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Abstract
A general class of nonconvex optimization problems is considered, where the penalty
is the composition of a linear operator with a nonsmooth nonconvexmapping, which is
concave on the positive real line. The necessary optimality condition of a regularized
version of the original problem is solved by means of a monotonically convergent
scheme. Such problems arise in continuum mechanics, as for instance cohesive frac-
tures,where singular behaviour is usuallymodelledbynonsmoothnonconvex energies.
The proposed algorithm is successfully tested for fracturemechanics problems. Its per-
formance is also compared to two alternative algorithms for nonsmooth nonconvex
optimization arising in optimal control and mathematical imaging.

Keywords Nonsmooth nonconvex optimization · Monotone algorithm · Fracture
mechanics · Sparse recovery
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1 Introduction

In this paper, we investigate a class of nonconvex and nonsmooth optimization prob-
lems, where the penalty is the composition of a nonsmooth nonconvex mapping with
a linear operator and the smooth part is a least square-type term.

Communicated by Paolo Maria Mariano.

B Daria Ghilli
daria.ghilli@uni-graz.at

Karl Kunisch
karl.kunisch@uni-graz.at

1 Institute for Mathematics and Scientific Computing, Karl-Franzens University, Graz, Austria

2 Johann Radon Institute, Linz, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-019-01545-4&domain=pdf
http://orcid.org/0000-0003-3204-8298


610 Journal of Optimization Theory and Applications (2019) 183:609–641

Similar optimization problems, in the case where the operator inside the penalty
coincides with the identity matrix, have attracted increasingly attention due to their
applications to sparsity of solutions, feature selection, and many other related fields
as, e.g. compressed sensing, signal processing, and machine learning (see, e.g. [1,
2]). The convex nonsmooth case of the �1 norm has gained large popularity and has
been thoroughly studied. The convexity allows to formulate efficient and globally
convergent algorithms to find a numerical solution. Here, we mention [3,4] where
the basis pursuit and the Lasso problems were introduced to solve �1 minimization
problems.

Recently, increased interest has arisen towards nonconvex and nonsmooth penal-
ties, such as the �τ quasi-norm, with τ larger or equal to zero and less than 1 (see, e.g.
[5–10]), the smoothly clipped absolute deviation (SCAD) [11,12], and the minimax
concave penalty (MCP) [12,13]. The nonconvexity has been shown to provide some
advantages with respect to the convex models. For example, it allows to require less
data in order to recover exactly the solution (see, e.g. [14–16]) and it tends to pro-
duce unbiased estimates for large coefficients [11,17,18]. Note that all the previously
mentioned works deal with the particular case where the operator coincides with the
identity.

Nonconvex optimization problems as we consider, where the operator inside the
penalty is different form the identity, arise also in the modelling of cohesive fractures
in continuum mechanics, where the concavity of the penalty is crucial to model the
evolution of the fracture energy released within the growth of the crack opening. Here,
the operator is of importance to model the jump of the displacement between the two
lips of the fractures. We refer to [19–22] and Sect. 3.1 for more details.

The study of these problems for nonconvex penalties, including �τ , with τ strictly
positive and less than 1, the SCAD and the MCP functionals, and for linear operators
not necessarily coinciding with the identity, is also motivated by applications different
from those arising in fracture mechanics. For example, in imaging the �τ quasi-norm,
with τ strictly positive and less than 1, of the numerical gradient of the solution has
been proposed as a nonconvex extension of the total variation (like TV) regularizer
(see, e.g. [6,10]) in order to reconstruct piecewise smooth solutions. The SCADand the
MCP penalties have been used for high-dimensional regression and variable selection
methods in high-throughput biomedical studies [23]. We mention also that the SCAD
has been proposed as a nonconvex penalty in the network estimation to attenuate the
bias problem [24].

The main difficulties in the analysis of these problems come from the interplay
between the nonsmoothness, the nonconvexity, and the coupling between coordinates
which is described by the operator inside the penalty. Since standard algorithms are
not readily available, the resolution of these problems requires the development of
new analytical and numerical techniques.

In the present paper, we propose a monotonically convergent algorithm to solve this
kind of problems. This is an iterative procedure which solves the necessary optimality
condition of a regularized version of the original problem. A remarkable property of
our scheme is the strict monotonicity of the functional along the sequence of iterates.
The convergence of the iteration procedure is proved under the same assumptions that
guarantee the existence of solutions.
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The performance of the scheme is successfully tested to simulate the evolution of
cohesive fractures for several different test configurations. Then, we turn to an issue of
high relevance, namely the comparison between two alternative algorithms, the GIST
“General Iterative Shrinkage and Thresholding” algorithm for �τ minimization, with τ

strictly positive and less than 1, and the FISTA “Fast Iterative Shrinkage-Thresholding
Algorithm” for �1 minimization. The comparison is carried out with respect to the
infimal value reached by the iteration procedure and with respect to computing time.
Our results show that the monotone algorithm is able to reach a smaller value of the
objective functional that we consider when compared to the one of GIST. Note that
differently from GIST, the monotone scheme solves a system of nonlinear equations
at each iteration level. We remark that in [25], GIST was compared with the IRLS
“iterative reweighted least squares” algorithm, which is another popular scheme for
�τ minimization, with τ strictly positive and less than 1. The results of [25] show that
GIST and IRSL have nearly the same performance, with only one difference which is
speed, where GIST appears to be the faster one.

An analogous procedure to the one proposed in the present paper was developed in
[20] to solve similar problems where the nonconvex penalty coincides with �τ quasi-
norm, with τ strictly positive and less than or equal to 1. With respect to [20], in the
present paper, we deal with more general concave penalties. Moreover, we carry out
several numerical experiments for diverse situations in cohesive fracture mechanics,
comparing the behaviours for different concave penalties such as the SCAD, theMCP,
and the �τ penalty, with τ strictly positive and less than 1. Finally, in the present paper,
we compare the performance of the scheme with that of GIST.

Let us recall some further literature concerning nonconvex nonsmooth optimiza-
tion of the type investigated in the present paper. In [12,26], a primal-dual active
set-type algorithm has been developed; in the case, the operator inside the penalty
coincides with the identity. For more references, in this case, we refer to [20]. Con-
cerning �τ minimization, with τ larger than or equal to zero and less than or equal to
1 when the operator is not the identity, other techniques have recently been investi-
gated. Here, we mention iteratively reweighted convex majorization algorithms [10],
alternating direction method of multiplier (ADMM) [9] and finally a Newton-type
solution algorithm for a regularized version of the original problem [6]. Finally we
recall the paper [21], where a novel algorithm for nonsmooth nonconvex optimization
with linear constraints is proposed, consisting of a generalization of the well-known
nonstationary-augmented Lagrangian method for convex optimization. The conver-
gence to critical points is proved and several tests were made for free-discontinuity
variational models, such as the Mumford–Shah functional. The nonsmoothness con-
sidered in [21] does not allow singular behaviour of the type that the �τ term, with τ

larger than or equal to zero and strictly less than 1 does.
The paper is structured as follows. In Sect. 2, Sect. 2.1, we state the precise assump-

tions, in Sect. 2.2, we prove existence for the problem in consideration, in Sect. 2.3,
we propose the monotone scheme to solve a regularized version of the original prob-
lem and we prove its convergence, and finally in Sect. 2.4, we study the asymptotic
behaviour as the concavity and regularization parameters go to zero. In Sect. 3, we
present the precise form of our scheme. In Sect. 3.1, we discuss our numerical expe-
rience for cohesive evolution of fracture mechanics and in Sect. 3.2, we compare the

123



612 Journal of Optimization Theory and Applications (2019) 183:609–641

performance of our scheme to that ofGIST for three different test cases, the academical
M-matrix example, an optimal control problem, and a microscopy imaging example.

2 Existence andMonotone Algorithm

2.1 Assumptions

We consider

min
x∈Rn

J (x) = 1

2
|Ax − b|22 +

r∑

i=1

φ(Λx)i , (1)

where A ∈ M
m×n , Λ ∈ M

r×n, b ∈ R
m and φ(t) : R → R

+ satisfies

(H)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) φ is even with φ(0) = 0, nondecreasing for t ≥ 0 and continuous;
(ii) φ is differentiable on ]0,∞[;
(iii) φ is concave on R

+;
(iv) there exists a neighbourhood of zero where the function t → φ′(t)

t is monotone;

Above monotonically increasing or decreasing are admitted. Throughout the rest of
the paper, we will use the notation

Φ(Λx) :=
r∑

i=1

φ(Λx)i .

Under assumption (H), the following two cases are analysed:

(a) (i) φ(t) is a constant, when |t | ≥ t0 for some t0 > 0;
(ii) A is coercive, i.e. rank(A) = n.

(b) (i) for some γ > 0, it holds φ(at) = aγ φ(t) for all t ∈ R and a ∈ R
+;

(ii) Ker(A) ∩ Ker(Λ) = {0}.
Three popular examples of nonconvex penalties which satisfy (H) and the assump-

tions on φ in (a) or (b) are the following:

�τ τ ∈]0, 1], λ > 0
φ(t) = λ|t |τ , (2)

satisfying (b)(i).
SCAD τ > 1, λ > 0

φ(t) =

⎧
⎪⎨

⎪⎩

λ2(τ+1)
2 , |t | ≥ λτ,

λτ |t |− 1
2 (t2+λ2)

τ−1 , λ < |t | ≤ λτ,

λ|t |, |t | ≤ λ,

(3)

satisfying (a)(i).
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MCP τ > 1, λ > 0

φ(t) =
{

λ
(
|t | − t2

2λτ

)
, |t | < λτ,

λ2τ
2 , |t | ≥ λτ,

(4)

satisfying (a)(i).

Remark 2.1 The singularity at the origin of the three penalties leads to sparsity of the
solution. In the SCAD and the MCP, the derivative vanishes for large values to ensure
unbiasedness.

Problems as (1) with φ given by the �τ -quasi-norm with τ ∈]0, 1[ were studied in
[20]. For more details on its statistical properties, such as variable selection and oracle
property, of the �τ -quasi-norm, we refer to [14,15,27,28].

The SCAD (smoothly clipped absolute deviation) ([11,18]) has raised interest in
relation to variable selection consistency and asymptotic estimation efficiency (see
[18]). It can be obtained upon integration of the following formula for τ > 2

φ(t) = λ

∫ |t |

0
min

(
1,

max(0, λτ − |s|)
λ(τ − 1)

)
ds.

The MCP (minimax concave penalty) [13] can be recovered from the following for-
mula

φ(t) = λ

∫ |t |

0
max

(
0, 1 − |s|

λτ

)
ds.

It minimizes the maximum concavity sup0<t1<t2
(φ′(t1)−φ′(t2))

(t2−t1)
subject to the con-

straints φ′(t) = 0 for any |t | ≥ λτ (unbiasedness) and φ′(0±) = ±λ (feature
selection). The condition τ > 1 ensures the wellposedness of the thresholding opera-
tor.

2.2 Existence

First, we prove coercivity of the functional J in (1) under assumptions (a) or (b).

Lemma 2.1 Let assumptions (H) and either (a) or (b) hold. Then, the functional J in
(1) is coercive.

Proof Under assumption (a), the coercivity of J follows trivially. Suppose now that
(b) holds. Then, the result follows by similar arguments to that used in [20], Theorem
1 (where φ is the �τ quasi-norm). We proceed by contradiction and we suppose that
|xk |2 → +∞ and J (xk) is bounded. For each k, let xk = tk zk be such that tk ≥ 0, xk ∈
R
n and |zk |2 = 1. By (b) (i), we haveΦ(Λzk) = 1

tγk
Φ(Λxk) and then since tk → +∞

and J (xk) is bounded, we have for k → +∞

0 ≤ |Azk |22+ Φ(Λzk)= 1

t2k
|Axk |22+

1

tγk
Φ(Λxk) ≤ 1

tmin{2,γ }
k

(
|Axk |22 + Φ(Λxk)

)
→ 0
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and hence limk→+∞ |Azk |22 + Φ(Λzk) = 0. By compactness, the sequence {zk} has
an accumulation point z̄ such that |z̄| = 1 and z̄ ∈ Ker(A)∩Ker(Λ), which contradicts
(b) (ii). 	


In the following theorem, we state the existence of at least a minimizer to (1) under
either (a) or (b). We omit the proof since it follows directly by the continuity and
coercivity of the functional in (1).

Theorem 2.1 Let assumptions (H) and either (a) or (b) hold. Then, there exists at least
one minimizer to problem (1).

Remark 2.2 We remark that when assumption (a) (i) holds but A is not coercive,
existence can still be proven in caseΛ ∈ R

n×n is invertible. Indeed, by the invertibility
of Λ, one can define ȳ = Λ−1 x̄ , where x̄ is a minimizer of J̄ (x) = 1

2 |(AΛ−1)x −
b|22 + Φ(x) and prove that ȳ is a minimizer of (1). The existence of a minimizer for
the functional J̄ was proven in [26], Theorem 2.1.

However, in our analysis, we cover the two cases (a) and (b) since when (a) (ii)
is replaced by the invertibility of Λ, we cannot prove the coercivity of J , which is a
key element for the convergence of the algorithm that we analyse (see the following
section).

2.3 AMonotone Convergent Algorithm

Following [7], in order to overcome the singularity of the function φ(t) near t = 0,
we consider for ε > 0 the following regularized version of (1)

min
x∈Rn

Jε(x) = 1

2
|Ax − b|22 + Ψε(|Λx |22), (5)

where for t ≥ 0

Ψε(t) =
{

φ′(ε)
2ε t +

(
1 − φ′(ε)ε

2φ(ε)

)
φ(ε) for 0 ≤ t ≤ ε2

φ(
√
t) for t ≥ ε2,

(6)

and Ψε(|Λx |22) is short for
∑r

i=1 Ψε(|(Λx)i |2). Note that

Ψ ′
ε(t) = 1

max
{

2ε
φ′(ε) ,

2
√
t

φ′(
√
t)

} > 0 on [0,∞[, (7)

hence Ψε is C1 and by assumption (H) (iii) is concave on [0,∞[. Moreover, we have
also that the map t → Ψε(t2) ∈ C1(] − ∞,∞[). Concerning the denominator in (7),
let us point out that due to concavity of φ and (H)(i), the derivative φ′ is non-increasing
on ]0,∞[. Consequently x → φ′(x)

x is non-increasing on ]0,∞[. Moreover, unless φ

is identically 0, by (H) (i)–(iii), there exists an interval ]0, η[ such that φ′(t) > 0 for
t ∈]0, η[. It is always assumed that ε ∈]0, η[.
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The necessary optimality condition for (5) is given by

A∗Ax + Λ∗ 1

max
{

ε
φ′(ε) ,

|Λx |2
φ′(|Λx |2)

}Λx = A∗b, (8)

the second addend is short for the vector with l-component∑r
i=1(Λ

∗)li 1

max
{

ε
φ′(ε) ,

|(Λx)i |
φ′(|(Λx)i |)

} (Λx)i . For convenience of exposition in the following,

we write (8) in the more compact notation

A∗Ax + 2Λ∗Ψ ′
ε(|Λx |22)Λx = A∗b,

where the l-component of the secondaddend is givenby
∑r

i=1(Λ
∗)liΨ ′

ε(|(Λx)2i |)(Λx)i .
This can equivalently be expressed as

A∗Ax + 2Λ∗Ψ ′
ε(|y|22)y = A∗b with y = Λx . (9)

In order to solve (9), the following iterative procedure is considered:

A∗Axk+1 + 2Λ∗Ψ ′
ε(|yk |22)yk+1 = A∗b where yk = Λxk . (10)

Existence of a unique solution to (10) follows from (a) (ii), respectively, (b) (ii) and
the fact that Ψ ′

ε(t) > 0 for t ∈ [0,∞[, where Ψ ′
ε(0) is considered as derivative from

the right. We have the following convergence result.

Theorem 2.2 Assume (H) and either (a) or (b). For ε > 0, let {xk} be generated
by (10). Then, Jε(xk) is strictly monotonically decreasing, unless there exists some k
such that xk = xk+1, and xk satisfies the necessary optimality condition (9). Moreover,
every cluster point of xk , of which there exists at least one, is a solution of (9).

Proof The proof strongly depends on the coercivity of the functional J and it follows
arguments similar to those of [7, Theorem 4.1].

Multiplying (10) by xk+1 − xk , we get

1

2
|Axk+1|22 − 1

2
|Axk |22 + 1

2
|A(xk+1 − xk)|22 +

(
2Ψ ′

ε(|yk |22)yk+1, yk+1 − yk
)

= (A∗b, xk+1 − xk). (11)

Note that for each i = 1, . . . , n, we have

yk+1
i

(
yk+1
i − yki

)
= 1

2

(
|yk+1

i |2 − |yki |2 + |yk+1
i − yki |2

)
. (12)

By assumption (H) (i i i), the function t → Ψε(t) is concave on [0,∞), and thus

2Ψε(|yk+1
i |2) − 2Ψε(|yki |2) − Ψ ′

ε(|yki |2)(|yk+1
i |2 − |yki |2) ≤ 0. (13)
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Using (12) and (13), we obtain the estimate

(2Ψ ′
ε(|yk |2)yk+1, yk+1 − yk)

=
∑

i

Ψ ′
ε(|yki |2)(|yk+1

i − yki |2 + |yk+1
i |2 − |yki |2)

≥
∑

i

Ψ ′
ε(|yki |2)(|yk+1

i − yki |2) + 2Ψε(|yk+1
i |2) − 2Ψε(|yki |2). (14)

Then, using (11), (14) and the definition of Jε, we get

Jε(x
k+1) + 1

2
|A(xk+1 − xk)|22 +

∑

i

Ψ ′
ε(|yki |2)|yk+1

i − yki |2 ≤ Jε(x
k). (15)

From (15) and the coercivity of Jε, it follows that {xk}∞k=1 and thus {yk}∞k=1 are
bounded. Consequently, from (15) and (7), there exists a constant κ > 0 such that

Jε(x
k+1) + 1

2
|A(xk+1 − xk)|22 + κ|yk+1 − yk |22 ≤ Jε(x

k). (16)

Conditions (a) (ii), (b) (ii), respectively, imply that Jε(xk) is strictly decreasing unless
xk = xk+1. In the latter case, from (10), we infer that xk solves (9), from which we
conclude the first part of the theorem.

From (16), we conclude that

∞∑

k=0

|A(xk+1 − xk)|22 + κ|yk+1 − yk |22 < ∞. (17)

Since {xk}∞k=1 is bounded, there exists a subsequence and x̄ ∈ R
n such that xkl → x̄ .

By (17), we get

lim
k→∞ |A(xk+1 − xk)|22 + κ|yk+1 − yk |22 = 0.

Then, by using the coercivity of A under assumption (a) and the fact that Ker(A) ∩
Ker(Λ) = {0} under assumption (b), we conclude that limk→∞(xk+1 − xk) = 0 and
hence xkl+1 → x̄ . We can now pass to the limit with respect to k in (10), to obtain
that x̄ is a solution to (9). 	


In the following proposition, we establish the convergence of (5) to (1) as ε goes
to zero.

Proposition 2.1 Assume (H) and either (a) or (b). Denote by {xε}ε>0 a solution to (5).
Then any cluster point of {xε}ε>0, of which there exists at least one, is a solution of
(1).
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Proof From the coercivity of Jε, we have that {xε}ε is bounded for ε small. Hence,
there exists a subsequence and x̄ ∈ R

n such that xεl → x̄ as l → ∞.
By property (H) (i) of φ, we have

lim
t→0

φ(t) = 0 and φ′(t) ≥ 0 ∀t ≥ 0. (18)

By the concavity of the function φ, we have φ(t) − φ(s) ≤ φ′(s)(t − s) for s ∈
]0,∞[, t ∈ [0,∞[, and, by choosing s = ε and t = 0 and by (18), we get for ε small
enough

φ′(ε)ε → 0 as ε → 0. (19)

By the definition of Ψε, (18) and (19), we obtain that Ψε(t) converges uniformly to
φ(

√
t) as ε → 0, equivalently

sup
t∈[0,∞[

∣∣∣Ψε(t) − φ(
√
t)

∣∣∣ → 0 as ε → 0,

from which we obtain

Ψεl (|Λxεl |2) =
r∑

i=1

Ψε(|(Λxεl )i |2) →
r∑

i=1

φ(Λxεl )i = Φ(Λx̄) as l → ∞. (20)

Since xεl solves (5) for ε = εl , by letting l → ∞ and using (20), we easily get that x̄
is a solution of (1). 	


2.4 Asymptotic Behaviour as � ↘ 0 and � ↘ 0 for the Power Law

We discuss the asymptotics as λ and τ go to zero in (1) for φ(t) = |t |τ , τ ∈]0, 1[,
which we repeat for convenience

min
x∈Rn

1

2
|Ax − b|22 + λ|Λx |ττ , (21)

where A, b,Λ are as in (1), τ ∈]0, 1[, λ > 0 and |Λx |ττ = ∑r
i=1 |(Λx)i |τ . First,

we analyse the convergence as λ → 0 for any fixed τ > 0. We denote by P the
orthogonal projection of Rm onto Ker(A∗) and set b̃ = (I − P)b ∈ Rg(A). Then,
|Ax − b|22 = |Ax − b̃|22 + |Pb|22. For τ > 0 fixed, consider the problem

min
x

|Λx |ττ subject to Ax = b̃. (22)

Theorem 2.3 Assume that ker(A) ∩ ker(Λ) = {0} and let τ > 0 be fixed. For each
λ > 0, let xλ be a minimizer of (21). Then, every cluster point of {xλ}, of which there
exists at least one, is a solution to (22).
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Proof Let x̃ ∈ R
n be an arbitrary solution to Ax − b̃ = 0. By optimality of xλ, we

have
1

2
|Axλ − b̃|22 + λ|Λxλ|ττ ≤ 1

2
|Ax̃ − b̃|22 + λ|Λx̃ |ττ = λ|Λx̃ |ττ . (23)

We conclude that

lim
λ→0

|Axλ − b̃|22 = 0, and |Λxλ|ττ ≤ |Λx̃ |ττ for all x̃ satisfying Ax = b̃. (24)

In particular, the families {Axλ} and {Λxλ} are bounded in λ. Since by assumption
we have ker(A) ∩ ker(Λ) = {0}, it follows that {xλ} is bounded. Hence, there exists
a convergent subsequence xλ�

with some limit x̄ . From (24), it follows that x̄ is a
solution to (22). 	


Now, we prove the convergence as τ → 0 for any fixed λ > 0 of (21) to the related
�0-problem

min
x∈Rn

1

2
|Ax − b|22 + λ|Λx |0, (25)

where for any x ∈ R
n |x |0 = ∑n

k=1 |xk |0 = number of nonzero elements of x . The
precise statement is given in the following theorem.

Theorem 2.4 Assume that rank(A) = n, and that Λ ∈ R
n×n is regular, and let λ > 0

be fixed. Then, every cluster point (of which there exists at least one) of solutions {xτ }
to (21) converges as τ ↘ 0 to a solution of (25).

Proof By Theorem 2.1, there exists a global solution xτ for each τ > 0. Since

1

2
|Axτ − b|22 + λ|Λxτ |ττ ≤ 1

2
|b|22

we have that {Axτ }τ>0 is bounded. Now, kerA = {0} implies the existence of a
subsequence, denoted by the same symbols, and x̄ ∈ R

n , such that xτ → x̄ for τ ↘ 0.
For any fixed i ∈ {1, . . . , r}, denote yτ = |(Λxτ )i | and ȳ = |(Λx̄)i | and notice

that yτ → ȳ as τ → 0. If ȳ > 0, we have log(yτ
τ ) = τ log(yτ ) → 0 as τ → 0 and

thus yτ
τ → 1 as τ → 0.

Next, we assume that ȳ = 0. We claim that there exists τ̄ > 0, such that yτ = 0
for all τ ∈]0, τ̄ [. Arguing by contradiction, assume that there exists a subsequence,
denoted by the same symbols again, such that yτ → ȳ = 0 for τ ↘ 0 and yτ > 0 for
all τ sufficiently small. From [20], Corollary 1, we know that

|yτ | ≥
(

2β(1 − τ)

|(AΛ−1)i |22

) 1
2−τ

,

which, by taking the limit τ ↘ 0, implies

0 = |ȳ| ≥
(

2β

|(AΛ−1)i |22

) 1
2

.
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Since Λ is regular and rank(A) = n, we have |(AΛ−1)i |22 �= 0 and we obtained the
desired contradiction.

By using the above arguments for all i = 1, . . . , r , we have |(Λxτ )i |τ → |(Λx̄)i |0
as τ → 0, and then we conclude

|Λxτ |ττ → |Λx̄ |0 as τ → 0. (26)

By the optimality of xτ , we get 1
2 |Axτ − b|22 + λ|Λxτ |ττ ≤ 1

2 |Ax − b|22 + λ|Λx |ττ , for
all x ∈ R

n . Then, the proof follows by taking the limit τ → 0 and using (26) to obtain

1

2
|Ax̄ − b|22 + λ|Λx̄ |0 ≤ 1

2
|Ax − b|22 + λ|Λx |0, for all x ∈ R

n .

	

Remark 2.3 The assumption on ker(A) is caused by the fact that the | · |0 functional is
not radially unbounded onRn . Since Theorem2.4 provides an existence result for (25),
such an assumption is natural. To the best of our knowledge, existence of minimizers
of (25) has only been addressed under assumption (a) (ii) (or assumptions implying
it). In the context of algorithm development further, �1- or �2- regularization is often
added, we refer to [12,29,30].

3 Algorithm and Numerical Results

For convenience, we recall the algorithm in the following form.

Algorithm 1Monotone algorithm with ε-continuation strategy

1: Initialize x0, ε0, and set y0 = Λx0. Set k = 0;
2: repeat
3: Solve for xk+1

A∗Axk+1 + Λ∗ 1

max

{
ε

φ′(ε) ,
|yk |2

φ′(|yk |2)

}Λxk+1 = A∗b.

4: Set yk+1 = Λxk+1.
5: Set k = k + 1.
6: until the stopping criterion is fulfilled.
7: Reduce ε and repeat 2.

Remark 3.1 Note that an ε-continuation strategy is performed, that is, the procedure
is performed for an initial value ε0 and then ε is decreased up to a certain value. More
specifically, in all our experiments, ε is initialized with 10−1 and decreased up to
10−12.

Remark 3.2 The stopping criterion is based on the l∞-norm of Eq. (9) and the tolerance
is set to 10−3 in all the following examples, except for the fracture problem where it
is of the order of 10−15.
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In the following subsection, we present our numerical results in cohesive fracture
mechanics. Then, in Sect. 3.2, the performance of our algorithm is compared to two
other schemes for nonconvex and nonsmooth optimization problems.

3.1 Application to Quasi-Static Evolution of Cohesive Fracture Models

In this section, we focus on the numerical realization of quasi-static evolutions of
cohesive fractures. These kinds of problems require the minimization of an energy
functional, which has two components: the elastic energy and the cohesive fracture
energy. The underlying idea is that the fracture energy is released gradually with
the growth of the crack opening. The cohesive energy, denoted by θ , is assumed to
be a monotonic non-decreasing function of the jump amplitude of the displacement,
denoted by �u�. Cohesive energies were introduced independently by Dugdale [31]
and Barenblatt [32]; we refer to [19] for more details on the models. Among the
vast existing literature on fracture mechanics, we also point out [33–35], as some of
the most significant references to us. Let us just remark that the two models differ
mainly in the evolution of the derivative θ ′(�u�), that is, the bridging force, across a
crack amplitude �u�. In Dugdale’s model, this force keeps a constant value up to a
critical value of the crack opening and then drops to zero. In Barenblatt’s model, the
dependence of the force on �u� is continuous and decreasing.

In this section, we test the �τ -term 0 < τ < 1 as a model for the cohesive energy.
In particular, the cohesive energy is not differentiable in zero and the bridging force
goes to infinity when the jump amplitude goes to zero. Note also that the bridging
force goes to zero when the jump amplitude goes to infinity.

We denote by u : Ω → R the displacement function. The deformation of the
domain is given by an external force which we express in terms of an external dis-
placement function g : Ω×[0, T ] → R.We require that the displacement u coincides
with the external deformation, that is, u|∂Ω = g|∂Ω. We denote by Γ the point of the
(potential) crack, and by θ(�u�)Γ the value of the cohesive energy θ on the crack
amplitude of the displacement �u� on Γ . Since we are in a quasi-static setting, we
introduce the time discretization 0 = t0 < t1 < · · · < tT = T and look for the
equilibrium configurations which are minimizers of the energy of the system. This
means that for each i ∈ {0, . . . , T } we need to minimize the energy of the system

J (u) = 1

2

∫

Ω\Γ
|a(x)∇u|22dx + θ(�u�)Γ

with respect to a given boundary datum g: u∗ ∈ argmin
u=g(ti ) on ∂Ω

J (u). The function a(·)
measures the degree of homogeneity of the material, e.g. a(x) ≡ 1 means that the
material is homogeneous.

In our experiments, we consider three different types of cohesive energy, the �τ

τ ∈]0, 1[, SCAD, and MCP penalties as defined in (2), (3), (4), respectively.
In Sects. 3.1.1 and 3.1.2, we show our results for one-dimensional and two-

dimensional experiments, respectively.
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3.1.1 One-Dimensional Experiments

We consider the one-dimensional domain Ω = [0, 1] and we chose the point of
crack as the midpoint Γ = 0.5. We divide Ω into 2N intervals and approximate the
displacement function with a function uh that is piecewise linear onΩ\Γ and has two
degrees of freedom on Γ to represent correctly the two lips of the fracture, denoting
with u−

N the one on [0, 0.5] and u+
N the one on [0.5, 1]. We discretize the problem in

the following way

Jh(uh) = 1

2

2N∑

i=1

2N |ai (ui − ui−1)|2 + θ(�uN �), (27)

where, if i ≤ N , we identify uN = u−
N , while for i > N , uN = u+

N and ai denotes the
piecewise linear approximation of the material inhomogeneity function. We remark
that the jump of the displacement is not taken into account in the sum, and the gradient
of u is approximated with finite difference of first order. The Dirichlet condition
is applied on ∂Ω = {0, 2l} and the external displacement is chosen as u(0, t) =
0, u(2l, t) = 2lt . To enforce the boundary condition in the minimization process, we
add it to the energy functional as a penalization term. Hence, we solve the following
unconstrained minimization problem

min N |Auh − b|22 + θ(�uN �), (28)

where the operator A ∈ R
(2N+1)×(2N+1) is given by A = RD where R ∈

R
(2N+1)×(2N+1) is the diagonal operator with i-entries Rii = ai and A =[
D̄′, [0 . . . 0 γ ]′]′ .Here, D̄ ∈ R

2N×(2N+1) is the backward finite difference operator
Dwithout the N+1 row,whereweuse the notation D := diag(−ones(2N , 1),−1))+
diag(ones(2N+1, 1)) : R

2N+1 → R
2N+1.Moreover, b ∈ R

2N+1 in (28) is given by
b = (0, . . . , γ ti )′ and γ is the penalization parameter. To compute the jump between
the two lips of the fracture, we introduce the operator D f : R2N+1 → R defined as
D f = (0, . . . ,−1, 1, 0, . . . , 0) where −1 and 1 are, respectively, in the N and N + 1
positions. Then, we write the functional (28) as follows

min N |Auh − b|22 + θ(D f u). (29)

We consider the three different penalizations given by the �τ , τ ∈]0, 1[, the SCAD,
and the MCP penalties. Note that KerA = 0, hence assumptions (a)(i i) and (c)(i i)
are satisfied and existence of a minimizer for (29) is guaranteed.

Our numerical experiments were conducted with a discretization in 2N intervals,
N = 100. The time step, in the time discretization of [0, T ], with T = 3, is set to
dt = 0.01. The parameters of the energy functional Jh(uh) are set to λ = 1, γ = 50.

We remark that in the following experiments, thematerial function a(x)was always
chosen as the identity. For testswithmoregenerala(x),we refer to the two-dimensional
experiments reported in the following subsection. In Figs. 1 and 2, we report our results
obtained by Algorithm 1, respectively, for the models �p and SCAD. In each figure,
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Fig. 1 Three time-step evolution of the displacement for τ = .01, t = .2, .3, 1.5 (left), τ = .1, t = .9, 1, 3
(right). Results obtained by Algorithm 1

Fig. 2 Four time-step evolution of the displacement for the SCAD model, τ = 20, t = 1, 2.1, 2.2, 2.5
(left), τ = 10, t = .1, 2.1, 2.2, 2.5 (right). Results obtained by Algorithm 1

we show time frames to represent the evolution of the crack for different values of the
parameter τ . Each time frame consists of three different time steps (t1, t2, t3), where
t2, t3 are chosen as the first instant where the prefracture and the fracture appear.

We observe the three phases that we expect from a cohesive fracture model:

– Pure elastic deformation: in this case, the jump amplitude is zero and the gradient
of the displacement is constant in Ω\Γ ;

– Prefracture: the two lips of the fracture do not touch each other, but they are not
free to move. The elastic energy is still present.

– Fracture: the two parts are free to move. In this final phase, the gradient of the
displacement (and then the elastic energy) is zero.

We point out that the model we consider describes a fracture process in which the
crack amplitude �u� is allowed to differ from zero. In particular, there is no possibility
of breaking of the material with the crack surfaces remaining in contact.

We remark that the formation of the crack is anticipated for smaller values of τ .
As we see in Fig. 1, for τ = .01, prefracture and fracture are reached at t = .3 and
t = 1.5, respectively. As τ is increased to τ = .1, prefracture and fracture occur at
t = 1 and t = 3, respectively. We observe the same phenomenon for the SCAD (see
Fig. 2).

We tested our algorithm also for theMCPmodel, where no prefracture phase can be
observed, that is, the displacement breaks almost instantaneously to reach the complete
fracture.
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Finally, we remark that in our experiments, the residue is O(10−16) and the number
of iterations is small, e.g. 12, 15 for τ = .01, .1, respectively.

3.1.2 Two-Dimensional Experiments

We consider the two-dimensional domain Ω =]0, 1[×]0, 1] and we chose the one-
dimensional subdomain0.5×]0, 1[ as the line of crack.Weproceed in thediscretization
of the problem analogously as in Sect. 3.1.1, that is, we divide [0, 1] into 2N intervals
and approximate the displacement function with a function uh , that is, piecewise linear
inΩ\Γ and has two degrees of freedom on Γ to represent correctly the two lips of the
fracture. Define the operator A ∈ R

3m(m−1)×m2
by A = [

(R1G1)
′, (R2D2)

′, γ Im2
]′

,

where m = 2N + 2 and R1 ∈ R
(m(m−1))×m(m−1) and R2 ∈ R

m(m−2)×m(m−2) are
two diagonal operators approximating the degree of homogeneity of the material,
D2 ∈ R

m(m−2)×m2
is defined as

D2 = G2(mN + 1 : mN + m, :) = [ ],

where G1,G2 ∈ R
m(m−1)×m2

are defined as follows G1 = kron(Im, D), G2 =
kron(D, Im) and D =: diag(−ones(m, 1)) + diag(ones(m − 1, 1), 1) ∈ R

(m−1)×m

without the last row. Again, we enforce the boundary condition by adding it to the
energy functional as a penalization term. Hence, we solve the following unconstrained
minimization problem

min |Auh − b|22 + θ(D f u), (30)

where b ∈ R
3m(m−1) in (30) is given by b = (0, . . . , γ g(ti ))′, g(ti ) is the

discretization of the boundary datum g at time ti and γ is the penalization param-
eter. Moreover, the jump of the crack is represented by the operator D f :=
[0m,mN ,−Im, Im, 0m,m2−mN−2m] ∈ R

m×m2
, where by 0r ,s we denote the null matrix

of dimension r × s.
Our numerical experiments were conducted with a discretization in 2N intervals

with N = 80. The time step, in the time discretization of [0, T ] with T = 3, is set to
dt = 0.01. The parameters of the energy functional Jh(uh) are set to λ = 1, γ = 50.
We perform two different series of experiments with boundary data, respectively,
resulting from evaluating g1, g2 on ∂Ω , where g1(t)(x) = (2x1 − 0.5)t for every
t ∈ [0, 1], x = (x1, x2) ∈ Ω and the other one with boundary datum g2(t)(x) =
2t cos(4(x2 − 0.5))(x1 − 0.5) for every t ∈ [0, 1], x = (x1, x2) ∈ Ω. In Figs. 3, 4, 5,
and 6, we show the results obtained with boundary datum g1 for each of the considered
models, that is, �τ , SCAD, and MCP and in Fig. 7, the ones with boundary datum g2
for the �τ model. In the case of boundary datum g2, we tested our algorithm also on
the SCAD and the MCP models, obtaining similar results to the ones shown in Fig. 7.
In these first experiments, the diagonal operators R1, R2 are taken as the identity, that
is, we suppose to have an homogeneous material.

As expected from a cohesive fracture model, we observe the three phases of pure
elastic deformation, prefracture, and fracture (see Sect. 3.1.1 for an explanation of the
model and the three phases).
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Also, prefracture and fracture are reached at different times for different values of
τ , typically they are anticipated for smaller values of τ .

When the boundary datum is g2, that is, not constant in the y direction, we note
that the fracture is reached before in the part of the fracture line corresponding to the
part of the boundary where the datum is bigger.

In Figs. 8, 9, and 10,we tested the algorithm in case of a non-homogeneousmaterial.
In Fig. 8, we show the result for a two-material specimen, that is, we took

R1
i i = 600 i = 1, . . . , (m − 1)(N + 1),

R1
i i = 1 i = (m − 1)(N + 1) + 1, . . . , 2(m − 1)(N + 1)

(31)

R2
i i = 600 i = 1, . . . ,mN ,

R2
i i = 1 i = mN + 1, . . . , 2mN

(32)

Note that for the abovevalues of R1, R2, the slides of the specimen showan asymmetric
behaviour, namely the displacement is flatterwhere thematerial function is bigger (that
is, when Rii (x) = 600).

In Figs. 9 and 10, we report the results when R1, R2 are the discretization of the
following function

r(x, y) = 400exp(y), for x ≤ N
r(x, y) = 400y otherwise

(33)

Note that in Fig. 10, the boundary datum is chosen as g3(t) = 1
100cos(2(y−0.5))(x−

0.5).As expected due to the choice of R1, R2, we remark an asymmetric behaviour of
the fracture in the y direction, namely the specimen brakes before where the material
function is higher.

3.2 Comparison with GIST

In this section, we present the result of experiments to compare the performance
of Algorithm 1 with the following two other algorithms for nonconvex and nons-
mooth minimization. We first compare with the GIST “General Iterative Shrinkage
and Thresholding” algorithm for �τ , τ < 1 minimization. We took advantage of the
fact that for GIST1 an open source toolbox is available, which facilitated an unbiased
comparison. Moreover, in [25], several tests were made to compare GIST and IRLS
“Iteratively reweighted least squares”, showing that the two algorithms have nearly
the same performance, with only significant difference in speed, where GIST appears
to be the faster one.

Concerning �1-minimization based algorithms, we compared our algorithm with
the FISTA “Fast Iterative Shrinkage-Thresholding Algorithm”, see Sect. 3.2.

We remark that the results of [25] show no particular differences in the performance
of the algorithm for different values of τ , except that the speed becomes much worse

1 The reference paper is [36], the toolbox can be found in https://github.com/rflamary/nonconvex-
optimization.
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for p near to 1, say τ = 0.9. Motivated also by this observations, the comparisons
explained in the following were made for one fixed value of τ .

The comparison is carried out through the following three examples, the academical
M-matrix problem, an optimal control problem, and amicroscopy imaging reconstruc-
tion example.

Themonotone algorithm is stoppedwhen the �∞-residue of the optimality condition
(9) is of the order of 10−3 in the M-matrix and optimal control problems and of the
order of 10−8 in the imaging example. GIST is terminated if the relative change of the
two consecutive objective function values is less than 10−5 or the number of iterations
exceeds 1000.We remark that no significant changes were remarked by setting a lower
tolerance than 10−5 or a bigger number of maximal iteration for GIST.

Since bothGISTand theFISTAsolve the problem (1)when the operatorΛ coincides
with the identity, we also make this choice in the following subsections. Finally, we
remark that the three examples were analysed already in [20] with different aims.

3.2.1 M-Matrix Example

We consider

min
x∈Rn×n

J (x) = min
x∈Rn×n

1

2
|Ax − b|22 + λ|x |ττ , (34)

A is the forward finite difference gradient A = [
G ′

1,G
′
2

]′
, with G1 := I ⊗ D ∈

R
n(n+1)×n2 andG2 := D⊗ I ∈ R

n(n+1)×n2 , I is the n×n identity matrix,⊗ the tensor
product, D = (n+1)D̃, and D̃ := diag(ones(n+1, 1))+diag(−ones(n, 1)−1) ∈
R

(n+1)×n , without the last column. Then, AT A is an M matrix coinciding with the 5-
point star discretization on a uniformmesh on a square of the Laplacian with Dirichlet
boundary conditions. Moreover, (34) can be equivalently expressed as

min
x∈Rn×n

1

2
|Ax |22 − (x, f ) + λ|x |ττ , (35)

where f = AT b. If λ = 0, this is the discretized variational form of the elliptic
equation

− Δy = f in Ω, y = 0 on ∂Ω. (36)

For λ > 0, the variational problem (35) gives a sparsity-enhancing solution for the
elliptic equation (36), that is, the displacement y will be 0 when the forcing f is small.
Our tests are conducted with f chosen as discretization of f = 10x1sin(5x2)cos(7x1).
The initialization is chosen as the solution of the corresponding non-sparse optimiza-
tion problem.
We remark that in [37] and [20], the algorithm was also tested in the same situation for
different values of τ and λ, showing, in particular and consistent with our expectations
that the sparsity of the solution increases with λ.

Here, we focus on the comparison between the performances of Algorithm 1 and
GIST. In order to compare the two schemes, we focus on the value of the unregularized
functional J in (34) reached by both algorithms, the time to acquire it, and the number
of iterations. Our tests were conducted for τ = 0.5, and λ incrementally increasing
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Table 1 M-matrix example,
λ = 0.05. (a) Comparison
between value of functional,
time and iterations between
Algorithm 1 and GIST. (b) Value
of iteration and time to which
Algorithm 1 overcome GIST’s
value of the functional

(a)

JGIST 264.232 Jmon 263.92

TimeGIST 0.701 Timemon 26.142

IterationsGIST 384 Iterationsmon 361

(b)

JGIST 264.232 Timemon 0.39

Itermon 5 TimeGIST 0.701

from 10−3 to 0.3. The parameter ε was decreased from 10−1 to 10−6. We report the
values in Table 1 for λ = 0.05, since for the other values of λ, the results we obtained
are comparable.

We observe that Algorithm 1 achieves always lower values of the functional J, but
in a longer time. The number of iterations needed by Algorithm 1 is smaller than the
number of iterations of GIST for small values of λ, more precisely for λ < 0.1. Note
that for smaller λ the number of iterations of Algorithm 1 is smaller than the one of
GIST. This suggests, consistent with our expectation, that the monotone scheme is
slower than GIST mainly because it solves a nonlinear equation at each iteration.

We carried out a further test in order to measure the timing performance of Algo-
rithm 1, that is, the algorithm is stopped as soon as the value of J achieved by GIST is
reached. In Table 1, we report the time, the number of iterations, the values of J, and
the value of ε reached. We observe that the time is almost always smaller than the one
of GIST.

3.2.2 Optimal Control Problem

We consider the linear control system

d

dt
y(t) = Ay(t) + Bu(t), y(0) = 0,

that is,

y(T ) =
∫ T

0
eA(T−s)Bu(s)ds, (37)

where the linear closed operatorA generates aC0-semigroup eAt , t ≥ 0 on the Hilbert
space X . More specifically, we consider the one-dimensional controlled heat equation
for y = y(t, x):

yt = yxx + b1(x)u1(t) + b2(x)u2(t), x ∈]0, 1[, (38)

with homogeneous boundary conditions y(t, 0) = y(t, 1) = 0 and thus X =
L2(]0, 1[). The differential operator Ay = yxx is discretized in space by the second-
order finite difference approximation with n = 49 interior spatial nodes (Δx = 1

50 ).
We use two time-dependent controls−→u = (u1, u2)with corresponding spatial control
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distributions bi chosen as step functions: b1(x) = χ].2,.3[, b2(x) = χ].6,.7[.The control
problem consists in finding the control function −→u that steers the state y(0) = 0 to a
neighbourhood of the desired state yd at the terminal time T = 1. We discretize the
problem in time by the mid-point rule, i.e.

A−→u =
m∑

k=1

e
A

(
T−tk− Δt

2

)

(B−→u )kΔt, (39)

where−→u = (u11, . . . , u
m
1 , u12, . . . u

m
2 ) is a discretized control vectorwhose coordinates

represent the values at the mid-point of the intervals (tk, tk+1). Note that in (39), we
denote by B a suitable rearrangement of the matrix B in (37) with some abuse of
notation. A uniform step-sizeΔt = 1

50 (m = 50) is utilized. The solution of the control
problem is based on the sparsity formulation (1), where Λ = I and φλ,τ (x) = λ|x |τ
and b in (1) is the discretized target function chosen as the Gaussian distribution
yd(x) = 0.4 exp(−70(x − .7)2)), centred at x = .7. That is, we apply our algorithm
for the discretized optimal control problem in time and space where x from (1) is the
discretized control vector u ∈ R

2m , which is mapped by A to the discretized output y
at time 1 bymeans of (39).Moreover, b from (1) is the discretized state yd with respect
to the spatial grid Δx . The parameter ε was initialized with 10−3 and decreased down
to 10−8.

Similarly as in the previous subsection, we compare the values of the functional,
the time and the number of iterations. The experiments are carried out for τ = 0.5 and
λ in the interval 10−3-0.2. We report only the values for the second control u2 since
the first control u1 is always zero (as expected).

As can be seen from Table 2, the same kind of remarks as in the previous subsection
apply. In particular, GIST is faster but less precise than Algorithm 1, but Algorithm 1
overcomes the value reached by GIST more rapidly. Note that we reported again only
the results we obtained for the two values of λ = 0.001 and λ = 0.01 since for the
other values of λ tested, we got comparable results.

3.2.3 Compressed Sensing Approach for Microscopy Image Reconstruction

We compare Algorithm 1 andGIST in amicroscopy imaging problem, in particular we
focus on the STORM (stochastic optical reconstruction microscopy) method, based
on stochastic switching and high-precision detection of single molecules to achieve an
image resolution beyond the diffraction limit. The literature on the STORM has been
intensively increasing, see e.g. [38–41]. We refer in particular to [20] for a detailed
description of the method and for more references.

Our approach is based on the following constrained-minimization problem:

min
x∈Rn

|x |ττ such that |Ax − b|2 ≤ ε, (40)

where τ ∈]0, 1], x is the up-sampled, reconstructed image, b is the experimentally
observed image, and A is the impulse response (of size m × n, where m and n are
the numbers of pixels in b and x , respectively). A is usually called the point spread
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Table 2 Optimal control
problem. (a) and (b) Comparison
between the value of J, time,
iteration of Algorithm 1 and
GIST. (c) Value of J, iterations,
time for which Algorithm 1
overcomes GIST’s

λ 0.001 0.01

(a)

JGIST 0.073 0.599

TimeGIST 0.047 0.04

IterationsGIST 157 3

(b)

Jmon 0.068 0.185

Timemon 15.140 14.866

Iterationsmon 28 32

(c)

Jmon 0.071 0.185

Itermon 1 5

Timemon 0.1 0.39

TimeGIST 0.047 0.04

function (PSF) and describes the response of an imaging system to a point source or
point object. Problem (40) can be reformulated as:

min
x∈Rn

1

2
|Ax − b|22 + λ|x |ττ . (41)

First, we tested the procedure for same resolution images, in particular the con-
ventional and the true images are both 128 × 128 pixel images. Then, the algorithm
was tested in the case of a 16 × 16 pixel conventional image and a 128 × 128 true
image. The values for the impulse response A and the measured data b were chosen
according to the literature, in particular A was taken as the Gaussian PSF matrix with
variance σ = 8 and size 3× σ = 24, and b was simulated by convolving the impulse
response A with a random 0-1 mask over the image adding a white random noise so
that the signal to noise ratio is .01.

We carried out several tests with the same data for different values of τ, λ. We
report only our results for τ = .1 and λ = 10−6, λ = 10−9 for the same and the
different resolution case, respectively, since for these values the best reconstructions
were achieved. We focus on two different types of images, a sparse 0-1 cross-like
image and the standard phantom image. In order to compare the performance of
Algorithm 1 and the GIST algorithm, we focus on the number of surplus emitters
(Error+) and missed emitters (Error−) recovered in the case of the cross image and
different resolution. The errors are computed on an average over six recoveries for
different values of the noise. The graphics of the errors against the noise are reported
in Figs. 11 and 12 for Algorithm 1 and GIST, respectively. We remark that these
quantities are typically used as a measure of the efficacy of the reconstruction method,
see for example [42] (where, under certain conditions, a linear decay with respect to
the noise is proven) and [43].
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Fig. 12 Error+ (surplus of emitters), Error− (missed emitters) against noise. Results obtained by the FISTA,
λ = 10−6

The results shows that by GIST the Error− is always 197, whereas by Algorithm 1
is always under 53 and even smaller for small values of the noise. On the other hand,
the Error+ by GIST is always 0 and by Algorithm 1 is zero for small values of the
noise and then monotonically increasing until it reaches 175 when the noise is equal
to 0.1. Consistently with what expected, by Algorithm 1, the graphics show a linear
decay w.r.t. the noise, differently from the behaviour showed by GIST. Moreover, the
results found by Algorithm 1 lead to more accuracy in the recovery, in the sense that
the quantity of missed emitters is smaller, whereas on the other hand, GIST seems to
lead to a more sparser solutions (since the Error+ is 0 by GIST).

Finally, we remark that in the case of the cross image, GIST is faster than our
algorithm, consistently with the result presented in the previous subsection and as
expected, since our algorithm solves a nonlinear equation for each minimization prob-
lem. On the other hand, in the case of the standard phantom image, GIST results to be
far slower than Algorithm 1.

In Fig. 12, we report the results obtained in the same situation by the FISTA “Fast
Iterative Shrinkage-Thresholding Algorithm” for �1 minimization. We remark that
by the FISTA, the Error+ is always above 400, whereas by Algorithm 1 is zero for
small value of the noise. This shows that Algorithm 1 leads to more sparsity with
respect to the FISTA, consistently with our expectation since the FISTA is based on
�1 minimization.

4 Perspectives and Open Problems

An open problem of interest to us is the study of problems like (1) for the case where
the linear mapping A is replaced by a nonlinear, smooth operator f : Rn �→ R

m .
One of the motivations arises from control of nonlinear dynamical system. We could
proceed by iteratively applying themonotone scheme in Sect. 2.3 to auxiliary problems
arising from linearization of f at the current iterate and by updating the sequence such
obtained in an outer loop.

We are particularly interested in the case in which the nonlinear operator f is
nonconvex. From a fracture mechanics point of view, this would mean considering
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not only small-strain energy as in the current paper, but possibly polyconvex strain
energy as in [44]. Considering a nonconvex energy would be more consistent from a
mechanical point of view, and in particular in line with Coleman–Noll’s theorem.

5 Conclusions

We have developed a monotone convergent algorithm for a class of nonconvex non-
smooth optimization problems arising in the modelling of fracture mechanics and
in imaging reconstruction, including the �τ , τ ∈]0, 1], the smoothly clipped absolute
deviation and theminimax concave penalty. Theoretically,we established the existence
of a minimizer of the original problem under assumptions implying coercivity of the
functional. Then, we derived necessary optimality conditions for a regularized version
of the original problem. The optimality conditions for the regularized problem were
solved through a monotonically convergent scheme based on an iterative procedure.
We proved the convergence of the iteration procedure under the same assumptions
that guarantee existence. A remarkable result is the strict monotonicity of the func-
tional along the sequence of iterates generated by the scheme. Moreover, we proved
the convergence of the regularized problem to the original one, as the regularization
parameter goes to zero.

The procedure is very efficient and accurate. The efficiency and accuracy of the
procedure was verified by numerical tests simulating the evolution of cohesive frac-
tures and microscopy imaging. An issue of high relevance to us was the comparison of
the scheme to two alternative algorithms, the GIST “General Iterative Shrinkage and
Thresholding” algorithm for �τ minimization, with τ strictly positive and less than 1
and the FISTA “Fast Iterative Shrinkage-Thresholding Algorithm” for �1 minimiza-
tion. We first compared with GIST by focusing on the infimal value reached by the
iteration procedure and on the computing time. Our results showed that the monotone
algorithm is able to reach a smaller value of the objective functional when compared
to GIST’s, therefore leading to a better accuracy. Finally we compared our scheme
with FISTA in sparse recovery related to microscopy imaging. The results showed that
the monotone scheme leads to more sparsity with respect to FISTA, as expected since
FISTA concerns �1 minimization.
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