals into the state space (i.e., projecting out the multiplier) can have—
and often does have—singularities, the equivalent of the well-known conjugate points
from the calculus of variations. For problems employing an L2-type objective, higher-
order tests for local optimality are given in [15, Chapter 4] or [37] and are not difficult
to apply, but generally this is not done in the literature.

Our main objection to the use of an L2-criterion in the controls, however, does
not lie with this mathematical aspect, but simply with the fact that for biomedical
problems it seems rather impossible to give a satisfactory justification for such a
functional form as the meaning of the phrase “systemic cost” employed in the vast
literature is hard to capture. In chemotherapy, for example, not only does the quantity
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∫ T
0 u(t)2dt not represent any pharmacologically meaningful quantity, but in addition,
if one normalizes the controls to satisfy 0 ≤ ui ≤ 1, as it is often done, then his strongly
favors smaller partial doses over the higher full doses as half the maximum dose is
only given a quarter of the weight of the maximum dose. Thus, from the very setup,
a bias is built into the optimal solutions to be computed which the underlying system
does not have. Cost is another questionable justification for an L2-type objective as $2

just is not a very meaningful quantity. It is certainly true that the cost need not be linear
in u. This particularly holds in epidemiological models where the cost of vaccinating
the first 10% of a population clearly is much smaller than the cost of vaccinating the
last 10% of this population as much greater efforts will be needed to reach the tail end
of the population. Yet, while this clearly makes a point for some nonlinear relation, a
quadratic term does not seem to be the answer to this.

We still remark that it is often the typical scenario that optimal solutions for the
L2-type term (which necessarily are continuous) exhibit sharp rises from the lower
control value u = 0 to its maximum value u = umax mimicking optimal bang–bang
controls which would be obtained by using an L1-type term. Indeed, from a numerical
perspective, it makes sense to consider the problem when the control terms are taken
in the form u+εu2 and then the limit as ε → 0 is taken (if it exists).We note, however,
that our interest in solving the optimal control problems is more in trying to obtain
a better global understanding of the dynamics, i.e., the underlying problem, than to
obtain one particular numerical solution (which is a much easier problem). As a rule,
the parameter values in the model are uncertain and the solutions can be quite sensitive
to these values (e.g., for Stepanova’s model) which limits the practical use of small
numerical studies.

3.3 Example: Cell-Cycle Specific Chemotherapy

We illustrate some of these effects with locally optimal solutions for a cell-cycle spe-
cific model for cancer chemotherapy due to Swierniak [8,12]. In such models, the
various phases of the cell-cycle—a quiescent phase G0, a first growth phase G1, syn-
thesis S, a second growth phase G2, and mitosis M—are clustered into compartments
and the dynamics describes the transitions, i.e., the flow between these compartments.
Mathematically, the dynamics becomes a bilinear system of the form

Ṅ (t) =
⎛

⎝A +
m∑

j=1

u j B j

⎞

⎠ N (t), N (0) = N0, (14)

with the state Ni representing the average number of cells in the respective compart-
ments and the matrices A and Bj modeling the flow rates between the compartments.
The controls represent cytotoxic agents which indiscriminately kill cells, cytostatic
agents which block the transitions of cells through the cell-cycle and recruiting agents
which entice cells to leave the quiescent phase and become active again so that it is
possible to kill them. A typical form of the objective is given by
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Fig. 3 The top row shows locally optimal controls for a 3-compartment model with cytotoxic agent u
(shown in red) and cytostatic agent v (shown in blue) for the objectives J2 (left) and J1 (right) with weights
r = (1, 1, 1), q = (1, 1, 1) and θ = (2, 0.02). The time-evolution of the corresponding trajectories is
shown in the bottom row

Jk =
n∑

i=1

ri Ni (T ) +
∫ T

0

⎧
⎨

⎩

n∑

i=1

qi Ni (t) +
m∑

j=1

θ j u
k
j (t)

⎫
⎬

⎭
dt, k = 1 or 2, (15)

with the coefficients nonnegative weights.
Figure 3 compares locally optimal solutions for a 3-compartment model with the

compartments N1 ∼ G0/G1, N2 ∼ S and N3 ∼ G2/M for L1- and L2-type functional
terms on the controls which represent a cytotoxic agent u and a cytostatic agent v [11,
15,37]. Optimal controls for the L1-type objective are bang–bang, i.e., switch between
full dose therapies and rest-periods while optimal controls for the L2-type objective
are necessarily continuous. For an L1-type objective, the optimal administration of
the killing agent u is full dose initially followed with a rest period (and this is what
medically makes most sense here), whereas for the L2-type objective the continuity
of the control generates decreasing lower dose administrations of the cytotoxic agent
toward the end of the therapy interval. The total doses given in both cases are similar.
For the blocking agent v, the optimal L2-control clearlymimics the optimal L1-control
with steep continuous intermediate segments.

The behavior of the controlled trajectories for both objectives is verymuch the same.
The terminal values for the states corresponding to the L1- and L2-type objectives are
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close, and the reduction in the total cancer burden is from the initial normalization
of C(0) = 1 to C(21) = 0.8673 for minimizing J1 and to C(21) = 0.8314 for
minimizing J2. In both cases, the initial conditionwas chosen as the normalized steady-
state of the uncontrolled dynamics (i.e., assuming no earlier treatment). Computing the
total dose of the drugs given for the L2-optimal control, one sees, however, that while
minimizing the quadratic objective leads to about a 3% improvement in the reduction
of the tumor, this is at the expense of increasing the amounts of both the cytotoxic and
cytostatic agents by about 20%. Thus, higher side-effects are encountered.Minimizing
J1 would appear to be the preferred strategy.

3.4 Modeling Toxicities as a Hard Constraint: Isoperimetric Constraints

An alternative approach—and the one which seems to be preferred by medical
practitioners—is to impose the total amount of drug (or radio therapy dose etc.) given
a priori. The argument is that, to begin with, any mathematical model represents only
a small view of the underlying problem and that, by sheer necessity of the complex-
ity which, for example, cancer therapy is, many aspects need to be neglected. Thus,
the point of view is taken that, based on other assessments such as the side effects
of the therapy, the total amount of drug to be given has been determined a priori,∫ T
0 u(t)dt ≤ A. Here, then the question simply becomes the following one: given this
amount of drug, how can it be administered in the best possible way? Mathematically,
this amounts to adding the trivial equation ẏ = u, y(0) = 0, to the dynamics and the
terminal condition y(T ) ≤ A is imposed as an isoperimetric constraint. This approach,
for example, was taken in solving Hahnfeldt’s model for antiangiogenic therapy as
an optimal control problem [13,15]. In such a case, no control related term will be
included in the objective.

From a modeling perspective, the use of a hard constraint on the controls seems
to be more adequate. Mathematically, however, there are close relations between the
necessary conditions for optimality for both formulations (either as a soft or hard
constraint) and it makes little difference if one or the other formulation is chosen.

3.5 Significance of the Lagrangian and the Penalty Term

TheLagrangian L and the penalty termϕ allow to judge the impact of the therapy on the
state. Including the Lagrangian L in the objective can also be viewed as incorporating
a soft constraint on the state. For example, in cancer therapies, it is clearly important
to limit the size of the tumor, or, in another indirect measurement of the side effects,
prevent that the level of the bone marrow becomes too small. Clearly, such restrictions
could be modeled as state-space constraints imposing upper or lower bounds on some
of the variables. For example, in [38] an explicit upper bound in the form

N (t) =
n∑

i=1

Ni (t) ≤ N̄
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Fig. 4 Examples of locally optimal controls (left) and their corresponding trajectories (right) for a cell-
cycle specific 2-compartment model for cancer therapy over a fixed therapy horizon (T = 21 days) with
Lagrangian term L in the objective (top row, q = 0.1) and without Lagrangian term in the objective (bottom
row, q = 0). The initial condition is the normalized value of the steady-state solution for the uncontrolled
system

is imposed on the total number of cancer cells N (t) in a cell-cycle specific model for
cancer chemotherapy. Here, however, a modeling approach of using soft constraints
is preferred as the necessary conditions for optimality become more involved if state-
space constraints are present. If explicit state-space constraints are included in the
modeling, then, a priori, the associated multiplier is only known to be a positive
Radon-measure. Although it can be shown that this measure is absolutely continuous
with respect to Lebesgue measure if the constraint is an embedded hypersurface (e.g.,
see [39]), the effort of dealing with a state-space constraint is much more involved
than having a Lagrangian present in the objective.

A common pitfall in the modeling is not to include such a term. Then, naturally,
the emphasis of the minimization is put on the terminal time and quite often control
actions will be delayed initially and be concentrated near the terminal time. Once
again, however, this is then not a feature of the underlying problem, but it has been
imposed, possibly unwillingly, by the particular form of the objective that was chosen.
Figure 4 illustrates this feature by comparing the optimal solutions for a 2-compartment
cell-cycle specific model for cancer chemotherapy [8,10,15]. The two compartments
represent the clustered phase N1 ∼ G1/G0 + S and N2 ∼ G2/M of the cell cycle and
the drug is a G2/M-specific cytotoxic agent. The objective was chosen in the form

J (u) =
∫ 21

0

(
q(N1 + N2) + 1

2
u

)
dt + 3(N1(T ) + N2(T )) (16)
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for q = 0.1 and q = 0 over a fixed 3 week therapy period. Optimal controls are bang–
bang with one switching. If only a penalty term is used, then the drug administration is
all put to the end of therapy with an unacceptable spike in the tumor cells in between.

3.6 Biological Guidance for the Choice of the Objective

The choice of the objective is often made in an heuristic ad hoc manner. Sometimes,
however, the underlying biology can be used as a guide. Stepanova’s model provides a
beautiful illustration how this can be achieved. Assuming that the parameter values are
such that the dynamics is bi-stable with a benign and a malignant region, the practical
aim of therapy then can be formulated as moving the state of the system from the
malignant region into the region of attraction of the stable, benign equilibrium point
while keeping side effects tolerable. Assuming the controls are a strongly targeted
cytotoxic agent u and an immuno-stimulatory agent v, this can be achieved using an
objective functional of the following form:

J = Ap(T ) − Br(T ) +
∫ T

0
(Mu(t) + Nv(t) + S) dt . (17)

All coefficients are positive and the choice of the weights aims at striking a balance
between the benefit at the terminal time and the side effects measured by the total
amount of drugs given while it also guarantees the existence of an optimal solution
by penalizing the free terminal time T [15,40,41]. We discuss the significance of each
penalty term in (17) in detail:

(i) The term Ap(T ) − Br(T ) at the terminal time is designed to induce a transfer
of the system from the malignant into the benign region of the state space. As is
seen in Fig. 2, points with small tumor volumes and depressed immunocompetent cell
densities lie in themalignant region and itmay not suffice to simplyminimize the tumor
volume. Rather, it is the geometric shape of the stability boundary between the benign
and malignant region that matters. Even for a low-dimensional dynamical system like
Stepanova’s model, it is generally not possible to give a functional description of the
separatrix which is the stable manifold of the unstable equilibrium point of the system.
Its tangent space, however, is easily computed, and it thus becomes a good heuristic
to choose the coefficients A and B in the penalty term such that the minimization of
this term corresponds to moving in the normal direction to this stable manifold from
the malignant toward the benign region. Alternatively, one could also choose these
coefficients to move into the direction of the unstable eigenvector at the saddle point.
For, this is the tangent vector to the path which uncontrolled trajectories will closely
when in the benign region. In the formulation (17) we have followed the first approach
and v = (B, A)T is the stable eigenvector of the saddle point oriented so that both A
and B are positive numbers (see Fig. 5). It follows from the geometry of the stable
manifold that A and B will have the same sign and including in the objective a term of
the form Ap(T )− Br(T ) gives the correct direction to minimize in the objective. The
level sets of this quantity are lines parallel to the tangent space of the stable manifold
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Fig. 5 On the choice of the weights A and B: The figure depicts the phase portrait for the uncontrolled
system (5)–(6) with some sample trajectories shown in blue. The dynamics has three equilibria: a locally
asymptotically stable focus which is benign (shown as a small green circle), a saddle point (shown as a
small grey circle) and a locally asymptotically stable node which is malignant (shown as a small red circle).
The stable and unstable manifolds of the saddle point are shown as solid black curves. The tangent vector
to the stable manifold of the saddle at the equilibrium point is labeled v = (B, A)T oriented so that both
entries are positive

of the saddle, and minimizing this quantity thus creates an incentive for the system to
move into the benign region.

(ii) The integrals of the controls,
∫ T
0 u(t)dt and

∫ T
0 v(t)dt , measure the total

amounts of drugs given and, once again, represent a soft modeling of the side effects of
the drugs. Clinical data as to the severity of the drugs should be reflected in the choices
for C and D. Naturally, the specific type of tumor and stage of cancer will need to
enter into the calibration of these coefficients. In a more advanced stage, higher side
effects need to be tolerated and thus smaller values of C would be taken.

(iii) The penalty term ST on the terminal time makes the mathematical problem
well-posed. This term, which can be written either under the integral or as a separate
penalty term ST , is somewhat unusual. It has to do with the nature of the underlying
problem and the emphasis on the regions of attraction. The existence of the asymptot-
ically stable, benign equilibrium point generates controlled trajectories that improve
the value Ap(T ) − Br(T ) of the objective along the trivial controls u = 0 and v = 0.
If no penalty is imposed on the free terminal time, then this creates a “free pass” struc-
ture in which the value of the objective can be improved without incurring a cost. As
a result, in such a situation an optimal solution may not exist. Intuitively, the controls
can switch to (u, v) = (0, 0) immediately as the separatrix is crossed and then take an
increasingly longer time as they pass near the saddle point with the infimum arising
in the limit T → ∞. From a practical point of view, this behavior of course is not
acceptable. Mathematically, this behavior is easily eliminated by including a penalty
term on the final time in the objective. This limits the size of the therapy interval and
creates a mathematically well-posed problem.
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4 Structure of Optimal Solutions: Bang–Bang (MTD) Versus Singular
(BOD) Controls

We discuss general properties of optimal controls for control-affine systems when the
L1-norm (k = 1) is used on the controls and give examples of solutions for some of
the problems mentioned earlier.

4.1 Necessary Conditions for Optimality

Weconsider the optimal control problem tominimize the objective (13) over all admis-
sible controls u ∈ U subject to the dynamics (1) and terminal constraints. Necessary
conditions for optimality of a controlled trajectory (x∗, u∗) are given by the Pontryagin
maximum principle [33] (for some recent references, see [34–36]). These conditions
are formulated in terms of the (control) Hamiltonian H defined as

H = λ0

⎛

⎝L(x) +
m∑

j=1

θ j u j

⎞

⎠ +
〈

λ, F(x) +
m∑

j=1

G j (x)u j

〉

(18)

where λ0 ≥ 0 and λ ∈ R
n are multipliers which we write as a row-vector. The most

important of the conditions of the maximum principle states that the optimal control
u∗ for almost every time minimizes the control Hamiltonian H pointwise over the
control set U along the optimal controlled trajectory x∗ and the multipliers λ0 and λ,
i.e., we have that

H(λ0, λ(t), x∗(t), u∗(t)) = min
v∈U H(λ0, λ(t), x∗(t), v). (19)

For the problems considered here, the Hamiltonian H is affine in the controls and
for each component ui of u the control set is a compact interval. Hence, the minimum
condition splits into m separate scalar minimization problems that are easily solved.
Defining the functions Φ j : [0, T ] → R,

t �→ Φ j (t) = λ0θ j + 〈
λ(t),G j (x∗(t))

〉 = ∂H

∂u j
(λ0, λ(t), x∗(t), u∗(t)), (20)

it follows that the optimal controls satisfy

u∗
j (t) =

{
0 if Φi (t) > 0,

umax
j if Φi (t) < 0.

(21)

The function Φ j is called the switching function corresponding to the control u j .
A priori, the control u j is not determined by the minimum condition at times when

Φ j (τ ) = 0. In such a case, all control values trivially satisfy the minimum condition
and thus, in principle, all are candidates for optimality. However, the switching func-
tions are absolutely continuous and if the derivative Φ̇ j (τ ) does not vanish, then the
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control switches at time τ between u j = 0 to u j = umax
j if Φ̇ j (τ ) �= 0. Such a time τ

is called a bang–bang switch. On the other hand, if Φ j (t) were to vanish identically
on an open interval I , then, although the minimization property by itself gives no
information about the control, in this case also all the derivatives ofΦ j (t)must vanish
and this condition puts strong limitations on the controls. Extremal controls for which
the switching function vanishes identically over an open interval I are called singular,
while the constant controls u j = 0 and u j = umax

j are called bang controls; controls
that only switch between 0 and the maximum control values are called bang–bang
controls. Wemention that higher-order necessary conditions for optimality of singular
controls are available, the so-called generalized Legendre–Clebsch conditions (e.g.,
see [36]), that allow us to distinguish between minimizing and maximizing singular
controls.

If the control represents dose rates for the application of some therapeutic agent, then
bang–bang controls correspond to treatment strategies that switch between maximum
dose therapy sessions and rest-periods, the typical MTD (maximum tolerated dose)
type applications of chemotherapy. Singular controls, on the other hand, correspond
to time-varying administrations of the agent at intermediate and often significantly
lower dose rates. There is growing interest in such structures in themedical community
because of mounting evidence that “more is not necessarily better” [42,43] and that
a biologically optimal dose (BOD) with the best overall response should be sought.
Hence, the question whether optimal controls are bang–bang or singular has a rather
direct interpretation and its answer is of practical relevance for the structure of optimal
treatment protocols.

Summarizing, solving an optimal control is tantamount to determining the correct
sequences and switching times for the controls as concatenations of bang and sin-
gular segments. We close this review with two examples of optimal solutions and
interpretations of these results.

4.2 Combination Therapy of Chemotherapy with Antiangiogenic Treatment

We consider themodel (2)–(3) for angiogenic signalingwith an antiangiogenic agent u
and a chemotherapeutic agent v. Modeling the effects of these controls using Skipper’s
log-linear model and treating the concentrations of the agents as the controls gives the
following controlled dynamics:

ṗ = −ξ p ln

(
p

q

)
− ϕ pv, (22)

q̇ = bp − dp
2
3 q − μq − γ qu − ηqv. (23)

We are taking the point of view that the available amounts of agents have been deter-
mined a priori. We add the trivial dynamics ẏ = u and ż = v which keep track of the
amounts of agents used and impose the isoperimetric constraints

∫ T
0 u(t)dt ≤ ymax

and
∫ T
0 v(t)dt ≤ zmax at the end-point. The terminal time T is free. Once side effects

have been modeled in this way, our objective simply becomes to minimize the tumor
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volume, i.e., J (u) = p(T ). From a practical point of view, the optimal solution then
simply answers the following question: given a priori determined amounts of agents,
how can they best be administered in time to maximize the tumor reduction?

For the monotherapy problem when zmax = 0, i.e., no chemotherapy is given, we
have given a complete global solution to this problem in form of a regular synthesis
of optimal controls [13,15]. This solution specifies the optimal control as a feedback
function of the state (p, q, y) for arbitrary initial conditions. Figure 6 gives a two-
dimensional representation of this solution into the (p, q)-space with p shown as the
vertical and q as the horizontal variable. For a medically realistic initial condition
(with the carrying capacity larger than the tumor volume), optimal controls start with
a full-dose segment (shown as solid green curves in the figure) until an optimal singular
arc S is reached. This segment is short in time. Using the conditions of the maximum
principle, the curve S can be described explicitly as [13,15]

μ + dp
2
3 = bx(1 − ln x), x = p

q
. (24)

Then, and for a rather long time, the optimal controlled trajectory follows this singular
arc S (shown as the solid blue curve) until all antiangiogenic agents are used up.
Because of after effects there still exists a small interval on which the tumor volume
decreases further shown as a dashed green curve. We note that, and different from the
impression given in the phase portrait, the times along the individual segments are
as described above. The system has a strong differential-algebraic character and as
a result the dynamics along the full and no dose segments occurring in the optimal
synthesis is very fast generating the almost horizontal lines seen in Fig. 6. Optimal
controls are strongly characterized by the singular control which follows a specific
time-varying concentration of the agents which maintains an optimal relation between
the tumor volume p and its carrying capacity q. It is the functional relation defined
by the singular arc which provides ideal conditions for tumor shrinkage.

The optimal solution for the monotherapy problem provides the mathematical
foundation on which optimal controls for combination therapies with antiangiogenic
treatments can be computed. This holds both for combinations with radiotherapy [44]
and chemotherapy [32,45]. Here, we still discuss the latter case. Below we state the
optimal concatenation structure for a typical scenario which includes an initial condi-
tion when the carrying capacity significantly exceeds the tumor volume, when there
is ample supply of antiangiogenic inhibitors (whose side effects generally are low)
and a more limited total dose of chemotherapy (which generally has much higher side
effects) to be given. In such a situation, optimal controls (u∗, v∗) consist of concate-
nations of four segments of the following form:

(u∗(t), v∗(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(umax, 0) for 0 ≤ t < t1,

(using(p(t), q(t)), 0) for t1 ≤ t < τ,

(using(p(t), q(t)), vmax) for τ ≤ t < t3,

(0, vmax) for t3 ≤ t < T ,

(25)
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Fig. 6 Sketch of the synthesis of optimal controlled trajectories for the monotherapy problem: the figure
shows projections of optimal controlled trajectories into the (p, q)-subspace of the state space with the
tumor volume p plotted vertically and the carrying capacity q plotted horizontally. The control is given by
full dose, u = umax, along the solid green curves, by no dose, u = 0, along the dash-dotted green curves,
and by the singular control u = using along the singular arc S shown in blue. The small blue circle along
S indicates the point where the singular control saturates, i.e., reaches its maximum value. The portion of
the curve S shown dash-dotted is where the singular control is inadmissible

Initially, no chemotherapy is given, while antiangiogenic drugs are given at full
dose until the optimal singular arc S for the monotherapy problem is reached. At this
point, administration switches to the optimal singular control for the monotherapy
problem until a specific time τ is reached. At this time chemotherapy commences in
a single full dose (MTD) session. In the medical literature this has been called the
‘optimal therapeutic window’ [30]. Also, because of the onset of chemotherapy, the
formula for the optimal singular control adjusts and this is seen as a small kink in
Fig. 7 which gives a sample of the time-evolution for optimal controls u∗ and v∗.
Then, both controls are given until all available drugs are exhausted. In Eq. (25) we
have formulated the controls for the case that the antiangiogenic inhibitors run out first,
but this depends on the total amounts available and could also be reversed. Figure 8
illustrates the shape of the optimal controlled trajectory in (p, q)-space.

Mathematical optimization of the combined therapy strongly supports the follow-
ing two qualitative conclusions: (i) there is an optimal relation between the tumor
volume p and its carrying capacity q along which the tumor decrease is maximized.
This relation is given by the optimal singular arc S of the monotherapy problem. (ii)
Along this path there is an optimal point so that chemotherapy is given in one full
dose MTD administration as this point is reached. These properties reflect the ideas
of ‘pruning’ the vasculature and of a ‘therapeutic window’ [30,31] proposed in the
medical literature.
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Fig. 7 Illustration of the qualitative shape of optimal controls u∗ (left) and v∗ (right) for combination
treatments with chemotherapy and antiangiogenic inhibitors for medically realistic initial values: after a
brief initial period of full dose therapy, administration of the antiangiogenic agent follows the singular control
until, at a specific time τ , chemotherapy commences. At that time, the dose of the antiangiogenic agent
adjusts to the presence of the chemotherapy. As the dose of the antiangiogenic agent intensifies along the
singular arc for the monotherapy problem, in the presence of chemotherapy which also has antiangiogenic
effects, the dose increases in a small jump at time τ . The control follows the adjusted singular control until
all inhibitors are exhausted. Chemotherapy is given in one full dose segment commencing at time τ

Fig. 8 “Optimal therapeutic window”: the red curve depicts the optimal controlled trajectory for the antian-
giogenic monotherapy problem (the control is given by full dose therapy along the vertical portion and then
follows the singular arc where the tumor volume decreases). Chemotherapy then commences at an optimal
time τ and the optimal trajectory is shown as solid blue curve. (The remaining optimal monotherapy trajec-
tory is shown as dotted red curve.) When all antiangiogenic agents are exhausted, chemotherapy continues
until all drugs have been administered. The junction point corresponds to the kink in the blue trajectory.
Chemotherapy still lowers the tumor volume, but as there are no more antiangiogenic agents given, the
vasculature increases again

We remark that the optimal controls in this model (and this is also the case in many
other models where the concentration is taken as the control) are discontinuous. Obvi-
ously, this a quirk of the modeling as concentrations are continuous functions. This
discrepancy, however, is easily removed by adding a model for the pharmacokinetics
of the drug which smoothes out the transitions between the segments while following
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the same structure. The simplified modeling with the controls representing concentra-
tions has, from a mathematical point of view, the advantage of a lower dimensional
state-space and, more importantly, the analysis of singular controls is simpler (c.f.,
[46,47]). This makes the overall structure of solutions more tractable. Our paper [48]
gives an in depth discussion of these aspects related to the pharmacometrics of the
drugs.

4.3 Combination Therapy of Chemotherapy with an Immuno-Stimulatory Agent

We conclude with an example of a numerically computed optimal solution for
Stepanova’s model with strongly targeted chemotherapy u [15,40,41,49]. Again we
treat the concentration of the agent as the control and use Skipper’s log-linear model
to describe the effect of treatment. This simply adds a term −κ pu to the dynamics (5)
of the tumor volume. Choosing the objective functional in the form (17) with N = 0
(as we do not consider an immune boost), optimal chemotherapy protocols follow
the concatenation structure 1s01 with 1 representing a full dose segment, s denoting
administration following a singular control and 0 standing for a rest-period of the
treatment.

Figure 9 gives a characteristic example of a solution: the initial state z0 = (p0, r0) is
characterized by a high tumor volume and depressed immuno-competent density close
to the values of the malignant equilibrium point. In the figure, the unstable equilibrium
point is marked with a green dot and the black curves crossing in it are its stable and
unstable manifolds, respectively. Initially, chemotherapy is given at full dose until the
state of system has crossed over into the benign region. Then it follows a singular
arc where the concentration of the drug is dropped significantly through lower dose
administrations. The full singular curve is indicated by a dotted red curve in the figure.
Finally, as the state of the system is in the benign region, chemotherapy is stopped
and the uncontrolled dynamics (i.e., the actions of the immune system) lead to further
reductions in the tumor volume. Interestingly, toward the end, optimal chemotherapy
protocols still apply a short chemotherapy segment. This indeed seems to be mirrored
by what has proven a particularly effective administration protocol also in medical
practice.

If the effect of an immune boost is incorporated into the system, this structure
is generally preserved. Figure 10 gives an example of an optimal control for the
combination therapy with the chemotherapeutic agent shown in red and the immune
boost in green. Essentially, the immune boost is only given toward the end to steer the
system into a better terminal state. This figure also clearly shows the lowering of the
dose rate for the cytotoxic drug along the singular segment.

5 Brief Comments on the Numerical Methods

It has not been our aim to discuss numerical methods in optimal control in this paper.
For completeness sake, however, we include some brief comments on the methods
that were used by us and our co-workers to arrive at the solutions shown in this paper.
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Fig. 9 Example of a numerically computed optimal controlled trajectory (shown as the solid blue curve) for
(M, S) = (0.01, 0.2): The initial point, all junctions (where the control switches), and the terminal point of
the optimal trajectory are marked by black dots. Starting at z0 = (p0, r0), initially full dose chemotherapy
is used. Along that trajectory, the system enters from the malignant region (below the stable manifold
of the saddle point) into the benign region (above the stable manifold of the saddle point). The stable
and unstable manifolds of the saddle point (marked by a green dot) are the black curves which intersect
transversally in the saddle point. The singular arc is theU-shaped curve shown as solid green segmentswhere
the singular control is admissible and as dotted red segments where the singular control is inadmissible.
Once the optimal controlled trajectory meets the singular arc, the control switches to become singular and
the trajectory follows the singular arc (at much reduced dose rates, c.f., Fig. 10). Then, at a certain time,
chemotherapy stops and the trajectory follows the dynamics of the uncontrolled system approaching, and
ultimately tracing, the unstable manifold of the saddle point. As the state lies in the benign region, this leads
to an overall improvement of the objective value. The optimal control then ends with another brief full dose
chemotherapy session to reach the optimal terminal point

The problem is simpler if an L2-type objective is employed in the control as this
makes the Hamiltonian H of the optimal control problem strictly convex and opti-
mal controls are continuous. In this case, standard shooting methods can be applied
to the combined system of dynamics and adjoint equations to compute numerical
extremals. Their local optimality is easily verified or excluded by computing conju-
gate points using a second-order approach which tests the existence of a solution of the
associated matrix Riccati differential equation as described in [37]. Other approaches
are based on discretizations or pseudo-spectral methods (e.g., see [50–52]). For the
solutions shown in Sect. 4.3 we used GPOPS (General Pseudo-spectral OPtimal con-
trol Software), an open-source MATLAB optimal control software that implements
the Gauss hp-adaptive pseudospectral methods (http://www.gpops.org/, [53]). These
methods approximate the state using a basis of Lagrange polynomials and collocate
the dynamics at the Legendre–Gauss nodes [50]. The continuous-time optimal control
problem is then transformed into a finite-dimensional nonlinear programming problem
that is being solved using well-known and standard algorithms.
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Fig. 10 Example of optimal controls for combination of chemotherapy with an immune boost: This figure
gives the time (horizontal axis) evolution of the chemotherapy protocol described in Fig. 9. The maximum
chemotherapy dose rate (vertical axis) has been normalized to 1. As can be seen, the time-intervals when
chemotherapy is at full dose are brief and the optimal dose rates drop significantly along the much longer
singular segment. The rest-period is the most dominant time-period (almost 8 units out of T = 12)

Problems with an L1-type objective which contain optimal singular arcs are more
involved numerically as the singular control is only optimal on an embedded sub-
manifold of positive codimension. Such a structure is inherently difficult to locate
numerically. Various algorithms, including commercial programs, we tried were sim-
ply unable to deal with this situation. For the antiangiogenic monotherapy problem
(see Fig. 6) the complete optimal synthesis was determined by us theoretically by ana-
lytical means [13]. The computation of optimal controlled trajectories then amounts
to the ‘evaluation of a function’ and is a matter of seconds (c.f., also [54]). For the
combination therapies, based on the monotherapy results, the computations were
made by Maurer. States, controls and adjoint variables were computed using dis-
cretization methods which transcribed the optimal control problem into a large-scale
nonlinear programming problem which was implemented in the framework of the
Applied Mathematical Modeling Programming Language AMPL and is linked to var-
ious optimization codes. Either the interior-point method IPOPT based on [55] or
the optimization code NUDOCCCS developed in [56] in conjunction with the arc-
parametrization method [57] were used. On the other hand, if optimal controls are
bang–bang (such as for the cell-cycle specific methods for chemotherapy), the numer-
ical problem is simple and basic algorithms which minimize over the switching times
(e.g., gradient procedures [58]) can be used. A verification of second-order conditions
for optimality can easily be built into this algorithm [15].

6 Conclusions

In his paper, we formulated an optimal control problem for a general dynamical system
which is nonlinear in the state and affine in the controls. The presented framework
encompasses a number of models for treatment of biomedical problems, especially
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cancer therapies, as well as the more common models in epidemiology. The con-
trols account for either therapeutic or epidemiological interventions. The terms in the
cost functional represent various aspects and constraints that need to be taken into
consideration when the dynamics is considered as an optimal control problem.

We discussed, and using examples from our own work illustrated how the solu-
tions to these problems share certain common characteristics, what differences can
be expected to appear and, most importantly, how the choice of the objective affects
the form of the solutions both quantitatively and qualitatively. Specifically, it has
been emphasized that omitting some important terms in the objective, like, for exam-
ple, penalties on the tumor size during therapy—not an uncommon procedure in the
literature—may lead to dubious solutions which indicate to wait and administer cancer
treatment only toward the end of the therapy period. Clearly, often mathematical fea-
tures of the solutions (e.g., continuous versus discontinuous protocols for the dosage
of a drug) are preprogrammed through the choice of the objective functional. This
is acceptable, provided one is aware that this is an outcome of the mathematical for-
mulation and not an indication of properties of the underlying dynamical system or
biology.

The purpose of this article was to review and somewhat organize and illustrate work
done by us on this topic as well as to point out some common pitfalls and errors which
often are made when biological phenomena are put into the mathematical framework
of optimal control theory.
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