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Abstract
This paper deals with an opinion formation model, that obeys a nonlinear system of
fractional-order differential equations. We introduce a virtual leader in order to attain
a consensus. Sufficient conditions are established to ensure that the opinions of all
agents globally asymptotically approach the opinion of the leader. We also address
the problem of designing optimal control strategies for the leader so that the followers
tend to consensus in the most efficient way. A variational integrator scheme is applied
to solve the leader–follower optimal control problem. Finally, in order to verify the
theoretical analysis, several particular examples are presented.

Keywords Opinion formation models · Consensus problem · Fractional derivatives ·
Optimal control · Variational integrators
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1 Introduction

The process of opinion formation in a social network (a network of social actors con-
nected by social ties) is rapidly attracting the attention of scholars in many disciplines,
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ranging from sociology to mathematics [1–6]. There are two different approaches in
mathematical modeling of social dynamics. The first is macroscopic and applies tools
from continuummechanics and partial differential equations. The other is microscopic
and treats social actors (agents, individuals) in the group as separate objects interacting
with each other. In this work, we use the second approach and consider an agent-based
model with real-valued opinions. Namely, our model consists in a nonlinear system of
fractional-order differential equations. Fractional derivatives are non-local operators
[7] and therefore are proper formodeling systemswith long range interactions in space
and/or time (memory), and processes with many scales of space and/or time involved
[8–10]. We thus argue that fractional-order systems can better describe memory and
hereditary properties of the process of opinion formation than integer-order ones.

One of the first agent-based models of opinion formation was the French–DeGroot
model, proposed in 1974 [11]. Since then, the most important characteristic of such
models has been the emergence of a consensus, where a group of agents agree upon
certain quantities of interest such as position, price, etc. Roughly speaking, the consen-
sus problem of agent-based models can be treated as a special case of the asymptotic
stability problem of dynamical systems. Although consensus is a behavior, that we
would expect in opinion formation models, there are situations when the opinions do
not reach consensus and we observe polarization of opinions or chaos [12–14]. In
such situations, one possible way to steer all agents to reach a consensus consists in
introducing a (virtual) leader to the system and possibly controlling the leader [15–18].
The (virtual) leader is a special agent, whose opinion is independent of all the other
agents’ opinions. This approach has roots in real-world phenomena such as the rela-
tions between a sheepdog and sheep [19], or the influence of mass media on opinions
of members of society. In addition, controlling the system through the leader is justi-
fied in practice, e.g., crowd evacuation in case of panic situations [20], or designing
reference trajectories for a master robot to guide slave robots [21].

In this paper, we study a nonlinear fractional leader–follower model of opinion for-
mation. The contribution of the paper is twofold. First, some sufficient conditions are
established to ensure that the opinions of all agents globally asymptotically approach
the opinion of the leader. Second, we address the problem of designing optimal control
strategies for the leader so that the followers tend to consensus in the most efficient
way. In otherwords, external control is applied to the leader in amanner thatminimizes
disagreements among all agents and the amount of interventions.

The rest of the paper is organized as follows. In Sect. 2, some preliminaries about
fractional operators are given. The fractional opinion formation model with a leader
is discussed in Sect. 3. Section 4 presents the leader–follower optimal control prob-
lem. The necessary and sufficient optimality conditions for this problem are given. In
Sect. 4.1, we discuss a variational integrator scheme for the Hamiltonian system. This
numerical method guarantees preservation of the variational structure of the underly-
ing system at the discrete level [22–27]. Numerical examples, presented in Sect. 5,
demonstrate the effectiveness of the proposed control strategy. Finally, conclusions
are given in Sect. 6.
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2 Preliminaries

In this section, following [28], some basic concepts about fractional operators are
introduced. Let f : [a, b] → R and α ∈ R+. We define the left Riemann–Liouville
fractional integral of order α by

I α
a+[ f ](t) := 1

Γ (α)

t∫

a

(t − τ)α−1 f (τ )dτ, t > a,

and the right Riemann–Liouville fractional integral of order α by

I α
b−[ f ](t) := 1

Γ (α)

b∫

t

(τ − t)α−1 f (τ )dτ, t < b,

provided that the right-hand side terms are well defined. Fractional derivatives can be
defined using the definition of fractional integrals. To this end, suppose that α ∈]0, 1[.
Then, the left and right Riemann–Liouville fractional derivatives (RLFD) of function
f are given by

Dα
a+[ f ](t) :=

(
d

dt
◦ I 1−α

a+
)

[ f ](t), t > a,

and

Dα
b−[ f ](t) := −

(
d

dt
◦ I 1−α

b−
)

[ f ](t), t < b,

respectively, provided that the right-hand side terms are well defined. Let us note that
the RLFD of a constant are not zero: for A ∈ R \ {0} one has Dα

a+[A](t) = A
Γ (1−α)

·
1

(t−a)α
and Dα

b−[A](t) = A
Γ (1−α)

· 1
(b−t)α . Moreover, for a regular function f , they

are singular: limt→a Dα
a+[ f ](t) = ∞, unless f (a) = 0, and limt→b Dα

b−[ f ](t) =
−∞, unless f (b) = 0. These facts motivated the introduction of Caputo fractional
derivatives. The left and right Caputo fractional derivatives (CFD) are defined as

cDα
a+[ f ](t) := Dα

a+[ f (τ ) − f (a)](t), t > a, (1)

and
cDα

b−[ f ](t) := Dα
b−[ f (τ ) − f (b)](t), t < b, (2)

respectively, provided that the right-hand side terms are well defined. Note that, for
absolutely continuous functions, we have

cDα
a+[ f ](t) =

(
I 1−α
a+ ◦ d

dt

)
[ f ](t), t > a

cDα
b−[ f ](t) = −

(
I 1−α
b− ◦ d

dt

)
[ f ](t), t < b,
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and, as expected, cDα
a+[A](t) = 0, cDα

b−[A](t) = 0, limt→a
cDα

a+[ f ](t) = 0, and
limt→b

cDα
b−[ f ](t) = 0. Because of the non-local character of RLFD and CFD frac-

tional differential equations often have to be solved numerically. In this paper, we
use a method that is based on the Grünwald–Letnikov approximations of Riemann–
Liouville and Caputo derivatives. The left and right Grünwald–Letnikov fractional
derivatives (GLFD) of a function f , of order α, are given by

GL Dα
a+[ f ](t) := lim

h→0+
1

hα

∞∑
r=0

(wα
r ) f (t − rh)

and

GL Dα
b−[ f ](t) := lim

h→0+
1

hα

∞∑
r=0

(wα
r ) f (t + rh),

respectively. Here (wα
k ) := (−1)k

(
α
k

)
. It is a well known fact that the truncated

GLFD are first-order approximations of RLFD (see, e.g., [7]). Precisely, let T =
{tk}k=0,...,M = {a + kh}k=0,...,M be the usual regular partition of the interval [a, b]
with M ≥ 2 and h = (b − a)/M . Then, we have

Dα
a+[ f ](tk) ≈ 1

hα

k∑
r=0

(wα
r ) f (tk−r ) =: Δα

a+[ f ](tk), k = 1, . . . , M,

Dα
b−[ f ](tk) ≈ 1

hα

M−k∑
r=0

(wα
r ) f (tk+r ) =: Δα

b−[ f ](tk), k = 0, . . . , M − 1.

Using (1)–(2), we immediately deduce the following decomposition sum for the CFD:

cDα
a+[ f ](tk) ≈ 1

hα

k∑
r=0

(wα
r ) f (tk−r ) − f (a)

Γ (1 − α)
(tk − a)−α =: cΔα

a+[ f ](tk), (3)

k = 1, . . . , M,

cDα
b−[ f ](tk) ≈ 1

hα

M−k∑
r=0

(wα
r ) f (tk+r ) − f (b)

Γ (1 − α)
(b − tk)

−α =: cΔα
b−[ f ](tk), (4)

k = 0, . . . , M − 1.
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3 Fractional Opinion FormationModel

Let us consider the continuous-time opinion formation model of N ≥ 2 interacting
agents, whose opinions henceforth are denoted by x1, . . . , xN :

cDα
0+[xi ](t) =

N∑
j=1

ai j ( f j (x j (t)) − fi (xi (t))), i = 1, . . . , N , (5)

with the given initial conditions xi (0) = ξi ∈ R, for i = 1, . . . , N . The weights ai j ∈
R quantify the way that the agents influence each other, i.e., ai j > 0 if agent j is able to
influence the opinion of agent i and ai j = 0 otherwise, for i, j,= 1, . . . , N ; α ∈]0, 1[
denotes the significance of the memory in the interaction mechanism. Moreover, we
assume that functions f j , j = 1, . . . , N , are continuous and satisfy the Lipschitz
condition on R with Lipschitz constants l j > 0, i.e., | f j (x) − f j (y)| ≤ l j |x − y|
for every x, y ∈ R and j = 1, . . . , N . The crucial question regarding model (5) is
whether the opinions converge to the same unique opinion, which means consensus.

Definition 3.1 We call consensus a configuration in which the opinions of all agents
are equal, i.e., x∗ ∈ R

N such that x∗
1 = x∗

2 = . . . = x∗
N . We say that a solution

x(t) = (x1(t), . . . , xN (t))T of system (5) tends to consensus if there exists a consensus
configuration x∗ ∈ R

N such that limt→∞ xi (t) = x∗
i for every i = 1, . . . , N .

One possible way to steer all agents to reach a consensus is by introducing a virtual
leader (e.g., mass media) to the system. The virtual leader is a special agent whose
opinion, denoted by x0, is independent of all the other agents’ opinions. Let us consider
the following model with leadership:

cDα
0+[xi ](t) =

N∑
j=1

ai j ( f j (x j (t)) − fi (xi (t))) + ci (x0(t) − xi (t)), (6)

cDα
0+[x0](t) = 0 (7)

for i = 1, . . . , N , and given initial conditions xi (0) = ξi ∈ R, for i = 0, . . . , N . The
second term in dynamics (6) describes the leader’s influence, i.e., ci > 0 if the ith
agent’s opinion is influenced by the leader and ci = 0 otherwise. Equivalently, system
(6) can be written as

cDα
0+[xi ](t) =

N∑
j=1

bi j f j (x j (t)) + ci (x0(t) − xi (t)), i = 1, . . . , N , (8)

where bi j = ai j for i 
= j and bi j = −∑
i 
= j ai j for i = j .

Theorem 3.1 Suppose that fi (xi ) = xi and ci > 0 for every i = 1, . . . , N. Then, a
solution of system (8) tends to consensus x∗ = (ξ0, . . . , ξ0)

T ∈ R
N .
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Proof Let us first observe that from (7) we have x0(t) = ξ0, and with change of
variables yi = xi − ξ0, i = 1, . . . , N , system (8) can be written in the matrix form:

cDα
0+[y](t) = (B − C)y(t), (9)

where B = [bi j ]N×N and C = diag{c1, . . . , cN }. Based on the Gersgorin theorem
[29], all the eigenvalues of matrix B−C are located in the union of N disks:

⋃N
i=1{z ∈

R
2 : |z + ∑

i 
= j ai j + ci | ≤ ∑
i 
= j ai j }. Since ci > 0 for every i = 1, . . . , N ,

matrix B −C has all eigenvalues with negative real parts. Therefore, by Theorem 1 in
[30], system (9) is asymptotically stable, which means that limt→∞ ‖y(t)‖ = 0 for a
solution to (9) with any initial conditions. It follows that limt→∞ xi (t) = ξ0 for every
i = 1, . . . , N . �
Theorem 3.2 Suppose that fi (ξ0) = 0, ci > 0 and ci − ∑N

j=1 |b ji |li > 0 for every

i = 1, . . . , N. Then, a solution of system (8) tends to consensus x∗ = (ξ0, . . . , ξ0)
T ∈

R
N .

Proof By (7), we get x0(t) = ξ0. Let us introduce the new variables yi = xi − ξ0 and
define functions gi (yi ) := fi (yi + ξ0), for i = 1, . . . , N . Then, system (8) takes the
following form

cDα
0+[yi ](t) =

N∑
j=1

bi j g j (y j (t)) − ci yi (t). (10)

We have

∀y, ȳ ∈ R |gi (yi ) − gi (ȳi )| ≤ | fi (yi + ξ0) − fi (ȳi + ξ0)| ≤ li |yi − ȳi |,

ci > 0 and ci − ∑N
j=1 |b ji |li > 0 for every i = 1, . . . , N . Hence, Theo-

rem 3 in [31] implies that a unique equilibrium point y∗ of system (10) exists, and
limt→∞ ‖y(t) − y∗‖ = 0 for any solution of (10). Since g j (0) = f j (ξ0) = 0,
it follows that y∗ = (0, . . . , 0)T and consequently limt→∞ xi (t) = ξ0 for every
i = 1, . . . , N . �

4 Optimal Leader–Follower Control

In this section, we are interested in situations where the assumptions of Theorem 3.2
are not satisfied. In such a case, one should apply different approaches to steer agents
to reach a consensus. We propose introducing external control strategies to the model
via the leader, i.e., we consider the following system

cDα
0+[x0](t) = u(t),

cDα
0+[xi ](t) =

N∑
j=1

bi j f j (t, x j (t)) + ci (x0(t) − xi (t)) + hi (t),

xi (0) = ξi ∈ R, i = 0, 1, . . . , N , (11)
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where α ∈]0, 1[, bi j ∈ R, ci ≥ 0 for i, j,= 1, . . . , N and u ∈ L∞([0, T ];R). Addi-
tionally, we generalize system (6) by introducing noise functions hi ∈ L∞([0, T ];R),
i = 1, . . . , N to (11) and allowing functions f j to depend on t . Precisely, functions f j ,
j = 1, . . . , N are of classC1 with respect to x j and satisfy the Lipschitz condition: for
every x, y ∈ R and every t ∈ [0, T ], | f j (t, x) − f j (t, y)| ≤ l j |x − y|. In order to use
the least amount of intervention, we seek to minimize the following cost functional:

J (x, u) =
T∫

0

[
1

2N 2

N∑
i, j=1

(xi (t)−x j (t))
2+ 1

2

N∑
i=1

(x0(t)−xi (t))
2+ ν

2
u2(t)

]
dt, (12)

where ν > 0 denotes the weight constant (in this way, the level of control will be
penalized). For simplicity, for the rest of the paper, we use x = (x0, x1, . . . , xN )T ∈
R

N+1.

Remark 4.1 Let ‖x‖1 = ∑N
i=0 |xi | and consider the map F̃ : R

N+1 → R
N+1,

F̃(x) :=
[
F̃0(x), . . . , F̃N (x)

]T
, where

F̃0(x) := u(t), F̃i (x) := −ci xi +
N∑
j=1

bi j f j (t, x j ) + ci x0 + hi (t), i = 1, . . . , N .

Note that,

|F̃i (x) − F̃i (x̄)| = | − ci (xi − x̄i +
N∑
j=1

bi j ( f j (t, x j ) − f j (t, x̄ j ))|

≤ ci |xi − x̄i | +
N∑
j=1

|bi j |l j |x j − x̄ j |, x, x̄ ∈ R
N , i = 1, . . . , N .

Moreover, if Li := max
{
ci + |bii |li ,max j=1,...,N , j 
=i

{|bi j |li}}, i = 1, . . . , N , then

N∑
i=0

|F̃i (x) − F̃i (x̄)| ≤
N∑
i=1

Li

N∑
j=1

|x j − x̄ j |

and for L = maxi=1,...,N {Li }, we have

∥∥∥F̃(x) − F̃(x)
∥∥∥
1

=
N∑
i=0

|F̃i (x) − F̃i (x̄)| ≤ LN
N∑
j=0

|x j − x̄ j | = LN ‖x − x̄‖1 .

Therefore, F̃ is globally Lipschitz and consequently, by Theorem C.3 in [25] (see also
[24]), for a given control function u ∈ L∞([0, T ];R) and a given initial condition
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x(0) = ξ ∈ R
N+1, a unique weak solution x ∈ C([0, T ];RN+1) of system (11)

exists.

When solving optimal control problems, usually, the first step is to apply thePontryagin
Maximum Principle. Let us define functions F : [0, T ] × R

N+1 × R → R
N+1, by

F(t, x(t), u(t)) :=
⎡
⎣
u(t)
N∑
j=1

bi j f j (t, x j (t)) + ci (x0(t) − xi (t)) + hi (t)

⎤
⎦
i=1,...,N

,

G : [0, T ] × R
N+1 × R → R, by

G(t, x(t), u(t)) := 1

2N 2

N∑
i, j=1

(xi (t) − x j (t))
2 + 1

2

N∑
i=1

(x0(t) − xi (t))
2 + ν

2
u2(t)

and the Hamiltonian H : [0, T ] × R
N+1 × R × R

N+1 → R, by H(t, x, u, λ) :=
G(t, x, u) + λF(t, x, u). Based on the results proved in [23–25] (see also [32,33]),
we state the necessary optimality conditions for problem (11)–(12).

Theorem 4.1 If the trajectory x∗, defined on [0, T ] and associated with a control
u∗ ∈ L∞([0, T ];R), is a solution to problem (11)–(12), then there exists a function
λ ∈ Hα([0, T ];RN+1) such that:

(i) x∗ and λ are weak solutions to the Hamiltonian system

cDα
0+[x](t) = ∂H

∂λ
(t, x(t), u∗(t), λ(t)),

cDα
T−[λ](t) = ∂H

∂x
(t, x(t), u∗(t), λ(t)), t ∈ [0, T ]; (13)

(ii) λ(T ) = 0;
(iii) the stationary condition λ0(t) = −νu∗(t) holds for almost every t ∈ [0, T ].
Under additional assumptions, we can prove sufficient optimality conditions for prob-
lem (11)–(12).

Theorem 4.2 Assume that functions f j are convex in x j for all j = 1, . . . , N and
λ(t) ≥ 0 for all t ∈ [0, T ] or f j are linear in x j for all j = 1, . . . , N. If x∗, u∗ and
λ satisfy conditions (i)–(iii) of Theorem 4.1, then x∗ associated with a control u∗ is a
solution to problem (11)–(12).

Proof It follows easily from Theorem 10.3 in [34]. �

4.1 Variational Integrator for the Leader–Follower Control Problem

As mentioned in Sect. 2, the non-local character of fractional derivatives causes diffi-
culties in finding the exact solutions to most non-integer-order differential equations.
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This concerns, in particular, system (13). Moreover, using conditions (i)–(iii) of The-
orem 4.1, we obtain a boundary value problem for (x, λ) involving both left and right
CFD. Therefore, in this section, we propose a numerical scheme for fractional optimal
control problem (11)–(12). We use the idea of variational integrators, which consists
of two steps: first, we define a discrete version of problem (11)–(12); second, we apply
the corresponding discrete Weak Pontryagin’s Maximum Principle to it. As a conse-
quence, this numerical method will preserve the variational structure of system (13)
at the discrete level. Discretization of problem (11)–(12) is based on approximation
(3) of the Caputo derivative. To this end, let T = {tk}k=0,...,M = {kh}k=0,...,M be the
usual regular partition of the interval [0, T ], with M ≥ 2 and h = T

M , such that
2hαNL < 1, where L is defined as in Remark 4.1. We consider the discrete analogue
of problem (11)–(12) given by the system

cΔα
0+[x0](tk) = u(tk),

cΔα
0+[xi ](tk) =

N∑
j=1

bi j f j (tk, x j (tk)) + ci (x0(tk) − xi (tk)) + hi (tk),

xi (0) = ξi ∈ R, i = 0, 1, . . . , N , (14)

for k = 1, . . . , M , where (x, u) ∈ C(T;RN+1) × C(T;R) and the functional

J d(x, u) = h
M∑
k=1

(
1

2N 2

N∑
i, j=1

(xi (tk)−x j (tk))
2+ 1

2

N∑
i=1

(x0(tk)−xi (tk))
2+ ν

2
u2(tk)

)
,

(15)
where ν > 0 again denotes the weight constant. The right-hand side of (14) is
Lipschitz. Therefore, by Lemma IX.1 in [25], the existence and uniqueness of the
solution to (14) is guaranteed for every (u, ξ) ∈ C(T;R) × R

N+1. Moreover, the
Lipschitz condition allows us to state the necessary optimality conditions for the solu-
tions to problem (14)–(15) by applying the results proved in [24,25]. Precisely, let us
define the Hamiltonian Hd : T × R

N+1 × R × R
N+1 → R, by Hd(t, x, u, λ) :=

Gd(t, x, u)+λFd(t, x, u), where, for k = 1, . . . , M , Fd : T×R
N+1 ×R → R

N+1,

Fd(tk, x(tk), u(tk)) :=
⎡
⎣
u(tk)
N∑
j=1

bi j f j (tk, x j (tk)) + ci (x0(tk) − xi (tk)) + hi (tk)

⎤
⎦
i=1,...,N

,

andGd : T×R
N+1×R → R,Gd(tk, x(tk), u(tk)) := 1

2N2

∑N
i, j=1(xi (tk)−x j (tk))2+

1
2

∑N
i=1(x0(tk) − xi (tk))2 + ν

2u
2(tk).

Theorem 4.3 If the trajectory x∗ ∈ C(T;RN+1) associated with a control u∗ ∈
C(T;R) is a solution to (14)–(15), then there exists λ ∈ C(T;RN+1) such that:
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(i) x∗ and λ are solutions to the Hamiltonian system

cΔα
0+[x](tk) = ∂Hd

∂λ
(tk, x(tk), u

∗(tk), λ(tk−1)), k = 1, . . . , M,

Δα
T−[λ](tk) = ∂Hd

∂x
(tk+1, x(tk+1), u

∗(tk+1), λ(tk)), k = 0, . . . , M − 1;
(16)

(ii) λ(T ) = 0;
(iii) the stationary condition λ0(tk−1) = −νu∗(tk), k = 1, . . . , M, holds.

We emphasize that system (16) is not a direct discretization of system (13) by the
method explained in Sect. 2 (see [22–25] for a more in depth discussion about this
issue).

5 Illustrative Examples

On the basis of the numerical scheme developed in Sect. 4.1, a Maple code has been
written and some fractional systems are now analyzed. In all examples, the compu-
tations are performed by assuming that α = 1

2 . First, we consider systems without a
leader. Then, we add the leader but with the assumption that u = 0, that is, systems
are uncontrolled. Finally, the results obtained with the optimal leader–follower control
problem are presented.

Example 5.1 Let us consider a type (5) system with N = 4 and f j , j = 1, . . . , 4,
being identity functions:

cDα
0+[x1](t) = 3x2(t) − 3x1(t),

cDα
0+[x2](t) = x1(t) − x2(t),

cDα
0+[x3](t) = x4(t) − x3(t),

cDα
0+[x4](t) = 2x3(t) − 2x4(t),

(17)

x1(0) = 1, x2(0) = 1.5, x3(0) = 2, x4(0) = 2.5. As it is shown in Fig. 1 (left), in
model (17), the agents’ opinions do not tend to consensus. Therefore, we introduce a
virtual leader and consider the following system:

cDα
0+[x0](t) = 0, cDα

0+[x1](t) = 3x2(t) − 3x1(t) + x0(t) − x1(t),
cDα

0+[x2](t) = x1(t) − x2(t),
cDα

0+[x3](t) = x4(t) − x3(t) + 4x0(t) − 4x3(t),
cDα

0+[x4](t) = 2x3(t) − 2x4(t),
(18)

where x0(0) = 5. The solution to (18) is shown in Fig. 1 (right). Apparently, all agents’
opinions converge to the leader’s opinion, which is constant. Now, let us introduce
an external control to (18), i.e., we consider the functional of type (12) and system
(18) with the dynamics of the leader given by cDα

0+[x0](t) = u(t). Figure 2 shows a
trajectory solution to the considered optimal control problem. Apparently, all agents’
opinions converge to consensus.
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Fig. 1 The solution to system (17) without the leader (left) and to system (18) with the leader (right)

Fig. 2 A trajectory solution to
the optimal leader–follower
control problem considered in
Example 5.1

Example 5.2 Let us introduce noise to the system described in Example 5.1. Namely,
let us consider the following system:

cDα
0+[x1](t) = 3x2(t) − 3x1(t),

cDα
0+[x2](t) = x1(t) − x2(t) + 1

4
sin t,

cDα
0+[x3](t) = x4(t) − x3(t),

cDα
0+[x4](t) = 2x3(t) − 2x4(t) + 1

4
cos t .

(19)

Figure 3 shows solutions to system (19) (left) and to the systemwith the leader (right).
For the case with the control, the solution to the respective optimal control problem is
shown in Fig. 4. Observe that, in the presence of noise, agents’ opinions oscillate, but
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Fig. 3 Solutions to systems with noise without the leader (left) and with the leader (right)

Fig. 4 A trajectory solution to
the optimal leader–follower
control problem with noise

tend to the leader’s opinion in the uncontrolled system. In the case with the control,
they are synchronized.

Example 5.3 Finally, we consider the nonlinear model with three interacting agents:

cDα
0+[x1](t) = 1

4
(sin(x2(t)) − cos(x1(t))),

cDα
0+[x2](t) = 1

4
(cos(x1(t)) − sin(x2(t))),

cDα
0+[x3](t) = 0, x1(0) = 1, x2(0) = 1.5, x3(0) = 2.

(20)
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Fig. 5 The solution to system (20) without the leader (left) and to system (21) with the leader (right)

Fig. 6 A candidate trajectory
solution to the nonlinear optimal
leader–follower control problem
considered in Example 5.3

In Fig. 5 (left), it is shown that the solution to (20) does not converge to consensus.
Because of that, we introduce the leader and consider the following system:

cDα
0+[x0](t) = 0, cDα

0+[x1](t) = 1

4
(sin(x2(t)) − cos(x1(t))) + x0(t) − x1(t),

cDα
0+[x2](t) = 1

4
(cos(x1(t)) − sin(x2(t))),

cDα
0+[x3](t) = x0(t) − x3(t),

(21)
together with x0(0) = 5, x1(0) = 1, x2(0) = 1.5, x3(0) = 2. Figure 5 (right)
presents the solution to (21). Note that the leader does not force all agents to reach a
consensus. Therefore, we introduce the control into the leader dynamics and consider
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the optimal leader–follower control problem with the functional of type (12). Figure 6
shows a candidate trajectory solutions to the optimal control problem. Apparently, the
resulting optimal control introduced to the system via the leader is able to force agents
to reach the same opinion.

6 Conclusions

In this work, the agent-based model of opinion formation given by the system of non-
linear fractional differential equations was investigated. We emphasize that, by taking
the fractional derivative on the left-hand side of the nonlinear system, the longmemory
effect was included in the consideredmodel. In order to ensure convergence to consen-
sus, we introduced a virtual leader. Moreover, we proposed optimal control strategies
for the leader so that the opinions of other agents approach its opinion in the most
efficient way. We have used the fractional derivative defined in the sense of Caputo;
however, it would also be interesting to consider systems with other types of fractional
derivatives, such as the Hadamard or the Erdélyi–Kober type. Clearly, in practice, the
choice of a fractional operator should depend on the particular phenomenon that the
model is supposed to describe.
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