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Abstract
The paper presents a transformation of a multi-stage optimal control model with
random switching time to an age-structured optimal control model. Following the
mathematical transformation, the advantages of the present approach, as compared to
a standard backward approach, are discussed. They relate in particular to a compact
and unified representation of the two stages of the model: the applicability of well-
known numerical solution methods and the illustration of state and control dynamics.
The paper closes with a simple example on a macroeconomic shock, illustrating the
workings and advantages of the approach.

Keywords Optimal control theory · Age-structured optimal control theory ·
Multi-stage · Random switch · Catastrophic disaster
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1 Introduction

Optimal control models with a variable time horizon continue to be the object of
intensive research interest from both a theoretical and an applied point of view. Con-
tributions can, in principle, be subdivided into two classes: (i) optimal control models
with random time horizon and (ii) multi-stage optimal control models.
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Class (i) comprises optimal control models that are deterministic in their state
variables but stochastic in the time horizon. The decision maker is assumed to know
the distribution of the terminal time (which is a random variable) and can thus derive
the expected objective function. Once the random variable is realized, the optimal
control model terminates and the decision maker obtains some salvage value, possibly
depending on the final state and the terminal time. Class (ii) comprises optimal control
models with a change in the dynamics and/or in the objective function at a certain
switching time. In this stream of the literature, the deterministic switching time is
endogenously determined by the decision maker.

While both model classes have been developed and applied extensively (see liter-
ature review in [1]), there are but a few examples, where they have been combined
(see, e.g., [2–6]), although this seems a necessity, when analyzing settings in which a
random transition induces drastic changes in the objective function or the constraints
of an optimal control problem (examples given further on below). One reason is that,
while such models can be formulated as optimal control models with a random time
horizon, they are difficult to solve. For many applications, even a numerical treatment
is computationally involved to the point of intractability, as the solution up to the
switching time includes an explicit expression of the post-switching value function in
terms of the state variables and time.

In this contribution, we consider a general model that changes the dynamics and/or
the objective function at a random switching time, characterized by a known distri-
bution depending on the state and the control variables. This implies that the model
belongs both to class (i) because of the random termination of the first stage, and to
class (ii) because of the assumed change in the dynamics and/or objective in the sec-
ond stage. We then propose a transformation to a deterministic age-structured optimal
control model that allows one to arrive at a convenient and complete presentation of
the solution to the original problem. Specifically, the reformulation has the following
advantages (for a deeper discussion, we refer to the end of Sect. 2):

(1.) Numerical solution Considering the model as an age-structured optimal control
model, a complete numerical solution can be found with well-established methods
(see, e.g., [7]).

(2.) Analytical insights If the model is treated as an optimal control model with random
time horizon, the solution only describes the stage before the switch. All informa-
tion concerning stage 2 is implicitly included in the post-switch value function.
By treating both stages simultaneously, the new approach allows one to represent
the model and its solution in a unified form that expresses explicitly the links
between the two stages, and to characterize in a convenient and intuitive way the
mechanisms behind the optimal dynamics of the controls and states.

The idea of this reformulation has been briefly suggested in [8] (section 3.5, p. 232),
but has not been presented in a formal and exhaustive way. As part of this contribution,
we develop the advantages of this method as compared to the classical formulation as
an optimal control model with a random time horizon.

Applications of such models are plentiful. In “Appendix,” we sketch three types of
setting relating to innovation, to natural disaster and climate change, and to political
shocks. Further applications include the analysis of shock-like (health) events over
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the individual life-cycle (see [6] on the random transition into addiction) and security
crises due to, e.g., terror attacks.

The following provides a brief overview of the literature that forms the foundation
of our approach. The literature on optimal control models with a stochastic terminal
time started with the seminal papers by Yaari [9] (life-cycle model) and Kamien and
Schwartz [10] (machine replacement and maintenance model). The theoretical basis
for optimal control models with random stopping time has been provided in [11–
14]. In these papers, it is shown that the stochastic optimal control problems can be
reformulated as deterministic optimal control problems with infinite time horizon.
This approach is the starting point of our paper (see Sect. 2).

In multi-stage optimal control models, the time horizon consists of two (or more)
stages with different model dynamics and/or objective functions. The switching time
is a decision variable, possibly subject to switching costs. The theoretical basis for this
literature has been provided in [15–17]. We present a transformation of a multi-stage
optimal control model with a random switching time to an age-structured optimal
control model. Early models of the latter class dealt with optimal harvesting from
age-structured populations (e.g., [18–20]). The Maximum Principles in these papers,
however, were specific to the problems. A general version of the Maximum Principle
for age-structured optimal control models was first provided by Brokate [21], with
[8,22–24] adding further generalizations.

The remainder of the paper is structured as follows. Section 2 presents themodel and
its transformation, first to a deterministic optimal control model and subsequently to
a deterministic age-structured optimal control model. Section 3 illustrates the method
by way of an application to an example relating to the prevention of catastrophic
macroeconomic disasters. Conclusions are given in Sect. 4.

2 Model Setting and Transformation

In this section, we first present the model and the deterministic representation derived
in [11] and then continue with the transformation to an optimal control model with
age structure.

2.1 TheModel and its Reformulation as a Deterministic Optimal Control Model

Let us assume that the time horizon is separated by the switching time τ into two
stages, subsequently referred to as stages 1 and 2. Here, τ is a random variable out of
the sample space � = [0,∞[. The probability space is then denoted by (�,�,P),
with � denoting the Borel σ -Algebra on �, and F(t) (with corresponding density
F ′(t)) denoting the cumulative probability that the model has switched by time t , i.e.,
F(t) = P(τ ≤ t). The switching rate, which is assumed to depend continuously on
the state and control variables, can then be defined as

η(x(t), u(t), t) = F ′(t)
1 − F(t)

, (1)
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where η : Rn ×R
m ×R → R is a continuous function in the state variable x(t) ∈ R

n ,
the control variable u(t) ∈ R

m and t .
The dynamics of the model (separated into stages 1 and 2 by the random variable

τ ) is defined by the following system of ordinary differential equations

ẋ(t) := dx(t)

dt
=

{
f1(x(t), u(t), t) for t < τ,

f2(x(t), u(t), t, x(τ ), τ ) for t ≥ τ,

x(t0) = xt0 , x(τ ) = lim
t↗τ

ϕ(x(t), t). (2)

Here, f1 : R
n × R

m × R → R
n and f2 : R

n × R
m × R × R

n × R → R
n are

assumed to be piecewise continuous in x , u and t ; and ϕ : Rn × R → R
n is assumed

to be piecewise continuous in x and t . We understand (u(·), x(·)) to be admissible if
the measurable control function u(·) and the absolutely continuous state function x(·)
solve the dynamic system (2) uniquely.

Let g1 : Rn ×R
m ×R → R and g2 : Rn ×R

m ×R×R
m ×R → R be continuous

in x , u and t with continuous ∂gi (·)/∂x . Then, the objective functional is defined by

g(x(t), u(t), t) =
{
g1(x(t), u(t), t) for t < τ,

g2(x(t), u(t), t, x(τ ), τ ) for t ≥ τ.
(3)

Given a discount rate ρ, the decision maker aims at maximizing

E

[∫ τ

t0
e−ρt g1(x(t), u(t), t) dt + e−ρτV ∗(x(τ ), τ )

]
(4)

with respect to u(t) subject to the dynamic system (2) and the intensity rate of the
switch (1). The decision maker anticipates optimal behavior in the second stage,1

which is reflected in the optimal value of stage 2 as defined by

V ∗(x(τ ), τ ) := max
u(·) V (x(τ ), u(·), τ )

= max
u(·)

∫ ∞

τ

e−ρ(t−τ)g2(x(t), u(t), t, x(τ ), τ )dt . (5)

Here, the function V (·) denotes the value of stage 2 for any admissible path of the
control u(·) on [τ,∞[. The asterisk refers to optimal/optimized values, i.e., to the
value function of the stage 2 optimal control problem.

Note that the statement of the stage 1 objective function in (4) is analogous to the
objective function in [11] (equation (4)). The only difference is that in [11] the decision
maker faces an exogenous salvage value function at τ , whereas in our case the model
changes and the decision maker faces a different optimal control model.

1 By assuming perfect rationality, we follow the extant literature in economics and management. Assuming
biased expectations would not change our approach in qualitative terms.
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Assuming limt→∞ V(t)z1(t) = 0 with

V(t) =
∫ t

t0
e−ρt ′g1(x(t

′), u(t ′), t ′)dt ′ (6)

z1(t) = e
∫ t
t0

−η(x(t ′),u(t ′),t ′)dt ′
, (7)

and considering the value of stage 2 as a function for which V ∗(x(τ ), τ ) < ∞ holds,2

we can apply the reformulation into a deterministic optimal control model with infinite
time horizon presented in [11] and obtain

maxu(t)

∫ ∞

t0
e−ρt z1(t)

[
g1(x(t), u(t), t) + η(x(t), u(t), t)V ∗(x(t), t)

]
dt

s.t. ẋ(t) = f1(x(t), u(t), t), x(t0) = xt0 ,

ż1(t) = −η(x(t), u(t), t)z1(t), z1(t0) = 1, (8)

with

V ∗(x(t), t) = max
u(s)

∫ ∞

t
e−ρ(s−t)g2(x(s), u(s), s, x(t), t)ds

s.t. ẋ(s) = f2(x(s), u(s), s, x(t), t), x(t) = lim
t ′↗t

ϕ(x(t ′)), (9)

and with z1(t) being an auxiliary state variable. The interpretation is similar to a
survival probability, i.e., z1(t) is the probability that the switch has not occurred in the
interval [t0, t[. It enters the objective function (8) similar to a discount rate, reflecting
the decision maker’s anticipation that a switch will occur at some point over the course
of time. The value of the second stage is includedwith the rate η(x(t), u(t), t) at which
the switch arrives at t and changes the model to stage 2 with the corresponding initial
conditions.

Note that in (9) we slightly abuse the notation in the sense that V ∗ only depends on
x(t) and t , although the initial condition for stage 2 is defined by evaluating ϕ in the
limit (from the left) of x(t) during stage 1. Here, ϕ can be understood as a function
that transforms the state from stage 1 to stage 2, embracing in particular the scope for
a jump. Consider, e.g., a state that measures the stock of infrastructure and a natural
disaster occurring at τ . Then limt ′↗t ϕ(x(t ′)) describes the infrastructure that has not
been destroyed at τ .

Note that stage 2 of the above model explicitly depends on the state variable at the
switching time. This can be an important feature of certain models, as is demonstrated
in the example we consider in Sect. 3. Considering stage 2 alone, the dependence on
x(τ ) shifts the trajectories of the canonical system similar to the explicit dependence on
t within a non-autonomous optimal problem. Even for an autonomous optimal control
problem it is not possible then to derive a (single) phase diagram of the canonical
system that is valid for all states and switching times.

2 Note that the conditions on g2(·) and f2(·) imply that the value function V ∗(·) is continuously differen-
tiable in x (see [25]).
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The optimal control models (8) and (9) can be solved with classical optimal control
theory (see, e.g., [25]). The problem of the second stage is straightforward, if the state
variable of stage 1 is given. However, a solution of stage 1 requires the value function
of stage 2 to be expressed as a function of the state and time. This is a difficult task,
even numerically. Since the optimal control model is generally non-autonomous, the
value function cannot be expressed as the Hamiltonian divided by the discount rate for
all possible switching times (see Proposition 3.75 in [25]). Even if the optimal control
model is autonomous, the phase diagram, and thus the Hamiltonian of the model,
switch when the objective functional and/or the state dynamics depend on the state at
the switching time, as generally they may do. In Sect. 3, we present an example that
exhibits this second property.

In order to address these difficulties,wepresent in the next subsection a further trans-
formation of the model, allowing its representation as a deterministic age-structured
optimal control model. This has two advantages. First, the model can be solved numer-
ically with established methods (see [7]). Second, the age-structured optimal control
representation allows a simultaneous solution of both stages. The result will represent
the optimal behavior for any possible switching time and, therefore, afford a broader
understanding and additional insights into the solution.

2.2 Transformation to an Age-Structured Optimal Control Model

For expositional clarity, let us first change the notation of the state and the control
variable in stage 2. Fromnowon,we use v(t, τ ) (y(t, τ )) for the control (state) variable
at time t if the switch happened at τ . Note that the dependence on τ is important here,
as it governs the value of the control and the state. Given a switch at τ , the state
dynamics during stage 2 reads

dy(t, τ )

dt
= f2(y(t, τ ), v(t, τ ), t, x(τ ), τ ), t ≥ τ,

y(τ, τ ) = ϕ(x(τ ), τ ). (10)

Redefining the state in the second stage accordingly for every possible switching
instant, i.e., ∀τ ≥ 0, and again abusing notation with respect to the initial condition
for the state, one obtains a state variable y(·), which is age-structured.

Remark on notation The literature on age-structured optimal control models fre-
quently denotes by (t, a) the time arguments (t as time, a as age) of the (control and
state) variables. Defining s = t−a, this notation is equivalent to the (t, s) notation we
employ, where an explicit statement of the switching time s provides a clearer descrip-
tion in our context. For instance, every characteristic line of the optimal control model
is then indicated by (·, s), the switching time s being a more direct marker.

For the transformation of the general problem, defined in (8) and (9), to an age-
structured optimal control model, we first have to transform the objective function.
The following lemma presents the resulting objective function, accounting for time t
and switching time s, as is defined in (10).
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Lemma 2.1 For every admissible path of the control variables u(t) and v(t, s) and
corresponding state trajectories, the objective function (4) of the general model can
be transformed into

E

[∫ τ

t0
e−ρt g1(x(t), u(t), t) dt + e−ρτV (x(τ ), v(·), τ )

]

=
∫ ∞

t0
e−ρt

[
z1(t)g1(x(t), u(t), t)

+
∫ t

t0
z1(s)η(x(s), u(s), s)g2(y(t, s), v(t, s), t, x(s), s) ds

]
dt, (11)

where V (x(τ ), v(·), τ ) denotes the value of stage 2 for admissible v(·) := v(t, τ ) for
t ∈ [τ,∞[ and corresponding state trajectory (see (5) for the definition).

Proof of Lemma 2.1

Starting from the objective function (4) and its transformation into (8), we use the
explicit expression for the value of stage 2, i.e.,

E

[∫ τ

t0
e−ρt g1(x(t), u(t), t) dt + e−ρτV (x(τ ), v(·), τ )

]

=
∫ ∞

t0
e−ρt

[
z1(t)g1(x(t), u(t), t) + z1(t)η(x(t), u(t), t)V (x(t), v(·), t)

]
dt

=
∫ ∞

t0
e−ρt

[
z1(t)g1(x(t), u(t), t)

+z1(t)η(x(t), u(t), t)
∫ ∞

t
e−ρ(s−t)g2(y(s, t), v(s, t), s, x(t), t) ds

]
dt

=
∫ ∞

t0
e−ρt z1(t)g1(x(t), u(t), t) dt

+
∫ ∞

t0

∫ ∞

t
e−ρs z1(t)η(x(t), u(t), t)g2(y(s, t), v(s, t), s, x(t), t) ds dt (12)

Applying Fubini’s theorem, we can now change the order of integration for the second
integral and obtain

∫ ∞

t0
e−ρt z1(t)g1(x(t), u(t), t) dt

+
∫ ∞

t0
e−ρt

∫ t

t0
z1(s)η(x(s), u(s), s)g2(y(t, s), v(t, s), t, x(s), s) ds dt . (13)

In contrast to the summation of the objective functional over time s for every switching
time t used in the previous expression (12),we change to the summationof the objective
functional over all switching times before t . For an illustration, see Fig. 1, where the
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Fig. 1 Change in the direction of summation

left panel corresponds to (12): summation over time for the characteristic line starting
at t ; and where the right panel corresponds to (13): summation over all switching times
before t . This implies that the discount factor in the second integral disappears and
that age-structured optimal control theory can be applied. After rearranging terms, we
arrive at (11).

The reformulation of the objective function presented in the above lemma is crucial
for considering the general model as an age-structured optimal control model. Towrite
(11) in a more compact form, we introduce the aggregate state Q(t) as sum of the
objective functionals of all active characteristic lines 0 ≤ s ≤ t at t , i.e.,

Q(t) =
∫ t

t0
z1(s)η(x(s), u(s), s)g2(y(t, s), v(t, s), t, x(s), s) ds. (14)

In other words, Q(t) denotes the sum of all instantaneous objective functionals for all
possible regimes (i.e., all possible switches) up to time t , weighted by the probability
for their realization at s ∈ [t0, t]. Here, the instantaneous objective functionals at t
may well depend on the state x(s) at the time of the switch. Thus, there are two time
lags in the integral, which complicates the use of the standard form of the Maximum
Principle. To avoid this complication, we define two auxiliary state variables z2(t, s)
and z3(t, s) in the following way

dzi (t, s)

dt
= 0, i = 2, 3,∀t ≥ s,

z2(s, s) = z1(s)η(x(s), u(s), s), z3(s, s) = x(s).

Here, z2(t, s) denotes the probability that the switch happened at s, where z2(s, s) =
z2(t, s) ∀t ≥ s reflects that, for any switching point s, this probability does not change
over time. Analogously, z3(t, s) denotes the value of the state variable at the switching
time s. Using this in (14), it is possible to eliminate the time lag and write

Q(t) =
∫ t

t0
z2(t, s)g2(y(t, s), v(t, s), t, z3(t, s), s) ds. (15)
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Finally, Lemma 2.1 and the above calculations result in the following theorem.

Theorem 2.1 A multi-stage optimal control model with random switching time, i.e.,
problem (4) subject to (2), (1) and (5), is equivalent to the following age-structured
optimal control model:

maxu(t),v(t,s)≥0

∫ ∞

t0
e−ρt

[
z1(t)g1(x(t), u(t), t) + Q(t)

]
dt

s.t. ẋ(t) = f1(x(t), u(t), t), x(t0) = xt0 ,

ż1(t) = −η(x(t), u(t), t)z1(t), z1(t0) = 1,
dy(t, s)

dt
= f2(y(t, s), v(t, s), t, z3(t, s), s), t ≥ s,

y(s, s) = ϕ(x(s), s), ∀s ≥ 0
dzi (t, s)

dt
= 0, i = 2, 3, t ≥ s,

z2(s, s) = z1(t)η(x(s), u(s), s), ∀s ≥ 0

z3(s, s) = x(s), ∀s ≥ 0

Q(t) =
∫ t

t0
z2(t, s)g2(y(t, s), v(t, s), t, z3(t, s), s) ds. (16)

This problem can be solved with age-structured optimal control theory [21–23] and
established numerical methods [7].

The transformation of the multi-stage optimal control model with a random switch-
ing time ((4) subject to (2), (1) and (5)) to a deterministic optimal control model (8)
enables the application of the standard Maximum Principle for a given value function
(depending on the state and time), relating to stage 2 of the original problem. Thus,
the stage 2 problem has to be solved first and used for the first-order conditions of the
original problem [(4) with respect to (2)]. This way of deriving the optimal solution
will be referred to as backward approach. As compared to this, working with the
transformed age-structured optimal control problem (Theorem 2.1) has considerable
advantages:

Numerical solutionApplying thebackward approachmakes it necessary to calculate
the value function of stage 2, depending on the state and on time. This is manageable
(by deriving the stable trajectories of the canonical system and evaluating the slice
manifold; for detailswe refer to [25]) if the stage2problem is autonomous and if neither
the objective functional nor the dynamics depend on the state at the switching time, i.e.,
if g2(x(t), u(t), t, x(τ ), τ ) = g2(x(t), u(t), t) in (3) and if f2(x(t), u(t), t, x(τ ), τ )=
f2(x(t), u(t), t) in (2). Non-autonomy and/or dependence on the state at the switching
time is likely to imply huge numerical effort, as it leads to a shift in the phase diagram.
The stage 2 optimal control problemwould then have to be solved for every admissible
state and every t . In contrast, the problem is solved at a single blow in the age-structured
optimal control form, as it is no longer defined over the two distinct stages. Here,
established numerical methods (see [7]) can be applied.

Analytical insightsThe general model formulated in (8) and (9) includes stochastic-
ity (i.e., a random time horizon) and two non-trivial optimization problems, one being
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nested in the other (i.e., the value function of stage 2 as salvage value of stage 1). The
representation as an age-structured optimal control model (see (16) in Theorem 2.1) is
deterministic and includes both stages simultaneously. The switching rate is naturally
included as a function that depends on the control and state variables. Thus, the model,
the first-order conditions and the dynamics can be presented in a compact way, allow-
ing one to incorporate explicitly and intuitively the interaction between the two stages
and the switching rate. This comes at the expense of three additional state variables,
where z1(t) can be interpreted as a survival probability, and where zi (t, s) (i = 2, 3)
adjust for the time lag. This complication, however, is then independent of the number
of control and state variables in the original model, allowing the addition of a lot of
detail without compromising the tractability of the transformed model. In contrast,
the complexity of the backward solution (see previous item) strongly depends on the
number of control and state variables, as the value function has to be derived for every
switching time and every possible value of the state variables.

Model illustration The age-structured optimal control approach offers additional
ways for illustrating the results of themodel. In particular, it is nowpossible to represent
the dynamics of the control and state variables across the range of switching times, i.e.,
dv(t,s)
ds , in addition to the more common dynamics over time, i.e., dv(t,s)

dt . Combining
the two, this also allows for an easy representation of the role of duration t–s. Section
3 provides both analytical and visual representations of the dynamics for a numerical
example. Altogether, the broader scope for illustrating the model dynamics is possible
because in the age-structuredoptimal control formulation switching time is represented
as an independent variable s, whereas the backward approach represents stage 2 by
an isolated optimal control problem.

In the next section, we present a simple model of catastrophic macroeconomic
disaster to illustrate the above transformation together with a numerical solution.

3 Example: Preventing and Responding to Catastrophic
Macroeconomic Disaster

In the light of rising concerns about catastrophic changes to environmental conditions
due to climate change (see, e.g., [26]) and the reduction in biodiversity, a growing
interest has emerged in the modeling of rare macroeconomic disasters (see, e.g., [4,5,
27–29] on themodeling of catastrophic climate change and [30] for a general survey on
macroeconomic disasters). The modeling of a singular catastrophic macroeconomic
shock is a natural application for our framework,where in stage 1 the economyoperates
under the risk of a severe disaster, the arrival of which can be lowered by preventive
investments; and where stage 2 is characterized by, e.g., a vastly diminished capacity
for production. As is pointed out in [5], one important feature of such catastrophic
shocks is that they yield permanent, or at least very long-lasting impacts.

In the following, we provide a simple, highly stylized model of such a setting,
which aims at illustrating how our transformation approach works and to what uses
it can be gainfully employed. Within this section, we use subscript (superscript) i to
indicate variables (functions) for stage i = 1, 2. In the stage before a shock takes place,
referred to as stage 1, we have the following setup. The economy produces output with
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capital stock K1(t) according to the production function F1(K1(t)). This output can
be consumed, c1(t), invested to increase the capital stock in production, or invested
into a protective capital stock D(t) to reduce the risk of a disaster and/or the negative
impact of such a disaster in the follow-up, referred to as stage 2. Investments into
protective capital are denoted by p(t). Protective capital is built up through investments
according to h(p(t)) and depreciates at a constant rate δ. The decision maker aims at
maximizing the streamof utility fromconsumptionu(c1(t)). The shock to the economy
is assumed to take place at a rate η(D(t)) that falls in the stock of protective capital.
For concreteness, one could think, for instance, of η(D(t)) as a risk of permanent
flooding which diminishes in the capital stock D(t) invested in the strength and height
of dams and other means of flood protection.

Altogether, the model reads

max
c1,p≥0

E

[∫ τ

0
e−ρt u(c1(t)) dt + e−ρt V ∗(D(τ ), K1(τ ))

]

s.t. K̇1(t) = F1(K1(t)) − c1(t) − p(t), K1(0) = K10, lim
t→∞ K1(t) ≥ 0,

Ḋ(t) = h(p(t)) − δD(t), D(0) = 0, (17)

where V ∗(D(τ ), K1(τ )) denotes the value of stage 2, which is defined similarly. The
difference is that physical capital is less productive in stage 2 due to the negative
effect of the disaster, i.e., F2(K , D) ≤ F1(K ) (K > 0, ∀t). The negative impact is
mitigated by the protective capital at the time of the shock, i.e., F2

D(·) > 0. Protective
capital is assumed to be fixed during stage 2, implying no further depreciation and the
impossibility of further investment. Altogether, the stage 2 model reads

V ∗(D(τ ), K1(τ )) = max
c2≥0

∫ ∞

τ

e−ρ(t−τ)u(c2(t)) dt

s.t. K̇2(t) = F2(K2(t), D(τ )) − c2(t),

K2(t) = K1(t), lim
t→∞ K2(t) ≥ 0. (18)

Concavity is assumed for the utility function, the production function and the invest-
ment function into protective capital.3

Applying the transformation described in Theorem 2.1, the model can be reformu-
lated as the following age-structured optimal control model

maxc1,c2,p≥0

∫ ∞

0
e−ρt

[
z1(t)u(c1(t)) + Q(t)

]
dt

s.t. K̇1(t) = F1(K1(t)) − c1(t) − p(t), K1(0) = K10, lim
t→∞ K1(t) ≥ 0,

3 Our model bears a lot similarity to an innovative approach developed by van der Ploeg and de Zeeuw
(see [4,5]) to analyze optimal policy-making in the face of a potentially catastrophic climate shock. While
lacking the detail of [4,5], approach differs (i) in not relying on the conventional backward approach to
solving the model, and (ii) by including with the production function F2(K2(t), D(τ )) a dependency of the
stage 2 problem on a state at the point of transition.

123



1076 Journal of Optimization Theory and Applications (2020) 184:1065–1082

Ḋ(t) = h(p(t)) − δD(t), D(0) = 0,

ż1(t) = −η(D(t))z1(t), z(0) = 1,
dK2(t, s)

dt
= F2(K2(t, s), z3(t, s)) − c2(t, s), t ≥ s,∀s ≥ 0,

K2(s, s) = K1(s), lim
t→∞ K2(t, s) ≥ 0,

dzi (t, s)

dt
= 0, i = 2, 3, t ≥ s,∀s ≥ 0,

z2(s, s) = z1(s)η(D(s)), z3(s, s) = D(s)

Q(t) =
∫ t

0
z2(t, s)u(c2(t, s)) ds. (19)

This compact representation of model (17) and (18) highlights the advantage of a
transformation into an age-structured optimal control model (see ’analytical insights’
on p.17). The model is deterministic, the switching rate enters in the dynamics of
z1(t), and both stages are considered simultaneously.

The standard Maximum Principle for age-structured optimal control theory
(see [22]) can be applied to this problem, yielding first-order conditions for the con-
trols (ensured to be positive by appropriate Inada conditions for u(·) and h(·)) and
corresponding adjoint equations (with suitable transversality conditions). For further
details, we refer to [1].

By differentiating the first-order conditions with respect to time, t , and switching
time, s, respectively, we obtain the dynamics of the control variables (their dependence
on t and s as well as on control and state variables being suppressed for clarity).
λi (t) (i = 1, 2, 3) denote the adjoint variables for the states K1(t), D(t) and z1(t),
respectively, and ξi (t, s) (i = 1, 2, 3) denote the adjoint variables for K2(t, s), z2(t, s)
and z3(t, s), respectively.

ċ1(t) = (
ρ − F1

K1

) uc1
uc1c1

− η
uc2 − uc1
uc1c1

(20)

ṗ(t) = − h p

h pp︸ ︷︷ ︸
>0

(
δ + F1

K1︸ ︷︷ ︸
i

− h pξ3 − ξ1

e−r t z1uc1︸ ︷︷ ︸
i i

+ λ3 − ξ2

e−r t uc1
h pηD

︸ ︷︷ ︸
i i i

)
(21)

dc2(t, s)

dt
= (

ρ − F2
K2

) uc2
uc2c2

(22)

dc2(t, s)

ds
= − uc2

uc2c2︸ ︷︷ ︸
>0

(
− η︸︷︷︸

i

+ ηD

η
Ḋ

︸ ︷︷ ︸
i i

− 1

ξ1

dξ1

ds︸ ︷︷ ︸
i i i

)
. (23)

Equations (21) and (23) are the consumption Euler equations relating to stages 1 and
2, respectively. While (23) is of the standard form and requires no further discussion,
(21) contains an additional term related to the shock. If a disaster at time t leads to a
collapse of production capabilities and, thus, of consumption, such that c2 < c1, then
the marginal utility of consumption satisfies uc2 > uc1 . In such a case, consumption
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is deferred (note that uc1c1 < 0) in order to accumulate precautionary savings early
on and, thereby, to soften the shock-related drop in consumption.

According to (22), protective investment increases over time (i.e., is deferred) in line
with (i) its current opportunity cost (the latter being the return to productive capital);
and declines over time (i.e., is advanced) with (ii) the excess value of protective capital
over productive capital after the shock, and with (iii) the net value of reducing the risk
of a disaster (note that ηD < 0), with λ3 being the value of prevention (equal to the
value of survival in stage 1) and with ξ2 being the value of stage 2.

According to (20), the experience of a later shock (i.e., a higher s) implies (i) a
lower level of consumption, as more consumption has been advanced due to the risk
of a shock; (ii) a lower level of consumption due to the accumulation of protective
capital (the effect reverses if Ḋ < 0); (iii) a higher level of consumption, if the stage
2 value of productive capital is smaller for later shocks (i.e., if dξ1

ds < 0), or, in other
words, if more productive capital has been accumulated at a later arrival of the shock.

While the derivatives with respect to time can also be obtained by the standard back-
ward approach, their derivation within the age-structured optimal control approach
provides a compact and coherent representation of how the second stage determines
stage 1 dynamics. The derivative with respect to switching time can only be obtained
after applying the transformation into an age-structured model.

A numerical solution, based on the backward approach, would be extremely
involved even for this simple model. This is because the dynamics of the state variable
of stage 2 depend on the protective capital at the time of the shock (see ’numerical
solution’ on p.17). This becomes obvious when deriving, for the specification detailed
below, the steady-state capital stock as a function of switching time s, i.e.,

K̂2(s) := lim
t→∞ K2(t, s) =

[
ρ

A2β

(
1 − e−η̄D(s)

)−1
] 1

β−1

, ∀s. (24)

Given that the switch has happened at s, the optimal solution of stage 2 then follows
the stable manifold leading to K̂2(s). Notably, the value for K̂2(s)will vary with D(s).
Thus, it is not enough to derive the slice manifold for every possible switching time s,
but one would have to derive the value function separately, depending on both s and
D(s).

In contrast, a numerical solution can be readily obtained for the age-structured
formulation. We employ the following functional specification (the dependence on t
and s being suppressed)

η(D) = ηe−η̄D,

h(p) = pα,

u(ci ) = cσ
i , i = 1, 2

F1(K1) = A1K
β
1 ,

F2(K2, z3) = A2K
β
2 (1 − e−η̄z3),

with parameter values, α = 0.75, β = 0.5, σ = 0.75, η = 0.25, η̄ = 0.5, ρ = 0.03,
δ = 0.2, A1 = A2 = 0.75. Furthermore, we set the initial capital stock at K10 = 50.
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Fig. 2 Consumption and productive capital stock over time (both stages) for s = 5, 10, 15

Note that the utility function is continuously differentiable in ci and does not depend
on any state. Thus, the assumptions concerning the objective functional (see (3) on
p. 7) are fulfilled. Similarly, the production functions of both stages are continuously
differentiable in the states, implying that the stated assumptions are fulfilled (see (2)
on p. 7).

The key outcomes are illustrated in Figs. 2, 3 and 4. The left panel of Fig. 2 plots how
consumption develops over time for stages 1 and 2, depending on the arrival of the dis-
aster at s = 5, 10, 15. As long as no disaster hits, c1(t) declines and converges toward
a steady state. At the point of a disaster at s, consumption drops sharply. Although
c2(t, s) recovers afterward, it converges to a new steady-state level below the one of
stage 1. The lower level of consumption is implied by the detrimental impact of the
disaster on productivity and, thus, on total output. Similarly, the right panel of Fig. 2
plots various surfaces of the productive capital stock, K . During stage 1, the capital
stock decreases from a high initial value toward the steady-state value it would attain
in the absence of a shock. In case of a disaster, the capital stock does not drop. The pro-
duction function, however, is less effective, implying that a higher steady-state capital
stock needs to be built up during stage 2. The level of this steady-state capital stock then
depends on the timing of the shock: early shocks, for which the impact on productivity
was strong and lasting due to a low level of protective capital, inhibit even the long-run
accumulation of physical capital, leading to a lower steady-state level (see (24)).

The left panel of Fig. 3 plots stage 2 consumption at time t = 5, 10, 15 (correspond-
ing to the three curves), depending on the time s ≤ t at which the disaster hits. While
this figure can be plotted directly after our transformation, it could only be developed
under considerable effort when using the backward solution (see paragraph “model
illustration” on p. 18). Increasing s for any given t implies a shorter duration since the
disaster. It can be seen that, at any point in time t , the consumption level varies in a
non-monotonous way with the duration since the shock. If disaster has just occurred
(corresponding to the respective end points of the three curves), consumption is low
due to the instantaneous impact. Consumption is also low (and sometimes lower)
for early realizations of the shock (corresponding to the LHS end points of the three
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Fig. 3 Stage 2 consumption and stage 2 productive capital stock across switching times

curves), where the low level of protective capital disallows a recovery of the econ-
omy. By contrast, consumption is highest for intermediate realizations of the shock,
for which (a) there was sufficient time for recovery as opposed to later realizations,
while at the same time (b) the recovery process was more effective than for earlier
realizations. The RHS mirrors the insights from the LHS. Similar to consumption, the
stage 2 level of the productive capital stock depends in a non-monotonous way on the
duration since the shock. A short duration since the shock (i.e., at the end points of the
three curves) implies that very little productive capital could be accumulated, starting
from a low level. By contrast, a long duration since the shock implies a comparatively
slow rebuilding of the capital stock due to a strong permanent decline in capital pro-
ductivity for early shocks. Once again, the capital stock is highest for intermediate
durations, where the time available for capital rebuilding and its effectiveness are well
balanced. Recall that the time and scope for capital rebuilding also explains the stage
2 allocation of consumption.

Figure 4 plots protective investments, p, (left panel) and protective capital, D, (right
panel) over time. Investments are very high at the beginning, as the steady-state level
of the protective capital stock has to be built up. The protective capital stock increases
until a steady state is reached.

We conclude by recalling that the numerical example lacks important modeling
features, as well as the necessary calibration, that would allow one to explain the eco-
nomics of real-world catastrophic disasters, such as climate shocks. With the present
analysis predominantly serving as an illustration of how the transformation of a multi-
stage model with random switching time into an age-structured optimal control model
can be usefully applied, the formulation and analysis of a more realistic model are
relegated to future work.

4 Conclusions

The paper considersmulti-stage optimal controlmodels with a random switching time.
Although the model can be transformed into a deterministic optimal control model
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Fig. 4 Protective investments and protective capital over time

following the backward approach in [11], the numerical solution remains involved.
This is the case, in particular, if the objective functional or the state dynamics depend
on the state, evaluated at the switching time, or on the the switching time itself.
Transforming the model into an age-structured optimal control model allows one to
derive the solution of both stages simultaneously. This is a considerable numerical
advantage. Moreover, owing to the unified representation of both stages, the age-
structured optimal control formulation offers additional analytical insights and the
scope for a complete representation of the dynamics, in particular, when it comes to
studying the impact of the timing of the shock and the duration since.

Naturally, the assumptions concerning the switch can be extended in various ways.
In future work, we intend to allow for multiple switches, where we need to distinguish
whether the switches are independent or whether they are linked through model states.
Another important extension involves the modeling of a distributed impact of the
switch. In our example of a natural disaster, for instance, not only the arrival of the
shock is random but also its severity. The distribution of severity (for different arrival
dates) would then have to be considered as an additional part to the control problem.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). We thank Michael
Freiberger, the editor, Mimo Iannelli, and two anonymous reviewers for very helpful suggestions toward
improving and clarifying this manuscript, as well as Werner Richter for expert advice on language matters.
This research was supported by the Austrian Science Fund (FWF) under Grant P 30665-G27.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A

Innovation While the probability of arriving at an innovation can be influenced by
education (at individual or societal level) or R&D investments (at firm or government
level), a technical breakthrough remains a stochastic event. Some innovations have
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the power to change considerably the dynamics of firms (e.g., new products; drastic
innovations that lead to the domination of the market) or societies (e.g., a carbon-
free backstop technology; a vaccine that leads to the eradication of certain infectious
diseases, or a comprehensive anticancer treatment).
Natural disasters/climate changeWhile the prevention of and response to natural (e.g.,
storms, flooding, volcano eruptions, earthquakes) or man-made environmental disas-
ters (e.g., oil spills, chemical or nuclear accidents) provides a long-standing context
for such analysis, the growing prospect of collapse of particular climate patterns (e.g.,
a standstill of the Gulf stream due to the erosion of thermal differentials within the
Atlantic ocean; a substantial weakening of the jet stream; or a polar meltdown) is
adding a global scale to the issue.

Political shocks With revolutions or landslide political change, societies can expe-
rience shock-like political events with potentially far-reaching economic and social
consequences. These experiences raise issues about optimal patterns of investment in
the prevention or arrival, for that matter, of radical political change. Similar issues
relate to the art of “brinkmanship,” where negotiations are structured in a way that
maximizes the domestic objective, while at the same time containing the risk of an
international crisis.
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