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Abstract
Two main results (A) and (B) are presented in algebraic closed forms. (A) Regard-
ing the convex quadratic equation, an analytical equivalent solvability condition and
parameterization of all solutions are formulated, for the first time in the literature and
in a unified framework. The philosophy is based on the matrix algebra, while facili-
tated by a novel equivalence/coordinate transformation (with respect to themuchmore
challenging case of rank-deficient Hessianmatrix). In addition, the parameter-solution
bijection is verified. From the perspective via (A), a major application is re-examined
that accounts for the other main result (B), which deals with both the infinite and
finite-time horizon nonlinear optimal control. By virtue of (A), the underlying convex
quadratic equations associated with the Hamilton–Jacobi equation, Hamilton–Jacobi
inequality, and Hamilton–Jacobi–Bellman equation are explicitly solved, respectively.
Therefore, the long quest for the constituent of the optimal controller, gradient of the
associated value function, can be captured in each solution set. Moving forward, a pre-
liminary to exactly locate the optimality using the state-dependent (resp., differential)
Riccati equation scheme is prepared for the remaining symmetry condition.
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1 Introduction

As a mathematical fundamental, the convex quadratic function (CQF) appears in a
variety of topics and applications [1]. For example, in the field of matrix analysis, two
basic properties “positive definiteness and semidefiniteness” are within the scope. In
addition, regarding the field of optimization, if the objective function is convex and
quadratic, then it falls into the categorizationof nonlinear programmingor,more funda-
mentally, the quadratic programming (QP) [2], which includes the linear programming
as a special case. More generally, if a convex function is sufficiently differentiable,
then its local behavior can resemble a quadratic one [3], which benefits existing opti-
mization algorithms. Notably, subject to equality and/or inequality constraints, the QP
constitutes the basis for an extension of the renowned Newton’s method [4]. Asso-
ciated with the CQF, the convex quadratic equation (CQE) serves as a fundamental
element and thus demands a comprehensive understanding (before investigating into
CQF), which has been attracting attention among the control and optimization com-
munities [5,6]. In particular, the field of nonlinear control design has devoted efforts
to further uncover its importance. According to the literature [7], this field consists of
two major groups. On the one hand, the methods target at the generation of a control
Lyapunov function (CLF), which bonds with the study of nonlinear optimal control
[8]. On the other hand, the second group uses the CLF to construct a control law,
notably the model predictive control (MPC) scheme [9], which is closely connected
with nonlinear programming [2]/convex optimization [4].

Nonlinear optimal control has been a major research topic for decades and encom-
passes a broad spectrum of areas and impacts [8]. In the early days, most of the
developments and concepts were more descriptive, which focused on defining system
properties in full detail [10]. Recent years boast much more constructive method-
ologies on how to design and recover the optimal controller, which is particularly
stimulated by the aerospace applications [11]. In terms of the considered or allowed
final time, this topic can be either the infinite-time horizon nonlinear optimal control
(ITHNOC) or the finite counterpart (FTHNOC), while there also exists a research
direction toward a unified framework. The solution to the ITHNOC problem hinges
upon the first-order partial differential equation (PDE) “Hamilton–Jacobi equation
(HJE)”. Generally speaking, this HJE/PDE can be difficult to solve and implement
[11,12], even if the associated Hamilton–Jacobi inequality (HJI) is more appreciated.
As a compromise, [13] summarizes a survey on the approximation algorithms for prac-
tical implementations, which is more recently updated by [14]. On the other hand, due
to the similarity shared with ITHNOC, this issue also and still hinders the exact opti-
mality recovery in the FTHNOC problem [15], which is associated with another PDE
“Hamilton–Jacobi–Bellman equation (HJBE)” in a more complicated formulation
[16]. Alternatively, various analytical approaches for solvingHJE/ITHNOChave been
proposed, which are subject to specific considerations. One such research direction
is to first algebraically solve the gradient of the value function, which dominates the
construction of the optimal controller. This direction is pioneered by [6] and its refer-
ences and generalized by this article to HJE, HJI, and HJBE, respectively. Notably, the
complete understanding of the solvability and solutions to the associated/reformulated
CQE is a decisive factor, which is facilitated by a novel equivalence/coordinate trans-
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formation in terms of the singular value decomposition (SVD) on its Hessian matrix.
This paves a way for the optimality recovery using the state-dependent (differential)
Riccati equation (SDRE/SDDRE) scheme [11], which responds to the expectation for
more theoretical fundamentals [17] (in addition to recent stability results [18,19]).

The popularity and importance of CQE, as well as the tightly related CQF, motivate
this article to provide more theoretical support. This facilitates new observations of
the focused application field in this article (another in [20, Sect. 5]), which are within
a comprehensive framework of optimal control as envisioned/pioneered by [21]. The
main contributions are, in closed formulae:

(A) analytical representation of an equivalent solvability condition of CQE and
parameterization of all the solutions, within a unified framework;

(B) equivalent solvability condition and parameterization of the solutions to the
formulated/underlying HJE, HJI, and HJBE–CQE, respectively, for nonlinear
optimal control.

Note that, regarding (B), the solution set includes the gradient of the value function
in ITHNOC (resp., FTHNOC). This is essential for the remaining step of optimality
recovery that takes the curl/symmetry condition (namely, [11, Eq. (23)]) into account.

2 Notation and Problem Formulation

Unless specified otherwise, we adopt the following notational conventions. The
symbols (·)†, (·)†/2, N (·), R(·), || · ||, and (·)T denote the pseudoinverse (Moore–
Penrose generalized inverse), square root of the pseudoinverse [22], null space, range
space, Euclidean norm, and transpose of a vector or matrix, respectively. In addition,
we denote (·)⊥ as the orthogonal complement of a vector space, Vx = ∇V = (∂V /∂x)
the row vector of the partial derivatives of V : Rn → R, C1 the set of continuously
differentiable functions, e1 (resp., e2) the first (resp., second) standard basis vector in
R
n, en+1 the (n+1)-th standard basis vector inRn+1,R≤0 the set of real numbers that

are less than or equal to zero, and sgn(x) the sign function (R\{0} → {±1}) that maps
to {1}, if x > 0; {−1}, otherwise. Moreover, in accordance with [23], let ξ̃ ∈ R

n, we
define ξ̃⊥ ∈ R

(n−1)×n as a matrix with orthonormal rows and ξ̃⊥ξ̃ = 0. Finally, in
agreement with [2,4], denote M � 0 (resp., M � 0), if a matrix M = MT ∈ R

n×n is
positive definite (resp., semidefinite).

Consider the following CQE [2,3]:

zT Mz + kT z + c = 0, (1)

where both z, k ∈ R
n, M = MT ∈ R

n×n, M � 0, and c ∈ R. Given that its
Hessian matrix (second-order derivative with respect to z) is M � 0, this quadratic
equation is convex. In particular, if M � 0, then we say it is strictly convex [4]. Note
that we start with the formulations of CQE (1) to emphasize its dominance in this
presentation, which includes an application to nonlinear optimal control, whereas CQF
dominates another application to nonlinear programming/optimization [20, Sect. 5].
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In this article, the main focus is to analytically and completely solve the following two
problems, while presenting the results in closed formulae.

Problem 2.1 (Section 3)Considering theCQE (1), formulate the equivalent solvability
condition. In addition, when CQE (1) is solvable, represent and parameterize all the
solution(s). Both the results should be in terms of the given parameters (namely M ,
k, and c) and, if necessary, free variables.

Problem 2.2 (Section 4) Based on Problem 2.1, investigate an application to both the
ITHNOC and FTHNOC problems. At least, reformulate the HJE, HJI, and HJBE into
CQEs, respectively, and solve each of them algebraically.

3 Solution of CQE

Lemma 3.1 Let ζ ∈ R
n and ν ∈ R be given. Consider the underdetermined equation

ζ T z = ν, the set of solutions is a linear variety of dimension (n − 1), which can be
parameterized by z = ν · ζ/||ζ ||2 + ε, where ε ∈ R

n and ε ∈ N (ζ T ).

Corollary 3.1 Let n > r ,Ω = [ω1, . . . , ωr ] ∈ R
n×r with orthonormal column(s), and

ς ∈ R
r . Consider the underdetermined equation ΩT z = ς , the set of solutions is a

linear variety of dimension (n − r), as parameterized by z = Ως + ϑ , where ϑ ∈ R
n

and ϑ ∈ N (ΩT ).

Theorem 3.1 (Solvability and Solutions of CQE)

(A) If rank(M) = n, then CQE (1) is solvable, if and only if (iff)

kT M−1k ≥ 4c. (2)

Accordingly, the set of solutions are, and can be parameterized by,

z = −M−1k/2 +
√
kT M−1k/4 − c · M−1/2 · v, (3)

where v ∈ R
n and ||v|| = 1.

(B) Otherwise (rank(M) < n), it is solvable, iff (4) or (5), where

k ∈ R(M) and kT M†k ≥ 4c, (4)

k /∈ R(M). (5)

Accordingly, the sets of solutions are, and can be parameterized by, respectively,

(a) for Condition (4),

z = −M†k/2 +
√
kT M†k/4 − c · M†/2ρ + ε, (6)

where both ρ, ε ∈ R
n, ρ ∈ R(M), ||ρ|| = 1, and ε ∈ N (M);
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Fig. 1 Geometric interpretation of Eqs. (7) and (8).

(b) for Condition (5), decompose k = kM + kM⊥ , where kM ∈ R(M),
kM⊥ ∈ R(M)⊥, and both kM , kM⊥ ∈ R

n. Then,

z = −(Fw/||kM⊥||2) · kM⊥ + ϕ + τ , (7)

where the CQF Fw : R(M) ⊂ R
n → R,

Fw(w) = wT Mw + kTMw + c, (8)

all w, ϕ, τ ∈ R
n, both w, τ ∈ R(M), and ϕ ∈ N (M) ∩ N (kT ).

Proof See “Appendix A” and Fig. 1. �

Remark 3.1 Consider the scalar case of CQE (1), Theorem 3.1 specializes to the
following statement: CQE (1) is solvable, iff k2/(4m) ≥ c; when it is solvable, the
solution set is completely and explicitly parameterized by

z = −k/(2m) +
√
k2/(4m) − c · √

1/m · v,

where v = ±1. This is consistent with the scalar quadratic formula, where (k2 −4mc)
is the discriminant, and thus, Theorem 3.1 acts as a general-order extension. Note that
this generalization (implicitly) utilizes the rank of M when solving the CQE (1), such
as in the formulations of M−1, if M is of full rank; M† (or M†/2), otherwise.

Remark 3.2 Examine Theorem 3.1 from the viewpoint/definition of positive definite
and semidefinite matrices, which corresponds to the scenario of k = 0 and c = 0
in CQE (1). If M � 0, then the solvability of (the CQE) zT Mz = 0 is guaranteed
according to Condition/Eq. (2), with the only solution/root, z = 0, as given by Param-
eterization/Eq. (3). On the other hand (M � 0), the solvability condition instead goes
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to (4). Since it is also satisfied, following (6) yields that the set of solutions/roots is
N (M) �= {0}. This is consistent, for instance, from another perspective on a polyno-
mial [24], or using the SVD as in Eqs. (35)–(37). Remarkably, given the additional
materials in [20, Theorem 5.1], [20, Remark 5.3] complements this examination.

Theorem 3.2 (Bijections in Solving CQE)Define the following sets of parameters and
corresponding solutions for CQE (1), according to Theorem 3.1, respectively.

(A) If rank(M) = n, then

Zn:={z ∈ R
n : CQE (1) and Condition (2)} and

Ωn:={v ∈ R
n : ‖v‖ = 1}.

(B) Otherwise (rank(M) < n),

(a) for Condition (4),
(1) if kT M†k = 4c, then

Z1
rk:={z ∈ R

n : CQE (1), k ∈ R(M), and kT M†k = 4c} and

Ω1
rk:={ε ∈ R

n : ε ∈ R(M)⊥};

(2) otherwise,

Z2
rk:={z ∈ R

n : CQE (1), k ∈ R(M), and kT M†k > 4c} and

Ω2
rk:={(ρ, ε) ∈ R

n × R
n : ρ ∈ R(M), ‖ρ‖ = 1, and ε ∈ R(M)⊥},

(b) for Condition (5),

Zr :={z ∈ R
n : CQE (1) and Condition (5)} and

Ωr :={(Fw,ϕ, τ ) ∈ R × R
n × R

n : τ ∈ R(M), Fw : R(M) → R, and

ϕ ∈ N (M) ∩ N (kT )}.
All these parameter-solution mappings are bijections, specifically, Zn → Ωn in
Eq. (3), Z1

rk → Ω1
rk in (6), Z2

rk → Ω2
rk in (6), and Zr → Ωr in (7).

Proof See “Appendix B”. �

Remark 3.3 The analytical philosophy of Theorem 3.1 is, and should be, in a
top-down way of thinking. That is, it starts from the CQE (1) to its solution formu-
lation/parameterization. Moving forward to better complete the picture, we provide
Theorem 3.2 as a critical endorsement, which is instead in a bottom-up manner from
the solution parameterization. Analytically, bijections in solving CQE are verified
from a substantially different viewpoint. This is an advantage that supports not only
the results in Theorem 3.1 and its demonstration later in Sect. 5 (application to non-
linear optimal control), but also a priori another application to convex optimization
in [20] (in particular, with respect to the optimality uniqueness). Similar philosophy
can be found in, for example, [19, Proposition 4], but the derivations and values of
Theorem 3.2 require more attention.
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4 Application to Nonlinear Optimal Control

In this section, we restrict the scope to a class of nonlinear, continuous-time,
autonomous systems that are affine in the control inputs [25]:

ẋ = f(x) + B(x)u, (9)

where x ∈ Ψ ⊂ R
n (resp., u ∈ R

p) denotes the system states (resp., control inputs),
f(x) ∈ R

n, f(0) = 0, and B(x) ∈ R
n×p. To ensure the well-posedness of the control

problem, we assume that both f(x) and B(x) are Lipschitz continuous on a set Ψ that
contains the origin as an interior point [26]. This section applies the results in Sect. 3
(solution to Problem 2.1) to the nonlinear optimal control problem in both the infinite
and finite-time horizons (Problem 2.2). Sections 4.1 and 4.2 first regard the associated
HJE, HJI, and HJBE, respectively, as a CQE (1) in the unknown variable: the gradient
of the value function. These algebraic equations are formulated into the applicable
form, and thus solved, by means of Theorem 3.1, respectively. As a generalization to
the literature ([6] and the references therein), to the best of authors’ understanding,
this is the first available result that presents a complete closed-form solution and its
parameterization. Moving one step forward, Sect. 4.3 gives further preliminary result
for the recovery of the value function using the SDRE/SDDRE scheme, which is also
useful for another investigation in the field of optimization [20, Sects. 5.2 and 5.3].
In the SDRE/SDDRE literature, [6] pioneers this research direction, while [18,19]
recently provide fundamentals on ensuring the stability property of SDRE-controlled
systems.

4.1 Analysis of Solving HJE and HJI

In the infinite-time horizon, consider the following performance index:

V (x) = 1

2

∫ ∞

0

[
L(x) + uT R(x)u

]
dt, (10)

where V : Rn → R, L : Rn → R, R : Rn → R
n×n, and RT (x) = R(x) � 0. For

compactness, hereafter we omit the state dependence and denote V :=V (x), f :=f(x),
B:=B(x), L:=L(x), and R:=R(x), unless otherwise mentioned. Both L and R are
assumed sufficiently smooth such that V ∈ C1 and the optimal control problem is well
posed [11,12], noting that L is relaxed from the typical quadratic form to the general
state dependence [25,26]. Moreover, we restrict the consideration to the admissible
control so as to render a finite V in Eq. (10), whose definition can be found in the
extensive literature (for example, Definition 1 in [25,26]). Accordingly, it is well
understood [11,12,27] that by the Bellman’s dynamic programming, this ITHNOC
problem reduces to solving a nonlinear first-order PDE, as expressed by the HJE [11]:

VxBR−1BT V T
x − 2Vxf − L = 0. (11)
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The solution to HJE (11) is just the value function in the performance index (10), but
generally very difficult to solve [11,12]. Notably, the gradient of its solution (Vx) is of
much importance since it is essential to construct the corresponding optimal controller
for this ITHNOC problem, that is,

u∞
opt = −R−1BT V T

x . (12)

To remain focused of this study, we reference the details of the above well-known
derivations to the vast literature (to name a few, [11,25,26] and the references therein),
and start the presentation of our newobservations that are from the viewpoint of Sect. 3.

Regard the HJE (11) as a CQE (1) in the unknown variable z:=V T
x ,

zT (BR−1BT /2)z − fT z − L/2 = 0, (13)

where M :=BR−1BT � 0 and similarly for the others in Eq. (1). Equation (13) is
denoted as HJE–CQE. Corollary 4.1 applies Theorem 3.1 and presents an explicit
expression of z that solves HJE–CQE (13), if the corresponding necessary and suffi-
cient solvability condition is satisfied. Note that the variable definitions that rewrite
the HJE into HJE–CQE are in accordance with [6] for easy comparison.

Corollary 4.1 (Solvability and Solutions of HJE–CQE)

(A) If rank(BR−1BT ) = n, then HJE–CQE (13) is solvable, iff

fT (BR−1BT )−1f + L ≥ 0. (14)

Accordingly, the set of solutions are, and can be parameterized by,

V T
x =

√
fT (BR−1BT )−1f + L · (BR−1BT )−1/2 · ṽ + (BR−1BT )−1f, (15)

where ṽ ∈ R
n and ||ṽ|| = 1.

(B) Otherwise (rank(BR−1BT ) < n), it is solvable, iff (16) or (17), where

f ∈ R(BR−1BT ) and fT (BR−1BT )†f + L ≥ 0, (16)

f /∈ R(BR−1BT ). (17)

Accordingly, the sets of solutions are, and can be parameterized by, respectively,

(a) for Condition (16),

V T
x =

√
fT (BR−1BT )†f + L · (BR−1BT )†/2 · ρ̃ + ε̃ + (BR−1BT )†f, (18)

where both ρ̃, ε̃ ∈ R
n, ρ̃ ∈ R(BR−1BT ), ε̃ ∈ N (BR−1BT ), and ||ρ̃|| = 1;

(b) for Condition (17), decompose f = fM + fM⊥ , where both fM , fM⊥ ∈ R
n,

fM ∈ R(BR−1BT ), and fM⊥ ∈ R(BR−1BT )⊥. Then,

V T
x = −(F̃w̃/||fM⊥||2) · fM⊥ + ϕ̃ + τ̃ , (19)
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where the CQF F̃w̃ : R(BR−1BT ) ⊂ R
n → R,

F̃w̃(w̃) = w̃T BR−1BT w̃/2 − fTM w̃ − L/2, (20)

both w̃, τ̃ ∈ R(BR−1BT )⊂R
n, and ϕ̃ ∈ N (BR−1BT ) ∩ N (fT )⊂R

n.

Remark 4.1 By replacing the equality with “≥” in the HJE (11), it becomes the HJI.
Any solution to the HJI indicates an upper bound for the value function V in Eq. (10)
[12]. Similar to the derivations for HJE–CQE (13), the following gives the counterpart
of HJI–CQE:

zT (BR−1BT /2)z − fT z − L/2 + y = 0, (21)

where y ∈ R≤0. This slack variable y [4], to account for the inequality of HJI, is the
only difference as compared to HJE–CQE (13). Therefore, according to Theorem 3.1
(or, similarly, Corollary 4.1), all the solutions of HJI–CQE (21) can also be expressed
in closed forms (as parameterized in terms of the system/original parameters: f , B, L ,
R, and y), if the corresponding, simple, equivalent solvability condition is satisfied.

4.2 Analysis of Solving HJBE

Imposing an additional flexibility on the final time in Eq. (10), the FTHNOC problem
instead deals with the performance index:

V̂ (x, t f ) = 1

2
x(t f )Sx(t f ) + 1

2

∫ t f

0

[
L(x) + uT R(x)u

]
dt, (22)

where V̂ : Rn × R → R, S ∈ R
n×n, S = ST � 0 [16], and similar assumptions as in

the infinite-time counterpart (Sect. 4.2) are also imposed. Likewise, denote V̂ :=V̂ (x, t)
for brevity. To obtain the optimal controller in this finite-time setting, the counterpart
of HJE in Eq. (11) is the HJBE:

V̂xBR−1BT V̂ T
x − 2V̂xf − 2V̂t − L = 0, (23)

with the boundary condition V̂ (x, t f ) = x(t f )T Sx(t f )/2. Compared with HJE (11),
this nonlinear first-order PDE is generally more difficult to solve [16]; nevertheless,
the gradient of its solution with respect to the system state (V̂x) also essentially relates
to the optimal controller for FTHNOC: u

t f
opt = −R−1BT V̂ T

x . Note that, unlike the
formulation of HJE–CQE (13), the additional time-dependent term in HJBE (23)
needs to be taken into consideration. In a novel way, let V̄ = [V̂x, V̂t ] ∈ R

1×(n+1),
f̄T = [fT , 1] ∈ R

1×(n+1), M̄ = diag(BR−1BT /2, 0) ∈ R
(n+1)×(n+1), and, similar to

HJE–CQE in Eq. (13), HJBE (23) becomes

V̄ M̄ V̄ T − V̄ f̄ − L/2 = 0, (24)
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which is regarded as a CQE in Eq. (1), in the unknown variable z:=V̄ T , and thus
denoted as HJBE–CQE. It is worth emphasizing that M̄ is always rank-deficient
(M̄ = M̄T � 0), and f̄ /∈ R(M̄). Following Theorem 3.1 or Corollary 4.1, it is
straightforward to represent the solution and the associated solvability condition also
in closed forms. As a step forward, Theorem 4.1 presents these results more efficiently
from a computational perspective, by further analyzing and utilizing the special struc-
ture of HJBE–CQE (24).

Theorem 4.1 (Solvability and Solutions of HJBE–CQE)

(A) The HJBE–CQE in Eq. (24) is always solvable.
(B) The solutions are, and can be parameterized by:

(a) If rank(BR−1BT ) = n,

V̄ =
[
τ̄ T
1 , F̄w̄1

]
, (25)

where both τ̄ 1, w̄1 ∈ R
n, and the CQF F̄w̄1 : Rn → R,

F̄w̄1(w̄1) = w̄T
1 BR−1BT w̄1/2 − fT w̄1 − L/2. (26)

(b) Otherwise, denote rank(BR−1BT ) = r̂ < n,

V̄ T = F̄w̄1

‖Û2Û T
2 f‖ + 1

·
[
Û2Û2f

1

]
+

[
Û2 0
0 1

]
· ϕ̄′ +

[
τ̄ 1
0

]
, (27)

where both w̄1, τ̄ 1 ∈ R
n and reside in R(BR−1BT ), the SVD of (BR−1BT )

is ÛΣ̂Û T , Û = [
Û1 Û2

] ∈ R
n×n, Û2 ∈ R

n×(n−r̂+1), Û1 ∈ R
n×r̂ ,

Σ̂ = diag(Σ̂1, 0) ∈ R
n×n, Σ̂1 ∈ R

r̂×r̂ , ϕ̄′ ∈ R
n−r̂+1, ϕ̄′ ∈ N (

[
fT Û2 1

]
),

and the CQF F̄w̄1 : R(BR−1BT ) ⊆ R
n → R,

F̄w̄1(w̄1) = w̄T
1 BR−1BT w̄1/2 − fT Û1Û

T
1 w̄1 − L/2. (28)

Proof See “Appendix C”. �

Remark 4.2 In Sects. 4.1 and 4.2, the systems under consideration are quadratic in the
control input, while the performance index also allows the general (non-quadratic)
dependence on the system state [6], as represented by L(x) in Eqs. (10) and (22). Note
that, given the quadratic-in-control performance index, the associated HJE, HJBE, and
HJI are thus quadratic in the unknown variable: the gradient of the performance index,
respectively. In addition, till this stage for optimality recovery, there exists no solving
of any PDE. The remaining issue is how to extract the optimal element (that is, the
value function V or V̂ ) that satisfies the curl condition [11,12], among all candidates
as parameterized by Eqs. (15), (18)–(20), and (25)–(28), respectively. Aiming at this
research direction, [6] pioneers by connecting with the SDRE scheme, and Sect. 4.3
provides further preliminary analyses.
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4.3 Relating to the Optimality Using SDRE/SDDRE

In the field of nonlinear optimal control, the SDRE (resp., SDDRE) scheme deals with
the infinite (resp., finite)-time horizon, considering the value function V (x) in Eq.
(10) (resp., V̂ (x, t f ) in (22)). Recent literature toward this research direction includes
[28], with an intention of mutual conversation for the common good [23]. To remain
focused in this presentation, we reference the survey [11] for a general picture of the
scheme, while the main result of this subsection (Theorem 4.2) gives a preliminary
to the optimality recovery, as based on or motivated by more recent findings that,
for example, preliminarily and analytically clarify/guarantee the property of global
asymptotic stability using SDRE [18,19]. From a different viewpoint, Theorem 4.2
also provides a more efficient approach for a specific consideration instead in [20,
Sects. 5.2 and 5.3], as discussed in [20, Remark 5.7].

Theorem 4.2 (A Parameterization of ξ⊥)
Consider any ξ ∈ R

n with ‖ξ‖ = 1. Let Ξ̄ = [
ξ ξ T⊥

] ∈ R
n×n be orthogonal.

The flexibility of the last (n − 1) columns of Ξ̄ can be parameterized by

ξ⊥ = [
0 Y T

] · HT
ι , (29)

where Y ∈ R
(n−1)×(n−1) is orthogonal, Hι:=In − 2ιιT ∈ R

n×n, and ι ∈ R
n,

ι:=(ξ − e1)/‖ξ − e1‖, if ξ �= e1; 0, otherwise.

Proof Consider the case of ξ �= e1, while the other case follows similarly. The deriva-
tions largely rely on the selected Householder reflection (Hι) [24]. The design concept
is to construct a reflection from ξ to, representatively, e1. Consider the (symmetric and
orthogonal) Householder matrix in Eq. (29), more explicitly,

Hι = In − (2/‖ξ − e1‖2) · (ξξ T − ξeT1 − e1ξ T + e1eT1 ),

then we have Hι · ξ = e1 and eT1 · (Hι · ξ T⊥) = 0T , where the latter is owing to the
property that the inner product is preserved under multiplication by an orthogonal
matrix. Moreover, Hι · Ξ̄ = diag(1,Y ), where Y is specified in (29) and, by virtue of
Hι = H−1

ι = HT
ι , it is equivalent to Ξ̄ = Hι · diag(1,Y ). Extracting the last (n − 1)

columns of Ξ̄ = [
ξ ξT⊥

]
yields the result. �


Remark 4.3 Take the planar case as an example, ξ = [ξ1, ξ2]T , then we have the
following specialized results that are consistent with the literature [19,23]: (A) If
ξ �= e1 ⇔ ξ1 �= 1, then ξ2 �= 0, while Hιξ

T⊥ = e2 ⇔ ξ T⊥ = Hι · e2 = [ξ2,−ξ1]T ; and
(B) If ξ = e1, then Hι = I2, while ξ T⊥ = e2.

Remark 4.4 Practically speaking, MATLAB® computes an example of ξ T⊥ using the
command “null(ξ ′)”, which is implemented by performing the SVD on

ξ T = 1 · diag(1, On−1) · [
ξ ξ T⊥

]T
.
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In the literature, there exist a diversity of algorithms to compute the SVD, notably
Golub–Reinsch SVD and R-SVD [29]. Note that it is excessive to compute the full
SVD but, actually, sufficient till that all the right singular vectors of the matrix ‘ξT ’ are
obtained. According to [29], the former iterative SVD algorithm requires operation
counts 8n3 + 4n2 to compute an example of ξ⊥, whereas 11n3 + 2n2 for the latter.
As an alternative, Theorem 4.2 algebraically and more efficiently solves this issue,
through simple calculations in computing the last (n − 1) columns of Hι in Eq. (29),
where Y = In−1 adopts a simple choice.

5 A Benchmark Example

Consider an ITHNOC regulation problem that is of benchmark importance [11], while
in the form of System (9) and Performance Index (10), where n = 2, p = 1,
f = [x2,−x1ex1 + x22/2]T , b = [0, ex1 ]T , L = 2x22 , and r = 2 [27]. Note that
we also conform the setting in the earlier [27] to System (9) that is in accordance with
[11], except normalizing the index (with respect to “L = x22 and r = 1”). This leads
to the same conclusion of and consistency by this demonstration, but in a more cogent
manner, since the following derivations involve many arithmetic multiplications and
divisions. The objective is to regulate any nonzero initial state to the equilibrium
at the origin. In this regard, the optimal controller (12) has been explicitly shown
as u∞

opt = −x2, with the associated Vx = [2x1 − x22e
−x1 , 2x2e−x1 ]. This example

demonstrates the results in Theorems 3.1, 3.2, Corollary 4.1, and Fig. 1.
For easy comparison, the following parameter values are summarized:

(i) bbT /r = diag(0, e2x1/2);
(ii) rank(bbT /r) = 1;
(iii) the SVD of (bbT /r) is

U�UT = [
U1 U2

] · diag(�1, 0) · [
U1 U2

]T
= U1�1U

T
1 ,

where U1 = [0, 1]T , U2 = [1, 0]T , and Σ1 = e2x1/2;
(iv) (bbT /r)† = diag(0, 2e−2x1) and its square root (bbT /r)†/2 = diag(0,

√
2e−x1);

(v) f = fM + fM⊥ , where fM ∈ R(M), fM = U1UT
1 f = [0, x22/2 − x1ex1 ]T , while

fM⊥ = U2UT
2 f = [x2, 0]T ∈ R(M)⊥.

Since rank(bbT /r) < n, which is rank-deficient, we apply (B) of Corollary 4.1.
Moreover, given that f ∈ R(bbT /r) ⇔ x2 = 0, divide the discussions into whether
x2 = 0, respectively as, (a) and (b) below.

(a) x2 = 0 (f ∈ R(bbT /r)). In this case, the solvability condition in Eq. (16) is
satisfied since fT (bbT /r)†f+L = 2x21 > 0. By (Ba) in Corollary 4.1, the solution
set of HJE–CQE (13) is given by Eq. (18), that is,

z =
√
2x21 · diag(0,√2e−x1) · ρ̃ + ε̃ + diag(0, 2e−2x1) · [

0,−x1e
x1

]T

= [ ε̃1, 2|x1|e−x1 ρ̃2 − 2x1e
−x1 ]T ,
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where ρ̃ = [0, ρ̃2]T ∈ R
2, ρ̃2 = ±1, since ρ̃ ∈ R(bbT /r) = R([0, 1]T ), while

ε̃ = [ε̃1, 0]T ∈ R
2, ε̃1 ∈ R, since ε̃ ∈ N (bbT /r) = R([1, 0]T ). In agreement

with Corollary 4.1 and Theorem 3.1, the gradient of the value function that solves
the HJE–CQE (13), Vx = [2x1, 0] in this case, is included in the solution set,
which is by specifically while uniquely assigning the parameters ε̃1 = 2x1 and
ρ̃2 = sgn(x1). Also, the spanning vectors ε̃ and ρ̃ are orthogonal to each other,
and the parameter-solution mapping Z2

1f → Ω2
1f is a bijection, where

Z2
1f :=

{
z ∈ R

2 : HJE−CQE (13), fT (bbT /r)†f + L > 0, and f ∈ R(bbT/r)
}
,

Ω2
1f :={(ρ̃, ε̃) ∈ R

2 × R
2 : ρ̃ ∈ R(bbT /r), ‖ρ̃‖ = 1, and ε̃ ∈ R(bbT/r)

⊥}.

This is in accordance with the considered case (B(a)2) in Theorem 3.2 as well as
derivations in its proof.

(b) x2 �= 0 (f /∈ R(bbT /r)). The solvability condition in Eq. (17) is already satisfied.
Hence, by (Bb) in Corollary 4.1, the solution set of HJE–CQE (13) is given by Eq.
(19):

z = (F̃w̃/x22 ) · [x2, 0]T + [
0, τ̃ 2

]T
, (30)

where w̃ = [0, w̃2]T , τ̃ = [0, τ̃ 2]T , both w̃, τ̃ ∈ R
2, both w̃2, τ 2 ∈ R, since both

w̃, τ̃ ∈ R(bbT /r) = R([0, 1]T ), while for the CQF, w̃ �→ F̃w̃(w̃),

F̃w̃ = [e2x1w̃2
2 + 2(2x1e

x1 − x22 )w̃2 − 4x22 ]/4. (31)

Note that the other parameter “the spanning vector ϕ̃” is, and should be, zero.
Specifically, by Eq. (46) in the proof for (Bb) of Corollary 4.1, we have

ϕ̃ ∈ N (fT ) ⇔ ϕ̃′ ∈ N (fTU2) = N (x2).

Given x2 �= 0 in this case, we thus have the unique ϕ̃′ = 0 and
ϕ̃ = U2ϕ̃

′ = 0 ∈ N (bbT /r), respectively. Therefore, in agreement with Corol-
lary 4.1 andTheorem3.1, the solution set includes the gradient of the value function
that solves the HJE–CQE (13), namely

Vx = [2x1 − x22e
−x1 , 2x2e

−x1 ],

by simple algebraic calculations that easily while uniquely choose

F̃∗
w̃ = 2x1x2 − x32e

−x1

and τ̃ ∗
2 = 2x2e−x1 (denote the corresponding τ̃ ∗ = [0, τ̃ ∗

2]T ). In addition, the
spanning vectors fM⊥ , ϕ̃ = 0, and τ̃ are mutually orthogonal, and the parameter-
solution mapping “Z1 → Ω1” is a bijection, where

Z1:={z ∈ R
2 : HJE−CQE (13) and f /∈ R(bbT /r)}
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Fig. 2 Geometric interpretation of Eqs. (30) and (31).

and

Ω1:={(F̃w̃, ϕ̃, τ̃ ) ∈ R × {0} × R
2 : τ̃ ∈ R(bbT/r) and F̃w̃ : R(bbT /r) → R}.

It is worth remarking that the flexibility of the solution set in Eq. (30) at the
spanning ϕ̃-direction is only the singleton {0}, which is consistent with (Bb) of
Theorem 3.2.

Finally, we will explicitly determine the unknown variable w̃2 (that is, w̃) in the
CQF (31) at the level set value of F̃∗

w̃, whose effect is coalesced into the solution set
in Eq. (30) by way of this CQF. The followings present two approaches: (I) direct
calculations using the quadratic formula, which is a special case that also endorses
(II) the results in [20, Theorem 5.13 and Remark 5.15].

(I) Given F̃∗
w̃ = 2x1x2 − x32e

−x1 in Eqs. (30) and (31), it leads to the following
equivalent equation:

(e2x1/4x2) · w̃2
2 + [(x1ex1 − 2x22 )/x2] · w̃2 + (x22/e

x1) − 2x1 − x2 = 0. (32)

The discriminant of this quadratic equation is (ex1 +x1ex1/x2−x2/2)2 ≥ 0, and
thus, the two solutions are “2x2e−x1” and “2x22e

−2x1 −2e−x1(2x1+x2)”. Denote
the corresponding solutions, w̃ = [0, w̃2]T , of the CQF (31) at the level set value
of F̃∗

w̃ as w̃1 and w̃2, respectively. It is worth emphasizing that the solvability of

Eq. (32) can be anticipated, since the “optimality value F̃∗
w̃” resides in the image

of CQF: w̃ �→ F̃w̃(w̃), according to Eq./Definition (31).
(II) By virtue of [20, Theorem 5.13] and its application in [20, Remark 5.15], let

M = bbT /(2r), kM = −fM , c = −L/2, and F̆w = F̃∗
w̃ in [20, Eq. (5.11)], the

preimage is parameterized by

w̃ = (bbT /r)†fM +
√
fM (bbT /r)†fM + L + 2F̃∗

w̃ · (bbT /r)†/2ρ̌, (33)

where ρ̌ ∈ R(bbT /r) and ‖ρ̌‖ = 1. The square root operation in Eq. (33) is
consistent since the operand equals 2(x1 − x22e

−x1/2 + x2)2 ≥ 0, which can be
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expected from [20, (2) of Theorem 5.13]. Additionally, given that the parameter
ρ̌ ∈ R(bbT /r) = R([0, 1]T ) is of unit length, we further denote ρ̌ = [0, ρ̌2]T ,
where ρ̌2 = ±1. As a result, while omitting the straightforward but lengthy
calculations for brevity, all/both the solutions in Eq. (33) are exactly the same
as that through direct calculations (I), namely, w̃1 and w̃2.

To sum up the overall discussions in this case (b), a geometric interpretation is
illustrated in Fig. 2, which is a special case of Fig. 1 to this example.

6 Conclusions

From a top-level viewpoint, this article proposes a new method with a major applica-
tion to nonlinear optimal control, which are within an interconnected framework that
further includes potentials in nonlinear/convex optimization.

At first, we present a complete, analytical, necessary and sufficient solvability con-
dition for CQE, as well as the corresponding solutions in closed forms. In other words,
this is a general-order extension of the quadratic formula. To be more in-depth, we
have also explicitly clarified the bijection between the set of solutions and that of
the corresponding parameterization variables. All these results assist in establishing
a novel perspective to interpret the relation between CQE and CQF, which facilitates
further investigations into its spectrum of applications. Representatively, we apply
these results to the following.

In the literature of nonlinear optimal control, this application aligns with a research
direction that aims at recovering the optimality. Specifically, regarding both the infinite
and finite-time horizons, the gradient of the value function is of great importance. It
corresponds to a solution of the formulated CQE that is associated with each of the
underlining HJE, HJI, and HJBE. By virtue of the analyses of CQE as above, we are
able to formulate an analytical representation of the filtered/concentrated optimality
candidates, which is thus ready for the final design stage that takes the curl condition
into consideration. Note that, till this stage, all the results and their derivations are alge-
braic, exact, and involve no computation of any PDE. As inspired by extensive early
contributions, we also provide a preliminary result using the SDRE/SDDRE scheme
for the remaining stage toward the optimality recovery, which (result) still amounts to
a general coverage that, for example, computationally benefits applications beyond.
Finally, the proposed results are numerically exemplified through a benchmark ITH-
NOC problem. The gradient of the value function is indeed captured in the formulated
solution set of the corresponding HJE–CQE.
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A Proof of Theorem 3.1 (Solutions of CQE)

Considering the CQE (1), divide the proof into the two cases: (A) M is of full rank
and (B) M is rank-deficient.

(A) If rank(M) = n, then we have
(i) MT = M � 0, (ii) M is of full rank and nonsingular, and (iii) the unique
square root of M is also symmetric and nonsingular, denoted as M1/2 [24].
Therefore, the CQE (1) can be equivalently reformulated as

zT M1/2 · M1/2z + kT M−1/2M1/2z + c = 0

⇔
(
M1/2z + M−1/2k/2

)T (
M1/2z + M−1/2k/2

)
= kT M−1k/4 − c

⇔
∥∥∥M1/2z + M−1/2k/2

∥∥∥
2 = kT M−1k/4 − c. (34)

Obviously, Eq. (34) is solvable, iff the right-hand side (RHS) is non-negative, as
in Condition (2). If the condition is satisfied, that is, CQE (1) is solvable, then
further reformulate the consistent Eq. (34) as

∥∥∥M1/2z + M−1/2k/2
∥∥∥ =

√
kT M−1k/4 − c

⇔ M1/2z + M−1/2k/2 =
√
kT M−1k/4 − c · v, where v ∈ R

n and ‖v‖ = 1,

⇔ Eq. (3).

(B) If rank(M) = r < n, let the SVD of M in CQE (1) be given by

M = [
U1 U2

] [
Σ1 0
0 0

][
UT
1

UT
2

]

= U1Σ1U
T
1 , (35)

whereU1 ∈ R
n×r ,U2 ∈ R

n×(n−r), Σ1 ∈ R
r×r , and ΣT

1 = Σ1 � 0. In addition,
the following summarize several properties and definitions [22,24], which are
essential in the derivations afterward.

R(M) = R(U1) = R(U1U
T
1 ) = R(U2)

⊥ = N (UT
2 ) = N (M)⊥, (36)

R(M)⊥ = R(U1)
⊥ = R(U2) = R(U2U

T
2 ) = N (UT

1 ) = N (M), (37)

M†:=U1Σ
−1
1 UT

1 , (38)

M†/2:=U1Σ
−1/2
1 UT

1 , (39)
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where both M† and M†/2 are uniquely determined. Perform the equivalence
transformation with respect to the U -basis, where U = [

U1 U2
] ∈ R

n×n is
orthogonal:

z = U1z1 +U2z2, (40)

k = kM + kM⊥

= U1k1 +U2k2, (41)

where z1 = UT
1 z ∈ R

r , z2 = UT
2 z ∈ R

n−r , k1 = UT
1 k ∈ R

r ,
k2 = UT

2 k ∈ R
n−r , kM = U1k1 ∈ R(M), kM⊥ = U2k2 ∈ R(M)⊥, and both

kM , kM⊥ ∈ R
n. BecauseU is orthogonal,wehave In = UUT = U1UT

1 +U2UT
2

and, by Eqs. (40) and (41), we can reformulate the CQE (1) in terms of the U -
basis. More specifically, CQE in Eq. (1) is equivalent to

zTU1Σ1U
T
1 z + kT (U1U

T
1 +U2U

T
2 )z + c = 0

⇔ zT1 Σ1z1 + kT1 z1 + c︸ ︷︷ ︸
Fz1 :Rr→R

+kT2 z2 = 0, (42)

where Fz1 is (designed to be) a strictly CQF, z1 �→ Fz1(z1), with the positive
definite Hessian matrix “Σ1”. Therefore, if k2 = 0, then Eq. (42) is a CQE
(the preimage of Fz1 at 0) and, since its Hessian matrix is of full rank that
equals “n − r” and by (A) of this theorem, it is solvable, iff “k2 = 0 and
kT1 Σ−1k1 ≥ 4c”. Otherwise (k2 �= 0), the z2-freedom of z ably contributes
to null any element/value in the image of Fz1 , such that Eq. (42) is always
consistent, that is, solvable.
Note that, from Eqs. (36) and (41), we have

k2 = 0 ⇔ UT
2 k = 0 ⇔ k ∈ R(U1) = R(M).

Therefore, in terms of the original coordinate, the solvability condition CQE (1)
is equivalently formulated by Condition (4) or (5). In accordance with the equiv-
alence conditions, respectively, the remaining of this proof is divided into two
parts to formulate the corresponding solution sets of CQE (1) or, equivalently,
(42) in this case of rank-deficient M .

(Ba) k ∈ R(M) and kT M†k ≥ 4c in Condition/Eq. (4)
In this case (k ∈ R(M) ⇔ k2 = 0), z2 ∈ R

n−r represents a degree of freedom
in z, which is of dimension (n − r) and will be parameterized by the variable
‘ε’ later in Eq. (44). Moreover, the solution set of CQE (1) (or, equivalently, Eq.
(42) when k2 = 0) can be parameterized by (A) of this theorem. Specifically,

z1 = −Σ−1k1/2 +
√
k1Σ

−1
1 k1/4 − c · Σ

−1/2
1 · ρ′, (43)

where ρ′ is a vector of unit length in R
r . The remaining of this derivation is to

represent the parameterization (43) in terms of the original coordinate. By Eq.
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(40), this parameterization (43) is equivalent to

UT
1 z = −Σ−1k1/2 +

√
k1Σ

−1
1 k1/4 − c · Σ

−1/2
1 · ρ′,

which is in the applicable (more explicitly, parameterizable) form using Corol-
lary 3.1, yielding the result:

z = −U1Σ
−1
1 UT

1 k/2 + ε +
√
kTU1Σ

−1
1 UT

1 k/4 − c ·U1Σ
−1/2
1 UT

1 U1ρ
′,(44)

where UT
1 U1 = Ir is inserted on purpose for the following derivations, while

ε ∈ N (M), ε ∈ R
n, parameterizes the z2-freedom in z as mentioned above,

which is of dimension (n − r) and so is N (M). Denote ρ = U1ρ
′ ∈ R(M), a

vector of unit length in R
n since UT

1 U1 = Ir . Together with M† = U1Σ
−1
1 UT

1

and its unique square root (M†/2 = U1Σ
−1/2
1 UT

1 ) as defined in Eqs. (38) and
(39), hence the parameterization (44) can be easily and equivalently formulated
as in Eq. (6).

(Bb) k /∈ R(M) in Condition/Eq. (5)
Rewrite Eq. (42) as kT2 z2 = −(zT1 Σ1z1 + kT1 z1 + c), and apply Lemma 3.1 to
parameterize the z2-freedom of z,

z2 = −[(zT1 Σ1z1 + kT1 z1 + c)/‖k2‖2] · k2 + ϕ′, (45)

where ϕ′ ∈ N (kT2 ) = N (kTU2) by Eq. (41), and ϕ′ ∈ R
n−r .

Note that, from Eqs. (35)–(37) and (41), we can derive the following properties:

(i) zT1 Σ1z1 = zTU1Σ1UT
1 z = wT Mw, where w ∈ R(M), w ∈ R

n, represents
the z1-freedom of z;

(ii) kT1 z1 = kTU1UT
1 z = kTMw;

(iii) ‖k2‖ = ‖kM⊥‖.
Therefore, given these properties (i)–(iii), we can apply Corollary 3.1 to Eq.
(45), which parameterizes the solution set of Eq. (45) or, equivalently, CQE (1)
in terms of the original coordinate. Specifically, Eq. (45) is equivalent to

UT
2 z = −[(zT1 Σ1z1 + kT1 z1 + c)/‖k2‖2] · k2 + ϕ′

⇔ z = −[(zT1 Σ1z1 + kT1 z1 + c)/‖k2‖2] · (U2k2) +U2ϕ
′ + τ

⇔ z = −[(wT Mw + kTMw + c)/‖kM⊥‖2] · kM⊥ + ϕ + τ , (46)

where both τ , ϕ ∈ R
n, τ ∈ N (UT

2 ) = R(M) by Eq. (36), and
ϕ = U2ϕ

′ ∈ R(U2). As a matter of fact, given (I)R(U2) = R(M)⊥ = N (M)

by Eq. (37) and (II)

ϕ′ ∈ N (kTU2) ⇔ kTU2ϕ
′ = 0 ⇔ kTϕ = 0 ⇔ ϕ ∈ N (kT )

by Eq. (41), it concludes that ϕ ∈ N (M) ∩ N (kT ).
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The final step is to further analyze the effect by w ∈ R(M), which is
formulated as the level sets of the CQF “Fw” in Eq. (8). Specifically, the z1-
freedom of solution z is coalesced into the coefficient of the vector kM⊥ , while
grouped in terms of the level sets of the mapping Fw. Substituting this CQF in
Eq./Parameterization (46) yields the result.

Remark A.1 Figure 1 illustrates a geometric interpretation of the parameterization in
Eq. (7). In this case of rank-deficient M and k /∈ R(M), the solution set/space of
the CQE (1) is spanned by the three vectors kM⊥ , ϕ, and τ , which are mutually
orthogonal. Among the three vectors, only kM⊥ is fixed/given a priori (solid/black
arrow, while ϕ and τ as the solid-dotted/black arrows), and the associated solution
flexibility along this kM⊥ -direction is in terms of the variablew. As shown in Eq. (42),
the effect by w ∈ R(M), or the z1-freedom of z, is grouped into the level sets of CQF
Fw (red/dashed line, Eq. (8)), which is exemplified by the number-labeled ellipses.
Each level value, respectively, contributes to the coefficient term of the spanning vector
kM⊥ , and this effect solelymodulates the solution flexibility along this kM⊥ -direction.
Similar geometric interpretations apply to the other Parameterizations/Eqs. (3) and (6).

Remark A.2 In this proof of Theorem 3.1, Case (B) of rank-deficient M , the SVD
form in Eq. (35) is general. All the derivations do not involve a specific selection
of nonunique orthonormal bases for R(M) and N (M), namely the columns of U1
and U2, respectively. This is also reflected in the statements of Theorem 3.1, where,
notably, M† and M†/2 [22] are uniquely determined. Besides, since Theorem 3.1 is a
cornerstone in this article, all the related results share this property.

B Proof of Theorem 3.2 (Bijections in CQE)

The injection is obvious from the proof of Theorem 3.1 (“Appendix A”), and the
following derives the surjection, respectively, according to Theorem 3.1.

(A) (M is of full rank) Regarding Condition (2) and Eq. (3), if kT M−1k �= 4c, then
the result follows since M−1 is nonsingular, that is, the linear transformation by
M−1 is one-to-one and onto. Otherwise, the solution is unique (z = −M−1k/2),
and not considered in the former derivation (where v �= 0).

(B) (M is rank-deficient)

(Ba) (Condition (4)) In Eq. (6), the variable ρ is only required to parameterize
the case of kT M−1k = 4c. Accordingly, divide the derivations into the two
cases corresponding to the number of required parameterization variables.
The case/mapping of (B(a)1) Ω1

rk → Z1
rk (using only one parameteriza-

tion variable ε) is straightforward, and thus, we focus on the other one
(B(a)2) Ω2

rk → Z2
rk. Given the two parameterization variables ρ ∈ R(M)

and ε ∈ N (M), the effects by the two variables (to prove the injection)
can be decoupled, since ρ and ε are mutually orthogonal. The following
derivations consider the sole effect by ρ, while that for ε is similar but much
more straightforward (omitted for brevity). Let both (ρ1, ε), (ρ2, ε) ∈ Ω2

rk,
where ρ1 �= ρ2, with the corresponding solutions/elements in Z2

rk, denoted
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as z1 and z2, respectively. To show the surjection suffices to show that
z1 �= z2. Given that

z1 − z2 =
√
kT M†k/4 − c ·U1Σ

−1/2
1 UT

1 (ρ1 − ρ2), (47)

where M−†/2 = U1Σ
−1/2
1 UT

1 is adopted from Eqs. (35) and (39). Notably,
the RHS of Eq. (47) includes only operations in the vector spaceR(M). The
vectorρ1−ρ2 ∈ R(M), andUT

1 (ρ1−ρ2) gives the coordinates of the vector
with respect to the basisU1 forR(M). These coordinates are thenmultiplied
by (nonzero) singular values of M , respectively. After further multiplied by√
kT M†k/4 − c ·U1, the vector ρ1−ρ2 is finally projected, while nonzero-

scaled, onto R(M)\{0}. This implies z1 �= z2 on the left-hand side of (47)
and thus completes the arguments for this case.

(Bb) (Condition (5)) In Parameterization (7), the three spanning vectors, kM⊥ , ϕ,
and τ , are mutually orthogonal:

⎧
⎨
⎩

(kM⊥)Tϕ = 0, since kTϕ = 0,
ϕT τ = 0, since Mτ = 0 and τ ∈ R(M),

τ TkM⊥ = 0, since τ ∈ R(M) and kM⊥ ∈ R(M)⊥.

Hence, to prove the injection, the effects by these three parameterization
variables/vectors can be decoupled. The remaining derivation is similar to
the second half of Case (Ba) as above and thus omitted.

C Proof of Theorem 4.1 (Solving HJBE–CQE)

Since rank(M̄) = r̂ < n and f̄ /∈ R(M̄), the HJBE–CQE (24) is always solvable by
Condition (5) in Theorem 3.1, where M = M̄ , k = −f̄ , and the system dimension is
(n + 1). Therefore, according to Eqs. (7) and (8) where z = V̄ T , the solution set is
parameterized by

V̄ T = (F̄w̄/‖f̄M̄⊥‖2) · f̄M̄⊥ + ϕ̄ + τ̄ , (48)

where all w̄, ϕ̄, τ̄ ∈ R
n+1, both w̄, τ̄ reside in R(M̄), ϕ̄ ∈ N (M̄) ∩ N (f̄T ),

f̄ = f̄M̄ + f̄M̄⊥ , f̄M̄ ∈ R(M̄), f̄M̄⊥ ∈ R(M̄)⊥, both f̄M̄ , f̄M̄⊥ ∈ R
n+1, and the CQF

F̄w(w̄) = w̄T M̄w̄ − f̄T
M̄
w̄ − L/2, (49)

F̄w̄ : R(M̄) ⊂ R
n+1 → R. Although this suffices a closed-form representation

of all the solutions, there is still room for further analytical improvement from a
computational perspective. Specifically, the main while remaining part of this proof is
to reformulate Eq. (49) into one that only consists ofmore efficient operations in lower-
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dimensional spaces. This is viable by exploiting the special structure of HJBE–CQE
(24), and thus saves the excessive computational effort.

Note that M̄ is rank-deficient, and its rank equals that of its leading principal
submatrix of order n: M̄(1 : n, 1 : n) = BR−1BT . Moreover, in accordance with
Theorem 3.1 where all cases are categorized first by the rank of the Hessian matrix,
we divide the derivations into whether (BR−1BT ) is of full rank or not.

(A) Rank(BR−1BT ) = n. Perform the SVD on M̄ ,

M̄ = [
Ū1 Ū2

]
[

Σ̂1 0

0T 0

] [
Ū T
1

Ū T
2

]

=
[

Û

0T
η · en+1

] [
Σ̂1 0

0T 0

] [
Û T 0

η · eTn+1

]

= Ū1Σ̂1Ū
T
1 , the thin version [24], (50)

where Σ̂1 ∈ R
n×n , Û ∈ R

n×n, Ū1 = [
Û T 0

]T ∈ R
(n+1)×n , η = ±1, and

Ū2 = η · en+1. Notably, the adopted SVD form is unique/general, since en+1 is
(i) the only orthonormal basis for the one-dimensional

N (M̄) = N (M̄T ) = R(en+1),

and (ii) the unitary eigenvector associated with the zero eigenvalue (has multi-
plicity one) of M̄T M̄ = M̄ M̄T . In addition, all Û , Ū1, Ū2 are matrices with
orthonormal column(s), and ÛΣ̂1Û T is the SVD of the submatrix

M̄(1 : n, 1 : n) = (BR−1BT )/2.

The following parameter values are computed and summarized for better clarity:

(I) f̄M̄ = Ū1Ū T
1 f̄ = [

fT ÛÛ T 0
]T

and f̄M̄⊥ = Ū2Ū T
2 f̄ = en+1;

(II) ϕ̄ = Ū2ϕ̄
′ = 0 where ϕ̄′ ∈ N (f̄T Ū2) = {0}, similarly via Eq. (46);

(III) denote τ̄ = [τ̄ T
1 , 0]T and w̄ = [w̄T

1 , 0]T since both reside in
R(M̄) = R

n × {0}; and thus
(IV) w̄M̄w̄ = w̄T

1 BR−1BT w̄1/2 and f̄T
M̄
w̄ = fT w̄1.

Substituting these values in Eqs. (48) and (49), the results are presented more
concisely in Eqs. (25) and (26), respectively.

(B) Rank(BR−1BT ) = r̂ < n. As mentioned in Remark A.2, the results in Theo-
rem 3.1 are, in particular, independent of the nonuniqueness of the orthonormal
bases for N (M), specifically, N (M̄) in this case. Therefore, without loss of
generality, we choose the following SVD to ease the further analysis on the
raw/original solution set in Eq. (48) with (49),
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M̄ = [
Ū1 Ū21 en+1

] [
Σ̂1 0
0 0

]
⎡
⎢⎢⎣

Ū T
1

Ū T
21

eTn+1

⎤
⎥⎥⎦

=
[

Û1 Û2

0T
en+1

] [
Σ̂1 0
0 0

]
⎡
⎢⎢⎣

Û T
1

Û T
2

0

eTn+1

⎤
⎥⎥⎦

=
[
Ū1

0T

]
Σ̂1

[
Ū T
1 0

]
, the thin version,

= diag(Û1Σ̂1Û
T
1 , 0), the thin version, (51)

where

BR−1BT /2 = [
Û1 Û2

] · diag(Σ̂1, 0) · [
Û1 Û2

]T = Û1Σ̂1Û
T
1 ,

Ū1 = [
Û T
1 0

]T
resides inR(M̄) ⊂ R

(n+1)×r̂,

Ū2 = [
Ū21 en+1

] =
[
Û T
2 0 ; eTn+1

]T ∈ R
(n+1)×(n−r̂+1) resides in N (M̄),

Ū21 ∈ R
(n+1)×(n−r̂), Σ̂1 ∈ R

r̂×r̂ , Û1 ∈ R
n×r̂ , Û1 ∈ R(BR−1BT ),

Û2 ∈ R
n×(n−r̂), and Û2 ∈ N (BR−1BT ). Notably, all Ū1, Ū2, Ū21, Û1, Û2

are matrices with orthonormal column(s). Moreover, en+1 (in Ū2) is the selected
eigenvector associated with the zero eigenvalue of M̄T M̄ = M̄ M̄T .
The following parameter values are computed and summarized for better read-
ability:

(i) f̄M̄ = Ū1Ū T
1 f̄ = [

fT Û1Û T
1 0

]T
and f̄M̄⊥ = Ū2Ū T

2 f̄ = [
fT Û2Û T

2 1
]T
;

(ii) ϕ̄ = Ū2ϕ̄
′ where ϕ̄′ ∈ N (f̄T Ū2) = N (

[
fT Û2 1

]
), similarly according

to Eq. (46);
(iii) denote τ̄ = [τ̄ T

1 , 0]T and w̄ = [w̄T
1 , 0]T since both reside in

R(M̄) = R(BR−1BT ) × {0}; and therefore
(iv) w̄M̄w̄ = w̄T

1 BR−1BT w̄1/2 and f̄T
M̄
w̄ = fT Û1Û1w̄1.

Substituting these values in Eqs. (48) and (49), the results are presented more
concisely in Eqs. (27) and (28), respectively.
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