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Abstract
In this paper, we study derivatives of powers of Euclidean norm.We prove their Hölder
continuity and establish explicit expressions for the corresponding constants.We show
that these constants are optimal for odd derivatives and at most two times suboptimal
for the even ones. In the particular case of integer powers, when the Hölder continuity
transforms into the Lipschitz continuity, we improve this result and obtain the optimal
constants.
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1 Introduction

Starting from the paper [1], there has been an increasing interest in the cubic regular-
ization ofNewton’smethod (see, for example, [2–8]), which has some attractive global
worst-case complexity guarantees. The main idea of this method is to approximate the
objective function with its second-order Taylor approximation, add to it the cube of
Euclidean norm with certain coefficient and then minimize the result to obtain a new
point.

A natural generalization of this approach consists in considering a general high-
order Taylor approximation together with a certain high-order power of Euclidean
norm as a regularizer. This leads to tensor methods [9–12] that have recently gained
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their popularity after it was shown in [13] that one step of the third-order tensormethod
for minimizing convex functions is comparable with that of the cubic Newton method.

For some applications, involving functions with Hölder continuous derivatives,
it may also be reasonable to regularize the models with fractional degrees of the
Euclidean norm, as discussed in [14,15].

The efficiency of all the aforementioned methods strongly depends on our possi-
bilities in solving the corresponding auxiliary problems that arise at each iteration.
Therefore, it is important to be able to quickly solve minimization problems regular-
ized by powers of Euclidean norm.

Two of themost important characteristics of the objective function that influence the
convergence rate of minimization algorithms are the constants of uniform convexity
and Hölder continuity of derivatives. It is thus important to know these parameters
for powers of Euclidean norm in order to justify the convergence rates of the related
minimization algorithms.

The uniform convexity of powers of Euclidean norm was first investigated in [16],
where the authors obtained optimal constants for all integer powers. This result was
then generalized to arbitrary real powers in [17, Lemma 5]. Thus, the question of
uniform convexity is completely solved.

The question of the Hölder continuity of derivatives of powers of Euclidean norm
is more subtle. There exist only partial results for some special powers. For example,
for any real power between one and two, the Hölder continuity of the first derivative
follows from the duality between uniform convexity and Hölder smoothness (see [18,
Lemma 1]). For any real power between two and three, the Hölder continuity of the
second derivative has recently been proved in [17, Example 2], where some suboptimal
constants have been obtained. However, there are currently no general results for an
arbitrary power.

Thus, establishing Hölder continuity of derivatives of powers of Euclidean norm
and estimating the corresponding constants is still an open problem and constitutes
the main topic of this work.

This paper is organized as follows. In Sect. 2, we introduce notation and recall
important facts on the norm of symmetric multilinear operators.

In Sect. 3, we derive a general formula for derivatives of powers of Euclidean norm
(Theorem3.1). Themain object in this formula is a certain family of recursively defined
polynomials (Definition 3.1).We give the corresponding definition and provide several
examples.

In Sects. 4 and 5, we study these polynomials in more detail. We establish useful
identities and prove several important properties such as symmetry (Proposition 4.1),
nonnegativity (Proposition 4.3) and monotonicity (Proposition 4.4). Section 5 is
devoted to estimating the Hölder constants of the polynomials. The main results in
this section are Theorems 5.1 and 5.2.

In Sect. 6, we apply the auxiliary results obtained in the previous sections for
proving Hölder continuity of derivatives of powers of Euclidean norm. Namely, in
Theorem 6.1, we derive a lower bound for the possible values of Hölder constants. In
Theorem 6.2, we prove Hölder continuity of the derivatives along the lines passing
through the origin. Finally, in Theorem 6.3, we extend this result onto the whole space
and discuss the optimality of the constants.
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Finally, in Sect. 7, we show how to improve our general result for integer powers,
when the Hölder condition corresponds to the Lipschitz condition.

2 Notation and Generalities

In this text, E is a finite-dimensional real vector space. Its dual space, composed of
all linear functionals on E, is denoted by E∗. The value of a linear functional s ∈ E

∗,
evaluated at a point x ∈ E, is denoted by 〈s, x〉. To introduce a Euclidean norm
‖ · ‖ on E, we fix a self-adjoint positive definite operator B : E → E

∗ and define
‖x‖ := 〈Bx, x〉1/2.

For a function f : G → R, defined on an open setG inE, and for an integer p ≥ 0,
the pth derivative of f , if exists, is denoted by Dp f . This derivative is a mapping
from G to the space of symmetric p-multilinear forms on E.

Let L be a p-multilinear form on E. Its value, evaluated at h1, . . . , h p ∈ E, is
denoted by L[h1, . . . , h p]. When h1 = · · · = h p = h for some h ∈ E, we abbreviate
this as L[h]p. The norm of L is defined in the standard way:

‖L‖ := max‖h1‖=···=‖h p‖=1
|L[h1, . . . , h p]|.

If the form L is symmetric, it is known that the maximum in the above definition can
be achieved when all the vectors are the same:

‖L‖ = max‖h‖=1
|L[h]p| (1)

(see, for example, Appendix 1 in [19]).
For q ∈ R, by fq : E → R we denote the qth power of the Euclidean norm:

fq(x) := ‖x‖q .

The main goal of this paper is to establish that, for any integer p ≥ 0 and any real
ν ∈ [0, 1], the pth derivative of f p+ν is ν-Hölder continuous:

‖Dp f p+ν(x2) − Dp f p+ν(x1)‖ ≤ Ap,ν‖x2 − x1‖

for all x1, x2 ∈ E, where Ap,ν is an explicit constant dependent on p and ν.

3 Derivatives of Powers of Euclidean Norm

We start with deriving a general formula for derivatives of the function fq . The main
objects in this formula are univariate polynomials, defined below.
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Definition 3.1 For each integer p ≥ 0 and each q ∈ R, we define a polynomial
gp,q : R → R as follows. When p = 0, we set gp,q(τ ) := 1. For all other p ≥ 1,

gp,q(τ ) := (1 − τ 2)g′
p−1,q(τ ) + (q − p + 1)τgp−1,q(τ ).

Each polynomial gp,q is a combination of the previous polynomial gp−1,q and its
derivative g′

p−1,q . The first five polynomials can be written explicitly:

g0,q(τ ) = 1, g1,q(τ ) = qτ, g2,q(τ ) = q[(q − 2)τ 2 + 1],
g3,q(τ ) = q(q − 2)[(q − 4)τ 3 + 3τ ],
g4,q(τ ) = q(q − 2)[(q − 4)(q − 6)τ 4 + 6(q − 4)τ 2 + 3].

Let us now describe how derivatives of fq are related to polynomials gp,q .

Theorem 3.1 For any real q ∈ R, the function fq is p times differentiable for all
integer 0 ≤ p < q. The corresponding derivatives are

Dp fq(x)[h]p = ‖x‖q−pgp,q(τh(x)), (2)

where h ∈ E is an arbitrary unit vector and

τh(x) :=
{ 〈Bx,h〉

‖x‖ , if x �= 0,

0, if x = 0.
(3)

Proof Note that fq is infinitely differentiable onE\{0} since its restriction on this set is
a composition of two infinitely differentiable functions, namely the quadratic function
E\{0} → R : x �→ ‖x‖2 = 〈Bx, x〉 and the power function ]0,+∞[→ R : t �→ tq/2.
Hence, we only need to prove that fq is also p times differentiable at the origin for
any 0 ≤ p < q, and that (2) holds.

We proceed by induction. The case p = 0 is trivial since, by definition, the zeroth
derivative of a function is the function itself, while g0,q(τ ) = 1 for any τ ∈ R. Let us
assume that p ≥ 1, and the claim is proved for p′ := p − 1.

First, let us justify (2) for any x ∈ E\{0}. By the induction hypothesis,

Dp−1 fq(x)[h]p−1 = ‖x‖q−p+1gp−1,q(τh(x))

for all x ∈ E. On differentiating, we obtain that

D‖ · ‖(x)[h] = τh(x), Dτh(x)[h] = 1 − τ 2h (x)

‖x‖
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for all x ∈ E\{0}, and hence,

Dp fq(x)[h]p = ‖x‖q−p+1g′
p−1,q(τh(x))

1 − τ 2h (x)

‖x‖
+ (q − p + 1)‖x‖q−pτh(x)gp−1,q(τh(x))

= ‖x‖q−p[(1 − τ 2h (x))g′
p−1,q(τh(x)) + τh(x)gp−1,q(τh(x))]

= ‖x‖q−pgp,q(τh(x)),

where the last equality follows from Definition 3.1.
Now let us show that fq is also p times differentiable at the origin with Dp fq(0) =

0. [This is what (2) says when x = 0.] By our inductive assumption, we already know
that Dp−1 fq(0) = 0. Therefore, according to the definition of derivative, it remains

to show that limx→0;x �=0
‖Dp−1 fq (x)‖

‖x‖ = 0, or, equivalently, in view of (1), that

lim
x→0;x �=0

max‖h‖=1

|Dp−1 fq(x)[h]p−1|
‖x‖ = 0.

Applying our inductive assumption, we obtain that

max‖h‖=1

|Dp−1 fq(x)[h]p−1|
‖x‖ = ‖x‖q−p max‖h‖=1

|gp−1,q(τh(x))| (4)

for all x ∈ E\{0}. Since p < q, we have ‖x‖q−p → 0 as x → 0. Thus, we
need to show that |gp−1,q(τh(x))| is uniformly bounded for all x ∈ E and all
unit h ∈ E. Indeed, by Cauchy–Schwartz inequality, we have |τh(x)| ≤ 1. Hence,
|gp−1,q(τh(x))| ≤ max[−1,1] |gp−1,q |. The right-hand side in the above inequality
is finite, since a continuous function always achieves its maximum on a compact
interval. ��

4 Main Properties of Polynomials

Let us study the polynomials gp,q introduced in Definition 3.1. Our first observation
is that gp,q , as a function, is always either even or odd.

Proposition 4.1 For any integer p ≥ 0, and any q ∈ R, gp,q has the same parity as
p, i.e., gp,q(−τ) = (−1)pgp,q(τ ) for all τ ∈ R.

Proof Easily follows from Definition 3.1 by induction. ��
Next we establish identities with the first and second derivatives of gp,q .

Lemma 4.1 For any integer p ≥ 1, and any q, τ ∈ R,

g′
p,q(τ ) = (1−τ 2)g′′

p−1,q(τ )+ (q− p−1)τg′
p−1,q(τ )+ (q− p+1)gp−1,q(τ ). (5)
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Proof Follows from Definition 3.1 using standard rules of differentiation. ��
Lemma 4.2 For any integer p ≥ 0, and any q, τ ∈ R,

(q − p)gp,q(τ ) = τg′
p,q(τ ) + qgp,q−2(τ ).

Proof We proceed by induction on p. For p = 0, by Definition 3.1, we have (q −
p)gp,q(τ ) = q while τg′

p,q(τ ) = 0 and qgp,q−2(τ ) = q, so the claim is obviously
true. Now let us prove the claim for p ≥ 1, assuming that it is already true for all
integer 0 ≤ p′ ≤ p − 1. By Definition 3.1, we have

(q − p)gp,q(τ ) = (q − p)((1 − τ 2)g′
p−1,q(τ ) + (q − p + 1)τgp−1,q(τ )).

Rearranging, we obtain

(q − p)gp,q(τ ) = (q − p − 1)τ (q − p + 1)gp−1,q(τ )

+ (1 − τ 2)(q − p)g′
p−1,q(τ ) + (q − p + 1)τgp−1,q(τ ).

By the induction hypothesis, applied for p′ := p − 1, we have

(q − p + 1)gp−1,q(τ ) = τg′
p−1,q(τ ) + qgp−1,q−2(τ ).

for all τ ∈ R. Differentiating both sides, we obtain from this that

(q − p)g′
p−1,q(τ ) = τg′′

p−1,q(τ ) + qg′
p−1,q−2(τ ).

Combining the above three formulas, we see that

(q − p)gp,q(τ ) = (q − p − 1)τ (τg′
p−1,q + qgp−1,q−2(τ ))

+ (1 − τ 2)(τg′′
p−1,q(τ ) + qg′

p−1,q−2(τ ))

+ (q − p + 1)τgp−1,q(τ ). (6)

At the same time, by Lemma 4.1, we have

τg′
p,q (τ ) = (1 − τ 2)τg′′

p−1,q (τ ) + (q − p − 1)τ 2g′
p−1,q (τ ) + (q − p + 1)τgp−1,q (τ ),

and, by Definition 3.1, we also have

qgp,q−2(τ ) = (1 − τ 2)qg′
p−1,q−2(τ ) + (q − p − 1)τqgp−1,q−2(τ ).

Summing the above two identities, we obtain the right-hand side of (6). ��
Lemma 4.3 For any integer p ≥ 1, and any q, τ ∈ R,

g′
p,q(τ ) = (1 − τ 2)g′′

p−1,q(τ ) + (q − p)τg′
p−1,q(τ ) + qgp−1,q−2(τ ).
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Proof Apply Lemma 4.2 to the last term in (5). ��
The following lemma is particularly interesting. It turns out that, up to a constant

factor, the derivative of the polynomial gp,q is exactly the previous polynomial but
with a shifted value of q.

Lemma 4.4 For any integer p ≥ 1, and any q ∈ R, we have g′
p,q = pqgp−1,q−2.

Proof We proceed by induction on p. Let τ ∈ R. For p = 1, we know from Defini-
tion 3.1 that gp,q(τ ) = qτ , while pqgp−1,q−2(τ ) = q; therefore, the claim is indeed
true. Now let us prove the claim for p ≥ 2, assuming that it is already proved for all
integer 0 ≤ p′ ≤ p − 1. From Lemma 4.3, we already know that

g′
p,q(τ ) = (1 − τ 2)g′′

p−1,q(τ ) + (q − p)τg′
p−1,q(τ ) + qgp−1,q−2(τ ).

Therefore, it remains to prove that

(1 − τ 2)g′′
p−1,q(τ ) + (q − p)τg′

p−1,q(τ ) = (p − 1)qgp−1,q−2(τ ).

By the induction hypothesis for p′ := p − 1, we already have the identity g′
p−1,q =

(p − 1)qgp−2,q−2 and in particular g′′
p−1,q = (p − 1)qg′

p−2,q−2. Thus,

(1 − τ 2)g′′
p−1,q(τ ) + (q − p)τg′

p−1,q(τ )

= (p − 1)q[(1 − τ 2)g′
p−2,q−2(τ ) + (q − p)τgp−2,q−2(τ )].

It remains to verify that

(1 − τ 2)g′
p−2,q−2(τ ) + (q − p)τgp−2,q−2(τ ) = gp−1,q−2(τ ).

But this is given directly by Definition 3.1. ��
Combined with Definition 3.1, Lemma 4.4 gives us a useful recursive formula for

gp,q that does not involve any derivatives.

Lemma 4.5 For any integer p ≥ 2, and any q, τ ∈ R,

gp,q(τ ) = (1 − τ 2)(p − 1)qgp−2,q−2(τ ) + (q − p + 1)τgp−1,q(τ ). (7)

Lemma 4.5 has several corollaries. The first one gives us closed-form expressions
for the values of gp,q at the boundary points of the interval [0, 1].
Proposition 4.2 For any integer p ≥ 0, and any q ∈ R, we have1

gp,q(0) =
{

(p − 1)!! ∏ p
2 −1
i=0 (q − 2i), if p even,

0, if p odd,
(8)

1 For a positive integer n, by n!! we denote the double factorial of n (the product of all integers between 1
and n with the same parity as n). We also define (−1)!! = 0!! = 1.
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and

gp,q(1) =
p−1∏
i=0

(q − i). (9)

Proof We proceed by induction on p. From Definition 3.1, we have g0,q(0) =
g0,q(1) = 1 and g1,q(0) = 0, g1,q(1) = q. Thus, the claim is indeed true for p = 0
and p = 1. Now let us prove the claim for p ≥ 2, assuming that it is already true for
all integer 0 ≤ p′ ≤ p − 1. Using Lemma 4.5, we obtain

gp,q(0) = (p − 1)qgp−2,q−2(0). (10)

By the induction hypothesis, applied for p′ := p − 2 (and q ′ := q − 2), we have

gp−2,q−2(0) =
{

(p − 3)!!∏ p
2 −2
i=0 (q − 2 − 2i), if p is even,

0, if p is odd.

By shifting the index in the product, this can be rewritten as

gp−2,q−2(0) =
{

(p − 3)!!∏ p
2 −1
i=1 (q − 2i), if p is even,

0, if p is odd.

Substituting this into (10), we obtain (8).
Similarly, by Lemma 4.5, we also have gp,q(1) = (q − p + 1)gp−1,q(1). But by

the induction hypothesis, gp−1,q(1) = ∏p−2
i=0 (q − i), and we obtain (9). ��

The second corollary of Lemma 4.5 states that gp,q cannot take negative values on
the interval [0, 1], provided that q is sufficiently large.

Proposition 4.3 For any integer p ≥ 0, and any real q ≥ p − 1, gp,q is nonnegative
on [0, 1].
Proof We proceed by induction on p. Let 0 ≤ τ ≤ 1. For p = 0, we know, by
Definition 3.1, that gp,q(τ ) = 1, which is actually nonnegative for all real q. For
p = 1, by Definition 3.1, we have gp,q(τ ) = qτ , which is indeed nonnegative when
q ≥ p − 1 = 0.

Now let us prove the claim for p ≥ 2, assuming that it is already proved for all
integer 0 ≤ p′ ≤ p − 1. From Lemma 4.5, we know that

gp,q(τ ) = (1 − τ 2)(p − 1)qgp−2,q−2(τ ) + (q − p + 1)τgp−1,q(τ ).

By the induction hypothesis, applied, respectively, for p′ := p − 2, q ′ := q − 2 and
p′ := p − 1, q ′ := q (observe that in both cases q ′ ≥ p′ − 1 since q ≥ p), we have
gp−2,q−2(τ ) ≥ 0 and gp−1,q(τ ) ≥ 0. Since q ≥ p − 1 ≥ 1, then also q − p + 1 ≥ 0,
and (p − 1)q ≥ 0. Thus, all parts in the right-hand side of the above formula are
nonnegative. ��
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Combining Proposition 4.3 with Lemma 4.4, we obtain that, when q ≥ p, the
polynomial gp,q is not only nonnegative but also monotonically increasing.

Proposition 4.4 For any integer p ≥ 0, and any real q ≥ p, the derivative g′
p,q is

nonnegative on [0, 1]; hence gp,q is monotonically increasing on [0, 1].
Finally, let us show howwe can apply the properties that we have established above,

to find the maximal absolute value of gp,q on [−1, 1].
Proposition 4.5 For any integer p ≥ 0, and any real q ≥ p,

max[−1,1] |gp,q | =
p−1∏
i=0

(q − i).

Proof By Proposition 4.1, we have max[−1,1] |gp,q | = max[0,1] |gp,q |. Since gp,q is
nonnegative on [0, 1] (Proposition 4.3), max[0,1] |gp,q | = max[0,1] gp,q . By Propo-

sition 4.4, max[0,1] gp,q = gp,q(1). But gp,q(1) = ∏p−1
i=0 (q − i) according to

Proposition 4.2. ��

5 Hölder Constants of Polynomials

We continue our study of polynomials gp,q , but now we restrict our attention to the
particular case when q = p + ν for some real ν ∈ [0, 1].

Clearly, the polynomial gp,p+ν is ν-Hölder continuous on [−1, 1], since this is true
for any other polynomial on a compact interval. The goal of this section is to obtain
an explicit expression for the correspondingHölder constant. We start with the result,
allowing us to reduce our task to that on [0, 1].
Theorem 5.1 For any integer p ≥ 0, and any real ν ∈ [0, 1], the polynomial gp,p+ν

is ν-Hölder continuous on [−1, 1] with constant

H̃p,ν :=
{
Hp,ν , if p is even,

21−νHp,ν , if p is odd,

where Hp,ν is the corresponding Hölder constant of gp,p+ν on [0, 1].
Proof Let τ1, τ2 ∈ [−1, 1]. We need to prove that

|gp,p+ν(τ2) − gp,p+ν(τ1)| ≤ H̃p,ν |τ2 − τ1|ν . (11)

By Proposition 4.1, this inequality is invariant to negation transformations
(τ1, τ2) �→ (−τ1,−τ2). Therefore, we can assume that τ2 ≥ 0. Furthermore, we
can assume that τ1 < 0, since otherwise the claim is trivial.

Case I Suppose p is even. Then, by Proposition 4.1,

|gp,p+ν(τ2) − gp,p+ν(τ1)| = |gp,p+ν(τ2) − gp,p+ν(−τ1)|.
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Note that −τ1, τ2 ∈ [0, 1]. Therefore, by Hölder condition on [0, 1],

|gp,p+ν(τ2) − gp,p+ν(−τ1)| ≤ Hp,ν |τ2 + τ1|ν.

At the same time, |τ2 + τ1| ≤ τ2 − τ1 by the triangle inequality, and (11) follows.
Case II Now suppose p is odd. By Propositions 4.1 and 4.3,

|gp,p+ν(τ2) − gp,p+ν(τ1)| = gp,p+ν(τ2) + gp,p+ν(−τ1).

Recall that gp,p+ν(0) = 0 (Proposition 4.2). Therefore,

gp,p+ν(τ2) = gp,p+ν(τ2) − gp,p+ν(0) ≤ Hp,ντ
ν
2 ,

gp,p+ν(−τ1) = gp,p+ν(−τ1) − gp,p+ν(0) ≤ Hp,ν(−τ1)
ν.

Hence,

gp,p+ν(τ2) + gp,p+ν(−τ1) ≤ Hp,ν(τ
ν
2 + (−τ1)

ν).

To prove (11), it remains to show that τ ν
2 + (−τ1)

ν ≤ 21−ν(τ2 − τ1)
ν . But this follows

from the concavity of power function t �→ tν . ��
Our next task is to estimate the Hölder constant of gp,p+ν on [0, 1]:

Hp,ν := max
0≤τ1<τ2≤1

gp,p+ν(τ2) − gp,p+ν(τ1)

(τ2 − τ1)ν
. (12)

Note that Proposition 4.4 allows us to remove the absolute value sign.

Theorem 5.2 For any integer p ≥ 0, and any real ν ∈ [0, 1], we have

Hp,ν ≤
p∏

i=1

(ν + i). (13)

The proof of Theorem 5.2 is based on two auxiliary propositions.

Proposition 5.1 For any integer p ≥ 0 and any real ν, τ1 ∈ [0, 1], the function

]τ1,+∞[→ R : τ2 �→ gp,p+ν(τ2) − gp,p+ν(τ1)

(τ2 − τ1)ν
(14)

is monotonically increasing on ]τ1, 1].
Proposition 5.2 For any integer p ≥ 0 and any real ν ∈ [0, 1], the function

]0, 1] → R : τ �→ gp,p+ν(τ )

1 − (1 − τ)ν
(15)

is monotonically decreasing on ]0, 1].
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Let us assume for a moment that these propositions are already proved. Then, the
proof of Theorem 5.2 is simple.

Proof Let 0 ≤ τ1 < τ2 ≤ 1. From Proposition 5.1, we know that

gp,p+ν(τ2) − gp,p+ν(τ1)

(τ2 − τ1)ν
≤ gp,p+ν(1) − gp,p+ν(τ1)

(1 − τ1)ν
.

Therefore, to prove (13), it remains to show that

gp,p+ν(1) − gp,p+ν(τ1)

(1 − τ1)ν
≤

p∏
i=1

(ν + i).

Recall that, by Proposition 4.2, we have
∏p

i=1(ν + i) = gp,p+ν(1). Thus, the
inequality we need to prove is

gp,p+ν(1) − gp,p+ν(τ1)

(1 − τ1)ν
≤ gp,p+ν(1),

or, equivalently,

gp,p+ν(τ1)

1 − (1 − τ1)ν
≥ gp,p+ν(1).

But this follows from Proposition 5.2.

Our goal now is to prove Propositions 5.1 and 5.2.
We start with Proposition 5.1. It requires three technical lemmas.

Lemma 5.1 For any integer p ≥ 0, and any real ν, τ ∈ [0, 1],

gp,p+ν(τ ) ≥ τg′
p,p+ν(τ ). (16)

Moreover, when p ≥ 2,

gp,p+ν(τ ) − τg′
p,p+ν(τ )

≥ (1 − τ 2)(p − 1)(p + ν)(gp−2,p−2+ν(τ ) − τg′
p−2,p−2+ν(τ )). (17)

Proof First, let us prove (17). By Lemma 4.1, we have

g′
p,p+ν(τ ) = (1 − τ 2)g′′

p−1,p+ν(τ ) + (ν − 1)τg′
p−1,p+ν(τ ) + (ν + 1)gp−1,p+ν(τ ).

Since g′
p−1,p+ν(τ ) ≥ 0 (Proposition 4.4) and ν ≤ 1, it follows that

g′
p,p+ν(τ ) ≤ (1 − τ 2)g′′

p−1,p+ν(τ ) + (ν + 1)gp−1,p+ν(τ ).
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At the same time, by Definition 3.1,

gp,p+ν(τ ) = (1 − τ 2)g′
p−1,p+ν(τ ) + (ν + 1)τgp−1,p+ν(τ ).

Thus,

gp,p+ν(τ ) − τg′
p,p+ν(τ ) ≥ (1 − τ 2)(g′

p−1,p+ν(τ ) − τg′′
p−1,p+ν(τ )).

Applying Lemma 4.4, we obtain that

g′
p−1,p+ν(τ ) = (p − 1)(p + ν)gp−2,p−2+ν(τ ),

g′′
p−1,p+ν(τ ) = (p − 1)(p + ν)g′

p−2,p−2+ν(τ ),

and (17) follows.
It remains to prove (16). For p = 0, we have gp,p+ν(τ ) = 1 (Definition 3.1), and

hence, τg′
p,p+ν(τ ) = 0, and (16) is indeed true. For p = 1, by Definition 3.1, we

have gp,p+ν(τ ) = (p + ν)τ , and hence, τg′
p,p+ν(τ ) = (p + ν)τ , and (16) is again

true. The general case p ≥ 2 easily follows from (17) by induction. ��
Lemma 5.2 For any integer p ≥ 0, any real ν ∈ [0, 1], and 0 ≤ τ1 ≤ τ2 ≤ 1,

(p + ν)gp,p−2+ν(τ2) ≤ ν(gp,p+ν(τ1) − τ1g
′
p,p+ν(τ1)). (18)

Proof We use induction in p. For p = 0, we have gp,p−2+ν(τ2) = 1, while
gp,p+ν(τ1) − τ1g′

p,p+ν(τ1) = 1 (see Definition 3.1), so the claim is true. For p = 1,
we have gp,p−2+ν(τ2) = −(1− ν)τ2 ≤ 0 while gp,p+ν(τ1)− τ1g′

p,p+ν(τ1) = 0, (see
Definition 3.1), and hence, the claim is again true.

Now we prove the claim for p ≥ 2, assuming that it is already true for all integer
0 ≤ p′ ≤ p − 1. According to Lemma 4.5, we have

gp,p−2+ν(τ2) = (1 − τ 22 )(p − 1)(p − 2 + ν)gp−2,p−4+ν(τ2)

− (1 − ν)τ2gp−1,p−2+ν(τ2).

Since gp−1,p−2+ν(τ2) ≥ 0 (Proposition 4.3), we further have

gp,p−2+ν(τ2) ≤ (1 − τ 22 )(p − 1)(p − 2 + ν)gp−2,p−4+ν(τ2).

If gp−2,p−4+ν(τ2) ≤ 0, it follows that gp,p−2+ν(τ2) ≤ 0, and the proof in this
case is finished, because the right-hand side in (18) is always nonnegative in view of
Lemma 5.1. Therefore, we can assume that gp−2,p−4+ν(τ2) ≥ 0.

Since τ2 ≥ τ1, then

gp,p−2+ν(τ2) ≤ (1 − τ 21 )(p − 1)(p − 2 + ν)gp−2,p−4+ν(τ2).
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Applying the inductive assumption to p′ := p − 2, we obtain

(p − 2 + ν)gp−2,p−4+ν(τ2) ≤ ν(gp−2,p−2+ν(τ1) − τ1g
′
p−2,p−2+ν(τ1)).

Hence,

gp,p−2+ν(τ2) ≤ ν(1 − τ 21 )(p − 1)(gp−2,p−2+ν(τ1) − τ1g
′
p−2,p−2+ν(τ1)).

Thus, to finish the proof, it remains to show that

(1 − τ 21 )(p − 1)(p + ν)(gp−2,p−2+ν(τ1) − τ1g
′
p−2,p−2+ν(τ1))

≤ gp,p+ν(τ1) − τ1g
′
p,p+ν(τ1).

But this is guaranteed by Lemma 5.1. ��
Lemma 5.3 For any integer p ≥ 0, and any real ν, τ2 ∈ [0, 1], the function

]0,+∞[→ R : τ1 �→ νgp,p+ν(τ1) − (p + ν)gp,p−2+ν(τ2)

τ1
(19)

is monotonically decreasing on ]0, τ2].
Proof The function (19) is differentiable with derivative

ν(τ1g′
p,p+ν(τ1) − gp,p+ν(τ1)) + (p + ν)gp,p−2+ν(τ2)

τ 21
,

which is non-positive on ]0, τ2] by Lemma 5.2. ��
Now we can present the proof of Proposition 5.1:

Proof Since (14) is differentiable, it suffices to prove that its derivative

g′
p,p+ν(τ2)

(τ2 − τ1)ν
− ν(gp,p+ν(τ2) − gp,p+ν(τ1))

(τ2 − τ1)ν+1

is nonnegative for all 0 < τ1 < τ2 ≤ 1, or, equivalently, that

g′
p,p+ν(τ2)(τ2 − τ1) ≥ ν(gp,p+ν(τ2) − gp,p+ν(τ1)).

By Lemma 4.2,

νgp,p+ν(τ2) = τ2g
′
p,p+ν(τ2) + (p + ν)gp,p−2+ν(τ2). (20)

Therefore, it is enough to prove that

νgp,p+ν(τ1) − (p + ν)gp,p−2+ν(τ2) ≥ τ1g
′
p,p+ν(τ2),
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or, equivalently,

νgp,p+ν(τ1) − (p + ν)gp,p−2+ν(τ2)

τ1
≥ g′

p,p+ν(τ2). (21)

But this immediately follows from Lemma 5.3 using (20). ��
It remains to prove Proposition 5.2. For this, we need one more lemma.

Lemma 5.4 For any integer p ≥ 0, and any real ν, τ ∈ [0, 1], we have

(p + ν)gp,p−2+ν(τ ) ≥ −(1 − (1 − τ)1−ν)g′
p,p+ν(τ ). (22)

Proof As usual, we use induction in p. The base case p = 0 is trivial, since
gp,p−2+ν(τ ) = 1, while g′

p,p+ν(τ ) = 0 (see Definition 3.1). To prove the general
case p ≥ 1, we assume that (22) is already true for all integer 0 ≤ p′ ≤ p − 1.

Our first step is to show that

(p + ν)gp,p−2+ν(τ ) ≥ −(1 − τ 2)(1 − (1 − τ)1−ν)g′′
p−1,p+ν(τ )

− (p + ν)(1 − ν)τgp−1,p−2+ν(τ ). (23)

If p = 1, we have gp,p−2+ν(τ ) = −(1 − ν)τ , while g′′
p−1,p+ν(τ ) = 0 and

gp−1,p−2+ν(τ ) = 1 (see Definition 3.1), so (23) is indeed true. To justify it for all
other p ≥ 2, we proceed as follows. By Lemma 4.5, we know that

gp,p−2+ν(τ ) = (1 − τ 2)(p − 1)(p − 2 + ν)gp−2,p−4+ν(τ )

−(1 − ν)τgp−1,p−2+ν(τ ).

Therefore, (23) is equivalent to

(p + ν)(p − 1)(p − 2 + ν)gp−2,p−4+ν(τ ) ≥ −(1 − (1 − τ)1−ν)g′′
p−1,p+ν(τ ).

By our inductive assumption (22), applied to p′ := p − 2, we already have

(p − 2 + ν)gp−2,p−4+ν(τ ) ≥ −(1 − (1 − τ)1−ν)g′
p−2,p−2+ν(τ ).

At the same time, by Lemma 4.4,

(p + ν)(p − 1)g′
p−2,p−2+ν(τ ) = g′′

p−1,p+ν(τ ).

Thus, (23) is established.
Now we estimate the right-hand side in (23). Applying Lemma 4.3 and the fact that

g′
p−1,p+ν(τ ) ≥ 0 (Proposition 4.4), we obtain

g′
p,p+ν(τ ) = (1 − τ 2)g′′

p−1,p+ν(τ ) + ντg′
p−1,p+ν(τ ) + (p + ν)gp−1,p−2+ν(τ )

≥ (1 − τ 2)g′′
p−1,p+ν(τ ) + (p + ν)gp−1,p−2+ν(τ ).
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From this, it follows that

(1 − τ 2)g′′
p−1,p+ν(τ ) ≤ g′

p,p+ν(τ ) − (p + ν)gp−1,p−2+ν(τ ).

Substituting the above equation into (23), we obtain

(p + ν)gp,p−2+ν(τ ) ≥ −(1 − (1 − τ)1−ν)g′
p,p+ν(τ )

+ (p + ν)(1 − (1 − ν)τ − (1 − τ)1−ν)gp−1,p−2+ν(τ ).

Since gp−1,p−2+ν(τ ) ≥ 0 (by Proposition 4.3), it only remains to show that (1 −
τ)1−ν ≤ 1 − (1 − ν)τ . But this follows from the concavity of power function τ �→
(1 − τ)1−ν . ��

Now we can give the proof of Proposition 5.2:

Proof Since (15) is differentiable, it suffices to prove that its derivative

(1 − (1 − τ)ν)g′
p,p+ν(τ ) − ν(1 − τ)ν−1gp,p+ν(τ )

(1 − (1 − τ)ν)2

is non-positive for all 0 < τ < 1. By Lemma 4.2, we have

νgp,p+ν(τ ) = τg′
p,p+ν(τ ) + (p + ν)gp,p−2+ν(τ ).

Thus, we need to show that

(1 − τ)ν−1
(
τg′

p,p+ν(τ ) + (p + ν)gp,p−2+ν(τ )
)

≥ (1 − (1 − τ)ν)g′
p,p+ν(τ ),

or, equivalently (by multiplying both sides by (1 − τ)1−ν), that

τg′
p,p+ν(τ ) + (p + ν)gp,p−2+ν(τ ) ≥ ((1 − τ)1−ν − 1 + τ)g′

p,p+ν(τ ),

or, equivalently (by moving the first term into the right-hand side), that

(p + ν)gp,p−2+ν(τ ) ≥ −(1 − (1 − τ)1−ν)g′
p,p+ν(τ ).

But this is given by Lemma 5.4. ��
To conclude this section, let us discuss the optimality of Theorem 5.2.
For odd values of p, the obtained constant

∏p
i=1(ν + i) turns out to be optimal.

Indeed, using τ1 := 0, τ2 := 1 in (12) and taking into account Proposition 4.2, we
obtain that

Hp,ν ≥ gp,p+ν(τ2) − gp,p+ν(τ1)

(τ2 − τ1)ν
= gp,p+ν(1) =

p∏
i=1

(ν + i).
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However, for even p, this constant is suboptimal. For example, consider the case
when p = 2. We know that

g2,2+ν(τ ) = (ν + 2)(ντ 2 + 1).

The corresponding optimal constant, according to Proposition 5.1, is

H2,ν = max
0≤τ<1

g2,2+ν(1) − g2,2+ν(τ )

(1 − τ)ν
= ν(ν + 2) max

0≤τ<1
(1 − τ)1−ν(1 + τ).

Note that this maximization problem is logarithmically concave in τ . Taking the log-
arithm and setting the derivative to zero, we find that the maximal point corresponds
to τ := ν

2−ν
∈ [0, 1], and the corresponding optimal value is

H2,ν = ν(ν + 2)
22−ν(1 − ν)1−ν

(2 − ν)2−ν
≤ (ν + 1)(ν + 2).

Of course, the last inequality is strict for all 0 ≤ ν < 1.

6 Hölder Continuity of Derivatives of Powers of Euclidean Norm

We have established the main properties of polynomials gp,q and obtained an explicit
upper bound on their Hölder constant. Hence, we are ready to prove the Hölder con-
tinuity of derivatives of powers of Euclidean norm. Let us start with a simple result
that gives us a lower bound on the Hölder constant.

Theorem 6.1 For any integer p ≥ 0, and any real ν ∈ [0, 1], the Hölder constant of
Dp f p+ν , corresponding to degree ν, cannot be smaller than

Cp,ν :=
{∏p

i=1(ν + i), if p is even,

21−ν
∏p

i=1(ν + i), if p is odd.
(24)

Proof According to (1), we need to show that

|Dp f p+ν(x2)[h]p − Dp f p+ν(x1)[h]p| ≥ Cp,ν‖x2 − x1‖ν

for some x1, x2 ∈ E and some unit h ∈ E. Let us choose an arbitrary unit vector
h ∈ E, and set x2 := h. By Theorem 3.1 and Proposition 4.2,

Dp f p+ν(x2)[h]p = ‖x2‖νgp,p+ν(1) =
p∏

i=1

(ν + i).

To specify x1, we consider two cases.
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If p is even, set x1 := 0. Then, Dp f p+ν(x1)[h]p = 0 by Theorem 3.1, and

|Dp f p+ν(x2)[h]p − Dp f p+ν(x1)[h]p| =
p∏

i=1

(ν + i),

which is exactly Cp,ν‖x2 − x1‖ν . If p is odd, we take x1 := −h. This gives us

Dp f p+ν(x1)[h]p = ‖x1‖νgp,p+ν(−1) = −
p∏

i=1

(ν + i),

where we apply Proposition 4.1 to rewrite gp,p+ν(−1) = gp,p+ν(1). Hence,

|Dp f p+ν(x2)[h]p − Dp f p+ν(x1)[h]p| = 2
p∏

i=1

(ν + i),

which is again precisely Cp,ν‖x2 − x1‖ν . ��
Next we prove Hölder continuity with the optimal constant along any line, passing

through the origin.

Theorem 6.2 For any integer p ≥ 0, and any real ν ∈ [0, 1], the restriction of Dp f p+ν

to a line, passing through the origin, is ν-Hölder continuous with constant Cp,ν .

Proof Let x1, x2 ∈ E be arbitrary points, lying on a line, passing through the origin,
and let h ∈ E be an arbitrary unit vector. According to (1) and Theorem 3.1, we need
to show that

|‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)| ≤ Cp,ν‖x2 − x1‖ν,

where τ1 := τh(x1), τ2 := τh(x2).
Observe that this inequality is symmetric in x1 and x2 and is invariant when we

replace the pair (x1, x2)with (−x1,−x2). Therefore, we can assume that ‖x2‖ ≥ ‖x1‖
and τ2 ≥ 0.

Since x1 and x2 lie on a line, passing through the origin, τ1 and τ2 can differ only in
sign. Hence, by Proposition 4.1, we have two options: either gp,p+ν(τ1) = gp,p+ν(τ2)

or gp,p+ν(τ1) = −gp,p+ν(τ2).
Case I Suppose gp,p+ν(τ1) = gp,p+ν(τ2) (while τ1 can be of any sign). Then,

|‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)| = |gp,p+ν(τ2)|(‖x2‖ν − ‖x1‖ν).

By Proposition 4.5 and (24), we know that

|gp,p+ν(τ2)| ≤
p∏

i=1

(ν + i) ≤ Cp,ν . (25)
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Thus, it suffices to prove that ‖x2‖ν − ‖x1‖ν ≤ ‖x2 − x1‖ν . But this follows from the
well-known inequality rν

2 − rν
1 ≤ (r2 − r1)ν (which is valid for any real 0 ≤ r1 ≤ r2)

combined with the reverse triangle inequality.
Case II Suppose gp,p+ν(τ1) = −gp,p+ν(τ2) ( �= 0). By Proposition 4.1 and Propo-

sition 4.3, this happens only if p is odd and τ1 ≤ 0. Thus, τ1 = −τ2, and

|‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)| = |gp,p+ν(τ2)|(‖x2‖ν + ‖x1‖ν). (26)

Due to (25), it remains to prove that ‖x2‖ν + ‖x1‖ν ≤ 21−ν‖x2 − x1‖ν . But this is
immediate. Indeed, ‖x2‖ν + ‖x1‖ν ≤ 21−ν(‖x2‖ + ‖x1‖)ν by the concavity of the
power function t �→ tν , while ‖x2‖ + ‖x1‖ = ‖x2 − x1‖ since the segment [x1, x2]
contains the origin.. ��

Our final step is to extend Hölder continuity from lines, passing through the ori-
gin, onto the whole space. The main instrument for doing this is exploiting Hölder
continuity of gp,p+ν that we studied in Sect. 5.

Theorem 6.3 For any integer p ≥ 0, and any real ν ∈ [0, 1], Dp f p+ν is ν-Hölder
continuous with constant

Ap,ν :=
{

(p − 1)!! ∏p/2
i=1(ν + 2i) + Hp,ν , if p is even,

21−ν
∏p

i=1(ν + i), if p is odd,
(27)

where Hp,ν is the constant of ν-Hölder continuity of gp,p+ν on [0, 1]. In particular,
Dp f p+ν is ν-Hölder continuous with constant

Ãp,ν :=
{

(p − 1)!! ∏p/2
i=1(ν + 2i) + ∏p

i=1(ν + i), if p is even,

21−ν
∏p

i=1(ν + i), if p is odd.

Proof First of all, observe that the constant Ap,ν is not smaller than the corresponding
lower bound Cp,ν given by Theorem 6.1:

Cp,ν ≤ Ap,ν . (28)

Indeed, for odd values of p, these constants coincide. When p is even, (28) follows
from the following trivial lower bound for the Hölder constant Hp,ν :

Hp,ν ≥ gp,p+ν(1) − gp,p+ν(0) =
p∏

i=1

(ν + i) − (p − 1)!!
p/2∏
i=1

(ν + 2i),

where the last equality is due to Proposition 4.2.
Second, observe that we only need to prove the first claim, since the other one

follows directly from the first one and Theorem 5.2.
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Let x1, x2 ∈ E and let h ∈ E be an arbitrary unit vector. In view of (1) and
Theorem 3.1, we need to show that

|‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)| ≤ Ap,ν‖x2 − x1‖ν, (29)

where τ1 := τh(x1), τ2 := τh(x2).
Due to invariance of the above inequality to transformations of the form (x1, x2) �→

(x2, x1) and (x1, x2) �→ (−x1,−x2), we can assume inwhat follows that ‖x1‖ ≤ ‖x2‖
and τ2 ≥ 0. Furthermore, we can also assume that x1 �= 0 (and hence x2 �= 0), since
otherwise the claim follows from Theorem 6.2.

There are now several cases to consider.
Case I Suppose gp,p+ν(τ1) < 0. By Propositions 4.1 and 4.3, this happens only if

p is odd and τ1 ≤ 0. Then, gp,p+ν(τ1) = −gp,p+ν(−τ1), and

|‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)| = ‖x2‖νgp,p+ν(τ2) + ‖x1‖νgp,p+ν(−τ1),

where we have removed the absolute value sign, because all terms in the right-hand
side are nonnegative (see Proposition 4.3).

Since p is odd, gp,p+ν(0) = 0 (see Proposition 4.1). Therefore, by the definition
of Hp,ν , it follows that

gp,p+ν(−τ1) = gp,p+ν(−τ1) − gp,p+ν(0) ≤ Hp,ν(−τ ν
1 ),

gp,p+ν(τ2) = gp,p+ν(τ2) − gp,p+ν(0) ≤ Hp,ντ
ν
2 .

Combining this with the concavity of power function t �→ tν , we obtain

‖x2‖νgp,p+ν(τ2) + ‖x1‖νgp,p+ν(−τ1) ≤ Hp,ν((‖x2‖τ2)ν + (−‖x1‖τ1)ν)
≤ 21−νHp,ν(‖x2‖τ2 − ‖x1‖τ1)ν.

Note that 21−νHp,ν ≤ Ap,ν by Theorem 5.2. Thus, it remains to show that ‖x2‖τ2 −
‖x1‖τ1 ≤ ‖x2 − x1‖. But this follows from the Cauchy–Schwartz inequality since
‖x2‖τ2 − ‖x1‖τ1 = 〈B(x2 − x1), h〉 by the definition of τ1, τ2.

Case II Now suppose gp,p+ν(τ1) ≥ 0 (while τ1 can have any sign). We prove (29)
by proving separately two inequalities with the removed absolute value sign.

First, we show that

‖x1‖νgp,p+ν(τ1) − ‖x2‖νgp,p+ν(τ2) ≤ Ap,ν‖x2 − x1‖ν . (30)

Let x ′
2 := ‖x1‖‖x2‖ x2 be the radial projectionof x2 onto the spherewith radius r := ‖x1‖,

centered at the origin. Note that

τ ′
2 := τh(x

′
2) = τ2, ‖x ′

2‖ = r ≤ ‖x2‖, ‖x ′
2 − x1‖ ≤ ‖x2 − x1‖. (31)

The first two relations are evident. The last one follows from the fact that projections
onto convex sets decrease distances and can be explicitly proved as follows. First, by
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the Cauchy–Schwartz inequality, we have 〈Bx1, x2〉 ≤ ρ‖x2‖2, where ρ := ‖x1‖‖x2‖ ≤ 1.
Therefore, using the fact that x ′

2 = ρx2, we obtain

‖x2 − x1‖2 − ‖x ′
2 − x1‖2 = ‖x2‖2 − ‖x ′

2‖2 − 2〈Bx1, x2 − x ′
2〉

= (1 − ρ2)‖x2‖2 − 2(1 − ρ)〈Bx1, x2〉 ≥ (1 − ρ2)‖x2‖2 − 2(1 − ρ)ρ‖x2‖2
= (1 − ρ)2‖x2‖2 ≥ 0.

Since gp,p+ν(τ2) ≥ 0 (Proposition 4.3), from (31) it follows that

‖x1‖νgp,p+ν(τ1) − ‖x2‖νgp,p+ν(τ2) ≤ rν(gp,p+ν(τ1) − gp,p+ν(τ
′
2)).

At the same time, by Theorem 5.1,

gp,p+ν(τ1) − gp,p+ν(τ
′
2) ≤ H̃p,ν |τ ′

2 − τ1|ν.

Hence,
‖x1‖νgp,p+ν(τ1) − ‖x2‖νgp,p+ν(τ2) ≤ H̃p,ν(r |τ ′

2 − τ1|)ν. (32)

Note that

r |τ ′
2 − τ1| = |‖x ′

2‖τ ′
2 − ‖x1‖τ1| = |〈B(x ′

2 − x1), h〉|.

Therefore, by Cauchy–Schwartz inequality and (31), we have

r |τ ′
2 − τ1| ≤ ‖x ′

2 − x1‖ ≤ ‖x2 − x1‖.

Substituting this into (32), we obtain

‖x1‖νgp,p+ν(τ1) − ‖x2‖νgp,p+ν(τ2) ≤ H̃p,ν‖x2 − x1‖ν .

This finishes the proof of (30), because H̃p,ν ≤ Ap,ν by Theorem 5.2.
It remains to show the reverse inequality

‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1) ≤ Ap,ν‖x2 − x1‖ν . (33)

For this, we consider two subcases.
Case II(a) Suppose τ1 ≥ τ2. Let x ′

1 := 〈Bx1,x2〉
‖x2‖2 x2 be the projection of x1 onto the

line, connecting x2 with the origin, and let τ ′
1 := τh(x ′

1). Then,

‖x ′
1‖ ≤ ‖x1‖, ‖x2 − x ′

1‖ ≤ ‖x2 − x1‖. (34)

Furthermore,
gp,p+ν(τ

′
1) ≤ gp,p+ν(τ2). (35)
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Indeed, if 〈Bx1, x2〉 ≥ 0, then τ ′
1 = τ2 and gp,p+ν(τ

′
1) = gp,p+ν(τ2); otherwise,

τ ′
1 = −τ2, and hence, gp,p+ν(τ

′
1) = (−1)pgp,p+ν(τ2) (Proposition 4.1), which either

coincides with gp,p+ν(τ2) when p is even, or becomes −gp,p+ν(τ2) ≤ 0 when p is
odd (see Proposition 4.3).

Since gp,p+ν(τ2) ≤ gp,p+ν(τ1) (Proposition 4.4), it follows from (35) that
gp,p+ν(τ

′
1) ≤ gp,p+ν(τ1). Using also (34) and the fact that gp,p+ν(τ1) ≥ 0, we

obtain ‖x ′
1‖νgp,p+ν(τ

′
1) ≤ ‖x ′

1‖νgp,p+ν(τ1) ≤ ‖x1‖νgp,p+ν(τ1). Thus,

‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1) ≤ ‖x2‖νgp,p+ν(τ2) − ‖x ′
1‖νgp,p+ν(τ

′
1).

Note that in the right-hand side, we have the difference of the derivatives Dp f p+ν(x2)
[h]p and Dp f p+ν(x ′

1)[h]p, where the points x ′
1 and x2 lie on a line, passing through

the origin. Therefore, from Theorem 6.2, it follows that

‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1) ≤ Cp,ν‖x2 − x ′
1‖ν,

which proves (33), in view of (28) and (34).
Case II(b) Now suppose τ1 ≤ τ2. Denote by H̃p,ν the constant of ν-Hölder con-

tinuity of the polynomial gp,p+ν on the interval [−1, 1]. To prove (33), it suffices to
show that

‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1)

≤ gp,p+ν(0)(‖x2‖ν − ‖x1‖ν) + H̃p,ν(‖x2‖τ2 − ‖x1‖τ1)ν, (36)

Indeed, recall that ‖x2‖ν − ‖x1‖ν ≤ ‖x2 − x1‖ν . Also

(‖x2‖τ2 − ‖x1‖τ1)ν = 〈B(x2 − x1), h〉ν ≤ ‖x2 − x1‖ν

by the Cauchy–Schwartz inequality. Therefore, if (36) is true, then

‖x2‖νgp,p+ν(τ2) − ‖x1‖νgp,p+ν(τ1) ≤ (gp,p+ν(0) + H̃p,ν)‖x2 − x1‖ν,

where gp,p+ν(0) + H̃p,ν ≤ Ap,ν in view of Proposition 4.2, Theorems 5.1 and 5.2.
Thus, it remains to show (36), or, equivalently, that

‖x2‖ν(gp,p+ν(τ2) − gp,p+ν(0))

≤ ‖x1‖ν(gp,p+ν(τ1) − gp,p+ν(0)) + H̃p,ν(‖x2‖τ2 − ‖x1‖τ1)ν.

Denote ρ := ‖x1‖‖x2‖ ∈ [0, 1]. We need to prove that

gp,p+ν(τ2) − gp,p+ν(0) ≤ ρν(gp,p+ν(τ1) − gp,p+ν(0)) + H̃p,ν(τ2 − ρτ1)
ν. (37)
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Note that the right-hand side of this inequality, as a function of ρ ∈ [0, 1], is concave
(and well-defined, since τ1 ≤ τ2). Hence, to justify (37), we only need to prove the
following two boundary cases:

ρ = 0 : gp,p+ν(τ2) − gp,p+ν(0) ≤ H̃p,ντ
ν
2 .

ρ = 1 : gp,p+ν(τ2) − gp,p+ν(τ1) ≤ H̃p,ν(τ2 − τ1)
ν.

But both of them follow from the definition of H̃p,ν . ��
Comparing the result of Theorem 6.3 with the lower bound Cp,ν , given by Theo-

rem 6.1, we see that for odd values of p, the constant Ã p,ν is optimal. Unfortunately,
this is no longer true for even values of p. Nevertheless, the constant Ã p,ν is still quite
accurate. Indeed, since

(p − 1)!! =
p/2∏
i=1

(2i − 1) ≤
p/2∏
i=1

(ν + 2i − 1),

we have

(p − 1)!!
p/2∏
i=1

(ν + 2i) ≤
p∏

i=1

(ν + i).

Thus, the constant Ã p,ν is at most two times suboptimal: Ã p,ν ≤ 2Cp,ν .
One may think that the reason, why we obtained a suboptimal bound for even

values of p, is related to the fact that we had used a suboptimal value for the Hölder
constant Hp,ν of the polynomial gp,p+ν (see the corresponding discussion at the end
of Sect. 5). However, this is not the actual reason. Indeed, let us look what happens
when we use the optimal value for Hp,ν in the particular case p = 2. Recall that the
optimal constant in this case is

H2,ν = ν(ν + 2)
22−ν(1 − ν)1−ν

(2 − ν)2−ν
.

Substituting this expression into (27), we obtain an improved estimate

A2,ν = ν + 2 + H2,ν = (ν + 2)

(
ν + 1 + ν

22−ν(1 − ν)1−ν

(2 − ν)2−ν

)
.

However, this new estimate is still different from the lower bound

C2,ν = (ν + 1)(ν + 2).

At the same time, for small values of ν, the difference between Ap,ν andCp,ν is almost
negligible.
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7 Lipschitz Constants of Derivatives of Powers of Euclidean Norm

For even values of p, our estimate Ap,ν of the Hölder constant of Dp f p+ν was sub-
optimal. It turns out that in the special case when ν = 1, it is actually very simple to
eliminate this drawback and obtain an optimal constant for all values of p. This case
corresponds to Lipschitz continuity.

Theorem 7.1 For any integer p ≥ 0, the derivative Dp f p+1 is Lipschitz continuous
with constant

Cp,1 = (p + 1)!,

where n! for a nonnegative integer n denotes the factorial of n.

Proof It suffices to prove that |Dp+1 f p+1(x)[h]p+1| ≤ (p + 1)! for all x ∈ E and
all unit h ∈ E. By Theorem 3.1, we have Dp+1 f p+1(x)[h]p+1 = gp+1,p+1(τh(x)).
Since |τh(x)| ≤ 1, we obtain |Dp+1 f p+1(x)[h]p+1| ≤ max[−1,1] |gp+1,p+1|. The
claim now follows from Proposition 4.5. ��

8 Conclusions

In this work, we have proved that derivatives of powers of Euclidean norm are Hölder
continuous and have obtained explicit expressions for the corresponding Hölder con-
stants. We have shown that our constants are optimal for odd derivatives and at most
two times suboptimal for the even ones. In the particular case of integer powers, when
the Hölder condition corresponds to the Lipschitz condition, we have managed to
improve our result and obtained optimal constants in all cases. We believe that in
general, it should be possible to obtain optimal constants for even derivatives as well.
However, this seems to be a difficult problem.
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