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Abstract
In this paper, we study the existence of sufficiently regular representations of
Hamilton–Jacobi equations in the optimal control theory with unbounded control set.
We use a new method to construct representations for a wide class of Hamiltonians.
This class is wider than any constructed before, because we do not require Legendre–
Fenchel conjugates of Hamiltonians to be bounded. However, in this case we obtain
representations with unbounded control set.We apply the obtained results to study reg-
ularities of value functions and correlations between variational and optimal control
problems.
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1 Introduction

The Hamilton–Jacobi equation (6) with a convex Hamiltonian H in the gradient vari-
able can be studied with connection to calculus of variations problems, namely the
value function of the calculus of variations problem given by (7) is the unique viscos-
ity solution, see, e.g., [1–7]. The Hamilton–Jacobi equation (6) can be also studied
with connection to optimal control problems. It is possible provided that there exists a
sufficiently regular triple (A, f , l) satisfying the equality (4). In particular, the value
function of the optimal control problem given by (8) is the unique viscosity solution,
see, e.g., [1,3,4,8,9].
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The triple (A, f , l), which satisfies the equality (4), is called a representation of the
Hamiltonian H . In general, if a representation of H exists, then infinitely many other
representations exist. There are also irregular representations among them. The triple
(A, f , l), which satisfies the equality (4) and inherits Lipschitz-type properties of H ,
is called a faithful representation of H .

In this paper, we provide further developments of representation theorems from
[10]. Misztela [10] studied faithful representations of Hamiltonians with the com-
pact control set. A necessary condition for the existence of such representations is
boundedness of Legendre–Fenchel conjugates of Hamiltonians on effective domains,
see [10, Theorem 3.1]. However, in many cases Hamiltonians do not have bounded
Legendre–Fenchel conjugates on effective domains. In Sect. 4, we see that for this
type of Hamiltonians there exist faithful representations with the unbounded control
set. We used a new method to construct a faithful representation. Our representation
(A, f , l) of H is an epigraphical representation introduced in [10]. The construction
of this representation is as follows: First, using Steiner selection we parameterize
the set-valued map obtained via epigraph of the Legendre–Fenchel conjugate of H .
Steiner selection guarantees that this parametrization e with the parameter set A is
locally Lipschitz continuous with respect to the state variable. Next, we define the
functions f and l as components of the function e, i.e., e = ( f , l). In view of [10,
Proposition 5.7], any triple (A, f , l) obtained in such a way is a representation of H .
Earlier, Frankowska–Sedrakyan [11] and Rampazzo [12] used a graphical representa-
tion to construct a faithful representation. In a graphical representation, the function
l, without additional assumptions, may be discontinuous with respect to the state-
control variable, see Sect. 3. Another differences between graphical and epigraphical
representations can be found in [10]. Earlier, Ishii [13] proposed a representation
involving continuous functions f and l with the infinite-dimensional control set A.
The lack of local Lipschitz continuity of f and l with respect to the state variable and
finite-dimensional control set A in Ishii [13] paper causes troubles in applications.

We present differences between representations with unbounded and compact con-
trol sets. The fact that a control set is not compact makes significant problems in
applications which we discuss below. Therefore, compactness of a control set must be
replaced by another property that is convenient in practice. The property (A3) from
Theorem 4.1 which is a consequence of our construction of a faithful representation
plays a role of such extra-property. Our extra-property is apparently new. In the liter-
ature, one usually requires coercivity of the function l(t, x, ·), see, e.g., [9, Condition
(A4)]. However, the function l(t, x, ·) from our faithful representation (A, f , l) does
not have this property. Coercivity of the function l(t, x, ·) enables us to study not only
measurability of controls but also their integrability. In this paper, the extra-property
plays a similar role, see Remarks 4.1 and 4.2. It is well-known that in applications one
requires at least integrability of controls. In the case when the control set is compact
the above problem does not occur, because every measurable control with values in
the compact control set is integrable.

In general, the value functions (7) and (8) are not equal. However, in our case these
value functions are identical due to the extra-property, see Corollary 4.1.Moreover, we
obtain a fundamental relation between variational and optimal control problems, see
Theorem 4.4. More precisely, we consider a variational problem associated with the
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given Lagrangian L . We define Hamiltonian H as the Legendre–Fenchel conjugate of
L in its velocity variable. Applying our result to Hamiltonian H , we obtain its faithful
representation (A, f , l). Then the variational problem associated with Lagrangian L is
equivalent to the optimal control problem associated with the triple (A, f , l). Earlier,
Olech [14] and Rockafeller [15,16] investigated the opposite problem to ours.

Our faithful representations are stable, see Theorems 4.2 and 4.3. This fact is used
in the proof of stability of value functions, see Sect. 6. The method of this proof is not
standard, because properties of a faithful representation are nonstandard. These non-
standard properties are: an unbounded control set, the extra-property and the sublinear
growth of l with respect to the control variable. In this case, one cannot apply methods
from Sedrakyan [17] to prove stability of value functions. Indeed, this method uses
compactness of the control set and boundedness of l independent of the control vari-
able. We also prove that the value function is locally Lipschitz continuous, provided
that the final cost function is locally Lipschitz continuous. In the proof of this fact,
nonstandard boundedness of the function l plays a significant role.

The outline of the paper is as follows. Section 2 contains hypotheses and back-
ground material. In Sect. 3, we show differences between graphical and epigraphical
representations with the unbounded control set. In Sect. 4, we gathered our main
results. Sections 5 and 6 contain proofs.

2 Hypotheses and BackgroundMaterial

We will need hypotheses and results similar to those in [10, Sect. 2].

(H1) H : [0, T ] × R
n × R

n → R is Lebesgue measurable in t for any x, p ∈ R
n ;

(H2) H(t, x, p) is continuous with respect to (x, p) for every t ∈ [0, T ];
(H3) H(t, x, p) is convex with respect to p for every (t, x) ∈ [0, T ] × R

n ;
(H4) There exists a measurable map c : [0, T ] → [0,∞[ such that for every t ∈

[0, T ], x, p, q ∈ R
n one has |H(t, x, p) − H(t, x, q)| ≤ c(t)(1+ |x |)|p − q|.

Letϕ be an extended-real-valued function fromR
m toR∪{±∞}. The sets: dom ϕ =

{z ∈ R
m : ϕ(z) �= ±∞}, gph ϕ = {(z, r) ∈ R

m ×R : ϕ(z) = r} and epi ϕ = {(z, r) ∈
R
m × R : ϕ(z) ≤ r} are called the effective domain, the graph and the epigraph of

ϕ, respectively. We say that ϕ is proper if it never takes the value −∞ and it is not
identically equal to +∞.

Let H∗(t, x, ·) denotes the Legendre–Fenchel conjugate of H(t, x, ·):

H∗(t, x, v) = sup
p∈Rn

{ 〈v, p〉 − H(t, x, p) }.

Using properties of the conjugate from [18], we can prove the following.

Proposition 2.1 Assume that H satisfies (H1)–(H3). Then

(C1) H∗ : [0, T ] × R
n × R

n → R ∪ {+∞} is Lebesgue-Borel-Borel measurable;
(C2) (x, v) → H∗(t, x, v) is lower semicontinuous for every t ∈ [0, T ];
(C3) v → H∗(t, x, v) is convex and proper for every (t, x) ∈ [0, T ] × R

n;
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(C4) ∀t ∈ [0, T ] ∀x,v ∈ R
n ∀xi → x ∃vi → v : H∗(t, xi , vi ) → H∗(t, x, v).

Additionally, if H satisfies (H4), then
(C5) ∀(t, x, v) ∈ [0, T ] × R

n × R
n : |v| > c(t)(1 + |x |) ⇒ H∗(t, x, v) = +∞.

Additionally, if H is continuous, then H∗ is lower semicontinuous and
(C6) ∀t ∈[0, T ] x,v∈R

n ∀(ti , xi )→(t, x) ∃vi →v : H∗(ti , xi , vi )→H∗(t, x, v).

Let K be a nonempty subset of Rm . We put ‖K‖ := supξ∈K |ξ |. The distance
from y ∈ R

m to K is defined by d(y, K ) := infξ∈K |y − ξ |. A set-valued map
F : [0, T ] � R

m is measurable if for each open set U ⊂ R
m the inverse image

F−1(U ) := {t ∈ [0, T ] : F(t) ∩ U �= ∅} is Lebesgue measurable set. The set
gph F := {(z, y) : y ∈ F(z)} is called a graph of the set-valued map F . A set-valued
map F : Rn � R

m is lower semicontinuous in Kuratowski’s sense if for each open
set U ⊂ R

m the set F−1(U ) is open.
Let us define the set-valued map EH∗ : [0, T ] × R

n � R
n × R by the formula

EH∗(t, x) := epi H∗(t, x, ·) = {(v, η) ∈ R
n × R : H∗(t, x, v) ≤ η}.

In view of Proposition 2.1 and Results in [18, Chap. 14], we obtain

Corollary 2.1 Assume that H satisfies (H1)–(H3). Then

(E1) (t, x) → EH∗(t, x) has a nonempty, closed, convex values;
(E2) x → EH∗(t, x) has a closed graph for every t ∈ [0, T ];
(E3) x → EH∗(t, x) is lower semicontinuous for every t ∈ [0, T ];
(E4) t → EH∗(t, x) is measurable for every x ∈ R

n.
Additionally, if H satisfies (H4), then

(E5) ‖dom H∗(t, x, ·)‖ ≤ c(t)(1 + |x |) for every (t, x) ∈ [0, T ] × R
n.

Additionally, if H is continuous, then
(E6) (t, x) → EH∗(t, x) has a closed graph and is lower semicontinuous.

Now we present Hausdorff continuity of a set-valued map EH∗ in Hamiltonian and
its conjugate terms. Let B(x̄, R) denote the closed ball in R

n of center x̄ and radius
R ≥ 0. We put BR := B(0, R) and B := B(0, 1).

Theorem 2.1 See [10, Theorem 2.3] Assume that H satisfies (H1)–(H3). Then the
following conditions are equivalent with the same map kR(·):
(HLC) For any R > 0, there exists a measurable map kR : [0, T ] → [0,∞[ such that

|H(t, x, p) − H(t, y, p)| ≤ kR(t)(1 + |p|)|x − y| for all t ∈ [0, T ], x, y ∈
BR, p ∈ R

n.
(CLC) For any R > 0, there exists a measurable map kR : [0, T ] → [0,∞[

such that for all t ∈ [0, T ], x, y ∈ BR, v ∈ dom H∗(t, x, ·) there exists
u ∈ dom H∗(t, y, ·) satisfying the inequalities |u − v| ≤ kR(t)|y − x | and
H∗(t, y, u) ≤ H∗(t, x, v) + kR(t)|y − x |.

(ELC) For any R > 0, there exists a measurable map kR : [0, T ] → [0,∞[ such
that EH∗(t, x) ⊂ EH∗(t, y) + kR(t)|x − y|(B × [−1, 1]) for all t ∈ [0, T ],
x, y ∈ BR.
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For nonempty subsets K and D of Rm , the extended Hausdorff distance between
K and D is defined by the formula

H(K , D) := sup{ |d(x, K ) − d(x, D)| : x ∈ R
m } ∈ R ∪ {+∞}.

By Theorem 2.1 (ELC), we obtain the following corollary.

Corollary 2.2 Assume that H satisfies (H1)–(H3) and (HLC). Then, we have
H(EH∗(t, x), EH∗(t, y)) ≤ 2kR(t)|x − y| for all t ∈ [0, T ], x, y ∈ BR, R > 0.

3 Graphical and Epigraphical Representations of the Hamiltonian

A triple (A, f , l) is an epigraphical representation of H if

gph H∗(t, x, ·) ⊂ ( f (t, x, A), l(t, x, A)) ⊂ epi H∗(t, x, ·),
where ( f (t, x, A), l(t, x, A)) := {( f (t, x, a), l(t, x, a)) : a ∈ A}. A triple (A, f , l) is
a graphical representation of H if ( f (t, x, A), l(t, x, A)) = gph H∗(t, x, ·). We show
differences between graphical and epigraphical representations of the Hamiltonian,
whose conjugate is unbounded on the effective domain.

Let us define the Hamiltonian HHH : R × R → R by the formula

HHH(x, p) :=
{

(
√|xp| − 1)2, if |xp| > 1,

0, if |xp| ≤ 1.

This Hamiltonian satisfies the conditions (H1)–(H4) and (HLC). Its conjugate HHH∗ :
R × R → R ∪ {+∞} has the following form

HHH∗(x, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+∞, if |v| ≥ |x |, x �= 0,
|v|

|x | − |v| , if |v| < |x |, x �= 0,

0, if v = 0, x = 0,
+∞, if v �= 0, x = 0.

The set dom HHH∗(x, ·) =] − |x |, |x | [ is not closed and the function v → HHH∗(x, v)

is not bounded on this set for every x ∈ R \ {0}. Moreover, the function HHH∗ is not
continuous on dom HHH∗, because limi→∞ HHH∗ (2/i, 1/i) = 1 �= 0 = HHH∗(0, 0).

Since HHH satisfies (H1)–(H4) and (HLC), we can construct an epigraphical rep-
resentation (R × R, f , l) of HHH like in Theorem 4.1. However, the method of
constructing a graphical representation given in [11,12] cannot be applied to HHH ,
since the parametrization theorem of set-valued maps involves closed-valued maps.
However, x → dom HHH∗(x, ·) is not a closed-valued map. Therefore, we cannot uti-
lize this approach to parametrize x → dom HHH∗(x, ·). Nevertheless, to parametrize
x → dom HHH∗(x, ·) we can use an epigraphical representation (R × R, f , l) of HHH
from Theorem 4.1. Then f (x,R × R) = dom HHH∗(x, ·). Let lll by given by

lll(x, a1, a2) = HHH∗(x, f (x, a1, a2)). (1)
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Of course, (R×R, f , lll) is a graphical representation of HHH . However, the function lll at
the point (0, 0, r) is discontinuous for r > 0. Indeed, let a1 = r |x |/(1+r) and a2 = r
with x ∈ R, r > 0. We observe that (a1, a2) ∈ epiHHH∗(x, ·). By the extra-property
(A3) of Theorem 4.1, we have

f (x, a1, a2) = a1 and l(x, a1, a2) = a2. (2)

Let a1i = r |xi |/(1 + r) and a2i = r with xi = 1/i, r > 0. Then (xi , a1i , a2i ) →
(0, 0, r) as i → ∞. By (2) we have f (xi , a1i , a2i ) = a1i and f (0, 0, r) = 0. By (1),
we have lll(xi , a1i , a2i ) = HHH∗(x, a1i ) = r and lll(0, 0, r) = HHH∗(0, 0) = 0. Suppose
that lll is continuous. Then we get r = limi→∞ lll(xi , a1i , a2i ) = lll(0, 0, r) = 0. This
contradicts the fact that r > 0.

The lack of continuity of the function lll is not surprising, because the function
lll is a composition of discontinuous and continuous functions. Such compositions
usually are not continuous. However, it is not a rule. We observe that the function
fff (x, a) = a|x |2/(1+|a| |x |) is parametrization of dom HHH∗(x, ·) such that fff (x,R) =
dom HHH∗(x, ·). Then, the function lll(x, a) = HHH∗(x, fff (x, a)) = |a| |x | is continuous.
Therefore, (R, fff , lll) is a continuous graphical representation of HHH . In general, it is
difficult to indicate the class of Hamiltonians with discontinuous conjugates for which
continuous graphical representations with the unbounded control set exist.

We show that HHH does not have a graphical representation (AAA, fff , lll) such that

|lll(x, a) − lll(y, a)| ≤ kR |x − y| for all x, y ∈ BR, a ∈ AAA. (3)

In particular, the Hamiltonian HHH does not have a graphical representation (AAA, fff , lll)
which satisfies (A1) from Theorem 4.1. Assume by contradiction that the Hamiltonian
HHH has a graphical representation (AAA, fff , lll) satisfying (3). Let xi = R/i and vi =
R/(2i) with R > 0. Because of vi ∈ dom HHH∗(xi , ·) = fff (xi , AAA), there exists ai ∈ AAA
such that fff (xi , ai ) = vi .We notice that lll(xi , ai ) = HHH∗(xi , fff (xi , ai )) = HHH∗(xi , vi ) =
1 and lll(0, ai ) = HHH∗(0, fff (0, ai )) = HHH∗(0, 0) = 0. By (3), we get 1 = |lll(xi , ai ) −
lll(0, ai )| ≤ kR |xi | = kR R/i . Passing to the limit as i → ∞ we get 1 ≤ 0, a
contradiction.

4 Main Results

In this section, we describe the main results of the paper that concern faithful repre-
sentations (A, f , l) with the unbounded control set A := R

n × R.

Theorem 4.1 (Representation) Assume (H1)–(H4) and (HLC). Then there exist f :
[0, T ] × R

n × R
n+1 → R

n and l : [0, T ] × R
n × R

n+1 → R, measurable in t for
all (x, a) ∈ R

n ×R
n+1 and continuous in (x, a) for all t ∈ [0, T ], such that for every

t ∈ [0, T ], x, p ∈ R
n,

H(t, x, p) = sup
a ∈Rn+1

{ 〈 p, f (t, x, a) 〉 − l(t, x, a) } (4)
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and f (t, x,Rn+1) = dom H∗(t, x, ·). Moreover, we have the following.

(A1) For any R > 0, t ∈ [0, T ], x, y ∈ BR, a, b ∈ R
n+1

| f (t, x, a) − f (t, y, b)| ≤ 10 (n + 1) ( kR(t) |x − y| + |a − b| ),
|l(t, x, a) − l(t, y, b)| ≤ 10 (n + 1) ( kR(t) |x − y| + |a − b| ).

(A2) For any t ∈ [0, T ], x ∈ R
n, a ∈ R

n+1

| f (t, x, a)| ≤ c(t)(1 + |x |) and − |H(t, x, 0)| ≤ l(t, x, a),

l(t, x, a) ≤ 2|H(t, x, 0)| + 2c(t)(1 + |x |) + 3|a|.

(A3) a = ( f (t, x, a), l(t, x, a)) for all a ∈ epi H∗(t, x, ·), t ∈ [0, T ], x ∈ R
n.

(A4) Additionally, if H is continuous, so are f and l.

Property (A1)means that f and l are locallyLipschitz continuous in x withLipschitz
constants dependent on time and globally Lipschitz continuous in a with Lipschitz
constant independent on time. Property (A2) implies that f has sublinear growth in x
and l has sublinear growth in a. Property (A3) is called the extra-property. Property
(A4) means that f and l are continuous if only H is continuous. The proof of Theorem
4.1 is given in Sect. 5.

Remark 4.1 We consider the representation (Rn+1, f , l) of H defined as in Theo-
rem 4.1. Then, by [10, Lemma 4.1], e(t, x,Rn+1) ⊂ epi H∗(t, x, ·), where e =
( f , l), and, by the extra-property, epi H∗(t, x, ·) = e(t, x, epi H∗(t, x, ·)). Hence,
e(t, x,Rn+1) = epi H∗(t, x, ·). Thus, the extra-property implies that (Rn+1, f , l) is
an epigraphical representationof H . It turns out that the extra-property ismuch stronger
than e(t, x,Rn+1) = epi H∗(t, x, ·). Indeed, we consider the absolutely continuous
function (x, u) : [0, T ] → R

n+1 such that

(ẋ, u̇)(t) ∈ epi H∗(t, x(t), ·) a.e. t ∈ [0, T ].

Then, by Filippov theorem and e(t, x,Rn+1) = epi H∗(t, x, ·), there exists a measur-
able control â(·) defined on [0, T ] with values in Rn+1 such that

(ẋ, u̇)(t) = e(t, x(t), â(t)) a.e. t ∈ [0, T ].

Obviously, the measurable control â(·) may be not integrable. Whereas the extra-
property with the control ǎ(·) := (ẋ(·), u̇(·)) implies that

(ẋ, u̇)(t) = e(t, x(t), ǎ(t)) a.e. t ∈ [0, T ].

Since (x, u)(·) is an absolutely continuous function, (ẋ, u̇)(·) is an integrable function.
Thus, ǎ(·) is also integrable. Besides, by Theorem 4.1 (A2),

|l(t, x(t), a(t))| ≤ 2ω(t, x(t)) + 3|a(t)| for all t ∈ [0, T ], (5)
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where ω(t, x) := |H(t, x, 0)| + c(t)(1 + |x |). We observe that if ω(·, x(·)) and a(·)
are integrable functions, then the function l(·, x(·), a(·)) is integrable. However, if a(·)
is measurable, then l(·, x(·), a(·)) may be not integrable.

Theorem 4.2 Let Hi , H, i ∈ N, be continuous and satisfy (H1)–(H4), (HLC). We
consider the representations (Rn+1, fi , li ) and (Rn+1, f , l) of Hi and H, respectively,
defined as in the proof of Theorem 4.1. If Hi converge uniformly on compacts to H,
then fi converge to f and li converge to l uniformly on compacts in [0, T ]×R

n×R
n+1.

Theorem 4.3 Let Hi , H, i ∈ N, satisfy (H1)–(H4), (HLC). We consider the repre-
sentations (Rn+1, fi , li ) and (Rn+1, f , l) of Hi and H, respectively, defined as in the
proof of Theorem 4.1. If Hi (t, ·, ·) converge uniformly on compacts to H(t, ·, ·) for
every t ∈ [0, T ], then fi (t, ·, ·) converge to f (t, ·, ·) and li (t, ·, ·) converge to l(t, ·, ·)
uniformly on compacts in R

n × R
n+1 for every t ∈ [0, T ].

4.1 Correlation BetweenVariational and Optimal Control Problems

In this subsection, we consider a special kind of variational and optimal control prob-
lems describing solutions of the Hamilton–Jacobi equation

−Vt + H(t, x,−Vx ) = 0 in ]0, T [×R
n,

V (T , x) = g(x) in R
n,

(6)

with Hamiltonian H , which satisfies (H1)–(H4) and (HLC). These problems are theo-
retical in nature. Nevertheless, they can be useful in investigating practical problems.
For instance, using these variational and optimal control problems we prove stability
of value functions and local Lipschitz continuity of the value function. We consider
the following variational problem

minimize �[x(·)] := φ(x(t0), x(T )) +
∫ T

t0
H∗(t, x(t), ẋ(t)) dt, (Pv)

subject to x(·) ∈ A([t0, T ],Rn),

and the following optimal control problem

minimize �[(x, a)(·)] := φ(x(t0), x(T )) +
∫ T

t0
l(t, x(t), a(t)) dt, (Pc)

subject to ẋ(t) = f (t, x(t), a(t)) a.e. t ∈ [t0, T ],
and x(·) ∈ A([t0, T ],Rn), a(·) ∈ L1([t0, T ],Rn+1),

where A([t0, T ],Rn) denotes the space of absolutely continuous functions.

Theorem 4.4 Assume that (H1)–(H4) and (HLC) hold with integrable functions c(·),
kR(·), H(·, 0, 0). We consider the representation (Rn+1, f , l) of H defined as in The-
orem 4.1. Assume further that φ is a proper, lower semicontinuous function and there
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exists M ≥ 0 such that min{ |z|, |x | } ≤ M for all (z, x) ∈ dom φ. Then we have

min�[x(·)] = min�[(x, a)(·)].

Besides, if x̄(·) is the optimal arc of (Pv) such that x̄(·) ∈ dom �, then (x̄, ā)(·) is the
optimal arc of (Pc) with ā(·) = ( ˙̄x(·), H∗(·, x̄(·), ˙̄x(·))) such that (x̄, ā)(·) ∈ dom�.
Conversely, if (x̄, ā)(·) is the optimal arc of (Pc), then x̄(·) is the optimal arc of (Pv).

The indicator function ψK (·) of the set K has value 0 on this set and +∞ outside.
Let S f (t0, x0) denotes the set of all trajectory-control pairs (x, a)(·) of the control
system: ẋ(t) = f (t, x(t), a(t)) a.e. t ∈ [t0, T ] and x(t0) = x0. Applying Theorem
4.4 to φ(z, x) := ψ{x0}(z) + g(x), we obtain:

Corollary 4.1 Assume that (H1)–(H4) and (HLC) hold with integrable functions
c(·), kR(·), H(·, 0, 0). We consider the representation (Rn+1, f , l) of H defined as
in Theorem 4.1. Let g be a proper, lower semicontinuous function. Then, for all
(t0, x0) ∈ [0, T ] × R

n,

V (t0, x0) = min
x(·) ∈A([t0,T ],Rn)

x(t0)=x0

{
g(x(T )) +

∫ T

t0
H∗(t, x(t), ẋ(t)) dt

}
(7)

= min
(x,a)(·) ∈S f (t0,x0)

{
g(x(T )) +

∫ T

t0
l(t, x(t), a(t)) dt

}
. (8)

Remark 4.2 Observe that the considered optimal control problem (Pc) has integrable
controls. Investigating integrable controls is possible due to argumentation contained
in Remark 4.1, see Sect. 5.1. In addition, correlation between the optimal control
ā(·) and the optimal trajectory x̄(·) can be expressed by the simple formula ā(·) =
( ˙̄x(·), H∗(·, x̄(·), ˙̄x(·))).

4.2 Stability of Value Functions

Definition 4.1 A sequence of functions {ϕi }i∈N is said to epi-converge to function ϕ

(e-limi→∞ ϕi = ϕ for short) if, for every point z ∈ R
m ,

(i) lim inf i→∞ ϕi (zi ) ≥ ϕ(z) for every sequence zi → z,
(ii) lim supi→∞ ϕi (zi ) ≤ ϕ(z) for some sequence zi → z.

Theorem 4.5 Let Hi , H , i ∈ N, satisfy (H1)–(H4) and (HLC)with the same integrable
functions c(·), kR(·). Let |H(t, 0, 0)| + |Hi (t, 0, 0)| ≤ μ(t) for all t ∈ [0, T ], i ∈ N

and some integrable functionμ(·). Let (Rn+1, fi , li )and (Rn+1, f , l)be representations
of Hi and H, respectively, defined as in the proof of Theorem 4.1. Let Vi and V be
the value functions associated with (Rn+1, fi , li , gi ) and (Rn+1, f , l, g), respectively,
and Hi (t, ·, ·) converge uniformly on compacts to H(t, ·, ·) for all t ∈ [0, T ]. Then
the following properties hold.
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(a) If gi , g are continuous functions and gi converge to g uniformly on compacts in
R
n, then Vi converge uniformly on compacts to V in [0, T ] × R

n.
(b) If gi and g are proper, lower semicontinuous and e-limi→∞ gi = g, then e-

limi→∞ Vi = V .

Remark 4.3 Proofs of stability of value functions in paper [10] were omitted, because
they base on to simplemethods. However, standard tools cannot be applied to Theorem
4.5, because we consider the optimal arc (xi , ai )(·) of Vi (xi0, ai0) for all i ∈ N. Fix
t ∈ [0, T ]. Then one can prove that the sequence {xi (t)} is bounded in R

n . However,
the sequence {ai (t)} is, in general, not bounded in R

n+1. This means that to the
sequence {(xi (t), ai (t))} one cannot apply Theorem 4.3, because this theorem works
only on compact subsets of the set Rn × R

n+1. Therefore, we decided to strengthen
Theorem 4.3 to work on sets of the type BR × R

n+1. It can be done by assuming
significantly stronger convergence of Hamiltonians than the one considered in this
paper, see [19, Theorem 3.14]. However, the strengthened Theorem 4.3 turned out to
be needless, because introducing the nonstandard method of the proof overcame the
above problem, see Sect. 6.

4.3 Lipschitz Continuous/Continuous/Lower Semicontinuous ofVVV

Theorem 4.6 Assume that (H1)–(H4) and (HLC) hold with integrable functions c(·),
kR(·), H(·, 0, 0). We consider the representation (Rn+1, f , l) of H defined as in The-
orem 4.1. Let g be a locally Lipschitz function. Assume that V is the value function
associatedwith (Rn+1, f , l, g). Then for every M > 0 there existαM (·) ∈ A([0, T ],R)

and CM > 0 such that

|V (t, x) − V (s, y)| ≤ |αM (t) − αM (s)| + CM |x − y| (9)

for all t, s ∈ [0, T ], x, y ∈ BM. Additionally, the value function V is locally Lipschitz
continuous on [0, T ] × R

n, if c(·), kR(·), H are continuous functions.

Remark 4.4 We consider the optimal arc (xπ , aπ )(·) of V (xπ , aπ ) for allπ ∈ �. In the
proof of Theorem 4.6, one requires equi-boundedness of the family {l(·, xπ (·), aπ (·)) :
π ∈ �} by an integrable function. By (5), we obtain

|l(·, xπ (·), aπ (·))| ≤ 2ω(·, xπ (·)) + 3|aπ (·)| for all π ∈ �.

One can prove that the family {xπ (·) : π ∈ �} is equi-bounded by a constant func-
tion. However, the family {aπ (·) : π ∈ �} is not bounded in general. Whereas,
if g is a locally Lipschitz function, then there exists an integrable function that
equi-bounds the family {aπ (·) : π ∈ �}, see [20, Theorem 4.7]. Thus, the family
{l(·, xπ (·), aπ (·)) : π ∈ �} can be bounded by an integrable function. It turns out that
proceeding adequately in the proof of Theorem 4.6 we can omit equi-boundedness of
optimal controls, see Sect. 6. In the literature, the above problem is solved assuming
boundedness of the function l independent of a, see [8].
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Theorem 4.7 Assume that (H1)–(H4), (HLC)holdwith integrable functions c(·), kR(·),
H(·, 0, 0). We consider the representation (Rn+1, f , l) of H defined as in Theorem 4.1.
Let g be a continuous/lower semicontinuous function. Then the value function asso-
ciated with (Rn+1, f , l, g) is continuous/lower semicontinuous on [0, T ] × R

n.

Remark 4.5 Theorem 4.7 is a direct consequence of Theorems 6.1 and 6.3.

5 Representation, Optimality and Stability Theorems

The support function σ(K , ·) : Rm → R of a nonempty, convex, compact set K ⊂ R
m

is a convex real-valued function defined by

σ(K , p) := max
x∈K 〈p, x〉, ∀ p ∈ R

m .

Let
∑

m−1 denote the unit sphere inRm and letμ be themeasure on
∑

m−1 proportional
to the Lebesgue measure and satisfying μ(

∑
m−1) = 1.

Definition 5.1 Let m ∈ N \ {1}. For any nonempty, convex, compact subset K of Rm ,
its Steiner point is defined by

sm(K ) := m
∫

∑
m−1

p σ(K , p) μ(dp).

One can show that sm(·) is a selection, i.e., sm(K ) ∈ K , cf. [21, p. 366].

Theorem 5.1 Let a set-valued map E : [0, T ] × R
n � R

m satisfy (E1)–(E4). Then
there exists a single-valued map e : [0, T ] × R

n × R
m → R

m such that e(·, x, a) is
measurable for every (x, a) ∈ R

n×R
m and e(t, ·, ·) is continuous for every t ∈ [0, T ].

Moreover, we have the following.

(a1)(a1)(a1) e(t, x,Rm) = E(t, x) for all t ∈ [0, T ], x ∈ R
n;

(a2)(a2)(a2) a = e(t, x, a) for all a ∈ E(t, x), t ∈ [0, T ], x ∈ R
n;

(a3)(a3)(a3) |e(t, x, a)| ≤ 3|a| + 2d(0, E(t, x)) for all a ∈ R
m, t ∈ [0, T ], x ∈ R

n;
(a4)(a4)(a4) |e(t, x, a) − e(t, y, b)| ≤ 5m[H(E(t, x), E(t, y)) + |a − b|] for all

t ∈ [0, T ], x, y ∈ R
n, a, b ∈ R

m;
(a5)(a5)(a5) Additionally, if (E6) is verified, then e is continuous.

Proof Let (t, x, a) ∈ [0, T ] × R
n × R

m . We define the set-valued map � by

�(t, x, a) := E(t, x) ∩ B(a, 2d(a, E(t, x))).

We notice that the set-valued map � is defined as in the proof of Theorem 5.6 from
[10] with ω ≡ 1. Next, we define the single-valued map e by

e(t, x, a) := sm(�(t, x, a)),
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where sm in theSteiner selection. Since� is defined as in the proof ofTheorem5.6 from
[10], so the single-valued map e is well-defined. Moreover, e(·, x, a) is measurable
for every (x, a) ∈ R

n × R
m and e(t, ·, ·) is continuous for every t ∈ [0, T ]. If we

assume that ω ≡ 1, then by [10, Theorem 5.6] and [10, Lemma 5.1] we obtain (a4)
and (a5). It remains to prove (a1)–(a3).

By Definition 5.1, we obtain that, for all t ∈ [0, T ], x ∈ R
n , a ∈ R

m ,

e(t, x, a) = sm(�(t, x, a)) ∈ �(t, x, a) = E(t, x) ∩ B(a, 2d(a, E(t, x))). (10)

To prove (a2), we observe that by (10) we get |e(t, x, a) − a| ≤ 2d(a, E(t, x)) for
all t ∈ [0, T ], x ∈ R

n , a ∈ R
m . Hence a = e(t, x, a) for all a ∈ E(t, x), t ∈ [0, T ],

x ∈ R
n .

To prove (a1), we observe that by (10) we get e(t, x,Rm) ⊂ E(t, x) for all (t, x) ∈
[0, T ] × R

n . The latter, together with (a2), implies that E(t, x) = e(t, x, E(t, x)) ⊂
e(t, x,Rm) ⊂ E(t, x) for all (t, x) ∈ [0, T ] × R

n . This means that e(t, x,Rm) =
E(t, x) for all (t, x) ∈ [0, T ] × R

n .
To prove (a3), we observe that by (10) we get |e(t, x, a) − a| ≤ 2d(a, E(t, x)) for

all t ∈ [0, T ], x ∈ R
n , a ∈ R

m . The latter, together with the inequality d(a, E(t, x)) ≤
d(0, E(t, x)) + |a|, implies that |e(t, x, a)| ≤ 3|a| + 2d(0, E(t, x)) for all a ∈ R

m ,
t ∈ [0, T ], x ∈ R

n . ��
Theorem 5.2 Assume that H satisfies (H1)–(H4), (HLC). Then there exists a function
e : [0, T ] ×R

n ×R
n+1 → R

n+1 such that e(·, x, a) is measurable for every (x, a) ∈
R
n × R

n+1 and e(t, ·, ·) is continuous for every t ∈ [0, T ]. Moreover, we have the
following.

(e1)(e1)(e1) e(t, x,Rn+1) = epi H∗(t, x, ·) for all t ∈ [0, T ], x ∈ R
n;

(e2)(e2)(e2) a = e(t, x, a) for all a ∈ epi H∗(t, x, ·), t ∈ [0, T ], x ∈ R
n;

(e3)(e3)(e3) |e(t, x, a)| ≤ 2|H(t, x, 0)| + 2c(t)(1 + |x |) + 3|a| for all t ∈ [0, T ], x ∈ R
n,

a ∈ R
n+1;

(e4)(e4)(e4) |e(t, x, a) − e(t, y, b)| ≤ 10(n + 1)(kR(t)|x − y| + |a − b|) for all t ∈ [0, T ],
x, y ∈ BR, a, b ∈ R

n+1 and R > 0;
(e5)(e5)(e5) Additionally, if H is continuous, so is e.

Proof Let E(t, x) := EH∗(t, x) = epi H∗(t, x, ·) for every (t, x) ∈ [0, T ] × R
n .

Because of Corollaries 2.1 and 2.2, the function E satisfies assumptions of Theorem
5.1. Therefore, there exists a map e : [0, T ]×R

n ×R
n+1 → R

n+1 such that e(·, x, a)

is measurable for every (x, a) ∈ R
n × R

n+1 and e(t, ·, ·) is continuous for every
t ∈ [0, T ]. Moreover, the map e satisfies (a1)–(a5) from Theorem 5.1. By Theorem
5.1 (a4) and Corollary 2.2, we have

|e(t, x, a) − e(t, y, b)| ≤ 5(n + 1)[H(E(t, x), E(t, y)) + |a − b|]
≤ 10(n + 1)kR(t)|x − y| + 5(n + 1)|a − b|

for all t ∈ [0, T ], x, y ∈ BR , a, b ∈ R
n+1, R > 0. It means that (e4) is satisfied.

Moreover, if we assume that H is continuous, then by Corollary 2.1 we get that (E6)
is verified. Thus, by Theorem 5.1 (a5), we obtain that the map e is continuous. We
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observe that (e1) and (e2) follow from definition of E and the properties (a1) and (a2)
in Theorem 5.1. It remains to prove (e3).

Fix (t, x) ∈ [0, T ] × R
n . By (C1)–(C5), there exists v̄ ∈ dom H∗(t, x, ·) such

that H(t, x, 0) = H∗∗(t, x, 0) = −H∗(t, x, v̄) and |v̄| ≤ c(t)(1 + |x |). We see
(v̄, H∗(t, x, v̄)) ∈ E(t, x). The latter, together with Theorem 5.1 (a3), implies

|e(t, x, a)| ≤ 3|a| + 2d(0, E(t, x)) ≤ 3|a| + 2|(v̄, H∗(t, x, v̄))|
≤ 3|a| + 2|v̄| + 2|H∗(t, x, v̄)| ≤ 3|a| + 2c(t)(1 + |x |) + 2|H(t, x, 0)|.

This completes the proof of the theorem. ��
Remark 5.1 Let e : [0, T ] × R

n × R
n+1 → R

n+1 be the function from Theorem 5.2.
We define f : [0, T ] × R

n × R
n+1 → R

n and l : [0, T ] × R
n × R

n+1 → R by

f (t, x, a) := π1(e(t, x, a)) and l(t, x, a) := π2(e(t, x, a)),

whereπ1(v, η) = v andπ2(v, η) = η for all v ∈ R
n and η ∈ R. Then for all t ∈ [0, T ],

x ∈ R
n , a ∈ R

n+1 the equality e(t, x, a) = ( f (t, x, a), l(t, x, a)) holds. Thus, for all
t ∈ [0, T ], x, y ∈ R

n , a, b ∈ R
n+1, we get |l(t, x, a)| ≤ |e(t, x, a)|,

| f (t, x, a) − f (t, y, b)| ≤ |e(t, x, a) − e(t, y, b)|,
|l(t, x, a) − l(t, y, b)| ≤ |e(t, x, a) − e(t, y, b)|.

From the above inequalities, it follows that the properties of the function e are inherited
by functions f and l. It is not difficult to show that Theorem 4.1 follows from [10,
Proposition 5.7], Theorem 5.2 and Corollary 2.1 (E5).

5.1 The Optimality Theorem

The proof of Theorem 4.4 is similar to the proof of [10, Theorem 3.13], so we omit
it. In this subsection, we describe only the differences in these proofs due to the
extra-property. Let I f ([t0, T ],R2n+1) [resp. M f ([t0, T ],R2n+1)] denote the set of
all absolutely integrable [resp. absolutely measurable] pairs (x, a)(·) which satisfies
ẋ(t) = f (t, x(t), a(t)) for a.e. t ∈ [t0, T ]. Analogously, as in [10, Sect. 7], we can
show that the functionals �[·] and �[·] are well-defined and

− ∞ < min

{
inf

x∈A([t0,T ],Rn)
�[x], inf

(x,a)∈M f ([t0,T ],R2n+1)
�[(x, a)]

}
. (11)

The differences in the proofs of Theorem 4.4 and [10, Theorem 3.13] are related to
the following equalities:

inf
x∈A([t0,T ],Rn)

�[x] = inf
(x,a)∈M f ([t0,T ],R2n+1)

�[(x, a)], (12)

inf
x∈A([t0,T ],Rn)

�[x] = inf
(x,a)∈I f ([t0,T ],R2n+1)

�[(x, a)]. (13)
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Using [10, Lemma 4.1], we can show that LS(12) ≤ RS(12), see [10, Sect. 7].
The latter, together with I f ([t0, T ],R2n+1) ⊂ M f ([t0, T ],R2n+1), implies that
LS(13) ≤ RS(13). The proofs of the opposite inequalities require an appropriate
definition of control, see [10, Sect. 7]. Using Filippov theorem to define a measur-
able control, see Remark 4.1, we can show that LS(12) ≥ RS(12). Whereas, using
the extra-property to define an integrable control, see Remark 4.1, we can show that
LS(13) ≥ RS(13). Therefore, without the extra-property we could show only the
equality (12). Whereas, having the extra-property we can prove both equalities (12)
and (13).

From the equality (13) and its proof, it follows that if x̄(·) is the optimal arc of
(Pv) such that x̄(·) ∈ dom �, then (x̄, ā)(·) is the optimal arc of (Pc) with ā(·) =
( ˙̄x(·), H∗(·, x̄(·), ˙̄x(·))) such that (x̄, ā)(·) ∈ dom�; conversely, if (x̄, ā)(·) is the
optimal arc of (Pc), then x̄(·) is the optimal arc of (Pv). Using the latter with [10,
Theorem 7.6], we can replace “inf” by “min” in (12) and (13).

5.2 The Stability Theorems

The proofs of Theorems 4.2 and 4.3 are consequences of [10, Theorem 6.6 and
Remark 6.7], if we assume that ωi ≡ 1 for all i ∈ N ∪ {0} and H0 = H . In [10], one
assumed that for all i ∈ N ∪ {0} the function ωi is given by

ωi (t, x) = |λi (t, x)| + |Hi (t, x, 0)| + ci (t)(1 + |x |) + 1 with t ∈ [0, T ], x ∈ R
n,

where ci is coefficient in (H4) and λi is upper-boundedness of H∗
i . In [10, Theo-

rem 6.6], convergence ωi to ω0 is required. For this reason, in [10, Theorems 3.8 and
3.9] one assumes convergence Hi to H0 as well as convergence λi to λ0 and ci to c0.
Since, in our case ωi ≡ 1, so Theorems 4.2 and 4.3 do not need convergence ci to c0.

6 Regularities of Value Functions

Given real numbers τ and ν, we put τ ∧ ν := min{ τ, ν } and τ ∨ ν := max{ τ, ν }.
Let ‖ · ‖ denote the supremum norm in C([0, T ],Rm) and ‖ · ‖L1 denote the standard
norm in L1([0, T ],Rm).

6.1 Upper Semicontinuity of Value Functions

Theorem 6.1 Let (Rn+1, fi , li ) and (Rn+1, f , l) be as in Theorem 4.5. Assume that gi
and g are continuous functions and gi converge to g uniformly on compacts inRn. Let
Vi and V be the value functions associated with (Rn+1, fi , li , gi ) and (Rn+1, f , l, g),
respectively. Then, for every (t0, x0) ∈ [0, T ] × R

n, we have

lim supi→∞ Vi (ti0, xi0) ≤ V (t0, x0) foreverysequence (ti0, xi0) → (t0, x0).
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Proof Let us fix ti0, t0 ∈ [0, T ], xi0, x0 ∈ R
n such that (ti0, xi0) → (t0, x0). Then

there exists M > 0 such that xi0, x0 ∈ BM . Without loss of generality, wemay assume
V (t0, x0) < +∞ since otherwise there is nothing to prove. Then by Corollary 4.1,
there exists the optimal arc (x̄, ā)(·) of V (t0, x0) defined on [t0, T ]. We extend ā(·)
from [t0, T ] to [0, T ] by setting ā(t) = 0 for t ∈ [0, t0]. Next, because of the sublinear
growth of f , we extend x̄(·) from [t0, T ] to [0, T ] such that (x̄, ā)(·) ∈ S f (t0, x0).
Now we choose xi (·) defined on [0, T ] such that (xi , ā)(·) ∈ S fi (ti0, xi0). Then, our
assumptions and Gronwall’s Lemma imply

‖xi‖ ∨ ‖x̄‖ ≤ (
M + ‖c‖L1

)
exp

(‖c‖L1
) =: R, (14)

‖xi − x̄‖ ≤
(
|xi0 − x0| + ‖ fi [xi ] − f [xi ]‖L1 +

ti0∨t0∫
ti0∧t0

ωR[t] dt
)
D, (15)

where ωR[·] := 2μ(·) + (10(n + 1)kR(·) + 2c(·))(1 + R), D := exp(‖ωR‖L1),
fi [xi ](·) := fi (·, xi (·), ā(·)), f [xi ](·) := f (·, xi (·), ā(·)). We notice that

‖ fi [xi ] − f [xi ]‖L1 ≤ ‖�i‖L1 , (16)

where �i (·) := supz∈BR
| fi (·, z, ā(·)) − f (·, z, ā(·)) |. By Theorem 4.1 (A2) we get

�i (t) ≤ 2c(t)(1 + R) for all t ∈ [0, T ]. Since fi (t, ·, ā(t)) converge to f (t, ·, ā(t))
uniformly on compacts in R

n for all t ∈ [0, T ], we have limi→∞ �i (t) = 0 for all
t ∈ [0, T ]. Therefore, by virtue of Lebesgue’s theorem and (16), we obtain

limi→∞ ‖ fi [xi ] − f [xi ]‖L1 = 0. (17)

Observe that (15), togetherwith (17), implies limi→∞ ‖xi− x̄‖ = 0. Since li (t, ·, ā(t))
and l(t, ·, ā(t)) are continuous, li (t, ·, ā(t)) converge to l(t, ·, ā(t)) uniformly on
compacts in R

n and xi (t) → x̄(t) for all t ∈ [0, T ], we have li (t, xi (t), ā(t)) →
l(t, x̄(t), ā(t)) for all t ∈ [0, T ]. By Theorem 4.1 (A2) we get |li (t, xi (t), ā(t))| ≤
ωR[t] + 3|ā(t)| for all t ∈ [0, T ]. Therefore,

limi→∞ ‖li [xi ] − l[x̄]‖L1 = 0. (18)

Again by our assumptions and Gronwall’s Lemma, we obtain

V (t0, x0) − g(x̄(T )) =
T∫

t0

l[x̄](t) dt

≥
T∫

ti0

li [xi ](t) dt − ‖li [xi ] − l[x̄]‖L1 −
ti0∨t0∫

ti0∧t0

(
ωR[t] + 3|ā(t)|

)
dt

≥ Vi (ti0, xi0) − gi (xi (T )) − ‖li [xi ] − l[x̄]‖L1 −
ti0∨t0∫

ti0∧t0

(
ωR[t] + 3|ā(t)|

)
dt,

(19)
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where li [xi ](·) := li (·, xi (·), ā(·)) and l[x̄](·) := l(·, x̄(·), ā(·)). Since gi and g are
continuous functions, gi converge to g uniformly on compacts in R

n , and xi (T ) →
x̄(T ), we see that gi (xi (T )) → g(x̄(T )). The latter, together with (18) and (19), imply
that lim supi→∞ Vi (ti0, xi0) ≤ V (t0, x0). ��

Theorem 6.2 Let (Rn+1, fi , li ) and (Rn+1, f , l) be as in Theorem 4.5. Assume that
gi and g are proper, lower semicontinuous and e-limi→∞ gi = g. Let Vi and V be
the value functions associated with (Rn+1, fi , li , gi ) and (Rn+1, f , l, g), respectively.
Then, for every (t0, x0) ∈ [0, T ] × R

n, we have

lim sup i → ∞ Vi (ti0, xi0) ≤ V (t0, x0) for some sequence (ti0, xi0) → (t0, x0).

Proof Fix (t0, x0) ∈ [0, T ] × R
n . Without loss of generality, we may assume

V (t0, x0) < +∞ since otherwise there is nothing to prove. Then, by Corollary 4.1,
there exists the optimal arc (x̄, ā)(·) of V (t0, x0) defined on [t0, T ]. We extend ā(·)
from [t0, T ] to [0, T ] by setting ā(t) = 0 for t ∈ [0, t0]. Next, because of the sublinear
growth of f , we extend x̄(·) from [t0, T ] to [0, T ] such that (x̄, ā)(·) ∈ S f (t0, x0). By
e-limi→∞ gi = g, there exists a sequence zi0 → x̄(T ) such that gi (zi0) → g(x̄(T )).
Now we choose zi (·) defined on [0, T ] such that (zi , ā)(·) ∈ S fi (T , zi0). Let
M > 0 be a constant such that zi0, x0, x̄(T ) ∈ BM . Applying Gronwall’s Lemma
to (x̄, ā)(·) ∈ S f (T , x̄(T )) and (zi , ā)(·) ∈ S fi (T , zi0), similarly as (14) and (15), we
get ‖zi‖ ∨ ‖x̄‖ ≤ R,

‖zi − x̄‖ ≤
(
|zi0 − x̄(T )| + ‖ fi [zi ] − f [zi ]‖L1

)
D. (20)

Similarly to (17) we show that limi→∞ ‖ fi [zi ] − f [zi ]‖L1 = 0. The latter and (20),
togetherwith zi0 → x̄(T ), imply that limi→∞ ‖zi−x̄‖ = 0.Henceweobtain zi (t0) →
x̄(t0) = x0. Moreover, similarly to (18), we can also show that limi→∞ ‖li [zi ] −
l[x̄]‖L1 = 0. Note that

V (t0, x0) = g(x̄(T )) +
T∫

t0

l[x̄](t) dt

≥ g(x̄(T )) +
T∫

t0

li [zi ](t) dt − ‖li [zi ] − l[x̄]‖L1

≥ g(x̄(T )) − gi (zi0) + Vi (t0, zi (t0)) − ‖li [zi ] − l[x̄]‖L1 .

Passing to the limit in the above inequality, we get lim sup i → ∞ Vi (t0, zi (t0)) ≤
V (t0, x0), where (t0, zi (t0)) → (t0, x0). ��
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6.2 Lower Semicontinuity of Value Functions

We consider the set-valued maps:

Q(t, x) := {(w, η) ∈ R
n × R : (w,−η) ∈ epi H∗(t, x, ·)},

Qi (t, x) := {(w, η) ∈ R
n × R : (w,−η) ∈ epi H∗

i (t, x, ·)}.

Lemma 6.1 Let Hi , H, i ∈ N be as in Theorem 4.5 and Qi , Q be as above. Assume
that (ti0, xi0, ui0) → (t0, x0, u0) and ti0, t0 ∈ [0, T [. We consider (xi , ui ) ∈
A([ti0, T ],Rn × R) such that

(ẋi , u̇i )(t) ∈ Qi (t, xi (t)) a.e. t ∈ [ti0, T ], (xi , ui )(ti0) = (xi0, ui0). (21)

Assume that ui (T ) ≥ M for all i ∈ N and some constantM. Then there exist a function
(x, v) ∈ A([t0, T ],Rn × R) and a real number v0 ≤ u0 such that

(ẋ, v̇)(t) ∈ Q(t, x(t)) a.e. t ∈ [t0, T ], (x, v)(t0) = (x0, v0). (22)

Moreover, there exist a subsequence (xik , uik ) of a sequence (xi , ui ) such that

limk→∞ xik (T ) = x(T ) and limk→∞ uik (T ) ≤ v(T ). (23)

The proof of Lemma 6.1 is similar to the proof of Lower Closure theorem from the
monograph of Cesari [22], so we omit it (see [20, Sect. 8] for more details).

Theorem 6.3 Let Hi , H, i ∈ N be as in Theorem 4.5. Assume that gi and g are
proper, lower semicontinuous functions and e-limi→∞ gi = g. Let Vi and V be the
value functions associated with (H∗

i , gi ) and (H∗, g), respectively. Then, for every
(t0, x0) ∈ [0, T ] × R

n, we have

lim inf i → ∞ Vi (ti0, xi0) ≥ V (t0, x0) for every sequence (ti0, xi0) → (t0, x0).

Proof Fix (ti0, xi0) → (t0, x0). Let � := lim inf i → ∞ Vi (ti0, xi0). We show that
V (t0, x0) ≤ �. Without loss of generality, we may assume ti0 < T and � < +∞. By
definition of�, there exists a subsequence (we do not relabel) such that Vi (ti0, xi0) →
�. Hence Vi (ti0, xi0) < +∞ for all large i ∈ N. By Corollary 4.1 there exist xi (·) ∈
A([ti0, T ],Rn) such that xi (ti0) = xi0 and

Vi (ti0, xi0) = gi (xi (T )) +
∫ T

ti0
H∗
i (t, xi (t), ẋi (t)) dt . (24)

Since Vi (ti0, xi0) < +∞ for all large i ∈ N, we have H∗
i (t, xi (t), ẋi (t)) < +∞

for a.e. t ∈ [ti0, T ] and all large i ∈ N. The latter, together with (C5), implies that
|ẋi (t)| ≤ c(t)(1 + |xi (t)|) for a.e. t ∈ [ti0, T ] and all large i ∈ N. Thus, because of
Gronwall’s Lemma, for all large i ∈ N,

‖xi (·)‖ ≤ (
supi∈N |xi0| + ‖c‖L1

)
exp

(‖c‖L1
) =: R.
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Hence |ẋi (t)| ≤ (1 + R) c(t) for a.e. t ∈ [ti0, T ] and all large i ∈ N. By our assump-
tions,we have H∗

i (t, xi (t), ẋi (t)) ≥ −μR(t) for a.e. t ∈ [ti0, T ] and all large i ∈ N. By
e-limi→∞ gi = g, there exists a constantM such that gi (x) ≥ M for all x ∈ BR and all
large i ∈ N. Therefore, by (24), for all large i ∈ N, Vi (ti0, xi0) ≥ M−‖μR‖L1 > −∞.
Hence � > −∞.

Case 1 Let t0 < T . We put ui0 := Vi (ti0, xi0) for all large i ∈ N and u0 := �. We
define ui (·) ∈ A([ti0, T ],R), for all large i ∈ N, by

ui (t) = gi (xi (T )) +
∫ T

t
H∗
i (s, xi (s), ẋi (s)) ds.

We observe that −u̇i (t) = H∗
i (t, xi (t), ẋi (t)) for a.e. t ∈ [ti0, T ] and ui (ti0) =

Vi (ti0, xi0) = ui0 for all large i ∈ N. It means that the sequence (xi , ui )(·) satisfies
(21) for all large i ∈ N. Moreover, ui (T ) = gi (xi (T )) ≥ M for all large i ∈ N.
Therefore, by Lemma 6.1, there exist (x, v)(·) ∈ A([t0, T ],Rn×R) and a real number
v0 ≤ u0 such that (22) holds. By (22), we deduce that

� = u0 ≥ v0 = v(t0) = v(T ) +
∫ T

t0
−v̇(t) dt

≥ v(T ) +
∫ T

t0
H∗(t, x(t), ẋ(t)) dt

≥ v(T ) − g(x(T )) + V (t0, x0). (25)

Moreover, in view of (23) and e-limi→∞ gi = g, we deduce that

v(T ) ≥ lim
k→∞ uik (T ) = lim

k→∞ gik (xik (T )) ≥ g(x(T )). (26)

Combining inequalities (25) and (26), we obtain � ≥ V (t0, x0).
Case 2 Let us consider t0 = T . We observe that

|xi (ti0) − xi (T )| ≤
∫ T

ti0
|ẋi (t)| ≤ (1 + R)

∫ T

ti0
c(t) dt → 0.

The latter, together with xi (ti0) = xi0 → x0, implies that xi (T ) → x0. Therefore, in
view of (24) and e-limi→∞ gi = g, we have

� = lim
i→∞ Vi (ti0, xi0) ≥ lim inf

i→∞ gi (xi (T )) + lim inf
i→∞

∫ T

ti0
H∗
i (t, xi (t), ẋi (t)) dt

≥ lim inf
i→∞ gi (xi (T )) + lim inf

i→∞

∫ T

ti0
−μR(t) dt

≥ g(x0) = V (T , x0) = V (t0, x0).

This completes the proof of the theorem. ��
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6.3 Remarks

In the proof of stability of value functions, we used the formula (8) on the value
function as well as the formula (7). We do that, because formulas (7) and (8) have
advantages and drawbacks.

The advantages of the formula (8) are regularities of functions f and l such that: a
sublinear growth of the function f with respect to the state variable, a sublinear growth
of the function l with respect to the control variable and local Lipschitz continuity with
respect to the state variable for both functions f and l. These regularities of functions
f and l together with the extra-property allow us to prove upper semicontinuity of
value functions. On the other hand, the problems appear in the proof of lower semi-
continuity of value functions. They can be overcome using convexity and coercivity
of the function l with respect to the control variable, see [23,24]. However, in our case
the function l does not possess these properties and it is a drawback of the formula
(8).

Lower semicontinuity of value functions is proven using the formula (7). It is
possible due to convexity and coercivity of the conjugate H∗(t, x, ·). These properties
of the conjugate H∗ are advantages of the formula (7). The example of theHamiltonian
H in Sect. 3 shows that the conjugate H∗ is an extended-real-valued function and
discontinuous on the effective domain dom H∗. These properties of the conjugate H∗
are drawbacks of the formula (7).

6.4 Lipschitz Continuity of the Value Function

Assume that (H1)–(H4) and (HLC) hold with integrable functions c(·), kR(·),
H(·, 0, 0). Let g be a locally Lipschitz function. We consider the representation
(Rn+1, f , l) of H defined as in Theorem 4.1. Let M > 0 and

R := (
M + ‖c‖L1

)
exp

(‖c‖L1
)
, CM := (

DR + ‖ωR‖L1
)
exp

(‖ωR‖L1
)
,

where ωR[·] = 2|H(·, 0, 0)| + (10 (n + 1) kR(·) + 2c(·))(1+ R) and DR denotes the
Lipschitz constant of g on BR . Let us consider the following function

αM (t) := (1 + CM )

∫ t

0
ωR[s] ds for all t ∈ [0, T ].

Proposition 6.1 Consider (Rn+1, f , l) as above. Assume that g is a real-valued lower
semicontinuous function. If V is the value function associated with (Rn+1, f , l, g),
then V is a real-valued function on [0, T ] × R

n.

Proof Fix t0 ∈ [0, T ] and x0 ∈ R
n . We show that −∞ < V (t0, x0) < +∞. Observe

that the first inequality follows from (11). It remains to prove the second inequality.
Let ã(·) ≡ 0. Then there exists x̃(·) ∈ A([t0, T ],Rn) such that ˙̃x(t) = f (t, x̃(t), ã(t))
for a.e. t ∈ [t0, T ] and x(t0) = x0. In view of Theorem 4.1 (A2) and (HLC), we get
that
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l(t, x̃(t), ã(t)) ≤ 2|H(t, x̃(t), 0)| + 2c(t)(1 + |x̃(t)|) + 3|ã(t)|
≤ 2|H(t, 0, 0)| + 2k‖x̃‖(t) ‖x̃‖ + 2c(t)(1 + ‖x̃‖) =: μ(t)

for a.e. t ∈ [t0, T ]. Thus, V (t0, x0) ≤ g(x̃(T )) + ‖μ‖L1 < +∞. ��

Proof of Theorem 4.6 Fix t0, s0 ∈ [0, T ] and x0, y0 ∈ BM . Then, by Corollary 4.1
there exists the optimal arc (x̄, ā)(·) of V (t0, x0) defined on [t0, T ]. We extend ā(·)
from [t0, T ] to [0, T ] by setting ā(t) = 0 for t ∈ [0, t0]. Next, because of the sublinear
growth of f , we extend x̄(·) from [t0, T ] to [0, T ] such that (x̄, ā)(·) ∈ S f (t0, x0).
Now we choose y(·) defined on [0, T ] such that (y, ā)(·) ∈ S f (s0, y0). By Gronwall’s
Lemma, we get ‖x̄‖ ∨ ‖y‖ ≤ R,

‖x̄ − y‖ ≤
(
|x0 − y0| +

t0∨s0∫
t0∧s0

ωR[t] dt
)
exp

( T∫
0

ωR[t] dt
)
, (27)

T∫
t0∧s0

∣∣l[x̄](t) − l[y](t)∣∣ dt ≤ ‖x̄ − y‖
T∫

0

ωR[t] dt, (28)

where l[x](·) := l(·, x(·), ā(·)). To prove theorem, we consider two cases:
Case 1 Let t0 ≤ s0. By Theorem 4.1 (A2), we have l[x̄](t) ≥ −ωR[t] for all

t ∈ [0, T ]. The latter, together with (27) and (28), implies that

V (s0, y0)V (t0, x0) ≤ g(y(T )) +
T∫

s0

l[y](t) dt − g(x̄(T )) −
T∫

t0

l[x̄](t) dt

≤ |g(x̄(T )) − g(y(T ))| +
T∫

s0

∣∣l[x̄](t) − l[y](t)∣∣ dt −
s0∫

t0

l[x̄](t) dt

≤ ‖x̄ − y‖
(
DR +

T∫
0

ωR[t] dt
)

+
s0∫

t0

ωR[t] dt

≤ CM |x0 − y0| + (1 + CM )

s0∫
t0

ωR[t] dt

= CM |x0 − y0| + |αM (t0) − αM (s0)|.

Case 2 Let s0 ≤ t0. Then ā(t) = 0 for all t ∈ [s0, t0]. By Theorem 4.1 (A2), we
have l[x̄](t) ≤ ωR[t] + 3|ā(t)| for all t ∈ [0, T ]. The latter, together with (27) and
(28), implies that
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V (s0, y0) − V (t0, x0) ≤ g(y(T )) +
T∫

s0

l[y](t) dt − g(x̄(T )) −
T∫

t0

l[x̄](t) dt

≤ |g(x̄(T )) − g(y(T ))| +
t0∫

s0

l[x̄](t) t +
T∫

t0

∣∣l[x̄](t) − l[y](t)∣∣ dt

≤ ‖x̄ − y‖
(
DR +

T∫
0

ωR[t] dt
)

+
t0∫

s0

ωR[t] dt + 3

t0∫
s0

|ā(t)| dt

≤ CM |x0 − y0| + (1 + CM )

t0∫
s0

ωR[t] dt + 3

t0∫
s0

|ā(t)| dt

= CM |x0 − y0| + |αM (t0) − αM (s0)|.

In viewofCase 1 andCase 2,we conclude that the inequality (9) is true. If c(·), kR(·),
H are continuous, so is ωR(·). In this case, we show that V is Lipschitz continuous
on [0, T ] × BR . Because of (9), it suffices to note that |αM (t0) − αM (s0)| ≤ (1 +
CM )‖ωR‖|t0 − s0| for all t0, s0 ∈ [0, T ], x0, y0 ∈ BM . This completes the proof of
the theorem. ��

7 Conclusions

In the case of representations with a compact control set, we knew what type of reg-
ularity we should expect, because this kind of representations had been considered
by Frankowska–Sedrakyan and Rampazzo. Moreover, we found their broad applica-
tions in the monograph Bardi and Capuzzo-Dolcetta. However, in Theorem 4.1 the
case of regularities of representations with the unbounded control set is much more
complicated. Rampazzo-Sartori applied such representations in studies on regular-
ity of value functions. However, they assumed coercivity of the function l(t, x, ·).
Unfortunately, the function l(t, x, ·) from our faithful representation does not have
this property. Therefore, their proofs cannot be applied in our case. This problem
has been solved due to the extra-property and upper-boundedness of the function l.
Investigating applications of representations with the unbounded control set leads us
to the fundamental relation between variational and optimal control problems, see
Theorem 4.4. The correlation between variational and optimal control problems has
not been used earlier. For the first time, we have used this correlation in the proof
of Theorem 4.5. Significant differences between representations with compact and
unbounded control sets triggered us to write two distinct papers containing results
related to them.
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