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Abstract
Given an open subset of a Banach space and a Lipschitz real-valued function defined
on its closure, we study whether it is possible to approximate this function uniformly
by Lipschitz functions having the same Lipschitz constant and preserving the values
of the initial function on the boundary of the open set, and which are k times continu-
ously differentiable on the open. A consequence of our result is that every 1-Lipschitz
function defined on the closure of an open subset of a finite-dimensional normed space
of dimension greater than one, and such that the Lipschitz constant of its restriction
to the boundary is less than 1, can be uniformly approximated by differentiable 1-
Lipschitz functions preserving the values of the initial function on the boundary of the
open set, and such that its derivative has norm one almost everywhere on the open.
This result does not hold in general without assumption on the Lipschitz constant of
the restriction of the initial function to the boundary.
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1 Introduction

It is no doubt useful to be able to approximate Lipschitz functions by smooth Lipschitz
functions preserving the Lipschitz constants as much as possible in Banach spaces.
The Lasry–Lions method [1] provides uniform approximation of Lipschitz functions
by differentiable Lipschitz functions with Lipschitz derivatives without increasing the
Lipschitz constant of the initial functions, in Hilbert spaces. This result was extended
to a wider class of functions in [2]. As a consequence of the main theorem of [3], one
can obtain approximation of locally Lipschitz functions by smooth locally Lipschitz
functions on open subsets of a finite-dimensional space, in which the approximation
can be taken with locally Lipschitz constants arbitrarily close to the original locally
Lipschitz constants, and such that the approximating function is continuously close
to the initial function. In [4], it was proved a similar result for separable (possibly)
infinite-dimensional Riemannianmanifolds. Inmore general Banach space, the results
in [5–7] yield Lipschitz and smooth approximation of Lipschitz functions, in which
the Lipschitz constant of the approximating function is controlled by the Lipschitz
constant of the initial function, up to factor which only depends on the space and is
bigger than 1 in general.
In this paper, we study approximation of Lipschitz functions defined on open subsets
of Banach spaces by smooth functions preserving both the Lipschitz constant and
the boundary value of the initial function. In addition, we study approximation of
Lipschitz functions defined on the closure of an open subset of a finite-dimensional
space by almost classical solutions of the Eikonal equation introduced in [8], with a
Lipschitz boundary value; i.e., 1-Lipschitz differentiable functions, which satisfy the
Eikonal equation almost everywhere and coincide with a given 1-Lipschitz boundary
data.

2 Description of theMain Results

Throughout this paper, for every metric space (E, d) and every function f : E → R,

we will denote the Lipschitz constant or Lipschitz rate of f on E by Lip( f , E), that
is,

Lip( f , E) := inf{L > 0 : | f (x) − f (y)| ≤ Ld(x, y) for all x, y ∈ E}.

Also, if λ ≥ 0, we will say that f : E → R is λ-Lipschitz on E whenever | f (x) −
f (y)| ≤ λd(x, y) for every x, y ∈ E . We will denote by B[x0, r ] the closed ball
centered at x0 and with radius r > 0 with respect to the metric on E . The closure of
any subset A will be denoted by cl(A). Finally, for any Banach space X with norm
‖ · ‖, the dual norm on X∗ will be denoted by ‖ · ‖∗.
In this paper, we deal with the following problem.

Problem 2.1 Let X be a Banach space, let u0 : cl(Ω) → R be a Lipschitz function
defined on the closure of an open subset Ω of X and let k ∈ N ∪ {∞}. Given ε > 0,
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does there exist a function v : cl(Ω) → R of class Ck(Ω) with Lip(v, cl(Ω)) ≤
Lip(u0, cl(Ω)), v = u0 on ∂Ω and |u0 − v| ≤ ε on cl(Ω)?

In finite-dimensional spaces, the integral convolution with mollifiers provides uniform
approximation by C∞ functions preserving the Lipschitz constant of the function to
be approximated. However, this approximation does not necessarily preserve the value
of u0 on ∂Ω. On the other hand, it was proved in [3, Theorem 2.2] an approximation
theorem for locally Lipschitz functions defined on open subsets of Rn which implies
that for any continuous function δ : Ω →]0,+∞[, and any locally Lipschitz function
u0 there exists a function v of class C∞ satisfying (among other properties) that

|u0(x) − v(x)| ≤ δ(x) and |Dv(x)| ≤ Lip(u0, B[x, δ(x)] ∩ Ω) + δ(x), x ∈ Ω.

Using the above result with δ(x) = min{ε, dist(x, ∂Ω)}, we get a smooth Lipschitz
approximation v of u0 that extends continuously to cl(Ω) by setting v = u0 on ∂Ω.

The function v has Lipschitz constant arbitrarily close to Lip(u0, cl(Ω)), but bigger
than Lip(u0, cl(Ω)) in general. Thus, this does not yield any answer to Problem 2.1.
In the infinite-dimensional case, it was proved in [4, Theorem 1] that every Lipschitz
function defined on an open subsetΩ of a separable Hilbert space (or even a separable
infinite-dimensional Riemannian manifold) can be approximated in theC0-fine topol-
ogy by C∞ functions whose Lipschitz constant can be taken to be arbitrarily close to
the Lipschitz constant of u0, i.e., for any given continuous function δ : Ω →]0,+∞[
and r > 0, there exists v of class C∞ such that

|u0(x) − v(x)| ≤ δ(x), x ∈ Ω and Lip(v,Ω) ≤ Lip(u0, cl(Ω)) + r .

One can find in [5–7] some results on approximation of Lipschitz functions by Ck-
smooth Lipschitz functions in more general Banach spaces. In these results, the
approximating function preserves the Lipschitz constant of the original function up to
a factor C0 ≥ 1, which only depends on the space and is bigger than 1 in general.
In this paper, we show that the answer to Problem 2.1 depends on the relation between
Lip(u0, ∂Ω) and Lip(u0, cl(Ω)). Let us now state our main results in this direction.

Theorem 2.1 Let X beafinite-dimensional normed space, or a separableHilbert space
or the space c0(Γ ), for an arbitrary set of indicesΓ . LetΩ be an open subset of X and
let u0 : cl(Ω) → R be a Lipschitz function such that Lip(u0, ∂Ω) < Lip(u0, cl(Ω)).

Given ε > 0, there exists a function v : cl(Ω) → R such that v is of class C∞(Ω), v

is Lipschitz on cl(Ω) with Lip(v, cl(Ω)) ≤ Lip(u0, cl(Ω)), v = u0 on ∂Ω and
|u0 − v| ≤ ε on cl(Ω).

For nonseparable Hilbert spaces, we have the following.

Theorem 2.2 Let X be a Hilbert space. Let Ω be an open subset of X and let u0 :
cl(Ω) → R be a Lipschitz function such that Lip(u0, ∂Ω) < Lip(u0, cl(Ω)). Given
ε > 0, there exists a function v : cl(Ω) → R such that v is of class C1(Ω), v

is Lipschitz on cl(Ω) with Lip(v, cl(Ω)) ≤ Lip(u0, cl(Ω)), v = u0 on ∂Ω and
|u0 − v| ≤ ε on cl(Ω).
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Theorems 2.1 and 2.2 give a positive answer to Problem 2.1 for the C1(Ω) or C∞(Ω)

class, when Lip(u0, ∂Ω) < Lip(u0, cl(Ω)), in certain Banach spaces. These theorems
will be proved by combining approximation techniques in the pertinent space with the
following result.

Theorem 2.3 Let k ∈ N ∪ {∞} and let X be a Banach space with the property that
for every Lipschitz function f : X → R and every η > 0, there exists a function
g : X → R of class Ck(X) such that | f − g| ≤ η on X and Lip(g, B[x0, r ]) ≤
Lip( f , B[x0, r + η]) + η for every ball B[x0, r ] ⊂ X . Then, if Ω is an open subset of
X , u0 : cl(Ω) → R is a Lipschitz function such that Lip(u0, ∂Ω) < Lip(u0, cl(Ω))

and ε > 0, there exists a function v : cl(Ω) → R such that v is of class Ck(Ω), v

is Lipschitz on cl(Ω) with Lip(v, cl(Ω)) ≤ Lip(u0, cl(Ω)), v = u0 on ∂Ω and
|u0 − v| ≤ ε on cl(Ω).

In Sect. 6, wewill see an example onR2 with the 	1 norm showing that Problem 2.1 has
a negative answer (even for the class of functionswhich aremerely differentiable onΩ)
if we allow Lip(u0, ∂Ω) = Lip(u0, cl(Ω)). Therefore, one can say that Theorem2.1
is optimal (in the sense of Problem 2.1), at least in the setting of finite-dimensional
normed spaces.
We now consider a subproblem of Problem 2.1 when X is a finite-dimensional normed
space.

Problem 2.2 Let (X , ‖ · ‖) be a finite-dimensional normed space with dim(X) ≥ 2
and let u0 : cl(Ω) → R be a 1-Lipschitz function defined on the closure of an open
subset Ω of X . Given ε > 0, does there exist a 1-Lipschitz function w : cl(Ω) → R

such thatw is differentiable onΩ with ‖Dw‖∗ = 1 almost everywhere onΩ, w = u0
on ∂Ω and |u0 − w| ≤ ε on cl(Ω)?

Observe that, if w = u0 on ∂Ω and Lip(u0, ∂Ω) < 1, then the Mean Value Theorem
yields the existence of x ∈ Ω such that ‖Dw(x)‖∗ < 1. Therefore, the function w (if
it exists) has no continuous derivative in this case.
The following theorem gives a positive answer to Problem 2.2 when Lip(u0, ∂Ω) < 1.

Theorem 2.4 Let Ω be an open subset of a finite-dimensional normed space (X , ‖ ·
‖) with dim(X) ≥ 2. Let u0 : cl(Ω) → R be a 1-Lipschitz function such that
Lip(u0, ∂Ω) < 1. Given ε > 0, there exists a differentiable 1-Lipschitz function
w : cl(Ω) → R such that ‖Dw‖∗ = 1 almost everywhere on Ω, w = u0 on ∂Ω and
|u0 − w| ≤ ε on cl(Ω).

In Sect. 6, we prove, using the theory of absolutely minimizing Lipschitz extensions,
that if Ω is an open subset in a 2-dimensional Euclidean space and if u0 : ∂Ω → R

is a 1-Lipschitz function, then there exists a differentiable 1-Lipschitz function w :
cl(Ω) → R such that ‖Dw‖∗ = 1 almost everywhere on Ω and w = u0 on ∂Ω .
However, Example 6.1 shows that Problem 2.2 may have a negative answer if we
drop the hypothesis Lip(u0, ∂Ω) < 1. Observe that Theorem 2.4 covers the case of
homogeneous Dirichlet conditions. Also, we notice that the above theorem does not
hold when X = R. Indeed, if u0 : [0, 1] → R is 1-Lipschitz and differentiable on
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]0, 1[, with |u0(1) − u0(0)| < 1, then a result of A. Denjoy [9] tells us that either
{x : |u′

0(x)| < 1} is empty or else it has positive Lebesgue measure. But this subset
is nonempty by the Mean Value Theorem.
The contents of the paper are as follows. In Sect. 3, we show that in general metric
spaces, one can approximate a Lipschitz function u0 by a function which coincides
with u0 on a given subset and has, on bounded subsets, better Lipschitz constants. In
Sect. 4, we will give the proof of Theorems 2.3, 2.1 and 2.2 with the decisive help
of the above result. In Sect. 5, we use Theorem 2.1 and the results in [10] to prove
Theorem 2.4. Finally, in Sect. 6, we consider the case Lip(u0, ∂Ω) = Lip(u0, cl(Ω)):
although a partial positive result in the Euclidean setting can be obtained, we show
that Problem 2.1 does not always have a positive answer in this limiting case.

3 Approximation by Functions with Smaller Lipschitz Constants

Throughout this section, all the sets involved are considered to be subsets of a metric
space (X , d) and all the Lipschitz constants are taken with respect to the distance d.

The following result will be very useful in Sect. 4, and it is interesting in itself.

Theorem 3.1 Let E and F be two nonempty closed sets such that F ⊂ E, let u0 :
E → R be a K -Lipschitz function such that λ0 := Lip(u0, F) < K . Given ε > 0,
there exists a function u : E → R such that |u − u0| ≤ ε on E, u = u0 on F and u
has the property that Lip(u, B) < K for every bounded subset B of E .

A crucial step for proving the above theorem is the following lemma. For any two
nonempty subsets A and B of X and for any x ∈ X , we will denote

dist(x, B) : = inf{d(x, y) : y∈ B},
gap(A, B) : = inf{d(x, y) : x ∈ A, y∈ B} and diam(A) :=sup{d(x, y) : x, y ∈ A}.

Lemma 3.1 Let E and F be two nonempty closed subsets such that F ⊂ E and E\F
is bounded. Let u0 : E → R be a 1-Lipschitz function, let uμ : F → R beμ-Lipschitz,
with μ < 1, let δ ≥ 0 and assume that |uμ − u0| ≤ δ on F . For every μ < λ < 1,
there exists a function uλ : E → R such that uλ is λ-Lipschitz on E with uλ = uμ on
F and |u0 − uλ| ≤ δ + ε(λ, μ, E, F) on E; where

ε(λ, μ, E, F) = 1 − λ

λ − μ
(λ + μ) (diam(cl(E\F)) + gap(cl(E\F), F)) > 0

and ε(λ, μ, E, F) = 0 whenever E\F = ∅.

Proof In the case when E\F = ∅, we have that E = F and then it is enough to take
uλ = uμ. From now on, we assume that E\F �= ∅, we fix μ < λ < 1, and we denote
ελ = ε(λ, μ, E, F). We now define the strategy of proof of the lemma. We first show
that the family

Cλ :={u : E→R : u is λ-Lipschitz on E, u≤u0+δ+ελ on E, u=uμ on F}
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is nonempty, and then we define the function uλ by:

uλ(x) := sup{u(x) : u ∈ Cλ}, x ∈ E . (1)

In order to prove that the function uλ is the required solution, it will be enough to
check that uλ ∈ Cλ and that u0 ≤ uλ + δ + ελ on E .

1. We now prove that the family Cλ is nonempty. Consider the function

v(x) = sup
y∈F

{uμ(y) − λd(x, y)}, x ∈ E,

and let us see that v ∈ Cλ.Since uμ isλ-Lipschitz (in fact,μ-Lipschitz) on F, it follows
from standard calculations concerning the sup convolution of Lipschitz functions that
v is a well defined λ-Lipschitz function on E with v = uμ on F .Now, given x ∈ E\F
and y ∈ F let us see that uμ(y) − λd(x, y) ≤ u0(x) + δ + ελ. For every η > 0, we
can find a point zη ∈ F with

dist(x, F) + η ≥ d(x, zη). (2)

In the case when uμ(y) − λd(x, y) < uμ(zη) − λd(x, zη), by the assumption that
|uμ − u0| ≤ δ on F together with (2) and the fact that dist(x, F) ≤ ελ, we have that

uμ(y) − λd(x, y)

< uμ(zη) − λd(x, zη) ≤ u0(zη) + δ − λd(x, zη) ≤ u0(x) + δ

+ (1 − λ)d(x, zη)

≤ u0(x) + δ + (1 − λ) (dist(x, F) + η) ≤ u0(x) + δ + ελ + (1 − λ)η.

In the case when uμ(y) − λd(x, y) ≥ uμ(zη) − λd(x, zη). The fact that uμ is μ-
Lipschitz on F yields

uμ(y) − λd(x, y) ≥ uμ(zη) − λd(x, zη) ≥ uμ(y) − μd(y, zη) − λd(x, zη)

≥ uμ(y) − μd(x, y) − μd(x, zη) − λd(x, zη),

which in turn implies

(λ − μ)d(x, y) ≤ (λ + μ)d(x, zη). (3)

Using first that u0 is 1-Lipschitz on E and then (3) and (2), we obtain

uμ(y) − λd(x, y) ≤ u0(y) + δ − λd(x, y) ≤ u0(x) + δ + (1 − λ)d(x, y)

≤ u0(x) + δ + 1 − λ

λ − μ
(λ + μ)d(x, zη) ≤ u0(x)
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+ δ + 1 − λ

λ − μ
(λ + μ) (dist(x, F) + η)

≤ u0(x) + δ + ελ + 1 − λ

λ − μ
(λ + μ) η.

Hence, in both cases, we have that

uμ(y) − λd(x, y) ≤ u0(x) + δ + ελ + 1 − λ

λ − μ
(λ + μ) η,

and letting η → 0+, it follows that v(x) ≤ u0(x) + δ + ελ for every x ∈ cl(E\F).

This proves the inequality v ≤ u0 + δ + ελ on E, which shows that v ∈ Cλ.

2. The function uλ belongs to Cλ because a supremum of λ-Lipschitz functions is a
λ-Lipschitz function, and because inequalities and equalities are preserved by taking
supremum. Before proving the inequality u0 ≤ uλ + δ + ελ on E , we first show that
uλ coincides with the function

vλ(x) := inf
y∈F∪Sλ

{uλ(y) + λd(x, y)}, x ∈ E,

where

Sλ =
{
x ∈ E : uλ(x) ≥ u0(x) + δ + ελ

2

}
.

Observe that, since uμ ≤ u0+δ on F, Sλ and F are disjoint. Since uλ is λ-Lipschitz on
E (and, in particular, on F ∪ Sλ), the function vλ is the greatest λ-Lipschitz extension
of uλ from the set F ∪ Sλ. Thus vλ = uλ on F ∪ Sλ and uλ ≤ vλ on E . Hence, by
(1), we will have that vλ = uλ as soon as we see that vλ ≤ u0 + δ + ελ on E . Let us
define

Gλ = {x ∈ E\ (F ∪ Sλ) : vλ(x) ≥ u0(x) + δ + ελ}.

Claim 3.1 Gλ = ∅.

Assume that Gλ �= ∅. Since E\F is bounded, then vλ − u0 is bounded on Gλ and we
can define

a := sup
Gλ

{vλ − u0}.

It is obvious that a ≥ δ + ελ. We can pick a point y ∈ Gλ such that

vλ(y) − u0(y) ≥ a − ελ

2
. (4)

We next define the function

wλ := max{uλ, vλ − a + δ + ελ} : E → R.
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The function wλ is λ-Lipschitz on E and satisfies the following.

(i) On the set F ∪ Sλ, we have vλ = uλ. Since a ≥ δ + ελ, we have that wλ = uλ

on F ∪ Sλ. In particular wλ = uμ on F .

(ii) On Gλ, we have, by the definition of a, that vλ − a ≤ u0. Since we always have
uλ ≤ u0 + δ + ελ, the function wλ satisfies wλ ≤ u0 + δ + ελ on Gλ.

(iii) If x ∈ E\(Gλ ∪ F ∪ Sλ), then

vλ(x) − a < u0(x) + δ + ελ − a ≤ u0(x),

together with uλ ≤ u0 + δ + ελ on E, this implies wλ(x) ≤ u0(x) + δ + ελ.

From the remarks (i), (i i) and (i i i) above we obtain that wλ ≤ u0 + δ + ελ on E with
wλ = uμ on F . By (1) we must have wλ ≤ uλ on E . But, for the point y ∈ Gλ, (see
(4)) it follows that

uλ(y) ≥ wλ(y) ≥ vλ(y) − a + δ + ελ ≥ u0(y) + δ + ελ

2
.

It turns out that y belongs to Sλ, which is a contradiction since Gλ and Sλ are disjoint
subsets. This proves Claim 3.1.
Finally, because Gλ = ∅, it is clear that vλ ≤ u0 + δ + ελ on E and therefore

uλ(x) = vλ(x) = inf
y∈F∪Sλ

{uλ(y) + λd(x, y)}, x ∈ E . (5)

3. We now show that u0(x) ≤ uλ(x) + δ + ελ for every x ∈ E . Since u0 ≤ uμ + δ =
uλ + δ on F, we only need to consider the situation when x ∈ E\F . Let us fix η > 0.
We can find a point zη ∈ F with

dist(x, F) + η ≥ d(x, zη). (6)

Moreover, by (5), it is clear that there exists yη ∈ F ∪ Sλ such that

uλ(yη) + λd(x, yη) ≤ min
{
uλ(zη) + λd(x, zη), uλ(x) + η

}
. (7)

Suppose first that yη ∈ Sλ. In particular yη ∈ E\F and uλ(yη) ≥ u0(yη) + δ + ελ

2 .

Using that u0 is 1-Lipschitz together with (7) we obtain

u0(x) ≤ u0(yη) + d(x, y) = u0(yη) + λd(x, yη) + (1 − λ)d(x, yη)

≤ uλ(yη) − δ − ελ

2
+ λd(x, yη) + (1 − λ)d(x, yη)

≤ uλ(x) + η − δ − ελ

2
+ (1 − λ) diam(cl(E\F)) ≤ uλ(x) + δ + ελ + η.

Suppose now that yη ∈ F . Using (7) and the fact that uλ is μ-Lipschitz on F, we can
write
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uλ(zη) + λd(x, zη) ≥ uλ(yη) + λd(x, yη) ≥ uλ(zη) − μd(yη, zη) + λd(x, yη)

≥ uλ(zη) − μd(x, zη) + (λ − μ)d(x, yη),

which implies, taking into account (6),

d(x, yη) ≤ λ + μ

λ − μ
d(x, zη) ≤ λ + μ

λ − μ
(dist(x, F) + η) ≤ ελ

1 − λ
+ λ + μ

λ − μ
η. (8)

Bearing in mind that uλ + δ = uμ + δ ≥ u0 on F and using (7) and (8) we obtain

u0(x) ≤ u0(yη) + λd(x, yη) + (1 − λ)d(x, yη)

≤ uλ(yη) + δ + λd(x, yη) + (1 − λ)d(x, yη)

≤ uλ(x) + η + δ + ελ + (1 − λ)
λ + μ

λ − μ
η.

We have thus shown the inequality

u0(x) ≤ uλ(x) + δ + ελ + η + (1 − λ)
λ + μ

λ − μ
η on E .

Letting η ↓ 0, we conclude that u0(x) ≤ uλ(x) + δ + ελ for every x ∈ E . ��
Proof of Theorem 3.1 Without loss of generality we may and do assume that K = 1.
Let us fix a point p ∈ F and set En = (E ∩ B[p, n]) ∪ F and Fn = En−1 for every
n ≥ 1, where F1 = E0 = F . It is clear that we can construct an increasing sequence
of numbers {λn}n≥1 with λ0 < λ1 and λn < 1 for every n ≥ 1 such that

1 − λn

λn − λn−1
(λn + λn−1) (diam(cl(En\Fn)) + gap(cl(En\Fn), Fn)) ≤ ε

2n
(9)

for every n ≥ 1 such that En\Fn �= ∅. Let us construct by induction a sequence of
functions {un}n≥1 such that each un : En → R is λn-Lipschitz on En and satisfy
un = un−1 on En−1 and |un − u0| ≤ ε on En for every n ≥ 1.
Since u0|F is λ0-Lipschitz, we can apply Lemma 3.1 with F1 ⊂ E1, δ = 0, u0 :
E1 → R, μ = λ0, uμ = u0|F1 in order to obtain aλ1-Lipschitz function u1 : E1 → R

such that u1 = uμ = u0 on F1 and |u1 − u0| ≤ ε
2 on E1, thanks to (9). Observe that

u1 = u0 on F .

Now assume that we have constructed functions u1, . . . , un , respectively, defined on
E1, . . . , En such that each uk is λk-Lipschitz on Ek, with uk = uk−1 on Ek−1 = Fk
and

|uk − u0| ≤ ε

2
+ · · · + ε

2k
on Ek,

for every 1 ≤ k ≤ n. Then we apply Lemma 3.1 with δ = ε/2 + · · · + ε/2n, En =
Fn+1 ⊂ En+1, μ = λn, uμ = un : En → R and u0 : En+1 → R to obtain a
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λn+1-Lipschitz function un+1 : En+1 → R such that un+1 = u0 on En and, thanks
to (9),

|un+1 − u0| ≤ ε

2
+ · · · + ε

2n+1 on En+1.

This proves the induction. We now define the function u : E → R as follows: given
x ∈ E, we take a positive integer n with x ∈ En and set u(x) := un(x). Since
E = ⋃

n≥1 En and each un coincides with un−1 on En−1, the function u is well
defined. Because u = un on each En, we have that

|u − u0| = |un − u0| ≤ ε on En,

which implies that |u − u0| ≤ ε on E . Also, note that u = u0 on F because u = u1
on E1 and u1 = u0 on F ⊂ E1. Finally, given a bounded subset B of E, we can find
some natural n with B ⊂ En . This implies that u = un on B,where un is λn-Lipschitz
and λn < 1. ��

4 Approximation by Smooth Lipschitz Functions: Proof of
Theorem 2.3

This section contains the proofs of Theorems 2.3, 2.1 and 2.2. Let us start with the
proof of Theorem 2.3, so let us assume from now on that X is a Banach space satisfying
the hypothesis of Theorem 2.3 for some k ∈ N ∪ {∞}. We will need the following
two claims.

Claim 4.1 Let Ω ⊂ X be an open subset and let u : Ω → R be a Lipschitz function.
For every continuous function ε : Ω →]0,+∞[ there exists v : Ω → R of class
Ck(Ω) such that

(a) |u(x) − v(x)| ≤ ε(x) for every x ∈ Ω.

(b) ‖Dv(x)‖∗ ≤ Lip(u, B[x, ε(x)] ∩ Ω) + ε(x) for every x ∈ Ω.

Proof By replacing ε with min{ε, 1
2 dist(·, ∂Ω)}, we may and do assume that ε ≤

1
2 dist(·, ∂Ω) onΩ,which implies that B[x, ε(x)] is contained inΩ for every x ∈ Ω.

By continuity of ε, for each p ∈ Ω, there exists 0 < δp ≤ ε(p)/4 such that ε(x) ≥
ε(p)/2 for all x ∈ B[p, δp]. The assumption on X implies in particular that there
exists a constant C0 ≥ 1 such that, for every Lipschitz function f : X → R and every
η > 0, there exists a Ck Lipschitz function g : X → R such that | f − g| ≤ η on
X and Lip(g, X) ≤ C0 Lip( f , X). Then, as a consequence of [6, Lemma 3.6], there
exists a partition of unity {ϕn,p}(n,p)∈N×Ω of class Ck(Ω) and Lipschitz such that
supp(ϕn,p) ⊂ B[p, δp] for every (n, p) ∈ N × Ω, and for every x ∈ Ω, there exists
an open neighborhood Ux of x and a positive integer nx such that

If n > nx , then Ux ∩ supp(ϕn,p) = ∅ for every p ∈ Ω.

If n ≤ nx , then Ux ∩ supp(ϕn,p) �= ∅ for at most one p ∈ Ω. (10)
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Wecan assume thatu is extended to all of X with the sameLipschitz constant.Using the
assumption on X , we can find a family of Ck(X) Lipschitz functions {vn,p}(n,p)∈N×Ω

such that, for every (n, p) ∈ N × Ω,

|u − vn,p| ≤ ε(p)

(1 + Lip(ϕn,p))2n+2 on X and (11)

Lip(vn,p, B[x0, r ]) ≤ Lip(u, B[x0, r+δp])+δp ≤ Lip(u, B[x0, r + δp])+ ε(p)

4
(12)

for every ball B[x0, r ] contained in Ω. We define the approximation v : Ω → R by

v(x) =
∑

(n,p)∈N×Ω

vn,p(x)ϕn,p(x), x ∈ Ω.

By the properties of the partition {ϕn,p}(n,p)∈N×Ω, the function v is well defined and
is of class Ck(Ω). Given x ∈ Ω, (11) implies

|u(x) − v(x)|
≤

∑
{(n,p) : B[p,δp]�x}

|u(x) − vn,p(x)| ϕn,p(x) ≤
∑

{(n,p) : B[p,δp]�x}

ε(p)

2
ϕn,p(x)

≤
∑

{(n,p) : B[p,δp]�x}
ε(x) ϕn,p(x) = ε(x).

This proves part (a) of our claim. Now, let us estimate ‖Dv(x)‖∗. Since
∑

(n,p) ϕn,p =
1,we have that

∑
(n,p) Dϕn,p = 0 onΩ. Then, taking into account that supp(ϕn,p) ⊂

B[p, δp] for every (n, p) ∈ N × Ω, we can write

Dv(x) =
∑

{(n,p) : B[p,δp]�x}
Dvn,p(x)ϕn,p(x)

+
∑

{(n,p) : B[p,δp]�x}
(vn,p(x) − u(x))Dϕn,p(x).

Hence, (11) together with (10) lead us to

‖Dv(x)‖∗ ≤
∑

{(n,p) : B[p,δp]�x}
‖Dvn,p(x)‖∗ ϕn,p(x)

+
∑

{(n,p) : ϕn,p(x) �=0}

ε(p)

(1 + Lip(ϕn,p))2n+2 ‖Dϕn,p(x)‖∗

≤
∑

{(n,p) : B[p,δp]�x}
‖Dvn,p(x)‖∗ ϕn,p(x) + ε(x)

2
.
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Note that if p ∈ Ω is such that x ∈ B[p, δp], then ε(x) ≥ ε(p)/2 ≥ 2δp and we can
write, by virtue of (12), that

‖Dvn,p(x)‖∗ ≤ Lip(vn,p, B[x, ε(x) − δp]) ≤ Lip(u, B[x, ε(x)])
+ε(p)

4
≤ Lip(u, B[x, ε(x)]) + ε(x)

2
.

Therefore, we obtain

‖Dv(x)‖∗ ≤
∑

{(n,p) : B[p,δp]�x}

(
Lip(u, B[x, ε(x)]) + ε(x)

2

)
ϕn,p(x) + ε(x)

2

= Lip(u, B[x, ε(x)]) + ε(x).

This completes the proof of (b). ��
Claim 4.2 LetΩ ⊂ X be an open subset and let u : Ω → R be a K -Lipschitz function
with the property that Lip(u, B) < K for every bounded subset B ofΩ. Then, given a
continuous function ε : Ω →]0,+∞[, there exists v : Ω → R of class Ck(Ω) such
that

(a) |u(x) − v(x)| ≤ ε(x) for every x ∈ Ω.

(b) ‖Dv(x)‖∗ < K for every x ∈ Ω.

Proof Let us define L(r) = Lip(u, B[0, r + 1] ∩ Ω) for every r > 0. The function
given by δ(r) = K−L(r)

2 , for every r ≥ 0, is positive and nonincreasing. The function
δ̃ : [0,+∞[→ R given by

δ̃(t) =
∫ t+1

t
δ(s)ds, t ≥ 0,

is continuous and satisfies δ̃ ([0,+∞[) ⊂ ]0, K [ and δ̃ ≤ δ on [0,+∞[. Let us define
the mapping ρ : Ω →]0,+∞[ by ρ(x) = δ̃(‖x‖) for every x ∈ Ω. Then ρ is
continuous and we can replace ε by min{1, ε, ρ, 1

2 dist(·, ∂Ω)} on Ω. In particular,
this implies that B[x, ε(x)] ⊂ Ω for every x ∈ Ω. We thus have from Claim 4.1 that
there exists v ∈ Ck(Ω) such that

|u(x) − v(x)| ≤ ε(x), x ∈ Ω, and

‖Dv(x)‖∗ ≤ Lip(u, B[x, ε(x)]) + ε(x), x ∈ Ω.

Since ε ≤ 1, the ball B[x, ε(x)] is contained in B[0, ‖x‖ + 1] ∩ Ω. Hence, the last
inequality leads us to

‖Dv(x)‖∗ ≤ L(‖x‖) + ε(x) ≤ L(‖x‖) + ρ(x) ≤ K + L(‖x‖)
2

for every x ∈ Ω. This shows that ‖Dv(x)‖∗ < K on Ω.

We are now ready to prove Theorem 2.3. ��
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Proof of Theorem 2.3 Assume that X satisfies the hypothesis of Theorem 2.3 for some
k ∈ N ∪ {∞}. Let us denote by λ0 and K the Lipschitz constants Lip(u0, ∂Ω) and
Lip(u0, cl(Ω)) of u0 on ∂Ω and cl(Ω), respectively. By Theorem 3.1, there exists a
function u : cl(Ω) → R with

|u0 − u| ≤ ε/2 on cl(Ω), u = u0 on ∂Ω, (13)

and the Lipschitz constant of u on every bounded subset of cl(Ω) is strictly smaller
than K . Now, applying Claim 4.2 for u, we can find a function v : Ω → R of class
Ck(Ω) such that

|u(x) − v(x)| ≤ min
{ε

2
, dist(x, ∂Ω)

}
and ‖Dv(x)‖∗ < K for all x ∈ Ω.

(14)

If we extend v to the boundary ∂Ω of Ω by setting v = u on ∂Ω and we use the
inequality (14), we obtain, for every x ∈ ∂Ω, y ∈ Ω, that

|v(x) − v(y)| ≤ |u(x) − u(y)| + |u(y) − v(y)| ≤ K‖x − y‖ + dist(y, ∂Ω)

≤ (1 + K )‖x − y‖.

This proves that the function v is continuous on cl(Ω). Therefore, the fact that v is
K -Lipschitz on cl(Ω) is a consequence of the following well-known fact.

Fact 4.1 If w : cl(Ω) → R is continuous on cl(Ω), is differentiable on Ω, is K -
Lipschitz on ∂Ω and satisfies ‖Dw(x)‖∗ ≤ K for every x ∈ Ω, thenw is K -Lipschitz
on cl(Ω).

It only remains to see that v is ε-close to u0. Indeed, by using (13) and (14) we obtain

|u0 − v| ≤ |u0 − u| + |u − v| ≤ ε

2
+ ε

2
= ε on cl(Ω).

��

4.1 Finite-Dimensional and Hilbert Spaces

We are now going to prove that if X is a finite-dimensional space or a Hilbert space,
then X satisfies the assumption of Theorem 2.3 with k = ∞ in the separable case and
with k = 1 in the nonseparable case.

Lemma 4.1 Let X be a separable Hilbert space or a finite-dimensional normed space.
Given a K -Lipschitz function f : X → R and ε > 0, there exists a function g of class
C∞(X) such that |g − f | ≤ ε on X and Lip(g, B[x0, r ]) ≤ Lip( f , B[x0, r + ε]) + ε

for every ball B[x0, r ] ⊂ X . On the other hand, if X is a nonseparable Hilbert space,
the statement holds replacing C∞ smoothness with C1.
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Proof Let us first consider that X = R
d is endowed with an arbitrary norm. If f :

R
d → R is Lipschitz and, for δ > 0, we consider a function θδ : Rd → R of class

C∞(Rd) with supp(θδ) ⊆ B[0, δ] and ∫
Rd θδ = 1, it is well known that the integral

convolution fδ = f ∗ θδ is a Lipschitz function of class C∞ such that

Lip( fδ, S) ≤ Lip( f , S + B[0, δ]) for every subset S ⊂ R
d .

In addition, fδ → f uniformly on R
d as δ → 0. This proves the lemma in the

finite-dimensional case.
Now, let X be a Hilbert space and let us denote by ‖ · ‖ the norm on X . If g : X → R

is a K -Lipschitz function, then the functions defined by

gλ(x) = inf
y∈X

{
f (y) + 1

2λ‖x − y‖2
}

, gμ(x) = sup
y∈X

{
f (y) − 1

2μ‖x − y‖2
}

for all x ∈ X and λ,μ > 0, are K -Lipschitz as well. Also, it is easy to see that the
infimum/supremum defining gλ(x) and gμ(x) can be restricted to the ball B[x, 2λK ]
and B[x, 2μK ], respectively. Let us now prove the following relation between the
local Lipschitz constants of g and gλ :

Lip(gλ, B[x0, r ]) ≤ Lip(g, B[x0, r + 2λK ]) for every ball B[x0, r ] ⊂ X . (15)

Indeed, let us fix a ball B[x0, r ], two points x, x ′ ∈ B[x0, r ] and ε > 0. We can find
y ∈ B[x ′, 2λK ] such that

g(y) + 1
2λ‖x ′ − y‖2 ≤ gλ(x

′) + ε.

The points y and x − x ′ + y belong to B[x0, r + 2λK ] and then we can write

gλ(x) − gλ(x
′) ≤ g(x − x ′ + y) + 1

2λ‖x − (x − x ′ + y)‖2 − g(y)

− 1
2λ‖x ′ − y‖2 + ε ≤ Lip(g, B[x0, r + 2λK ])‖x − x ′‖ + ε,

which easily implies (15). Similarly, we show that

Lip(gμ, B[x0, r ]) ≤ Lip(g, B[x0, r + 2μK ]) for every ball B[x0, r ] ⊂ X . (16)

Now, we consider the Lasry–Lions sup-inf convolution formula for g, that is

gμ
λ (x) = sup

z∈X
inf
y∈X

{
f (y) + 1

2λ‖z − y‖2 − 1
2μ‖x − z‖2

}

for all x ∈ X and0 < μ < λ.By the preceding remarks, the function gμ
λ is K -Lipschitz

and satisfies that
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Lip(gμ
λ , B[x0, r ]) ≤ Lip(g, B[x0, r + 2(λ + μ)K ]) for every ball B[x0, r ] ⊂ X .

(17)

Moreover, in [1,2] it is proved that gμ
λ is of class C1(X) and gμ

λ converges uniformly
to g as 0 < μ < λ → 0.Now, given our K -Lipschitz function f : X → R and ε > 0,
we can find 0 < μ < λ small enough so that the function f μ

λ is K -Lipschitz and of
class C1(X), with | f μ

λ − f | ≤ ε/2 on X and, by virtue of (17),

Lip( f μ
λ , B[x0, r ]) ≤ Lip( f , B[x0, r + ε]) for every ball B[x0, r ] ⊂ X . (18)

If we further assume that X is separable, then we can use [11, Theorem 1] in order to
obtain a function g ∈ C∞(X) such that

| f μ
λ − g| ≤ ε

2
and ‖Df μ

λ − Dg‖∗ ≤ ε on X ,

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖. From the first inequality we see that
| f − g| ≤ ε on X . The second one together with (18) shows that

Lip(g, B[x0, r ]) ≤ Lip( f μ
λ , B[x0, r ]) + ε ≤ Lip( f , B[x0, r + ε]) + ε

for every ball B[x0, r ] of X . ��
Combining Lemma 4.1 with Theorem 2.3, we obtain Theorems2.2 and 2.1 when X
is a separable Hilbert space or a finite-dimensional space.

Remark 4.1 In the case when the function to be approximated vanishes on the bound-
ary, the proof ofTheorem2.1 for finite-dimensional spaces can be verymuch simplified
as we do not need to use Theorem 3.1. Indeed, ifRn is endowed with an arbitrary norm
and u0 : cl(Ω) → R is a Lipschitz function with u0 = 0 on ∂Ω, given ε > 0, we
define the function ϕε : R → R by

ϕε(t) =
⎧⎨
⎩
t + ε

2 , if t ≤ − ε
2 ,

0, if − ε
2 ≤ t ≤ ε

2 ,

t − ε
2 , if t ≥ ε

2 .

(19)

We can assume that u0 is extended to all of Rn by putting u0 = 0 on R
n\ cl(Ω),

preserving the Lipschitz constant. The function u = ϕε ◦u0 defined onRn is Lipschitz
because so are u0 and ϕε, and Lip(u,Rn) ≤ Lip(u0,Rn).Also, since |ϕε(t)−t | ≤ ε/2
for every t ∈ R, it is clear that

|u(x) − u0(x)| = |ϕε(u0(x)) − u0(x)| ≤ ε

2
for all x ∈ R

d .

Now we define

v(x) = (u ∗ θδ)(x) =
∫

Rd
u(y)θδ(x − y)dy, x ∈ R

d ,
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where θδ : Rd → R is aC∞(Rd) such that θδ ≥ 0,
∫
Rd θδ = 1 and supp(θδ) ⊆ B[0, δ].

Using the preceding remarks together with the well-known properties of the integral
convolution of Lipschitz functions with mollifiers, it is straightforward to check that,
for δ > 0 small enough, v is the desired approximating function, i.e., v is of class
C∞(Rd) with v = 0 on ∂Ω, Lip(v,Rn) ≤ Lip(u0,Rn) and |u0 − v| ≤ ε on cl(Ω).

4.2 The Space c0(�)

Let us now prove that the space X = c0(Γ ) satisfies the hypothesis of Theorem 2.3
with k = ∞. In order to do this, we will use the construction given in [12, Theorem
1] and we will observe that the local Lipschitz constants are preserved.

Lemma 4.2 If Γ is an arbitrary subset, X = c0(Γ ) and f : X → R is a Lipschitz
function, then, for every ε > 0, there exists a function g : X → R of class C∞(X)

such that | f − g| ≤ ε on X and Lip(g, B[x0, r ]) ≤ Lip( f , B[x0, r + ε]) for every
ball B[x0, r ] ⊂ X .

Proof If K denotes the Lipschitz constant of f , let us consider 0 < η < ε
2(1+K )

.Let us
define the functionφ : X → X byφ(x) = (ϕ2η(xγ ))γ∈Γ for every x = (xγ )γ∈Γ ∈ X ,

where ϕ2η is defined in (19). Thus φ is 1-Lipschitz and satisfies ‖φ(x) − x‖ ≤ η for
every x ∈ X . By composing f with φ we obtain a function h = f ◦ φ satisfying
| f − h| ≤ ε

2 and with the property that, for every x ∈ X , there exists a finite subset
F of Γ such that whenever y, y′ ∈ B[x, η

2 ] and PF (y) = PF (y′) (here PF (z) =∑
γ∈F e∗

γ (z)eγ for every z ∈ X ) we have h(y) = h(y′). Moreover, we observe that if
x, y ∈ B[x0, r ] ⊂ X , then φ(x), φ(y) ∈ B[x0, r + η] and therefore

|h(x) − h(y)|≤Lip( f , B[x0, r+η])‖φ(x) − φ(y)‖≤Lip( f , B[x0, r+η])‖x − y‖;

which shows that Lip(h, B[x0, r ]) ≤ Lip( f , B[x0, r +η]). Now we use the construc-
tion of [12, Lemma 6] to obtain the desired approximation g : let us define g as the
limit of the net {gF }F∈Γ <ω, where each gF is defined by

gF (x) =
∫

R|F |
h

⎛
⎝x −

∑
γ∈F

tγ eγ

⎞
⎠ ∏

γ∈F
θ(tγ )dλ|F |(t), x ∈ X;

and θ is a even C∞ smooth nonnegative function on R such that
∫
R

θ = 1 and
supp(θ) ⊂ [−cε, cε], for a suitable small constant c > 0. It turns out that g is of
class C∞(X) with |g − h| ≤ ε

2 on X and with the property that, for every x ∈ X ,

there exists a finite subset Fx of Γ such that g(x) = gH (x) for every finite subset
H of Γ containing Fx . See [12, Lemma 6] for details. In addition, we notice that
if x, y ∈ B[x0, r ], and we consider finite subsets Fx and Fy of Γ with the above
property, then for the set H = Fx ∪ Fy, we have that
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|g(x) − g(y)| = |gH (x) − gH (y)| ≤
∫

R|H |

∣∣∣∣h
⎛
⎝x −

∑
γ∈H

tγ eγ

⎞
⎠

− h

⎛
⎝y −

∑
γ∈H

tγ eγ

⎞
⎠

∣∣∣∣
∏
γ∈H

θ(tγ )dλ|H |(t)

≤ Lip(h, B[x0, r + cε])‖x − y‖
∫

supp(θ)|H |

∏
γ∈H

θ(tγ )dλ|H |(t)

= Lip(h, B[x0, r + cε])‖x − y‖.

This shows that

Lip(g, B[x0, r ]) ≤ Lip(h, B[x0, r + cε]) ≤ Lip( f , B[x0, r + cε + η]),

for every ball B[x0, r ] ⊂ X . This proves the lemma. ��
Combining Lemma 4.2 with Theorem 2.3, we obtain Theorem 2.1 in the case X =
c0(Γ ).

5 Approximation by Almost Classical Solutions of the Eikonal
Equation

Throughout this section, X will denote a finite-dimensional normed space with
dim(X) ≥ 2. At the end of the section we will complete the proof of Theorem 2.4.
We need to recall the notion of almost classical solutions of stationary Hamilton-
Jacobi equations with Dirichlet boundary condition. This concept was introduced in
[8] for the Eikonal equation and was generalized in [10] as follows.

Definition 5.1 Let Ω be an open subset of X and let F : R × Ω × X∗ → R and
u0 : ∂Ω → R be continuous. A continuous function u : cl(Ω) → R is an almost
classical solution of the equation F(u(x), x, Du(x)) = 0 with Dirichlet condition
u = u0 on ∂Ω if:

(i) u = u0 on ∂Ω.

(ii) u is differentiable on Ω and F(u(x), x, Du(x)) ≤ 0 for all x ∈ Ω.

(iii) F(u(x), x, Du(x)) = 0 for almost every x ∈ Ω.

In [8, Theorem 4.1] it was proved the existence of almost classical solutions of the
Eikonal equation with homogeneous boundary data, that is, the equation |Dv| = 1 on
Ω and v = 0 on ∂Ω.This result was extended in [10] tomore general Hamilton-Jacobi
equations. See [10, Theorem 3.1] or Proposition 5.1.
We start by proving a slight refinement of [10, Theorem 3.1] for the existence of
almost classical solutions, in which these solutions can be taken with arbitrarily small
supremum norm.

123



902 Journal of Optimization Theory and Applications (2019) 182:885–905

Proposition 5.1 Let Ω ⊂ X be an open subset and let F : R × Ω × X∗ → R be a
continuous mapping. Assume the following two conditions on F .

(i) F(0, x, 0) ≤ 0 for every x ∈ Ω.

(ii) For every compact subset K of Ω there exist constants αK , MK > 0 such that for
all x ∈ K , r ∈ [0, αK ] and x∗ ∈ X∗ with ‖x∗‖∗ ≥ Mk we have F(r , x, x∗) > 0.

Then, given ε > 0, there exists a function u ≥ 0 on cl(Ω) such that |u| ≤ ε on cl(Ω)

and u is an almost classical solution of the equation F(u(x), x, Du(x)) = 0 on Ω

with Dirichlet condition u = 0 on ∂Ω.Moreover, the extension ũ of u defined by ũ = 0
on X\Ω is differentiable on X .

Proof Although [10, Theorem 3.1] was originally stated when X = R
n is endowed

with the Euclidean norm, we can easily rewrite its statement (and its proof) for general
finite-dimensional normed spaces by using the following proposition, which is an easy
consequence of [8, Corollary 3.6].

Proposition 5.2 Suppose that B is a closed ball of X∗. There exists a mapping t :
B → SX∗∗ such that if (σn)n ⊂ B is a sequence with t(σn)(σn+1 − σn) ≥ 0 for every
n, then (σn)n converges.

In [10, Theorem 3.1], Ω is decomposed as Ω = ⋃
j≥1 C j , where {C j } j≥1 is a locally

finite family of closed cubes and the function u satisfies u = 0 on
⋃

j≥1 ∂C j (because
u is the sum of a series of functions all vanishing on this union).Moreover, it is possible
to choose the covering {C j } j≥1 so that diam(C j ) ≤ ε for every j ≥ 1, and then, the
Mean Value Theorem yields that |u| ≤ ε on Ω. ��
Proof of Theorem 2.4 Given a 1-Lipschitz function u0 : cl(Ω) → R such that u0
is λ0-Lipschitz on ∂Ω for some λ0 < 1 and given ε > 0, we can find, thanks to
Theorem 2.1, a 1-Lipschitz function v : cl(Ω) → R of class C∞(Ω) such that

|u0 − v| ≤ ε

2
on cl(Ω), v = u0 on ∂Ω. (20)

Let us define F : Ω × X∗ → R by F(x, x∗) = ‖x∗ + Dv(x)‖∗ − 1, for every
(x, x∗) ∈ Ω × X∗. Because v is 1-Lipschitz on cl(Ω), we have F(x, 0) ≤ 0 for every
x ∈ Ω , which means that the function identically 0 is a subsolution to the problem

F(x, Du(x)) = 0 on Ω,

u = 0 on ∂Ω.
(21)

Also, observe that, whenever ‖x∗‖∗ ≥ 3, we have, for all x ∈ Ω , F(x, x∗) ≥ 1.
Hence, Proposition 5.1 provides an almost classical solution u to problem (21) such
that |u| ≤ ε/2 on cl(Ω). Let us define w = u + v on cl(Ω). Then w is continuous
on cl(Ω) and differentiable on Ω with ‖Dw(x)‖∗ = ‖Du(x) + Dv(x)‖∗ ≤ 1 for
every x ∈ Ω and ‖Dw(x)‖∗ = 1 for almost every x ∈ Ω. Also, w satisfies that
w = v = u0 on ∂Ω and |w − v| ≤ ε/2 on cl(Ω). Using Fact 4.1, we obtain that w is
in fact 1-Lipschitz on cl(Ω). Finally, using (20), we obtain
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|u0 − w| ≤ |v − w| + |u0 − v| ≤ ε

2
+ ε

2
≤ ε on cl(Ω).

This completes the proof of Theorem 2.4. ��

6 The Limiting Case

In this section, we are concerned about constructions of functions u0 with prescribed
values on the boundary of Ω such that u0 is differentiable on Ω and Lip(u0, ∂Ω) =
Lip(u0,Ω).

The notion of Absolutely Minimizing Lipschitz (AML for short) function will be
involved in the proof of the following proposition. Given an open subset Ω of Rn,

we say that a Lipschitz function u : Ω → R is an AML function provided that
Lip(u, V ) = Lip(u, ∂V ) for every V open such that cl(V ) is a compact subset of Ω.

If, in addition, u agrees with a Lipschitz function u0 : ∂Ω → R on ∂Ω, we say that
u is an Absolutely Minimizing Lipschitz Extension (AMLE) of u0. The existence of
theseAMLEof a boundary data u0 and its equivalencewith infinity harmonic functions
(that is, viscosity solutions of the Infinity-Laplace equation) was proved in [13], while
the uniqueness was shown in [14]. The regularity of these solutions was studied in
[15,16]. See [17] for a survey paper on the theory of absolutely minimizing Lipschitz
functions.

Proposition 6.1 If Ω ⊂ R
2 is open and u0 : ∂Ω → R is 1-Lipschitz for the usual

Euclidean distance, then there exists a differentiable 1-Lipschitz functionw : cl(Ω) →
R such that |∇w| = 1 almost everywhere on Ω and w = u0 on ∂Ω, i.e, there exist
almost classical solutions of the Eikonal equation with boundary value u0.

Proof We know by O. Savin’s results in [15] that the AMLE of u0 to cl(Ω) is of class
C1(Ω). In particular, there exists a 1-Lipschitz extension v : cl(Ω) → R of u0 such
that v ∈ C1(Ω). If we consider the problem

|∇u + ∇v| = 1 on Ω,

u = 0 on ∂Ω,
(22)

and define F : Ω × R
2 → R by F(x, p) = |p + ∇v(x)|, x ∈ Ω, p ∈ R

2, we have
that F is a continuous function which is easily checked to satisfy the hypothesis of [10,
Theorem 3.1] (see Proposition 5.1 in Sect. 5) for the existence of an almost classical
solution to problem (22). If we denote by u this solution and we set w = u + v on
cl(Ω), it is clear that w is the desired function. ��
We notice that the proof of Proposition 6.1 cannot be adapted for dimension n ≥ 3,
because it is unknown whether or not the AMLE of u0 is of class C1. We only know
from the results in [16], that these AMLE are differentiable everywhere.

Example 6.1 Consider the 	1 norm onR2 and defineΩ = {(x, y) ∈ R
2 : x2+y2 < 1}

and the function u0(x, y) = |x |− |y| on the boundary ∂Ω of Ω. The function u0 is 1-
Lipschitz and all possible 1-Lipschitz extensions of u0 to cl(Ω) are not differentiable
at (0, 0).
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Proof Given (x, y), (x ′, y′) ∈ ∂Ω, we can easily write

|u(x, y) − u(x ′, y′)| = ∣∣|x | − |x ′| + |y′| − |y|∣∣ ≤ |x − x ′| + |y − y′|
= ‖(x, y) − (x ′, y′)‖1,

where the above inequalities are sharp. Thus, u0 is a 1-Lipschitz function on ∂Ω.Now,
let u : cl(Ω) → R be a 1-Lipschitz extension of u0. We have that u(0, 0) ≤ 0 since
u(0, 0) + 1 = u(0, 0) − u(0, 1) ≤ 1. On the other hand, for every x ∈ [− 1, 1], we
can write

u(x, 0) ≥ u(sign(x), 0) − ‖(sign(x), 0) − (x, 0)‖1 = 1 − (1 − |x |) = |x |
u(x, 0) ≤ u(0, 0) + ‖(x, 0) − (0, 0)‖1 ≤ |x |;

which implies that u(x, 0) = |x | for every x ∈ [− 1, 1]. Therefore u is not differen-
tiable at (0, 0). ��
The above example shows in particular that, if u0 is extended to a 1-Lipschitz on cl(Ω)

and ε > 0, then there is no 1-Lipschitz function v on cl(Ω) which is differentiable
on Ω, v = u0 on ∂Ω and |u0 − v| ≤ ε on cl(Ω). Thus Problem 2.1 has a negative
answer in the limiting case Lip(u0, ∂Ω) = Lip(u0, cl(Ω)). An example with the
same properties can be obtained with the 	∞ norm by means of the isometry T :
(R2, ‖ · ‖1) → (R2, ‖ · ‖∞), defined by T (x, y) = (x + y, x − y).

7 Conclusions

We studied the problem of approximating Lipschitz functions defined on an open
subset of a Banach space by differentiable Lipschitz functions preserving both the
Lipschitz constant and the boundary value. In order to do that, we first obtained the
following purely metric result, that can be of independent interest: Given a real-valued
Lipschitz function on a metric space, such that its restriction to a given closed subset
has a better Lipschitz constant, we can approximate it uniformly by a function with
better Lipschitz constant on bounded sets, and which coincides with the initial func-
tion on the given closed subset. This intermediate result allowed us to give a positive
answer to our problem, when the Lipschitz constant on the boundary of the function
to be approximated is smaller than its global Lipschitz constant. The order of differ-
entiability of the approximating functions depends on the regularity of the partitions
of unity of the pertinent space, and then the approximations can be taken infinitely
many times differentiable in finite-dimensional and Hilbert spaces. These results yield
approximation of 1-Lipschitz functions by everywhere-differentiable functions, which
satisfy the Eikonal equation almost everywhere and coincides in the boundary with
the initial function, provided that the restriction of the function to the boundary has
Lipschitz constant less than 1. We proved the optimality of these results by exhibiting
an example of a 1-Lipschitz function defined on the boundary of an open subset of a
two-dimensional normed space, which does not admit any 1-Lipschitz differentiable
extension. The question whether the main problem of this paper, without restrictions
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on the boundary value of the function to be approximated, has a positive solution in
a finite-dimensional Euclidean space remains open. A related question would be to
find conditions on the norm of a finite-dimensional space for which our problem has
a positive solution, whitout restrictions on the boundary value of the initial function.
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