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Abstract

The method of sliding modes (relaxation) was originally invented in optimal control
in order to give a transparent proof of the maximum principle (a first-order neces-
sary condition for a strong local minimum) using the local maximum principle (a
first-order necessary condition for a weak local minimum). In the present work, we
use this method to derive second-order necessary conditions for a strong local min-
imum on the base of such conditions for a weak local minimum. For simplicity, we
confine ourselves to the consideration of the Mayer problem with endpoint equality
and inequality constraints and control inequality constraints given by a finite number
of twice smooth functions. Assuming that the gradients of active control constraints
are linearly independent, we provide a rather short proof of second-order necessary
conditions for a strong local minimum.

Keywords Weak minimum - Strong minimum - Pontryagin minimum principle -
Critical cone - Quadratic form

Mathematics Subject Classification 49K 15

1 Introduction

The theory of second-order optimality conditions for different types of minima (strong,
weak and the so-called Pontryagin) in optimal control (OC) is well-developed. It
is associated with the names of Bonnans, Dmitruk, Frankowska, Hestenes, loffe,
Malanowski, Maurer, Milyutin, Osmolovskii, Warga, Zeidan, and many others. We
refer the interested reader to, e.g., [1-5] for historical comments and bibliographical
remarks. Rather complete and advanced results were obtained by the Moscow group
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headed by Milyutin, to which belongs the author of the present publication. The main
distinguishing feature of these results is that there is no gap between necessary and suf-
ficient conditions. The conditions have the character of sign definiteness of a quadratic
form (which, in simple cases, is the second variation of the Lagrange function) on the
so-called critical cone. The type of the minimum affects only the choice of Lagrange
multipliers involved in the conditions.

The necessary conditions, to which this work is devoted, were stated by the author
(together with the relevant sufficient conditions) back in 1978; see [1, Supplement to
Chapter VI, S2]. Later, much more general results were obtained in the author’s thesis
[6]. Second-order conditions in [6] were obtained for problems with regular mixed
state—control constraints, considered on a fixed or nonfixed time interval. Moreover,
conditions in [6] were obtained for various types of minimum, and they took into
account possible breaks of the first kind of the optimal control, if any. The necessary
conditions, contained in [6], together with their proofs, were published in [7]. (The
relevant sufficient conditions were published in [8].) But the proofs, presented in [7],
are complex and long due to the generality of the obtained results. Therefore, the
question of getting simpler proofs, let for partial results, is still pertinent. This we
suppose to do in the present work.

Recent years have been marked by renewed interest in second-order conditions in
OC. Some progress was due to the fact that an arbitrary compact set was considered as
a control constraint that was not specified using a finite number of smooth inequalities,
see, e.g., [3,9-11]. To work with such a control constraint, the authors used the tran-
sition from a control system to differential inclusion, and then applied the differential
calculus apparatus for multivalued mappings, developed by Aubin and Frankowska
in [12]. These ideas allowed us to obtain the necessary second-order condition for
a strong local minimum for a problem with an arbitrary compact control set and a
finite number of inequality-type endpoint constraints (see [10]), and then for a prob-
lem with a finite number of inequality-type state constraints, in the absence of any
qualification assumptions for constraints (see [11]). Moreover, the conditions in [10]
and [11] were obtained for an arbitrary measurable optimal control. Unfortunately,
the developed approach did not allow us to immediately include in the problem the
terminal constraints of the equality type.

A new interesting approach to obtain necessary conditions for a strong local min-
imum in OC has been proposed by Ioffe in [13]. First-order necessary conditions for
a strong local minimum in the form of the maximum principle (MP) were obtained in
[13] for an OC problem with state, control and endpoint constraints, for a system, con-
trolled by a differential inclusion, and under fairly general assumptions (in particular,
the endpoint constraint was specified by an arbitrary closed set). The idea of the proof
was completely based on the reduction in the original OC problem to a nonsmooth
problem of Bolza type with the subsequent application of the necessary conditions for
a strong local minimum in the latter.

This approach was further developed in [14], where conditions of both the first
and second order for a strong local minimum were obtained for an OC problem with
state constraints, Pontryagin standard dynamics, a control constraint U (¢) with closed
values, and a finite number of endpoint constraints. An important difference between
[11] and [14] was that in [14], an OC problem was considered, containing not only

@ Springer



Journal of Optimization Theory and Applications (2020) 185:1-16 3

endpoint constraints of the inequality type (as in [11]), but also endpoint constraints
of the equality type. Moreover, in the necessary second-order condition in [14], there
is a new quadratic term (the last term in inequality (21)), which is absent in traditional
second-order conditions. The presence of this term determines the essential novelty of
the necessary condition in [14], the effectiveness of which is confirmed by an example.
At the same time, note that for the problem, considered in the present paper, the
conditions from [14] (compared to the conditions of this paper) require an additional
regularity assumption, associated with the endpoint constraint of the equality type.

It is worth noting that in all the mentioned works, including the present one, the
idea of convexification of the right side of differential inclusion or differential equation
was used one way or another.

In the present work, although the control constraint is not an arbitrary closed or
compact set, we discuss second-order necessary conditions for a strong local minimum
in a problem with endpoint constraints of both equality and inequality type, in the
absence of any qualifying assumption for endpoint constraints, and again the reference
control is an arbitrary bounded measurable function. Therefore, the present work can
serve as a basis for further research.

As mentioned in the abstract, we use the sliding mode (relaxation) method to
prove the necessary second-order conditions for a strong local minimum, based on
the necessary second-order conditions for a weak local minimum. (A relatively short
proof of the latter was given in [15].) The key role in the transition from conditions
for a weak minimum to conditions for a strong one is played by the Dmitruk theorem
[16, Theorem 1].

The paper is organized as follows. The main results are presented in Sect. 2. In
particular, an OC problem is set in Sect. 2.1, the Lyusternik condition for the equality
constraints of the OC problem and the concepts of the weak and strong local minima
are recalled in Sect. 2.2, the second-order necessary conditions [15] for a weak local
minimum are discussed in Sect. 2.3, and the second-order necessary conditions for
a strong local minimum are formulated in Sect. 2.4 (see Theorem 2.2). Section 3 is
entirely devoted to the proof of Theorem 2.2, which is the main one in the paper.
Concluding remarks are given in Sect. 4.

2 First- and Second-Order Necessary Conditions in the Main Problem
2.1 Statement of the Main Problem

Denote by wbo, 11, ]Rd(x)) the Sobolev space of absolutely continuous func-
tions x : [0,1] — RYW with the norm [|x(-)||;.; = |x(0)| + fol |%(¢)|dz, and
by L°°([0, 1], ]Rd(”)), the space of measurable essentially bounded functions u :
[0,1] - R4® with the norm Ju(-)|lec = ess supyg, 1jlu(r)|, where | - | denotes
the Euclidean norm. Hereafter, by d(a), we denote the dimension of the vector a.
Define the space W := WL1([0, 1], R4®) x L®([0, 1], R¢™) with the norm of
w() = (x(),u(-)) € Wgiven by [[w()[| = [[x()Il1,1 + [[u(-)|loc. In the sequel, for
(x,u) e W, weset&y = x(0), & =x(1) and & = (&), &1).
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Consider the Mayer OC problem in the space W:

Minimize J(x,u) := Fy(x(0), x(1)), ey
Fi(x(0),x(1)) <0, i=1,...,k, K(x(0),x(1)) =0, (2)
x(t) = f(x(@),u®), u(@)eU ae.in [0,1], 3)

where
U={ueR®: gu) <0} 4)
The functions f : RY®) » RIW 5 RIX) g: RYW 5 R F; : R¥™ 5 R, =
0,...,k and K : IR29™) — RS are assumed to be twice continuously differentiable.

We also assume that at every point u € IR?™ such that g(u) = 0, the gradients g (),
i € I¢(u) are linearly independent, where

Iew)={iefl,...,r}: gi(u) =0}

is the set of active indices at u. We call (1)—(3) the main problem.

2.2 Lyusternik Condition, Weak and Strong Minima in the Main Problem

Define a nonlinear operator G : W — L!([0, 1], RY™)) x RS (which corresponds to
the equality-type constraints of the main problem) as follows:

G:w=(x,u) e Wi (f(x, ) — %, K(x(O),x(l))) e L1([0, 1], RY™) x R®.

This operator is continuously Fréchet differentiable, and its derivative at a point W =
(X, ) € W is a linear operator

G :w=(x,u)eWm (f/(ﬁ))w — X, K/(é)s) e L'([0, 1], RY™) x R*,

where £ = (£(0), £(1)), £ = (x(0), x(1)), w = (x, u).

Definition 2.1 Let a point w = (%, 1) € WV satisfy the equality constraints of the
main problem, i.e., G(w) = 0. We say that the Lyusternik condition holds at w, if the
operator G’ (W) is surjective.

Any trajectory-control pair (x,u) € W satisfying (2)—(3) is called admissible.
Recall that a weak local minimum is a local minimum over admissible pairs in the
space W. Further, an admissible (%, i) is called a strong local minimizer, if there
exists an & > 0 such that J(x, u) > J(X, i) for any admissible (x, u) € W such that
lx — X|lo < &. Obviously, any strong local minimizer is a weak local minimizer.

@ Springer



Journal of Optimization Theory and Applications (2020) 185:1-16 5

2.3 Second-Order Necessary Conditions for a Weak Local Minimum in the Main
Problem

The Pontryagin (Hamiltonian) function and the terminal Lagrange function are
defined, respectively, by

k
H(x,u, p) = pf(x,u), 1¢E o B) =) aiFi,&)+BK &, &),

i=0

where p = (p1, ..., paw))s @ = (o, ..., o), and B = (B, ..., By) are considered
as row vectors. The augmented Pontryagin (Hamiltonian) function has the form:

H(x,u, p, ) = H(x,u, p) + pgu),

where u = (1, ..., (,) iS a row vector.
Let (X, &) be an admissible pair. Denote by A the set of all tuples A = («, 8, p, i)
such that

a e RF1 BeRS, pewh®(o,1], R/™), ne L>®(0,1],R"),
a>0, |af+[Bl=1 un=0,

o Fi(x(0), (1) =0, i=1,....k, ug@) =0,

—-p= pfx()e,ﬁ) & —p=H,, .

—p0) =lgE o, p), p() =1 E, o, B),

pfu(x,0) +npg' @) =0 < H,=0.

If (%, &) is a weak local minimum, then the set A is nonempty. This is the well-
known first-order necessary condition for a weak local minimum. Since the gradients
g; of active control constraints are linearly independent, each A € A is uniquely defined
by its components «, . It follows that the equality || 4 | 8] = 1 is the normalization
condition, and the set A does not contain a zero element. Moreover, it follows that A
is a finite-dimensional compact set.

For the point w = (X, ), define the critical cone C as the set of all pairs w =
(x, u) € W such that

F/(§)e <0, ielpuf0), K'()e=0, where &= (x(0),x(1)),
i=f'w, g@@)u@) <0 ae.on My, i=1,...,5s,

where Mo ={r € [0,1]: gi(@u(t)) =0}, i =1,...,s.
Forany A € A and w = (x, u) € W, we set

1 —_
Qw, 1) = (e . . PIE. ) +fO (Fw (i, p. 0w, w)dt,

where (Hypw, w) = (Hyxx, x) + 2(Hequ, x) + (Hyuu, u), and let
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Qa(w) = sup Q(w, A). (5)
rEA
Here and in the sequel, supy(-) = —oc. Note that the supremum in (5) is attained. A

direct proof of the following result can be found in [15].

Theorem 2.1 If w = (X, 1) is a weak local minimum, then the set A is nonempty and
Qa(w) >0 VweC. (6)

Here, (6) is a second-order necessary condition for a weak local minimum.

If the Lyusternik condition does not hold at w, then, it can be easily proved (see,
e.g., [15]) that there exist p € W>°([0, 1], R™)) and 8 € R® with || = 1 such
that

—p=pfe(@), pfu@) =0, —p0)=pKeE), p(l)=pKeE).

Seta =0, u=0, A=(0,8,p,0). Then, obviously L € A and —A € A. This
implies the following lemma.

Lemma 2.1 [f the Lyusternik condition does not hold at W, then
A#0D and Qp(w) >0 YweW.

This simple lemma is an important complement to Theorem 2.1. We emphasize that
if the Lyusternik condition does not hold, then the inequality 2 (w) > 0 holds for all
w € W, but not only for w € C.

The idea of the proof of Theorem 2.1 in [15] is simple. Thanks to Lemma 2.1, we can
assume that the Lyusternik condition holds at the point w of the weak local minimum.
Under this assumption, we consider the system of second-order approximations for
the cost and constraints and, using the Lyusternik theorem, we prove that this system
has an empty intersection. Then, we apply the separation theorem to this system.

Note that the necessary conditions for a weak local minimum in OC do not play
such a dominant role, as in the calculus of variations, which is largely a theory of the
weak local minimum. One of the reasons is that, in OC, we are dealing with a constraint
of the form: u € U, which does not always allow us to use control variations that are
small in absolute value. Say, if U consists of a finite number of elements, then such
variations simply do not exist. Therefore, when studying the weak local minimum in
OC, it is necessary to restrict ourselves to some special classes of sets U. For a long
time, such a unique class was the class of sets represented in form (4). In the recent
studies, this class has been significantly expanded. For example, results [9—-11] can
also be effectively applied if U is a cross, a star, etc.

The necessary conditions for a weak local minimum in OC should be considered
rather as the first step in the analysis of the conditions for a strong minimum. This is
precisely the role of Theorem 2.1. It is worth noting that the necessary condition (6)
for a weak local minimum, contained in this theorem, cannot be regarded as complete
and final, since its natural strengthening does not turn it into a sufficient condition
for a weak local minimum; see [15] for details. However, it is the condition (6) (the
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wording of which is relatively simple) that is fundamental, when moving to a strong
minimum. This ‘incomplete condition’ already leads to the desired result.

2.4 Second-Order Necessary Conditions for a Strong Local Minimum in the Main
Problem

In Sect. 3, using Theorem 2.1, we will get a necessary second-order condition for
a strong local minimum. We will use the same way of the proof as in [7, Chapter
4, Section 4.4]. (This approach was proposed by A.A. Milyutin in the 1980s.) The
theorem, which we want to prove, is as follows:

Denote by M the set of all A = («, B, p, ) € A such that the minimum condition
holds at the point u:

H(x(t),u, p(t)) > H(X(t), u(t), p(t)) Vu € U, foraa.r € [0, 1]. (7

Set
Qup(w) = sup QL(w, A). (8)
reM
The condition M # @ is equivalent to the Pontryagin minimum principle, which is a
necessary first-order condition for a strong local minimum. Note that M is a finite-
dimensional compact set, and the supremum in (8) is attained.

Theorem 2.2 If (x, i) is a strong local minimum, then the set M is nonempty and
Quw) >0 YweC. ©

A much more refined result for the more general OC problem was obtained in [7,
Theorem 4.10], but, as earlier remarked, the proofs in [7] are long and complicated.
Our aim now is to give a relatively simple proof of Theorem 2.2, based on Theorem
2.1 and using the so-called sliding mode (relaxation) method.

3 Proof of the Main Result
3.1 Refinement of Theorem 2.1

The following concept will be used to prove the main result.

We say that a weak s-necessity [1] holds at an admissible point w = (X, 1) of the
main problem, if there is no sequence of admissible points w” = (x", u"),n = 1,2, ...
such that for all n

Fo(x"(0), x" (1)) < Fo(£(0), x(1)), (10)
Fi(x"(0), x"(1) <0, i=1,....k (11)
esssup,¢po. 18" (@) <0, j=1,....s, (12)

and ||[w" — w| — 0asn — oco.
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Clearly, the weak local minimum implies the weak s-necessity.
A direct proof of the following result can be found in [15].

Theorem 3.1 If w = (X, i) is a point of weak s-necessity or the Lyusternik condition
does not hold at W, then the set A is nonempty and condition (6) holds.

Theorem 3.1 immediately implies Theorem 2.1. Theorem 3.1 is an important refine-
ment of Theorem 2.1. We will use this refinement in the proof of the main result.

Unfortunately, in [15], Theorem 3.1 has not been formulated. Instead of this, The-
orem 2.1 was formulated and proved as the main result. But from this proof, given in
[15, Section 3], it easily follows that Theorem 3.1 also holds (see the proof of Lemma
3 in [15]).

3.2 Associated Problem, Sliding Modes

We shall use the following notation
A= {a = @'(),...,u™()) : N> lisanintegerand u'(-) e U }
where U is the set of admissible controls that is
U= {u() e L0, 1], RY™) : u(t) € Uae.in[0,1]}.

Leta = (u!,...,u") € A. Along with the main problem, consider the so-called
associated (or relaxed) problem, defined by (1), (2) and the relations

N
50 = fE@,u@) + YV O(FEr@, 0 @) = @, @), (13)

i=1

N

Vi) =0, i=1....N, Y v (<1 aein [0,1], (14)
i=1

gu() <0, ae.in [0, 1], (15)

where u € L([0, 1], R®™) vi € L>°([0, 1], R),i = 1, ..., N.Inthe new problem,
the control is the tuple (u, ol .ol ), and x is the state variable.

Let us check the linear independence of the gradients of active inequality control
constraints in the associated problem. As will be seen later, the constraint ZIN=1 vi <1
will always be inactive at the reference point, and therefore, when studying the weak
minimum, it can be ignored. So, we consider only the constraints

gw) <0, vl=0 ... V>0
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The gradients of these constraints at the point (i, vl ..ol ), considered as row
vectors, are of the form
(g, 0, , 0)
(0 1 ....0) 6
(0, 0,..., 1),
respectively. Take any reals ', ..., n¥ and a vector € R?®™ . Suppose that the

vector p has zero all components w; that correspond to inactive constraints, i.e., the
complimentary slackness conditions w;g;(#) = 0 hold for all i. Suppose that the
combination of gradients (16) with some coefficients p, 771, e nN is equal to zero.
Then, obviously we get: n' = ... =" =0, and ug’(u) = 0. The latter implies that
n = 0, since the gradients of active control constraints are linearly independent in
the main problem. It means that the gradients of active control constraints are linearly
independent in the associated problem as well.

Note that the associated problem (1), (2), (13)—(15) has the same type as the main
problem (1)—(3). It is considered in the space

Z = WhI([0, 17, RY®) x L2([0, 1], RY®) x (L2([0, 1], R))"

1

with elements z = (x, u, v, ..., v") and the norm

N
Izl = lxl1 + lulloo + Y 10 lloo-

i=1

The local minimum in this norm is a weak local minimum in the associated problem.
Letw = (x, &) € WV be an admissible point in the main problem. For this point, we
define an admissible point 7 in the associated problem such that x = %, u =4, v' =
-=vN =0, thatis Z = (£, 4,0, ...,0). The weak s-necessity at the point Z in

the associated problem means that there is no sequence z, = (X, U, v}, ..., v),
n=1,2,...,such that for all n
Fo(&,) < Fo§), Fi() <0, i=1,....k, K(&) =0, (17)
N . .
S = F o ttn) + D vl (£ ot = f iy 1) ), (1)
i=1
esssupp 1 (—vp) <0, i=1,....N, (19)
N .
ess SuP[o,l](Z vy, — l) <0, (20)
i=1
ess sup[oyl]g(un) <0, 21)
lxn — Xlloo = 0, lup — il = O, (22)
[V o =0, i=1,...,N, (23)

where &, = (x,(0), x,(1)), & = (£(0), £(1)).
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The following important lemma will be proved in this section.

Lemma 3.1 [f there exists a € A such that Z is not a point of weak s-necessity in the
associated problem and the Lyusternik condition holds at this point in the associated
problem, then W is not a strong local minimum in the main problem.

The proof of this lemma will be based on the theorem of Dmitruk; see [16, Theorem
3]. Below, we give this theorem in a simplified version, convenient for application in
our case.

Theorem3.2 Leta = (u', ..., u") € A. Suppose that the Lyusternik condition holds
atapoint7 = (%,ii, 0", ..., 0N), satisfying the equality constraints of the associated
problem and such that

N
esssup[o,l](—ﬁi(t)) <0, i=1,...,N, esssupZﬁi(t) < 1.
i=1

N _ . .
s Uy ), 0= 1,2, .. satisfying
the equality constraints of the associated problem and such that

Then, there is a sequence of points z, = (x,,, Uy, vl

@) llxn — Xlloo = 0 asn — oo,
(1) luy —ttlloc —> 0 asn — oo,
(iil) each difference v;, — V' converges weakly* to zero in L™ (i.e., L'-weakly) as
n—>oo, i=1,...,N,and
(iv) each function v), takes only two values, zero or one, and the same is true for each
N
sum S0 v,

(To get Theorem 3.2 fro_m [16, Theorem 3] for some a = (4',...,a") € A, we
needtoput g(x,u',t) =u' —a',i =1, ..., N in the definition of ‘extended system’
(4)—(7) in [16], and after that apply [16, Theorem 3] to this particular system.)

Proof of Lemma 3.1 Note that we will not use assertion (iii) of Theorem 3.2 in the proof
of Lemma 3.1, while assertion (iv) of this theorem will be very important. By the defi-
nition of the weak s-necessity, there is a sequence of points z, = (X, u,, v,i, el v,llV ),
satisfying conditions (17)-(23). Without loss of generality, we assume that the
Lyusternik condition holds at each point z,,, since it always holds on an open set, and
lzw — Zll = 0as n — oo. According to Theorem 3.2, each point z,, can be “approx-
imated” by a point z,, = (X, Uy, ﬁ,ll, R 17,]:’) such that the norms ||X,, — x,||co and
i, — uy]l0o are so small that

(a) Conditions

Fo&) < Fo(6), Fi(&,) <0, i=1,....k, (24)
esssupg 118 (Un) <0 (25)

hold foralln =1,2,...,
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(b) The equality constraints of the associated problem are satisfied:

N
KE) =0, %= fGuiin) + Y05 (fEntt) = [Goniin))  (26)

i=1

foralln=1,2,...,

(c¢) Each function ﬁ,ﬁ takes only two values, zero orone, i = 1, ..., N, and the same
is true for each sum ZlNzl i

(d) IXp — Xlloc = Oasn — oo.

Set
N
W, =ity + Y Uy —iy), n=12...
i=1
Then, in view of condition (c),

N
f G i) + D T Grst) = [ G ) = [ G ), m= 1,2,

i=1

and hence ‘
Y= fGnity), n=12.... Q27

Moreover, in view of (c), conditions (25) imply
esssupyy 18(,) <0, n=1,2,.... (28)

Conditions (24), (26), (27), (28) together with condition (d) mean that the sequence
111;, = (X, ﬁ;,), n = 1,2, ... violates the strong local minimum at 1 in the main
problem. The lemma is proved. O

3.3 Second-Order Necessary Conditions for a Weak Local Minimum in the
Associated Problem

Let w = (&x,4) be a strong local minimum in the main problem and a =
', ..., u") e A Inthe sequel, it will be convenient to supply the objects related to
the associated problem with the superscript a. It follows from Lemma 3.1 that either
Z = (x,u,0,...,0) is a point of a weak s-necessity in the associated problem, or
the Lyusternik condition does not hold at this point in the associated problem. Then,
applying Theorem 3.1 to the associated problem, we obtain the following result.

Lemma 3.2 Suppose that w = (x, i) is a strong local minimum in the main problem.

Then, foranya = (u', ..., uN) € A, the following second-order necessary condition
is satisfied at the point 7 = (x, 1,0, ..., 0) in the associated problem; the set A? is
nonempty and

Jmax, Q% z, A% >0 VzeC“ (29)
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Let us describe the set A%, the functional 2%(z, A?), and the critical cone C* at the
point Z in the associated problem.

3.3.1 Set \?

Define the functions

& o, ) =Yg i Fi€o, §1) + BK (60, §1) = 15, @, B),
Heu, ', 0N, x, p) o= pf (n,w) + 200 v p(f (e, u) = f(x, ),
H“(u,vl,...,vN,x,p,M,nl,...,nN,g) = H“(u,vl,...,vN,x,p)

=Y i+ §(ZiN=1 v — 1) + ugu).

Whereas o' = 0,7 = 1,..., N, the set A? at the point Z in the associated problem
consists of all tuples A? := (e, B, p, i, ', ..., 0™V, ¢) such that
a e R BeRY, pewh™(o, 1], RI™), (30)
w e L*(0,1],R"), 3D
ni € L*(0,1,R), i=1,...,N, ¢ eL*(0,1],R), (32)
a>0, la|+[8l=1, n=0, 33)
>0, i=1,...,N, >0, (34)
a; F;(x(0),x(1)) =0, i=1,...,k, (35)
pg(@) =0, (36)
N
g(Zﬁf—l)zo, (37)
i=1
—p=pfi(x,i) & —p=H, (38)
—p0) =lg, p) =1, (39)
Pl ) +pug' @ =0 & Hi =0, (40)

pfEu) — fER.)—n'+¢=0 & H =0, i=1_...,N. (4])

Let us analyze these conditions. Complementarity condition (37) and the conditions
p! = ... = oV = 0 imply ¢ = 0. Then, taking into account that all 5’ > 0, from
conditions (41), we obtain

pfG,u') > pf(x, i), i=1,...,N. (42)

Thus, » = («, B, p, 1) is a tuple from A, satisfying conditions (42). Moreover, it
follows from (41) that

0= pf&, u)—pfx, i), i=1,...,N. (43)
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Conversely, if A = («, B, p, u) is an arbitrary element of A satisfying con-
ditions (42), then setting ¢ = 0, and defining n’ by (43), we get the element
A= ((x,,B,p,pL,nl,...,nN,g) e A4,

Denote by M? the set of all A = («, B, p, ) € A satisfying conditions (42). We
have proved the following lemma.

Lemma 3.3 The set A? consists of all tuples A”_:: (o, B, p, 1, 171, e, nN, Z) such
that A = («, B, p, u) € M4, the components n' are determined by conditions (43),
and ¢ = 0.

3.3.2 Critical Cone C?

Fora € A and the corresponding point Z, let us describe the critical cone C“ at the point
Z in the associated problem. First, we write the equation in variations for differential

Eq. (13) at Z. Since 0! = - .- = OV =0, we get
N . .
f= flhix 4 fulin+ Y0 (FGaD) - fGD). @)
i=1

We also must take into account that the constraint ZlN: 1 v/ — 1 < 0 is not active
at the point z. Hence, C* consists of all tuples z = (x, u, vl vN) such that
x € Wheo([o, 11, R4™), u e L*°([0, 1], R¢™), vi e L*®([0, 1], R), v/ > 0,
i=1,...,N,Eq. (44) holds, and

F{(£(0), (1)) =0, i € I U{0}, K'(£(0),X(1))§ =0, & = (x(0), x(1)),

g;-(ﬁ(t))u(t) <0ae.onMjy, j=1,...,r.

Let C4 be the subset of tuples z = (x, u, v!, ..., vV) € C¢suchthatv! = 0,..., vV =
0. The following lemma is obvious.

Lemma 3.4 The projection

Lo w=(x,u0 (45)

z=(x,u,v
maps the cone C{j onto the critical cone C.

3.3.3 Quadratic Form Q7

It can be easily verified that for any A € A“ and any z,

Q2,2 = (ee €, 0, BIE,E) + [y (Hun (b, p, yw, w)dt
+2fy (X v p((h o) = fiGix = ful. i) ),

where w = (x, u), £ = (x(0), x(1)), and then the following lemma becomes obvious.
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Lemma 3.5 If an element z satisfies vl =0,...,vY =0, then
Q% z, 1) = Q(w, 1),

where A is the projection of \* under the mapping

A=, B py st N ) = A= (B, py 1)

and w is the projection of z under the mapping (45).

Let us return to Lemma 3.2. Since Cg C C%, we can replace the critical cone C¢
in condition (29) with the smaller cone Cf, and with this change, Lemma 3.2 remains
valid. From here, taking into account Lemmas 3.3-3.5, we obtain the following result.

Theorem 3.3 [f w = (x, i) is a strong local minimum in the main problem, then, for
anya € A, the following second-order necessary condition holds in the main problem:
the set M* is nonempty and

max Q(w,X) >0 VweC . (46)
reMa

Now, we can derive Theorem 2.2 from Theorem 3.3. This will be done in the next
section.

3.4 Proof of Theorem 2.2

Assume that w = (X, ) is a strong local minimum in the main problem. Then, by
Theorem 3.3, for any a € A, the set M¢ is nonempty and condition (46) holds true.
The set A is directed by the inclusion: a is followed by a’ if the set of controls of a’
contains the set of controls of a; in this case, we write a C a’; moreover, each two
collections aj, ay are followed by the third a3, whose set of controls is the union of
the sets of controls of a; and a5.

Now, consider the family of sets {M“},c 4. This family is directed by the inverse
inclusion: ifa C a’,then M® > M @ For any two collections a; and @, and a collection
asz such that a; C a3z and ap C a3z, we have M* N M* > M%. Clearly, each of the
sets M? is closed. Thus, {M%},¢c 4 is a centered family of nonempty closed subsets of
the finite-dimensional compact set A, and hence the intersection

MozzﬂM“

acA
is nonempty. Since M® C M for any a € A, it follows from (42) that for any

A= (. B, p,w) € MY and any u(-) € L>®([0, 1], RY®) satisfying the control
constraint u(t) € U a.e. in [0, 1], we have

p@) f(X(@),u(®) = p@) f(xX(), a()) ae.in [0, 1].
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By the measurable selection theorem this implies the minimum condition (7) for the
given A. Consequently, M® C M. The opposite inclusion is obvious. Hence, M* = M.
Let w € C be an arbitrary element. By virtue of Theorem 3.3, taking into account
the compactness of M? Va € A, we get: forany a € A, there is an element A(a) € M?

such that
Q(w, AMa)) > 0. 47)

Let A be a limit point for the directedness {A(a)}. Since A(a) € M? Va € A, we
obtain: L € M“ Va € A, and hence A € M. Passing to the limit in condition (47),
we get: Q(w, L) > 0, and hence condition (9) of Theorem 2.2 holds. Theorem 2.2 is
completely proved.

4 Conclusions

In this paper, we consider an optimal control problem in the Mayer form, with endpoint
constraints of equality and inequality type and a control constraint, specified by a finite
number of inequalities. We assume that all data are twice smooth and that the gradients
of active control constraints are linearly independent at any point satisfying these
constraints. We prove the necessary second-order condition for a strong local minimum
for an arbitrary measurable and essentially bounded optimal control. No qualifying
assumption is made regarding the control system and endpoint constraints. The proof
method uses the transition from the main problem to the so-called associated problem,
generated by a finite number of admissible controls. Using Dmitruk’s theorem, we
show that for each finite collection of admissible controls, the strong local minimum
in the main problem implies the necessary second-order condition for a weak local
minimum in the associated problem. Then, analyzing the last conditions, we obtain
the desired result.

The question arises: is it possible to prove a similar result for the case of control
constraint given by an arbitrary compact set, using the first- and second-order tangents
to this set and without using any qualification assumptions regarding the control system
and endpoint constraints?
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