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Abstract
We correct the local stability analysis of the two-player case of Lambertini (J Optim
Theory Appl 145(1):108–119, 2010). Due to a sign error, the steady state was mis-
characterized as being stable, while it is unstable.

1 Introduction

Lambertini [1] considers a dynamic oligopoly with hyperbolic demand. He solves for
the symmetric equilibrium under open-loop strategies and characterizes the stability
of the steady state. For the duopoly (two firms) case, there occurred a sign error that
led to wrong conclusions. Given that the speed of price adjustment was sufficiently
large, the steady state is mischaracterized as being locally asymptotically stable, while
it is in fact unstable.

2 Correction

There are N ∈ N firms that produce a homogenous good over an infinite time horizon
t ∈ [0,∞[. Firm i ∈ {1, 2, . . . , N } produces qi : [0,∞[→ R+ quantities of the good.
The price of the good is p(t) ≥ 0, and its evolution over time follows

ṗ(t) := dp(t)

dt
= s

(
a∑N

i=1 qi (t)
− p(t)

)
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where s > 0 denotes the speed of adjustment and a > 0 is the income of a representa-
tive consumer. Each firmmaximizes its discounted profits and thus faces the following
dynamic optimization problem:

max
(qi (t))t≥0

∫ ∞

0
e−ρt

[
p(t)qi (t) − cqi (t)

2
]
dt

where c > 0 denotes a production cost parameter and ρ > 0 is the common time
preference rate. Applying the maximum principle yields a symmetric equilibrium
candidate (qi (t) = q(t) for all i) that is characterized by the following system of
differential equations:

ṗ(t) = f (p(t), q(t))

= s

(
a

Nq(t)
− p(t)

)
,

q̇(t) = g(p(t), q(t))

= 1

2p(t) − 6cq(t)

[
−2cq(t)2(s + ρ) + p(t)q(t)(2s + ρ) − as

N 2 (N + 1)
]
.

Lambertini [1, Prop. 3.1] identifies a steady state (p, q) ∈ R
2+ with f (p, q) = 0 =

g(p, q) and claims:

Proposition 2.1 If N ≥ 3, the steady state identified by

p :=
√

2ac(s + ρ)

ρN + s(N − 1)
, q := 1

N

√
a(ρN + s(N − 1))

2c(s + ρ)

is a saddle point for all admissible values of s. If N ∈ {1, 2}, then:
– For N = 1, (p, q) is (i) a saddle point for all s ∈]0, ρ/2[ and (ii) an unstable
focus for all s > ρ/2.

– For N = 2, (p, q) is (i) a saddle point for all s ∈]0, 2ρ[, (ii) a stable node for all
s ∈]2ρ, 2.226ρ[ and (iii) a stable focus for all s > 2.226ρ.

The cases N = 1 and N ≥ 3 are correct. For N = 2 there occurred a sign error and
the steady state is not stable but unstable. The proposition needs to be corrected in the
following sense.

Proposition 2.1 (corrected) If N ≥ 3, the steady state identified by

p :=
√

2ac(s + ρ)

ρN + s(N − 1)
, q := 1

N

√
a(ρN + s(N − 1))

2c(s + ρ)

is a saddle point for all admissible values of s. If N ∈ {1, 2}, then:
– For N = 1, (p, q) is (i) a saddle point for all s ∈]0, ρ/2[ and (ii) an unstable
focus for all s > ρ/2.
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– For N = 2, (p, q) is (i) a saddle point for all s ∈]0, 2ρ[, (ii) an unstable node for
all s ∈]2ρ, 2.226ρ[ and (iii) an unstable focus for all s > 2.226ρ.

Proof As the cases N = 1 and N ≥ 3 are correct, we fix N = 2. The Jacobian of
( f , g) reads

J(p, q) =
⎡
⎢⎣

∂ f (p, q)

∂ p

∂ f (p, q)

∂q
∂g(p, q)

∂ p

∂g(p, q)

∂q

⎤
⎥⎦

where the partial derivatives are given by

∂ f (p, q)

∂ p
= −s,

∂ f (p, q)

∂q
= − as

2q2
,

∂g(p, q)

∂ p
= 1

8(p − 3cq)2

[
−q24c(4s + ρ) + 3sa

]
,

∂g(p, q)

∂q
= 1

8(p − 3cq)2

[
8c(ρ + s)(3cq − 2p)q + 4p2(ρ + 2s) − 9csy

]
.

Case s ∈]0, 2ρ[ Let us consider the determinant of the Jacobian evaluated at the
steady state:

det :=∂ f (p, q)

∂ p

∂g(p, q)

∂q
− ∂ f (p, q)

∂q

∂g(p, q)

∂ p

=2s(ρ + s)(2ρ + s)

s − 2ρ
.

As det < 0 for all s ∈]0, 2ρ[, the steady state is a saddle point.
Case s ∈]2ρ,∞[ For s > 2ρ the determinant det is positive. In order to determine

the stability, we further investigate the trace of the Jacobian evaluated at the steady
state:

tr :=∂ f (p, q)

∂ p
+ ∂g(p, q)

∂q

= s2 + 2ρs − 2ρ2

s − 2ρ
.

The denominator is positive for s > 2ρ and the trace thus positive for all s >

ρ
(√

3 − 1
)
. Since 2 >

√
3−1 the trace is positive for all s > 2ρ and the steady state

unstable. We further investigate whether the eigenvalues λ1,2 of J(p, q) are complex
or real in order to discriminate between a node and a focus. Let us first recall that the
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eigenvalues are given by

λ1,2 = 1

2

(
tr ±

√
tr2 − 4det

)
.

Depending on the sign of the discriminant

disc :=tr2 − 4det

=4ρ2 + 24ρ3s + 32ρ2s2 − 4ρs3 − 7s4

(s − 2ρ)2

=: h(ρ, s)

(s − 2ρ)2
,

the steady state is either a node or a focus. Note that h(ρ, 2ρ) = 36ρ4 > 0 and
lims→∞ h(ρ, s) → −∞ < 0 such that there exists s > 2ρ with h(ρ, s) = 0. The
equation h(ρ, s) = 0 has four solutions

s1,2 = ρ

7

(
−1 − 5

√
2 ±

√
65 − 18

√
2

)
≈ ρ(−0.2547,−2.0514),

s3,4 = ρ

7

(
−1 + 5

√
2 ±

√
65 + 18

√
2

)
≈ ρ(+2.2260,−0.4914).

Only s3 satisfies s > 2ρ and we thus deduce

disc

{
> 0 for s ∈]2ρ, 2.226ρ[,
< 0 for s ∈]2.226ρ,∞[.

�	

3 Conclusions

This manuscript provides a correction for a special case of [1, Prop. 3.1]. With these
modifications, the local stability of the steady state changes.While it was characterized
as being locally asymptotically stable, it is actually unstable.
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