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Abstract
We introduce a new notion of a vector-based robust minimal solution for a vector-
valued uncertain optimization problem, which is defined by means of some open
cone. We present necessary and sufficient conditions for this kind of solution, which
are stated in terms of some directional derivatives of vector-valued functions. To prove
these results, we apply the methods of set-valued analysis. We also study relations
between our definition and three other known optimality concepts. Finally, for the
case of scalar optimization, we present two general algorithm models for computing
vector-based robust minimal solutions.

Keywords Uncertain optimization · Robust minimal solutions · Set-valued analysis ·
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1 Introduction

In many optimization problems, one has to deal with some uncertainty of the data.
Mathematically, this can be described by an additional parameter, which influences
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either the objective function (as in [1]), or the functions defining constraints (as in
[2]), or both. The exact value of this parameter is unknown at the moment of decision,
but it can be assumed that the parameter values lie in a given uncertainty set.

The theory of uncertain optimization (also called robust optimization) for multi-
objective problems is a relatively new direction of research: the authors of paper [3],
submitted in 2014, write that it “has been started only within the last 2 years”. One
possible approach to uncertain multiobjective optimization is to interpret an uncertain
optimization problem as a special set-valued optimization problem and then apply
the methods of set-valued analysis; see, e.g., [4, Section 3.1] and [1, Section 5]. In
this paper, we follow [1] regarding the formulation of a set-valued problem associated
with an uncertain vector optimization problem. We study the notion of Q-minimality
(where Q is an open cone) in the context of uncertain vector optimization. We define
four types of robust Q-minimal solutions, where the first one is new (a vector-based
robust Q-minimal solution; see Definition 3.2(a)), while the other three are vari-
ants of some definitions known from the literature. The paper is devoted to studying
relations between these four types of solutions, proving some optimality conditions
for vector-based robust Q-minimal solutions and constructing algorithm models for
finding them.

The organization of this paper is as follows: In Sect. 2, we briefly discuss Q-
minimal solutions for set-valued optimization problems. In Sect. 3, we formulate an
uncertain vector optimization problem and construct the associated set-valued opti-
mization problem. We also define four concepts of robust Q-minimal solutions and
examine relations between them. Section 4 provides one more relation for the particu-
lar case of scalar optimization. In Sect. 5, we prove a characterization of a vector-based
robust Q-minimal solution of an uncertain optimization problem in terms of a radial
derivative of some vector-valued function. Since this characterization may be difficult
to apply in practice, in the next two sections we present other optimality conditions
(necessary in Sect. 6 and sufficient in Sect. 7), which have simpler forms but are not
characterizations. In Sect. 8, we discuss two general algorithm models for finding
vector-based robust Q-minimal solutions for the case of scalar optimization with a
finite number of scenarios. Finally, in Sect. 9, we present a computational example.

2 Q-Minimal Solutions in Set-Valued Optimization

Let X ,Y be normed spaces, S be a nonempty subset of X , and F : X ⇒ Y be a
set-valued map. We define the graph of F as follows:

graphF := {(x, y) ∈ X × Y : y ∈ F(x)} .

We denote by FS the restriction of F to S defined by

FS(x) :=
{
F(x), if x ∈ S,

∅, if x /∈ S
(1)
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(see [5, p. 132]). Let Q be an arbitrary open cone in Y , which is nonempty and different
from Y . We remind that an open cone Q is an open set satisfying the condition λy ∈ Q
for all y ∈ Q and λ > 0. We consider the following set-valued optimization problem:

minimize F(x) subject to x ∈ S, (2)

where the minimization is understood with respect to the cone Q, according to the
following definition.

Definition 2.1 Let (x̄, ȳ) ∈ graphFS . We say that (x̄, ȳ) is a Q-minimal solution of
problem (2), if

(F(S) − ȳ) ∩ (−Q) = ∅, (3)

where

F(S) :=
⋃
x∈S

F(x).

We introduce the following relation ≺ in Y :

(y1 ≺ y2) :⇔ (y2 − y1 ∈ Q) . (4)

In particular, if the cone Q is convex, then the relation ≺ is transitive.

Remark 2.1 It is easy to see that (x̄, ȳ) is a Q-minimal solution of problem (2), if and
only if y ⊀ ȳ for all y ∈ F(S).

The notion of a Q-minimal solution has been introduced in [6]. It includes several
types of solutions, known from the literature, as particular cases:

(i) a strong (or ideal) efficient point of F(S),
(ii) a weak efficient point of F(S),
(iii) a positive-properly efficient point of F(S),
(iv) a Geoffrion-properly efficient point of F(S),
(v) a Borwein-properly efficient point of F(S),
(vi) a Henig-properly efficient point of F(S),
(vii) a strong Henig-properly efficient point of F(S),
(viii) a super efficient point of F(S);

the details are described in [7, Prop. 1.2] and [6, Thm. 21.7].
For other solution concepts in set-valued optimization, see [8, Section 2.6].
A particular case of problem (2) is the vector optimization problem:

minimize f (x) subject to x ∈ S, (5)

where f : X → Y is a single-valued map.
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Definition 2.2 Let x̄ ∈ S. We say that x̄ is a Q-minimal solution of problem (5), if
(x̄, f (x̄)) is a Q-minimal solution of problem (2) with F defined by F(x) := { f (x)}.
Remark 2.2 Obviously, x̄ is a Q-minimal solution of problem (5), if and only if

( f (S) − f (x̄)) ∩ (−Q) = ∅. (6)

3 An Uncertain Vector Optimization Problem

In this section, we formulate an uncertain vector optimization problem as in [1, Section
5], define four types of its robust Q-minimal solutions, and discuss the relationships
between them.

Let X ,Y , Z be normed spaces, let S and U be nonempty subsets of X and Z ,
respectively, and let f : X × U → Y .

Definition 3.1 Anuncertain vector optimization problem P(U) is defined as the family

(P(ξ), ξ ∈ U) (7)

of vector optimization problems

P(ξ) : minimize f (x, ξ) subject to x ∈ S. (8)

For each x ∈ X , we denote

F(x) := { f (x, ξ) : ξ ∈ U} ⊆ Y . (9)

Then, F : X ⇒ Y is a set-valued map. In this way, we can construct a set-valued
optimization problemof the form (2), associatedwith the uncertain vector optimization
problem (7).

Definition 3.2 Let x̄ ∈ S, and let F be defined by (9). We say that

(a) x̄ is a vector-based robust Q-minimal solution of P(U), if there exists ȳ ∈ F(x̄)
such that (x̄, ȳ) is a Q-minimal solution of (2);

(b) x̄ is a flimsily robust Q-minimal solution of P(U), if it is a Q-minimal solution
of P(ξ) for at least one ξ ∈ U ;

(c) x̄ is a highly robust Q-minimal solution of P(U), if it is a Q-minimal solution of
P(ξ) for all ξ ∈ U ;

(d) x̄ is a set-based robust Q-minimal solution of P(U), if there exists no x ∈ S such
that F(x) ⊆ F(x̄) − Q.

Remark 3.1 Part (a) of Definition 3.2 is new. Parts (b) and (c) are introduced here
by analogy with Definitions 4 and 5, respectively, in [3], where the usual efficiency
instead of Q-minimality was used. Part (d) is analogous to Definition 3.2 in [9]. For
other concepts of robust solutions in uncertain optimization and relations between
them, see [10]. The motivation for using the vector-based approach in this paper was
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to obtain some intermediate concept between definitions (b) and (c), which, however,
proved successful in the scalar-valued case only; see Sect. 4. We will try to extend our
results to vector-valued problems in a further research.

The proposition below clarifies the relation between Definitions 2.2 and 3.2(a).

Proposition 3.1 A point x̄ ∈ S is a vector-based robust Q-minimal solution of P(U), if
and only if there exists ξ̄ ∈ U such that (x̄, ξ̄ ) is a Q-minimal solution of the following
vector optimization problem:

minimize f (x, ξ) subject to (x, ξ) ∈ S × U . (10)

Proof By Definition 3.2(a), formula (9) and Remark 2.2 (where S should be replaced
by S × U), we have the following chain of equivalences:

x̄ is a vector-based robust Q-minimal solution of P(U)

⇔ ∃ȳ ∈ F(x̄), (F(S) − ȳ) ∩ (−Q) = ∅
⇔ ∃ξ̄ ∈ U ,

(
F(S) − f (x̄, ξ̄ )

) ∩ (−Q) = ∅
⇔ ∃ξ̄ ∈ U ,

(
f (S × U) − f (x̄, ξ̄ )

) ∩ (−Q) = ∅
⇔ ∃ξ̄ ∈ U , (x̄, ξ̄ ) is a Q-minimal solution of (10). (11)


�
Corollary 3.1 A point x̄ ∈ X is a vector-based robust Q-minimal solution of P(U), if
and only if there exists ξ̄ ∈ U such that

f (x, ξ) ⊀ f (x̄, ξ̄ ) for all (x, ξ) ∈ S × U .

Proof This follows easily from (4) and the fourth statement in (11). 
�
The rest of this section is devoted to studying relations between the different con-

cepts of Q-minimality for P(U) which are listed in Definition 3.2. Propositions 3.2
and 3.3 show that the implications (a) ⇒ (b) and (c) ⇒ (b) are always true. Exam-
ples 3.1–3.6 prove that in the general case, no other implication between definitions
(a), (b), (c), (d) is valid. Later in Sect. 4, we will show that the implication (c) ⇒ (a)
holds for the particular case of a scalar uncertain optimization problem.

Proposition 3.2 If x̄ is a vector-based robust Q-minimal solution of P(U), then it is
a flimsily robust Q-minimal solution of P(U).

Proof By assumption, there exists ȳ ∈ F(x̄) such that (x̄, ȳ) is a Q-minimal solution
of (2). Hence, for each ξ ∈ U , we have

( f (S, ξ) − ȳ) ∩ (−Q) ⊆ (F(S) − ȳ) ∩ (−Q) = ∅. (12)
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The relation ȳ ∈ F(x̄) implies that ȳ = f (x̄, ξ̄ ) for some ξ̄ ∈ U . Of course, this ξ̄

also satisfies (12). Therefore, we have

( f (S, ξ̄ ) − f (x̄, ξ̄ )) ∩ (−Q) = ∅,

which by Remark 2.2 is equivalent to x̄ being a Q-minimal solution of P(ξ̄ ). 
�
Proposition 3.3 If x̄ is a highly robust Q-minimal solution of P(U), then it is a flimsily
robust Q-minimal solution of P(U).

Proof This follows immediately from the definitions (see [3, Lemma 6]). 
�
Below, the symbol [y, y′] with y, y′ belonging to Y (or another normed space),

denotes the line segment, i.e., [y, y′] = {λy + (1 − λ)y′ : 0 ≤ λ ≤ 1}.
Example 3.1 This example shows that (b) � (a), (b) � (c) and (d) � (a).

Let X = Y = Z = R, Q =]0,∞[, S = U = [−1, 1], f (x, ξ) = x2ξ . Then,
F(x) = [−x2, x2] for all x ∈ R. Observe that for each ξ ∈ [0, 1], the point x̄ = 0
is a Q-minimal solution of P(ξ), and for ξ ∈ [−1, 0[, it is not a Q-minimal solution
of P(ξ). Thus, x̄ is a flimsily robust (but not highly robust) Q-minimal solution of
P(U). However, x̄ is not a vector-based robust Q-minimal solution of P(U) because
the only element ȳ ∈ F(0) is ȳ = 0, and

F(S) ∩ (−Q) = [−1, 1]∩] − ∞, 0[= [−1, 0[�= ∅.

We can also see that x̄ = 0 is a set-based robust Q-minimal solution of P(U). Indeed,
for each x ∈ S, we have

F(x) = [−x2, x2] �] − ∞, 0[= {0}−]0,∞[= F(x̄) − Q.

Example 3.2 This example shows that (a) � (d) and (b) � (d).
Let X = Y = Z = R, Q =]0,∞[, S = U = [−1, 1], f (x, ξ) = (

x2 − 1
)
ξ . Then,

F(x) = [x2−1,−x2+1] for all x ∈ R. We can see that x̄ = 0 is a flimsily robust (but
not highly robust) Q-minimal solution of P(U) since it is a Q-minimal solution of P(ξ)

for ξ ∈ [0, 1] and it is not a Q-minimal solution of P(ξ) for ξ ∈ [−1, 0[. Moreover, x̄
is a vector-based robust Q-minimal solution of P(U) because, for ȳ = −1, we have

(F(S) − ȳ) ∩ (−Q) = ([−1, 1] + 1) ∩] − ∞, 0[= [0, 2]∩] − ∞, 0[= ∅.

However, x̄ = 0 is not a set-based robust Q-minimal solution of P(U). Indeed, for
each x ∈ S\{x̄}, we have

F(x) = [x2 − 1,−x2 + 1] ⊆] − ∞, 1[= [−1, 1]−]0,∞[= F(x̄) − Q.

Example 3.3 This example shows that (d) � (b) and (d) � (c).
Let X = Y = Z = R, Q =]0,∞[, S = [−1, 1], U = {−0.5, 0.5}, f (x, ξ) =

(x − ξ)2. Then, F(x) = {
(x − ξ)2 : ξ ∈ U}

for all x ∈ R; in particular, F(0) =
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{(−0.5)2, (0.5)2} = {0.25}. We will show that x̄ = 0 is a set-based robust Q-minimal
solution of P(U). Suppose that this is not true. Then, there exists x ∈ S such that

F(x) ⊆ F(x̄) − Q =] − ∞, 0.25[. (13)

However, if x ∈ [0, 1], then (x + 0.5)2 ∈ F(x) and (x + 0.5)2 ≥ 0.25, which
contradicts (13). Similarly, if x ∈ [−1, 0], then (x − 0.5)2 ∈ F(x) and
(x − 0.5)2 ≥ 0.25, which also contradicts (13).

On the other hand, x̄ = 0 is not a flimsily robust Q-minimal solution of P(U). This
follows because the only solution of P(−0.5) is equal to−0.5 with f (−0.5,−0.5) =
0, and similarly, the only solution of P(0.5) is equal to 0.5 with f (0.5, 0.5) = 0,
while at x̄ = 0, both minimized functions f (·,−0.5) and f (·, 0.5) have strictly
positive values. Of course, by Proposition 3.3, x̄ is also not a highly robust Q-minimal
solution of P(U).

Example 3.4 This example shows that (c) � (a).
Let X = Z = R, Y = R2, Q = {(y1, y2) ∈ R2 : yi > 0, i = 1, 2}, S = [0, 3],

U = {1, 2},

f (x, ξ) =
⎧⎨
⎩

(0, 2x), if ξ = 1, x ∈ [0, 3],
(−0.5x + 1, 0.5x), if ξ = 2, x ∈ [0, 2],
(−0.5x + 1,−0.5x + 2), if ξ = 2, x ∈]2, 3].

Let us note that

f (S, 1) = [(0, 0), (0, 6)],
f (S, 2) = [(1, 0), (0, 1)] ∪ [(−0.5, 0.5), (0, 1)].

Let x̄ = 1. Observe that x̄ is a highly robust Q-minimal solution of P(U). Indeed,
f (x̄, 1) = (0, 2), f (x̄, 2) = (0.5, 0.5),

f (S, 1) − f (x̄, 1) = [(0,−2), (0, 4)],
f (S, 2) − f (x̄, 2) = [(0.5,−0.5), (−0.5, 0.5)] ∪ [(−1, 0), (−0.5, 0.5)].

Therefore,

( f (S, 1) − f (x̄, 1)) ∩ (−Q) = ∅,

( f (S, 2) − f (x̄, 2)) ∩ (−Q) = ∅,

which means that x̄ is a Q-minimal solution of both vector optimization problems
P(ξ), ξ = 1, 2.

However, the point x̄ = 1 is not a vector-based robust Q-minimal solution of P(U).
Let us suppose the contrary. Then, there exists a point ȳ ∈ F(x̄) = {(0, 2), (0.5, 0.5)}
such that
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⎛
⎝⋃

ξ∈U
f (S, ξ) − ȳ

⎞
⎠ ∩ (−Q) = ∅,

where

⋃
ξ∈U

f (S, ξ) = [(0, 0), (0, 6)] ∪ [(1, 0), (0, 1)] ∪ [(−0.5, 0.5), (0, 1)].

But ȳ cannot be equal to (0, 2), because

(−0.5, 0.5) = f (3, 2) ∈
⋃
ξ∈U

f (S, ξ)

and

(−0.5, 0.5) − (0, 2) = (−0.5,−1.5) ∈ (−Q).

Similarly, ȳ cannot be equal to (0.5, 0.5), because

(0, 0) = f (0, 1) ∈
⋃
ξ∈U

f (S, ξ)

and

(0, 0) − (0.5, 0.5) = (−0.5,−0.5) ∈ (−Q).

Therefore, we get a contradiction.

Example 3.5 This example shows that (a) � (c).
Take the same data as in Example 3.4, except for the definition of f , which has now

the form

f (x, ξ) =
⎧⎨
⎩

(0, 2x), if ξ = 1, x ∈ [0, 3],
(−x + 2, x), if ξ = 2, x ∈ [0, 1],
(−0.5x + 1.5,−0.5x + 1.5), if ξ = 2, x ∈ ]1, 3].

Let us note that

f (S, 1) = [(0, 0), (0, 6)],
f (S, 2) = [(2, 0), (1, 1)] ∪ [(0, 0), (1, 1)].

Let x̄ = 1. Observe that x̄ is not a highly robust Q-minimal solution of P(U) (it is
only flimsily robust). Indeed, f (x̄, 1) = (0, 2), f (x̄, 2) = (1, 1),

f (S, 1) − f (x̄, 1) = [(0,−2), (0, 4)],
f (S, 2) − f (x̄, 2) = [(1,−1), (0, 0)] ∪ [(−1,−1), (0, 0)].
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Therefore,

( f (S, 1) − f (x̄, 1)) ∩ (−Q) = ∅,

( f (S, 2) − f (x̄, 2)) ∩ (−Q) �= ∅,

which means that x̄ is a Q-minimal solution of vector optimization problem P(1) but
is not a Q-minimal solution of vector optimization problem P(2).

However, the point x̄ = 1 is a vector-based robust Q-minimal solution of P(U).
Indeed, taking ȳ = (0, 2) ∈ F(x̄), we obtain

⎛
⎝⋃

ξ∈U
f (S, ξ) − ȳ

⎞
⎠ ∩ (−Q) = ∅,

since
⋃
ξ∈U

f (S, ξ) − ȳ = [(0,−2), (0, 4)] ∪ [(2,−2), (1,−1)] ∪ [(0,−2), (1,−1)].

Example 3.6 This example shows that (c) � (d).
Let X = Z = R, Y = R2, Q = {(y1, y2) ∈ R2 : yi > 0, i = 1, 2}, S = [0, 2],

U = {1, 2},

f (x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(2, x), if ξ = 1, x ∈ [0, 1],
(−1.5x + 3.5, 1), if ξ = 1, x ∈]1, 2],
(x, 2), if ξ = 2, x ∈ [0, 1],
(1,−1.5x + 3.5), if ξ = 2, x ∈]1, 2].

We will show that x̄ = 1 is a highly robust Q-minimal solution of P(U). Indeed, x̄ is
a Q-minimal solution of P(1) because the set

f (S, 1) − f (x̄, 1) = [(0.5, 1), (2, 1)] ∪ [(2, 0), (2, 1)] − (2, 1)

= [(−1.5, 0), (0, 0)] ∪ [(0,−1), (0, 0)]

has empty intersection with−Q. Similarly, x̄ is a Q-minimal solution of P(2) because
the set

f (S, 1) − f (x̄, 2) = [(1, 0.5), (1, 2)] ∪ [(0, 2), (1, 2)] − (1, 2)

= [(0,−1.5), (0, 0)] ∪ [(−1, 0), (0, 0)]

has empty intersection with −Q.
However, x̄ = 1 is not a set-based robust Q-minimal solution of P(U). To see this,

take x = 2. We have

F(x̄) = { f (1, 1), f (1, 2)} = {(2, 1), (1, 2)},
F(x) = { f (2, 1), f (2, 2)} = {(0.5, 1), (1, 0.5)},
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and

F(x̄) − Q = {(y1, y2) : y1 < 1, y2 < 2} ∪ {(y1, y2) : y1 < 2, y2 < 1}.

It follows that F(x) ⊆ F(x̄) − Q, which contradicts Definition 3.2(d).

4 The Case of Scalar Optimization

In this section we consider the case where Y = R and Q =]0,∞[. In this case, the
relation ≺ may be replaced by the usual strict inequality <. We will show that in this
case, one more relation between two parts of Definition 3.2 holds, which implies that
a vector-based robust Q-minimal solution is an intermediate notion between a highly
robust Q-minimal solution and a flimsily robust Q-minimal solution.

Theorem 4.1 Let Y = R and Q =]0,∞[. Suppose that the values of the set-valued
map F : X ⇒ R are closed and bounded from below. Then, every highly robust
Q-minimal solution of P(U) is a vector-based robust Q-minimal solution of P(U).

Proof Let x̄ ∈ S be a highly robust Q-minimal solution of P(U). Then, for each
ξ ∈ U , x̄ is a Q-minimal solution of the scalar optimization problem P(ξ), which
means that x̄ is a global minimum point of f (·, ξ) in the usual sense:

f (x̄, ξ) ≤ f (x, ξ) for all x ∈ S. (14)

Since the set F(x̄) = { f (x̄, ξ) : ξ ∈ U} is closed and bounded from below, there exists
ξ̄ ∈ U such that

f (x̄, ξ̄ ) = min { f (x̄, ξ) : ξ ∈ U} . (15)

Conditions (14) and (15) imply that

f (x̄, ξ̄ ) ≤ f (x̄, ξ) ≤ f (x, ξ) for all (x, ξ) ∈ S × U .

Consequently, by Proposition 3.1, x̄ is a vector-based robust Q-minimal solution of
P(U). 
�

5 A Characterization of Vector-Based RobustQ-Minimal Solutions

In this section, we present a characterization of a vector-based robust Q-minimal
solution of P(U) in terms of some radial derivative of the function f appearing in
(8), restricted to S × U . By our knowledge, such results are not known even in the
special scalar-valued case. It seems to be possible to derive similar characterizations
for different solutions based on the set-based approach to uncertain optimization; for
example, for part (d) of Definition 3.2. We plan to describe corresponding results in a
subsequent paper.
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First, we recall the definition of an outer radial derivative of an arbitrary set-valued
mapping.

Definition 5.1 Let F : X ⇒ Y , let (x̄, ȳ) ∈ graphF , and let m be a positive integer.
Them-th order outer radial derivative of F at (x̄, ȳ) is the set-valuedmap D

m
R F(x̄, ȳ) :

X ⇒ Y defined by

D
m
R F(x̄, ȳ)(u)

:= {
v ∈ Y : ∃tn > 0, ∃(un, vn) → (u, v),∀n, ȳ + tmn vn ∈ F(x̄ + tnun)

}
. (16)

The derivative D
1
RF(x̄, ȳ) was first introduced in [5]; the derivative D

m
R F(x̄, ȳ)

(for an arbitrary m) was defined in [7]. An interesting feature of radial derivatives is
that contrary to classical derivatives, they lead to global sufficient conditions without
any (generalized) convexity assumptions. This is due to the fact that we do not require
that tn converges to zero in (16).

In particular, if f : X → Y is a single-valued mapping, we will use the notation
D

m
R f (x̄; u) instead of D

m
R F(x̄, f (x̄))(u), where F : X ⇒ Y is the multifunction

defined by F(x) := { f (x)}. Hence, it follows from (16) that

D
m
R f (x̄; u)

= {
v ∈ Y : ∃tn > 0, ∃(un, vn) → (u, v), ∀n, f (x̄) + tmn vn = f (x̄ + tnun)

}
= {

v ∈ Y : ∃tn > 0, ∃un → u, t−m
n ( f (x̄ + tnun) − f (x̄)) → v

}
. (17)

Proposition 5.1 Let f : X → Y , x̄, u ∈ X, and let m be a positive integer. Then,
f (x̄ + u) − f (x̄) ∈ D

m
R f (x̄; u).

Proof It is sufficient to take the constant sequences tn ≡ 1 and (un, vn) ≡ (u, v) in
(17). 
�

We now return to the uncertain optimization problem P(U). We will denote by
fS×U the restriction of f : X × Z → Y to S × U . Then, by analogy with (17), we
can write, for any (x̄, ξ̄ ) ∈ S × U ,

D
m
R fS×U ((x̄, ξ̄ ); (x, ξ))

= {y ∈ Y : ∃tn > 0, ∃(xn, ξn, yn) → (x, ξ, y),∀n,

f (x̄, ξ̄ ) + tmn yn ∈ fS×U (x̄ + tnxn, ξ̄ + tnξn)
}

= {y ∈ Y : ∃tn > 0, ∃(xn, ξn, yn) → (x, ξ, y),∀n, x̄ + tnxn ∈ S,

ξ̄ + tnξn ∈ U , f (x̄, ξ̄ ) + tmn yn = f (x̄ + tnxn, ξ̄ + tnξn)
}
. (18)

We have the following counterpart of Proposition 5.1.

Proposition 5.2 Let f : X × Z → Y , (x̄, ξ̄ ) ∈ S×U ⊆ X × Z, and let m be a positive
integer. Suppose that x ∈ X and ξ ∈ U are such that x̄ + x ∈ S and ξ̄ + ξ ∈ U . Then,

f (x̄ + x, ξ̄ + ξ) − f (x̄, ξ̄ ) ∈ D
m
R fS×U ((x̄, ξ̄ ); (x, ξ)).
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Proof It is sufficient to take tn ≡ 1 and (xn, ξn, yn) ≡ (x, ξ, y) in (18). 
�
Theorem 5.1 A point x̄ ∈ S is a vector-based robust Q-minimal solution of P(U) if
and only if

∃ξ̄ ∈ U , D
m
R fS×U ((x̄, ξ̄ ); (S − x̄,U − ξ̄ )) ∩ (−Q) = ∅. (19)

Proof Part “if”. Suppose that x̄ is not a vector-based robust Q-minimal solution of
P(U). Then, for each ȳ ∈ F(x̄) (where F is given by (9)), the pair (x̄, ȳ) is not a
Q-minimal solution of (2). This is equivalent to

(F(S) − ȳ) ∩ (−Q) �= ∅ for all ȳ ∈ F(x̄). (20)

Since ȳ ∈ F(x̄) is equivalent to ȳ = f (x̄, ξ̄ ) for some ξ̄ ∈ U , we obtain from (20)
that

(
F(S) − f (x̄, ξ̄ )

) ∩ (−Q) �= ∅ for all ξ̄ ∈ U . (21)

Take any ξ̄ ∈ U . By (21), there exists x ∈ S such that

(
F(x) − f (x̄, ξ̄ )

) ∩ (−Q) �= ∅.

Using the definition of F , we see that there exists ξ ∈ U such that

f (x, ξ) − f (x̄, ξ̄ ) ∈ −Q. (22)

By defining u := x − x̄ ∈ S − x̄ and d := ξ − ξ̄ ∈ U − ξ̄ , we can rewrite (22) as

f (x̄ + u, ξ̄ + d) − f (x̄, ξ̄ ) ∈ −Q. (23)

However, by Proposition 5.2 and the relations x̄ + u = x ∈ S, ξ̄ + d = ξ ∈ U , we
have

f (x̄ + u, ξ̄ + d) − f (x̄, ξ̄ ) ∈ D
m
R fS×U ((x̄, ξ̄ ); (u, d)). (24)

Combining (23) and (24), we get

D
m
R fS×U ((x̄, ξ̄ ); (u, d)) ∩ (−Q) �= ∅. (25)

We have thus verified that for each ξ̄ ∈ U , there exist u ∈ S − x̄ and d ∈ U − ξ̄ such
that (25) holds. This contradicts (19).

Part “only if”. Let x̄ ∈ S be a vector-based robust Q-minimal solution of P(U),
then

∃ȳ ∈ F(x̄), (F(S) − ȳ) ∩ (−Q) = ∅. (26)
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Hence, there exists ξ̄ ∈ U such that ȳ = f (x̄, ξ̄ ), and consequently,

(
F(S) − f (x̄, ξ̄ )

) ∩ (−Q) = ∅.

We will show that

D
m
R fS×U ((x̄, ξ̄ ); (S − x̄,U − ξ̄ )) ∩ (−Q) = ∅. (27)

Suppose to the contrary that (27) is false, then there exist x ∈ S , ξ ∈ U and y ∈ Y
such that

y ∈ D
m
R fS×U ((x̄, ξ̄ ); (x − x̄, ξ − ξ̄ )) ∩ (−Q). (28)

By (28) and (18), there exist sequences tn > 0 and (xn, ξn, yn) → (x − x̄, ξ − ξ̄ , y)
such that for all n, we have

x̄ + tnxn ∈ S, ξ̄ + tnξn ∈ U and f (x̄, ξ̄ ) + tmn yn = f (x̄ + tnxn, ξ̄ + tnξn). (29)

Since Q is open and yn → y ∈ −Q, we have yn ∈ −Q for sufficiently large n. As Q
is an open cone, the last relation implies tmn yn ∈ −Q. From this and (29), we deduce

tmn yn ∈ {
f (x̄ + tnxn, ξ̄ + tnξn) − ȳ

} ∩ (−Q)

⊆ ( f (S,U) − ȳ) ∩ (−Q) = (F(S) − ȳ) ∩ (−Q),

a contradiction to (26). 
�
The characterization given in Theorem 5.1 is difficult to apply in practice as it

involves the restriction fS×U , which is not easy to compute, especially if the constraint
set S is defined by some functional conditions. Therefore, in the next two sections we
present a necessary condition (Theorem 6.2) and a sufficient condition (Theorem 7.1),
both for a vector-based robust Q-minimal solution of P(U), which do not use this
restricted function.

6 Necessary Optimality Conditions

The following derivative for a set-valued mapping F : X ⇒ Y was first defined in
[11].

Definition 6.1 Let (x̄, ȳ) ∈ graphF , and let m be a positive integer. The m-th order
outer contingent-type derivative of F at (x̄, ȳ) is the set-valuedmap d

m
F(x̄, ȳ) : X ⇒

Y defined by

d
m
F(x̄, ȳ)(u)

:= {v ∈ Y : ∃hn ↓ 0, ∃un → u, ∃vn → v,∀n, f (x̄, ξ̄ ) + hmn vn ∈ F(x̄ + hnun)}.
(30)
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We will also use the following derivative for a vector-valued map f : X → Y (if it
exists):

dm f (x̄; u) := lim
t↓0

w→u

t−m ( f (x̄ + tw) − f (x̄)) ,

where m is a positive integer, and u, w ∈ X .

Definition 6.2 The contingent cone to S at x̄ ∈ clS is defined as follows:

K (S, x̄) := {v ∈ X : ∃tn ↓ 0, ∃vn → v,∀n, x̄ + tnvn ∈ S} .

The following two theorems are, in view of Definition 3.2(a), necessary conditions
for x̄ ∈ S to be a vector-based robust Q-minimal solution of P(U).

Theorem 6.1 Let (x̄, ȳ) ∈ graphFS, and let m be a positive integer. If (x̄, ȳ) is a
Q-minimal solution of problem (2), then

d
m
FS(x̄, ȳ)(X) ∩ (−Q) = ∅. (31)

Proof Suppose that (x̄, ȳ) is a Q-minimal solution of (2) but condition (31) is false,
then there exist vectors u ∈ X and

v ∈ d
m
FS(x̄, ȳ)(u) ∩ (−Q).

By the definition of d
m
FS , there exist sequences tn → 0+ and (un, vn) → (u, v) such

that

ȳ + tmn vn ∈ FS(x̄ + tnun),

which is equivalent to

x̄ + tnun ∈ S and ȳ + tmn vn ∈ F(x̄ + tnun). (32)

Since Q is open and vn → v ∈ −Q, we have vn ∈ −Q for sufficiently large n. As Q
is an open cone, the last relation implies tmn vn ∈ −Q. From this and (32), we deduce

tmn vn ∈ (F(x̄ + tnun) − ȳ) ∩ (−Q) ⊆ (F(S) − ȳ) ∩ (−Q),

a contradiction to (3). 
�
Remark 6.1 Contrary to the other results of this paper, Theorem 6.1 remains valid even
if F is an arbitrary set-valued map, not necessarily defined by formula (9).

Theorem 6.2 Let F be given by (9), let (x̄, ȳ) ∈ graphFS, and let m be a positive
integer. Suppose that for each ξ̄ ∈ U satisfying the condition

f (x̄, ξ̄ ) = ȳ, (33)
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and for each pair (u, d) ∈ X × Z, there exists the derivative dm f ((x̄, ξ̄ ); (u, d)) ∈ Y .
If (x̄, ȳ) is a Q-minimal solution of (2) (where F is given by (9)), then

dm f ((x̄, ξ̄ ); (u, d)) /∈ −Q (34)

for all vectors ξ̄ ∈ U satisfying (33) and for all

(u, d) ∈ K (S × U , (x̄, ξ̄ )). (35)

Proof Suppose that the desired conclusion is false, then there exist vectors ξ̄ ∈ U and
(u, d) ∈ X × Y satisfying (33) and (35), respectively, such that

v := dm f ((x̄, ξ̄ ); (u, d)) ∈ −Q. (36)

By (35), there exist sequences tn → 0+ and (un, dn) → (u, d) such that for all n,

(x̄, ξ̄ ) + tn(un, dn) ∈ S × U . (37)

Let ξn := ξ̄ + tndn . By (36) and the definition of dm f , we have

vn := t−m
n

(
f (x̄ + tnun, ξn) − f (x̄, ξ̄ )

) → v. (38)

It follows from (33) and (38) that

ȳ + tmn vn = f (x̄ + tnun, ξn). (39)

By (37), we obtain x̄ + tnun ∈ S and ξn ∈ U . These two relations, and conditions (9),
(39) give

ȳ + tmn vn ∈ F(x̄ + tnun) = FS(x̄ + tnun).

We have thus verified that there exist sequences tn → 0+, un → u and vn → v such
that ȳ + tmn vn ∈ FS(x̄ + tnun) for all n. This means that v ∈ d

m
FS(x̄, ȳ)(u). But this

contradicts Theorem 6.1 because v ∈ −Q. 
�
Example 6.1 Let X = Y = Z = R, Q =]0,∞[, S = [−1, 1], U = [0, 1], f (x, ξ) =
x2 + ξ . Then, F(x) = [x2, x2 + 1] for all x ∈ R. The point x̄ = 0 is a vector-based
robust Q-minimal solution of P(U) because there exist ȳ = 0 and ξ̄ = 0 ∈ U such
that ȳ = f (x̄, ξ̄ ) ∈ F(x̄) and

(F(S) − ȳ) ∩ (−Q) = [0, 2]∩] − ∞, 0[= ∅.

Observe that ξ̄ = 0 is the only element of U satisfying condition (33). We also have

K (S × U , (x̄, ξ̄ )) = K ([−1, 1] × [0, 1], (0, 0)) = {(u, d) ∈ R2 : d ≥ 0}.
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For such directions (u, d), we can compute

d1 f ((x̄, ξ̄ ); (u, d)) = d1 f ((0, 0); (u, d))

= lim
t↓0

(w,h)→(u,d)

t−1 ( f (tw, th) − f (0, 0))

= lim
t↓0

(w,h)→(u,d)

t−1
(
t2w2 + th

)
= d ≥ 0.

Since d /∈ −Q, the necessary condition given in Theorem 6.2 is satisfied for
m = 1. Note that for m = 2, we cannot apply Theorem 6.2 because the derivative
d2 f ((x̄, ξ̄ ); (u, d)) (for d > 0) does not exist as an element of R:

d2 f ((x̄, ξ̄ ); (u, d)) = lim
t↓0

(w,h)→(u,d)

t−2
(
t2w2 + th

)
= +∞.

Example 6.2 Take the same data as in Example 6.1, except for the definition of f
which has now the form f (x, ξ) = x2 + ξ2. As before, we have F(x) = [x2, x2 + 1]
for all x ∈ R. Moreover, x̄ = 0 is a vector-based robust Q-minimal solution of P(U)

with the same points ȳ = 0 and ξ̄ = 0. In this example, we can apply Theorem 6.2
both for m = 1 and m = 2 because

d1 f ((x̄, ξ̄ ); (u, d)) = lim
t↓0

(w,h)→(u,d)

t−1
(
t2w2 + t2h2

)
= 0,

d2 f ((x̄, ξ̄ ); (u, d)) = lim
t↓0

(w,h)→(u,d)

t−2
(
t2w2 + t2h2

)
= u2 + d2 ≥ 0.

Example 6.3 Let X = Y = Z = R, Q =]0,+∞[, S = U = [−1, 1], f (x, ξ) = x2ξ .
Then, F(x) = [−x2, x2] for all x ∈ R. Observe that for each ξ ∈ [0, 1], the point
x̄ = 0 is a Q-minimal solution of P(ξ), and for ξ ∈ [−1, 0[ , it is not a Q-minimal
solution of P(ξ). Moreover, the point x̄ = 0 is not a vector-based robust Q-minimal
solution of P(U) because the only element ȳ ∈ F(0) is ȳ = 0, and

F(S) ∩ (−Q) = [−1, 1] ∩ ] − ∞, 0[ = [−1, 0[ �= ∅.

We will show that applying Theorem 6.2, we can exclude the point 0 as a possible
vector-based robust Q-minimal solution of P(U). Take any point ξ̄ ∈ U ; it obviously
satisfies condition (33) of the form f (0, ξ̄ ) = 0. Since

K (S × U , (x̄, ξ̄ )) = K ([−1, 1] × [−1, 1], (0, 0)) = R2,

we can take any direction as (u, d) in (34). We can verify that

dm f ((0, ξ̄ ); (u, d)) = lim
t↓0

(w,h)→(u,d)

t−m
(
t2w2(ξ̄ + th)

)
=

{
0, for m = 1,

u2ξ̄ , for m = 2.
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This result for m = 2 is negative if u �= 0 and ξ̄ < 0. Hence, condition (34) does not
hold for m = 2.

7 Sufficient Optimality Conditions

We will now prove a sufficient optimality condition for uncertain optimization.

Theorem 7.1 Let F be given by (9), and let x̄ ∈ S. If there exists ξ̄ ∈ U such that

D
m
R f ((x̄, ξ̄ ); (S − x̄,U − ξ̄ )) ∩ (−Q) = ∅, (40)

then x̄ is a vector-based robust Q-minimal solution of problem P(U).

Proof Suppose that the desired conclusion is false. Then, for each ȳ ∈ F(x̄), the pair
(x̄, ȳ) is not a Q-minimal solution of (2). By arguing as in the proof of Theorem 5.1
part “if”, we can show that for each ξ̄ ∈ U , there exist u = x − x̄ ∈ S − x̄ and
d = ξ − ξ̄ ∈ U − ξ̄ such that

f (x̄ + u, ξ̄ + d) − f (x̄, ξ̄ ) ∈ −Q. (41)

However, by Proposition 5.1, we have

f (x̄ + u, ξ̄ + d) − f (x̄, ξ̄ ) ∈ D
m
R f ((x̄, ξ̄ ); (u, d)). (42)

Combining (41) and (42), we get

D
m
R f ((x̄, ξ̄ ); (u, d)) ∩ (−Q) �= ∅. (43)

We have thus verified that for each ξ̄ ∈ U , there exist u ∈ S − x̄ and d ∈ U − ξ̄ such
that (43) holds. This contradicts the assumption of the theorem. 
�
Example 7.1 Let X = Y = Z = R, Q =]0,∞[, S = [−1, 1], U = [0, 1], f (x, ξ) =
x2 + ξ2, and x = 0 (we have the same data as in Example 6.2). We will show that
condition (40) holds for ξ̄ = 0. Indeed, for each x ∈ S and d ∈ U , we have

D
m
R f ((0, 0); (x, d))

= {
v ∈ Y : ∃tn > 0, ∃(xn, dn) → (x, d), t−m

n ( f (tnxn, tndn) − f (0, 0)) → v
}

=
{
v ∈ Y : ∃tn > 0, ∃(xn, dn) → (x, d), vn := t−m

n (t2n x
2
n + t2n d

2
n ) → v

}
. (44)

Since each sequence {vn} in (44) is nonnegative, we have D
m
R f ((0, 0); (x, d)) ⊆

[0,∞[, and consequently, Dm
R f ((0, 0); (x, d))∩ (−Q) = ∅. But x and d are arbitrary

points of S and U , respectively, which implies that D
m
R f ((0, 0); (S,U))∩ (−Q) = ∅.

Thus, Theorem 7.1 can be applied to deduce that x̄ is a vector-based robust Q-minimal
solution of problem P(U).
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8 Construction of Algorithms for a Finite Set of Scenarios

In this section, we return to the case of scalar optimization considered in Sect. 4. We
present two general algorithmmodels that can be useful for solving the particular case
of problem P(U) where the set U is finite: U = {ξ1, ..., ξm} (we say that we have m
different scenarios). This case is important for some practical applications; see, e.g.,
[3, Example 3].

Throughout this section, we assume that for each i ∈ {1, ...,m}, the function
f (·, ξi ) : X → R belongs to a fixed class F of functions. We also assume that
there exists an algorithm A(g, x0) which, for a given function g ∈ F and a given
starting point x0 ∈ S, generates an infinite sequence {xk} converging to some point x̄
which is a global minimizer for g on S :

x̄ = lim
k→∞ xk and g(x̄) ≤ g(x) for all x ∈ S. (45)

The first algorithm model is valid under an additional assumption of regularity
stated inDefinition 8.1. This assumption helps to find a vector-based robust Q-minimal
solution faster than in the general case that will be considered later.

Definition 8.1 We say that a finite set of scenarios U is regular, if it satisfies the
following condition for each pair i, j ∈ {1, ...,m}, i �= j :

(∃x ∈ X : f (x, ξi ) < f (x, ξ j )
) ⇒ (∀u ∈ X : f (u, ξi ) < f (u, ξ j )

)
. (46)

Condition (46) means that strict inequalities between the values of f for different
scenarios are preserved throughout the whole space X , and consequently, the graphs
of f (·, ξi ) for different values of ξi do not intersect.

The following algorithm can be used to find a vector-based robust Q-minimal
solution of P(U) in the case where the number of elements of U is relatively small.

Algorithm Model 1

Step 1. Choose a starting point (x0, ξ0) ∈ S × U .
Step 2. If there exists ξ ∈ U such that f (x0, ξ) < f (x0, ξ0), then set ξ0 := ξ and

repeat Step 2. Otherwise, go to Step 3.
Step 3. Run the algorithm A( f (·, ξ0), x0), generating an infinite sequence {xk}.
Theorem 8.1 Suppose that the set U is regular. Then, the limit x̄ of the sequence {xk}
generated by AlgorithmModel 1 is a vector-based robust Q-minimal solution of P(U).

Proof Suppose that the desired conclusion is false. Then, by Corollary 3.1, there exists
a point (x∗, ξ∗) ∈ S × U such that

f (x∗, ξ∗) < f (x̄, ξ0). (47)

Since condition (45) holds for g = f (·, ξ0), we have

f (x̄, ξ0) ≤ f (x, ξ0) for all x ∈ S. (48)

123



Journal of Optimization Theory and Applications (2020) 186:375–397 393

In particular, taking x = x∗ in (48) and combining this inequality with (47), we obtain

f (x∗, ξ∗) < f (x∗, ξ0). (49)

Since U is regular, condition (49) implies that a similar inequality must also hold for
x0:

f (x0, ξ
∗) < f (x0, ξ0).

This, however, contradicts the construction of Algorithm Model 1 (when we go from
Step 2 to Step 3, ξ0 is the best scenario at the point x0). 
�
Remark 8.1 If, in AlgorithmModel 1, A( f (·, ξ0), x0) terminates after a finite number
of steps, then we can still use Theorem 8.1 by assuming that the sequence {xk} is
constant after it reaches a global minimizer x̄ of f (·, ξ0) on S.

We are now going to describe another algorithm model which does not require the
regularity condition (46). On the other hand, we assume that F satisfies the following
condition for each positive integer m:

f1, ..., fm ∈ F ⇒ min{ f1, ..., fm} ∈ F . (50)

Algorithm Model 2

Step 1. Choose a starting point x0 ∈ S.
Step 2. Define the function g(x) := min{ f (x, ξ) : ξ ∈ U} and run the algorithm

A(g, x0), generating an infinite sequence {xk}.
Remark 8.2 The description of Algorithm Model 2 is very simple. However, it may
require computing the minimum of m values f (xk, ξ1), ..., f (xk, ξm) at each step of
the algorithm A(g, x0). If the regularity condition (46) is not satisfied, we can have
this minimum attained at different scenarios ξ ∈ U for different values of xk .

Theorem 8.2 Suppose that condition (50) is satisfied. Then, the limit x̄ of the sequence
{xk} generated by Algorithm Model 2 is a vector-based robust Q-minimal solution of
P(U).

Proof By condition (45) and the definition of g, we have

g(x̄) ≤ g(x) ≤ f (x, ξ) for all (x, ξ) ∈ S × U . (51)

Take any ξ̄ ∈ U such that g(x̄) = f (x̄, ξ̄ ). This equality and (51) give that

f (x̄, ξ̄ ) ≤ f (x, ξ) for all (x, ξ) ∈ S × U .

Therefore, by Proposition 3.1, x̄ is a vector-based robust Q-minimal solution of P(U).

�
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9 A Computational Example

Algorithm Models 1 and 2, presented above, require applying some global minimiza-
tion method for a given real-valued function. Such methods exist but, for possibly
nonconvex functions, they are rather complicated. To illustrate the theory developed in
the previous section, here we present a simple example of one-dimensional uncertain
optimization problem, for which Algorithm Model 1 can be applied in combina-
tion with the Shubert optimization method described in [12]. The Shubert method is
designed for seeking the global maximum of a function of one real variable. Below,
we briefly present its version adapted for minimization.

Let f : [a, b] → R be a real-valued function satisfying the Lipschitz condition,
which means that there exists a constant C ≥ 0 such that for each x, y ∈ [a, b], the
following inequality holds: | f (x) − f (y)| ≤ C |x − y|.

We introduce the following notation:

φ := min { f (x) : x ∈ [a, b]} ,

� := {x ∈ [a, b] : f (x) = φ} ,

Fn(x) := max { f (xk) − C |x − xk | : k ∈ {0, 1, .., n}} .

The Shubert Algorithm

Step 1. Choose a starting point x0 ∈ [a, b]. Set n = 0.
Step 2. Find a point xn+1, at which the function Fn attains its minimum on [a, b].

Increase n by 1 and repeat Step 2.

The following theorem is a reformulation of a result from [12, p. 381] .

Theorem 9.1 The Shubert algorithm generates an infinite sequence {xn} such that:

(a) the sequence { f (xn)} converges to φ;
(b) the sequence {Mn}, where Mn := min {Fn(x) : x ∈ [a, b]}, is nondecreasing and

converges to φ;
(c) inf {|x − xn| : x ∈ �} →

n→∞ 0.

In the following example, we have used Scientific WorkPlace 5.00 software for
numerical computations.

Example 9.1 Let X = Y = Z = R, S = [0, 4], U = {0, 1, 2, 3}. We define the
function f as follows:

f (x, ξ) := x(x − 2)(x − 4) + ξ = x3 − 6x2 + 8x + ξ.

We want to apply Algorithm Model 1 to solve the problem P(U), which is defined by
(7)–(8). Obviously, the regularity condition (46) is satisfied. We proceed as follows:

1. We choose a starting point (x0, ξ0) ∈ S × U . For this example, let it be equal to
(1, 2).
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2. We check if there exists ξ ∈ U such that

f (x0, ξ) < f (x0, ξ0). (52)

We see that there are two values for ξ that satisfy this inequality: ξ = 0 and ξ = 1.
Let us choose the first one, and set ξ0 := 0.

3. Since there is no ξ satisfying (52), we go to Step 3 of Algorithm Model 1, that is,
we apply the Shubert algorithm to the function g := f (·, 0)with the starting point
x0 = 1. It is easy to show that g satisfies the Lipschitz condition on [0, 4] with the
constant C = 8. First, we construct the function F0:

F0(x) = g(x0) − C |x − x0| = g(1) − 8 |x − 1| = 3 − 8 |x − 1| .

4. We look for a point x1, at which F0 attains itsminimumon [0, 4]. Since the graph of
F0 consists of two line segments, and its maximum is attained at x0, the minimum
must be attained at one of the endpoints of [0, 4]. Let us compute these values:

F0(0) = 3 − 8 |0 − 1| = 3 − 8 = −5,

F0(4) = 3 − 8 |4 − 1| = 3 − 24 = −21.

Hence, we accept x1 = 4.
5. We construct the function F1:

F1(x) = max{g(x0) − C |x − x0| , g(x1) − C |x − x1|}
= max{3 − 8 |x − 1| , 0 − 8 |x − 4|}.

6. We look for a point x2, at which F1 attains its minimum on [0, 4]. Observe that F1
is a piecewise linear function, which can be described as follows:

F1(x) =
⎧⎨
⎩

3 − 8(−x + 1) = 8x − 5, for x ∈ [0, 1],
3 − 8(x − 1) = −8x + 11, for x ∈ [1, a],
0 − 8(−x + 4) = 8x − 32, for x ∈ [a, 4],

where a is the solution of equation−8x+11 = 8x−32, that is, a = 43
16 = 2.6875.

The minimum can be attained at one of the points 0, a, 4 . We compute:

F1(0) = F0(0) = −5,

F1(a) = F0(a) = −8 · 43
16

+ 11 = −43

2
+ 11 = −10. 5,

F1(4) = 8 · 4 − 32 = 0.

Hence, we can take 2.6875 as an exact value for x2.
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7. We construct the function F2:

F2(x) = max{g(x0) − C |x − x0|, g(x1) − C |x − x1|, g(x2) − C |x − x2|}
= max{3 − 8|x − 1|, 0 − 8|x − 4|,−2.425 − 8|x − 2.6875|}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8x − 5, for x ∈ [0, 1],
−8x + 11, for x ∈ [1, a1],
8x − 23.925, for x ∈ [a1, 2.6875],
−8x + 19.075, for x ∈ [2.6875, a2],
8x − 32, for x ∈ [a2, 4],

where a1 is the solution of equation−8x+11 = 8x−23.925, that is, a1 ≈ 2.1828,
and a2 is the solution of equation −8x + 19.075 = 8x − 32, that is, a2 ≈ 3.1922.

8. We look for a point x3, which minimizes F2 on [0, 4]. It can be one of the points
0, a1, a2, 4. We compute the corresponding values:

F2(0) = −5,

F2(a1) = F2(2.1828) = −6.4624,

F2(a2) = F2(3.1922) = −6.4624,

F2(4) = 0.

Since the values of F2 at the points a1 and a2 are equal, we could accept each one
of them as the next approximation x3. However, only a2 ≈ 3.1922 is relatively
close to the true global minimizer of g on [0, 4], which can be found analytically:
2 + 2

3

√
3 ≈ 3.1547. We can see that the performance of the algorithm depends

on the choice of minimizers for Fn at each iteration, which is called “sampling”
in [12].
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