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Abstract In this note, some questions concerning the strong convergence of subgra-
dients of convex functions along a given direction are recalled and posed. It is shown
that some open problems in literature are linked to that of the existence of limits of
subgradients from subdifferentials along a given segment.

Keywords Convexity · Subdifferentials · Strong convergence of subgradients

Mathematics Subject Classification Primary 49J52; Secondary 52A41 · 41A65

1 Introduction

There are several open problems concerning the convexity. Some of them have a long
history; some of them are not so old; see, for example, [1–5]. The aim of this note is
to show that when we examine convex problems more carefully, then we encounter
the problem of directional convergence of subgradients.

To the best of the Author’s knowledge, the first time, when the problem of the direc-
tional convergence was explicitly posed—it is still open—was due to F. Giannessi; see
[2]. In fact, F.Giannessi posed several questions both in finite- and infinite-dimensional
settings concerning the directional convergence of gradients of convex functions. In
the finite-dimensional cases, our knowledge, on abilities and inabilities of ensuring
the convergence, is at the beginning. Namely, at this moment, we know that there
are convex functions such that there is the lack of convergence in some directions;
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examples of such functions were provided in [6–8]. Moreover, when we take subgra-
dients instead of gradients, we know that the set of such directions are negligible; the
Lebesgue measure of the directions, where the convergence is not valid, amounts zero;
see [9]. The infinite-dimensional case is not recognized. There are more questions than
answers; for some recent information, we refer to [9]. We do not know how large the
set of good directions is. However, we know that if the set is at least a dense subset,
then we can handle with some open problems concerning farthest distance function on
a Hilbert space (Klee envelope); see, for example, [3,10]. That is, if the set of direc-
tions, where the convergence is ensured, is dense in the space for some minimizer of a
farthest distance function, then the subdifferential, at this minimizer, has at least two
different unit subgradients. (They are from the unit sphere.) This would allow us to
answer to the two celebrated Klee problems; see, for example, [3–5,11–13], where the
problems of the convexity of Chebyshev sets and the unique farthest point property
are presented.

It also turns out that problems on directional convergence of subgradients are
involved in the theory of second-order differentiability of convex functions. For exam-
ple, when we want to have a version of Alexandrov Theorem in infinite dimensions,
see [1] for comments and questions, then some questions concerning the directional
convergence of subgradients arise.

At this moment, it seems that to tackle the questions posed by F. Giannessi in the
infinite-dimensional setting, we should first to figure out conditions, which ensure the
set of “good” directions is at least dense in some cone of directions, suitable for a
problem under consideration. In fact, the larger the set is, the better tool we have at
hand.

2 Perspectives and Open Problems

Let us recallGiannessi’s “first-order” questions; see [2] and see also [6–8] for examples
of convex functions in two-dimensional spaces, forwhich the limit in (1) does not exist:
Let f : Rn −→ R, with n ≥ 2, be a convex function, and set x(t) := (t, 0, . . . , 0) ∈
R
n , with t ∈ R. Assume that ∇ f (x(t)) exists for every t > 0, and consider the

following limit:

lim
t↓0 ∇ f (x(t)). (1)

We conjecture that the above limit may not exist. Hence, however, the question is
still open. The above question can be generalized in several ways. For instance, x(t)
may represent a curve, having the origin as endpoint, instead of a ray; Rn may be
replaced with an infinite-dimensional space.

F. Giannessi asked also several “second-order” questions. Namely, assuming addi-
tionally that Hessian H f (x(t)) exists for all t > 0, where H f (x(t)) stands for the
Hessian of f at x(t), he asked whether: the limit

lim
t↓0 H f (x(t)); (2)
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might not exist. Infinite dimensional as well as higher order and other cases of this
question can be considered.TheAuthor would like to thank Prof. FrancoGiannessi for
the permission to incorporate his questions to the paper. Moreover, several discussions
with Prof. F. Giannessi on his “second-order” questions have revealed little knowledge
on the higher-order analysis for convex functions. Even we do not know if there exists
a convex function f , say on a Hilbert space, derivable two times around a given point,
without the limit of Hessians at the point, that is, the limit of Hessians at this point
does not exist. It seems that an investigation might start with looking for an answer to
the following question: does there exist a convex function f from R

2 to R, derivable
two times around the origin, for which the limit

lim
x→0

H f (x)

does not exist?
When we look at (1), then several obvious ideas come to mind. First, subgradients

can be used instead of gradients. Second, the limit in (1) concerns the scalar case;
the same questions and many others can be asked for convex vector valued functions.
Third, are the questions following (1) of second-order nature? Some aspects concern-
ing the third observation are discussed when the role of the following conditions, in
the directional convergence of subgradients,

lim sup
t↓0

sup
h∈BX [w0,β0]

f ′(x + th; h) − f ′(x; h) = 0

or

∀h ∈ BX [w0, β0], lim sup
t↓0

f (x + th) − f (x) − t f ′(x; h)
1
2 t

2
< ∞

are explained; see comments following (4) and (5). Let us point out that the existence
of the second-order derivative is sufficient for the existence (1), but we know little on
the existence of the second-order derivatives for convex function, even in the separable
Hilbert space setting (in infinite dimensions); see the last open question in this section.
Perhaps, investigations on the directional convergence of subdifferentials in infinite
dimensions, involving second-order theory, should start with a construction of an
example of convex function having the second-order Gâteaux derivative but not having
a second-order Gâteaux expansion at a point.

The directional aspects of the questions are essential. Let us rewrite the above
questions, in order to expose the meaning of directions in the convergence and to
encompass subdifferentials in investigations; in the sequel, ∂ stands for the subdiffer-
ential in the convex analysis sense. Since the problem of the convergence along arcs
is not even touched in the considerations below, so the questions are presented in the
form convenient for the directional convergence; see (3).

Let (X, ‖ · ‖) be a normed space and f : X −→ R ∪ {+∞} be a convex function,
x ∈ X , w ∈ X \ {0} be fixed and U be an open convex set such that x ∈ U and f|U is
continuous (the restriction of f toU is a continuous function); actually, this restriction
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is imposed to make the presentation more clear, but it can be dropped. Consider the
following limit:

lim
t↓0 ∂ f (x + tw), (3)

when the limit exists, the limit exists whenever the lower and upper limits coincide
and

lim sup
t↓0

∂ f (x + tw) :=
{
x∗ ∈ X∗ : lim inf

t↓0 d∂ f (x+tw)(x
∗) = 0

}
,

lim inf
t↓0 ∂ f (x + tw) :=

{
x∗ ∈ X∗ : lim sup

t↓0
d∂ f (x+tw)(x

∗) = 0

}
,

where d∂ f (x+tw)(x∗) stands for the distance of x∗ from the subdifferential of f at
x + tw, that is, the distance from the set

∂ f (x + tw) := {
x∗ ∈ X∗ : ∀h ∈ X, 〈x∗, h〉 ≤ f (x + tw + h) − f (x + tw)

}
.

Let us ask basic questions (see questions following (1) too): when does the limit in (3)
exist? Is there any direction for which the limit exists? Is the set of “good” directions,
for which the convergence holds true, dense in the space? Can we provide positive
answers to the questions on the limit in (3) by a little change of the function under
consideration (in other words, does a small perturbation preserve the directional
convergence of subgradients along a dense subset of directions?)? In fact, in order to
be in the spirit of Giannessi’s questions, we should also add the following question:
for which directions is the limit, in (3), a singleton? Perhaps this question is the most
demanding and will require a lot of work to be elaborated properly.

In order to understand a meaning of questions, let us specify the function. Let H
be a real Hilbert space and f : H −→ R be a continuous convex function such that
∂ f (x) ∩ SH[0, 1] �= ∅ for all x ∈ H, where SH[0, 1] stands for the unit sphere; we
refer to [14, Corollary 4.4] for more information on this function. Suppose that for a
given x̄ ∈ H the set ∂ f (x̄) ∩ SH[0, 1] is a singleton, say {x̄∗} = ∂ f (x̄) ∩ SH[0, 1].
Does it imply that the Gâteaux derivative, DG f (x̄), exists? Suppose that the set of
“good” directions is dense in the space. Then for all h from a dense set we have

{x̄∗} =
(
lim
t↓0 ∂ f (x + th)

)
∩ SH[0, 1]

and consequently, by the continuity we get

∀h ∈ H, 〈x̄∗, h〉 = f ′(x; h),

which implies the Gâteaux differentiability. In fact, in some important cases, to get the
differentiability, it is enough to have the directional convergence close to h̄ (for a dense
subset of a neighborhood of h̄), where 〈x̄∗, h̄〉 = −1. We omit a presentation of this
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fact, since it is too complicated. A good example, where the directional convergence
of subgradients would work effectively, is the problem by V. Klee—it is still open;
see [4]—suppose Q is a subset of Hilbert space H such that each point of H admits
a unique farthest point in Q. Must Q consist of a single point? In order to see it, let
f be the farthest distance function; see [10]. Applying the above reasoning we get
that f is Gâteaux differentiable; thus, using Theorem 5 in [10] and Theorem 4.2 in
[15], we infer that the function is Fréchet differentiable at all points in H or Q is a
singleton. The Fréchet differentiability of f is excluded, whenever Theorem 4.4 in
[15] and Theorem 5 in [10] are taken into account. Thus if we had the directional
convergence of subgradients we would get a solution of the furthest point problem.
Similar reasoning can be done in the case of the so called Chebyshev sets. We omit
a presentation on how to do it, since it needs several notions and results allowing to
change the problem of convexity of Chebyshev set into the problem of the directional
convergence of subgradients of a function related to the distance function; see, for
example, Ficken’s method in [13]. Of course, also the opposite reasoning can be
done. For example, if there is a subset Q having the furthest distance property, such
that it is not singleton, then for the farthest distance function, generated by this set,
there is a point such that the set of wrong directions has a nonempty interior, that is,
the directional convergence of subgradients is not preserved on a set with nonempty
interior. This relation illustrates a potential role of the directional convergence of
subgradients in investigations of convex analysis problems. To the best of Author’s
knowledge, directional convergence of subgradients of convex functions has been little
explored and rarely has been applied as a tool to get a new result.

In the finite-dimensional setting, due to the Rademacher Theorem, we know that the
set of directions, with the property that limits in (3) exist, is a set of full measure. In the
infinite-dimensional setting, it is hard to expect results of this form, unless additional
assumptions on the function, under the consideration, are imposed.Moreover, a simple
example of a function can be constructed, for which the set of wrong directions (no
convergence) is large in the topological sense, that is, it is a dense subset of Gδ . This
indicates that it is impossible, in a general case, to find a sector (drop, cone) with
nonempty interior and to have the convergence of subgradients along all directions
from the sector. Seemingly, it is a discouraging information for a future investigations.
However, a result showing that the set of good directions is dense should be looked for.
This is at most what can be expected in a general setting and this is enough to answer
mentioned problems above. Of course, adding some assumptions on the function, we
should enlarge the set of good directions. For example, sometimes we are interested in
the convergence in some cones of directions. That is, we expect that all directions from
some cone are such the limits in (3) exist. For this reason we can use some uniform
upper semicontinuity of the directional derivatives or second (higher)-order difference
quotient; see, for example, [1] for some comments on the role of higher-order theory
and problems in variational analysis. Assumptions of the form

lim sup
t↓0

sup
h∈BX [w0,β0]

f ′(x + th; h) − f ′(x; h) = 0 (4)
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or

∀h ∈ BX [w0, β0], lim sup
t↓0

f (x + th) − f (x) − t f ′(x; h)
1
2 t

2
< ∞ (5)

ensure that the set of directions, such that the limit in (3) exists, is at least a dense Gδ

subset of the ball BX [w0, β0], where (X, ‖·‖) is anAsplund space andw0 ∈ X ,β0 > 0
are given. The convergence of subdifferentials along these directions can be provided
by using Theorem 3.1 [9]. We can also predict that more sophisticated second-order
conditions can be used for a specification of good directions of the convergence. Of
course, if the function involved in (5) has a second-order expansion at x , then (5) is
fulfilled. Seemingly, restriction in (5) seems not to hide toomuch difficulties. However,
even in a Hilbert space setting we can stumble over unresolved problems from convex
analysis, whenever we want to preserve (5) by a second-order derivative. Let us first
recall that there are convex continuous functions on Hilbert spaces nowhere second-
order differentiable; see, for example, Section 5.1 [1]. Moreover, even in separable
Hilbert space we do not know if such functions exist or do not exist. Thus we should
ask: is it possible to construct a convex continuous function f on a separable Hilbert
space such that for every point x , where the Gâteaux derivative exists, say DG f (x),
the set of directions for which the directional convergence of subgradients holds true,
is not dense in the space?

An example of such function should not be looked for among antidistance functions
orAsplund functions (see [9] for the definition of the function).Because it is known that
Gâteaux differentiability entails the Fréchet differentiability for these functions and
due Corollary 2 [16]; see also Corollary 4.2 [14], we have the directional convergence
of subdifferentials for all directions.

If we were able to construct such a function, then (5) would not be satisfied, thus
the second derivative would not exist at this point, and consequently it would be an
answer in the negative to the question, which we find in [1], that is to the question:
Does every continuous convex function on separable Hilbert space admit a second-
order Gâteaux expansion at at least one point (or perhaps on a dense set of points)?
Jonathan M. Borwein wrote that it was the most intriguing open question to him about
convex functions; see Section Alexandrov Theorem in Infinite Dimensions [1].

3 The Density of the Set of “Good” Directions for the Directional
Convergence of Subdifferentials

In this section, an example of a function on an infinite-dimensional Hilbert space
is presented, for which the set of directions, such that limits in (3) exist, is dense.
First, a result, revealing the role of the upper and lower limits in the existence of
the limit in (3), is presented. Namely, in the following Lemma, only the existence of
lim supt↓0 ∂ f (x + tw) is preserved, on a dense subset, but we do not know if the limit
exists.

Assume that H is a Hilbert space, {x∗
1 , x

∗
2 , . . .} ⊂ H is a bounded subset and

β1 ≥ 0, β2 ≥ 0, . . ., and ker x∗
i := {z ∈ H : 〈x∗

i , z〉 = 0}. Let us define the following
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convex function f : H −→ R, where

∀y ∈ H, f (y) := sup
i∈N

(〈x∗
i , y〉 − βi ). (6)

Lemma 3.1 Let H be an infinite-dimensional Hilbert space,

Y1 ⊂ Y2 ⊂ · · · ⊂ H

be finite-dimensional subspaces, {x∗
1 , x

∗
2 , . . .} ⊂ H be a bounded subset and β1 ≥

0, β2 ≥ 0, . . . be such that lim inf i→∞ βi = 0, and t1 > t2 > . . . > 0 be such
that lim j→∞ t j = 0. Assume that for f defined in (6) the following conditions are
satisfied:

∀y ∈
⋃
j∈N

Y j , sup
i∈N

(〈x∗
i , y〉 − βi ) ≥ 0, {x∗

1 , x
∗
2 , . . .} ⊂

⋃
j∈N

Y j (7)

and for some dense subset Y ⊂ ⋃
j∈N Y j we have

∀y ∈ Y, ∃k ∈ N : lim
j→∞ min

a∗∈∂ f (t j y)
max{dYk (y), dYk (a∗)} = 0. (8)

Then, f (0) = 0 and for all y ∈ Y , h ∈ ⋂
i∈N ker x∗

i the limits

lim sup
i→∞

∂ f (ti (y + h)), lim sup
t↓0

∂ f (t (y + h)) (9)

exist and are nonempty sets; and consequently the set of all directions w ∈ H such
that the limits

lim sup
i→∞

∂ f (tiw), lim sup
t↓0

∂ f (tw) (10)

exist and are nonempty sets, is dense in H.

Proof It is easy to notice that f (0) = 0. Suppose that span {x∗
1 , x

∗
2 , . . . , } is an infinite-

dimensional subspace; otherwise we are done, that is for all w ∈ H the limits in (10)
exist, since the relative compactness of {x∗

1 , x
∗
2 , . . . , } in this case. Let us fix y ∈ Y

and h ∈ ⋂
i∈N ker x∗

i . Choose k ∈ N such that; see (8),

lim
j→∞ min

a∗∈∂(t j y)
max{dYk (y), dYk (a∗)} = 0.

For every j ∈ N take a∗
j ∈ ∂ f (t j y) such that lim j→∞ dYk (a

∗
j ) = 0. Since the local

compactness of Yk , we are able to choose a converging subsequence {a∗
jm

}m∈N, thus

lim
m→∞ a∗

jm ∈ lim sup
i→∞

∂ f (ti y) = lim sup
i→∞

∂ f (ti (y + h)). (11)
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Thus both limits in (9) exist and are nonempty sets.
Take {y∗

1 , y
∗
2 , . . .} ⊂ SH such that 〈y∗

i , y∗
j 〉 = 0, whenever i �= j and

{
y∗
1 , y

∗
2 , . . .

} ⊂
⋃
j∈N

Y j ⊂ span
{
y∗
1 , y

∗
2 , . . . ,

}
.

Let us fix any w0 ∈ H. For every n ∈ N let us define

wn :=
n∑
j=1

〈w0, y
∗
j 〉y∗

j +
⎛
⎝w0 −

∑
j∈N

〈w0, y
∗
j 〉y∗

j

⎞
⎠ .

Obviously

lim
n→∞ ‖w0 − wn‖ = 0 and ∀i ∈ N,

〈
x∗
i , w0 −

∑
j∈N

〈w0, y
∗
j 〉y∗

j

〉
= 0.

For all n ∈ N take yn ∈ Y such that

‖yn −
n∑
j=1

〈w0, y
∗
j 〉y∗

j ‖ ≤ 2−n

and observe that for all t > 0 we have

∂ f (t yn) = ∂ f

⎛
⎝t

⎛
⎝yn + w0 −

∑
j∈N

〈w0, y
∗
j 〉y∗

j

⎞
⎠

⎞
⎠

and

∥∥∥∥∥∥w0 −
⎛
⎝yn +

⎛
⎝w0 −

∑
j∈N

〈w0, y
∗
j 〉y∗

j

⎞
⎠

⎞
⎠

∥∥∥∥∥∥ ≤ 2−n + ‖w0 − wn‖.

Applying (11) for yn instead of y, we are done. ��
The restriction in (8) can be met in several ways, for example, suppose that

{x∗
1 , x

∗
2 , . . .} ⊂ H is a bounded subset of a Hilbert space, β1 > 0, β2 > 0, . . . are

such that lim inf i→∞ βi = 0 and t1 > t2 > . . . > 0 are such that limi→∞ ti = 0.
Assume that for all k ∈ N, with Ik := {i ∈ N : x∗

i /∈ Yk}, the following condition is
satisfied:

∀y ∈ Yk, lim sup
i→∞,i∈Ik

〈x∗
i , y〉
βi

< ∞, (12)
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whenever Ik is infinite, then (8) is also valid, whenever (7) is satisfied. We leave it
without a proof, since it is rather a simple observation. Let us also point out that for
H := l2 and x∗

i := ei , where ei = (ei1, ei2, . . . ) and

ei j :=
{
0, whenever i �= j;
1, whenever i = j,

the conditions in (12) is satisfied for any β1 > 0, β2 > 0, . . . and

Yk := span {x∗
1 , . . . , x

∗
k }.

Example 3.1 Let us put H := l2, f (x) := supi∈N (xi − i−1). We are in the Hilbert
space setting. Of course we have f (0) = 0, ∂ f (0) = {0}, so function f is Gâteaux
differentiable at the origin. It follows fromLemma3.1 that the limits lim supt↓0 ∂ f (tw)

and lim supi→∞ ∂ f (tiw) exist for all w from a dense subset of H; see (9). Moreover,
it follows from Lemma 3.1 [9] that

∀h ∈ H, lim sup
t↓0

∂ f (th) ⊂ {0}.

Hence, for all w from the dense subset of H we get

{0} = lim sup
t↓0

∂ f (tw) = lim inf
t↓0 ∂ f (tw) = lim

t↓0 ∂ f (tw).

However, for all directions h ∈ l2 \ {0} we can spoil the directional convergence
of subgradients for close directions to h. In fact, take integers ik ∈ N such that

i1 < i2 < . . . , and ik+1 > i2k , for all k ∈ N and that
∑

k∈N i
− 1

2
k < ∞. Let us take

h := (h1, h2, . . .) ∈ l2, ε > 0, and ik such that

∥∥∥∥(h1, h2, . . .) −
(
h1, . . . , hik−1 , i

− 1
2

k , 0, . . . , 0, i
− 1

2
k+1, 0, . . .

)∥∥∥∥ ≤ ε.

Observe that for

hε :=
(
h1, . . . , hik−1 , i

− 1
2

k , 0, . . . , 0, i
− 1

2
k+1, 0, . . .

)

we have ei j ∈ ∂ f (i
− 1

4
j hε) for all j ∈ N large enough. Of course, the sequence {ei j } j∈N

is not strongly convergent to any point of l2 (it is weakly convergent to the origin).
Thus, we do not have the strong convergence in a dense subset of directions. In order
to notice that the set of wrong directions contains a dense Gδ subset, let us put

Wk :=
{
h ∈ l2 : hik >

1

ik
1
2

}
, W :=

⋂
k∈N

⋃
j≥k

W j
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for all k ∈ N. It is not difficult to verify thatW is a dense Gδ subset of l2 and ifw ∈ W
then the limit in (3) does not exists. ��

At this moment, it is unknown whether an example of a convex continuous function
on a Hilbert space, such that the limits in (10) do not exist for all directions from a
dense Gδ subset, can be provided—it is an open question. In the example above, it is
only shown that the limit in (3) does not exist for all directions from a denseGδ subset.
Our knowledge, on conditions preserving the existence of limits in (3), is little. In this
section functions f , generated by a sequence of functionals, are considered. (This is
not a restrictive abridgment, whenever we are in a separable Hilbert space setting.)
The key role in the presentation is played by the condition in (8) (of course, we can
find several substitutes for (8)—this is not the aim of this note). In the next example,
we consider the case, where (8) may not be valid. However, in this case, we reduce the
problem of the existence of limits to the investigation of limits in (14). Namely, it is
also interesting if taking a close function to f , we are able to preserve the existence of
the limits. For example, fix a direction w0 and ε > 0 as small as we need. It would be
valuable to know if there are directions w such that that ‖w0 − w‖ < ε and a convex
continuous function, say gε , such that

∀y ∈ X, | f (y) − f (x)| ≤ |gε(y) − gε(x)| + ε‖y − x‖ (13)

and the limit

lim
t↓0 ∂gε(x + tw) (14)

exists; we refer to [14,17–19] for some information how to preserve the inequality in
(13).

Example 3.2 Let us suppose that f is defined as in (6) with β1 > 0, β2 > 0, . . . such
that lim inf i→∞ βi = 0 and

Y1 ⊂ Y2 ⊂ · · · ⊂ H

are finite-dimensional subspaces such that both conditions in (7) are fulfilled and

∀k ∈ N, lim
i→∞(‖x∗

i ‖ − dYk (x
∗
i )) = 0.

Let us fix ε > 0 and choose integers i1 < i2 < · · · such that

∀k ∈ N,∀i ∈ {ik, . . . , ik+1}, ‖x∗
i ‖ − dYk (x

∗
i ) ≤ ε

2k
.

Let PYk stands for the metric projection on Yk . For all k ∈ N and i ∈ {ik, . . . , ik+1−1}
put

y∗
i := x∗

i − PYk (x
∗
i )
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and

∀x ∈ H, gε(x) := sup
i∈N

(〈y∗
i , x〉 − βi ). (15)

It is a simple algebra to show that f (0) = gε(0), gε(y) ≥ 0 for all y ∈ H and (13)
is fulfilled for x = 0 as well as (12). Thus, the limit in (14) exists for gε defined
in (15). ��

Finally, let us pose the following question; see questions following (3): is there a
convex continuous function defined on a Hilbert space such that, for some x , the limit
in (3) does not exist for some nonempty open subset of directions? If the answer to
this question is negative, then, for example, problems posed by V. Klee can be solved
using the directional convergence of subgradients, as it was examined above.

4 Conclusions

1. Open problems on the directional convergence of subgradients, subdifferentials
and Hessians are recalled and posed.

2. Some relationswith open problems, known in the literature, are pointed out, that is,
with Klee’s problems: the convexity of Chebyshev sets and farthest point conjec-
ture; with Borwein’s question on the Alexandrov Theorem in infinite dimensions.

3. It should be stressed that it would be valuable if a result, preserving the density of
the set of directions for which the convergence holds true, was discovered in the
infinite-dimensional setting.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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