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Abstract In this paper,weprovide sufficient andnecessary conditions for theminimax
equality for extended real-valued abstract convex–concave functions. As an applica-
tion, we get sufficient and necessary conditions for the minimax equality for extended
real-valued convex–concave functions.
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1 Introduction

Abstract convexity is a tool for global optimization. Abstract convex functions are
defined as pointwise suprema of a given class of functions. This concept was first
introduced by Moreau [1] and developed by Dolecki and Kurcyusz [2]. The mono-
graphs of Rubinov [3] and Rolewicz–Pallaschke [4] are devoted to this topic and
discuss basic constructions of abstract convexity, like abstract conjugacy and abstract
subdifferential, together with applications in optimization and numbers of important
examples. In the present paper, we provide minimax theorems for functions, which are
abstract convex with respect to one variable and concave with respect to the second
variable.
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Thefirstminimax theoremwas proved by vonNeumann in [5]. Since then there have
been many generalizations of the original result, an exhaustive survey is given, e.g.,
in [6]; see also [7]. To the best of our knowledge, the existing minimax theorems are
restricted to real-valued functions. Extended real-valued functions appear in standard
constructions in variational analysis. It is a natural question what are the conditions
under which the minimax equality for such functions holds. In this paper, we use the
tools developed in [8] and [9] to provide minimax theorems for extended real-valued
abstract convex–concave functions.

2 Preliminaries

We provide sufficient and necessary conditions for the minimax equality

sup
y∈Y

inf
x∈X a(x, y) = inf

x∈X sup
y∈Y

a(x, y),

where X is nonempty set, Y is a real vector space and a : X × Y → R̄ := R∪ {± ∞}
is an extended real-valued Φ-convex (abstract convex) function with respect to x and
concave with respect to y.

Now, we recall some definitions related to Φ-convexity. For any f, g : X → R̄,
f ≤ g if and only if f (x) ≤ g(x) for all x ∈ X .
Let Φ be defined as follows

Φ := {� + c, � ∈ L , c ∈ R},

where L is an arbitrary class of functions � : X → R̄. The class L is called a set of
abstract linear functions. The class Φ is called a set of abstract affine functions if it
is stable by adding constants. Note that, if L is the set of real-valued linear functions
defined on X , then Φ is the set of real-valued affine functions defined on X .

The set supp f ⊂ Φ, defined as

supp f := {ϕ ∈ Φ : ϕ ≤ f }

is called the support of f with respect toΦ. A function f : X → R̄ is calledΦ-convex
if

∀ x ∈ X f (x) = sup{ϕ(x) : ϕ ∈ supp f }.

A function f : X → R̄ is proper if its effective domain is nonempty, i.e.,

dom f := {x ∈ X : f (x) < + ∞} 	= ∅

and f (x) > − ∞ for all x ∈ X . The set epi f := {(x, r) ∈ X × R : r ≥ f (x)} is
called the epigraph of f .

Let us note that a Φ-convex function, taking the value − ∞, has an empty support
or must contain in its support functions admitting − ∞. In the case where, Φ contains
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only real-valued functions ϕ : X → R, the Φ-convex function f : X → R̄ is proper,
if and only if supp f 	= ∅ and dom f 	= ∅.

For any ϕ : X → R̄ and Z ⊂ X we define the strict lower level set of ϕ at the level
α ∈ R as

[ϕ < α]Z := {x ∈ Z : ϕ(x) < α},

if Z = X , then we use the notation [ϕ < α]X := [ϕ < α].
Minimax theorems for functions a : X × Y → R ∪ {+ ∞}, where for each y ∈ Y

the function a(·, y) : X → R ∪ {+ ∞} is Φ-convex, are based on the following
intersection property introduced in [8] and investigated in [10] and [9].

Definition 2.1 Let ϕ1, ϕ2 : X → R be any two functions and α ∈ R. The functions
ϕ1 and ϕ2 are said to have the intersection property on X at the level α ∈ R iff for
every t ∈ [0, 1]

[tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ1 < α] = ∅ or [tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ2 < α] = ∅. (1)

Remark 2.1 Functions ϕ1, ϕ2 : X → R, which belong to the class

Φlsc := {ϕ : X → R, ϕ(x) = − a‖x‖2 + 〈�, x〉 + c, x ∈ X, � ∈ X∗, a ≥ 0, c ∈ R},

where X is a normed space, and X∗ is a topological dual to X , have the intersection
property on X at the level α if and only if

[ϕ1 < α] ∩ [ϕ2 < α] = ∅.

For more results along this line see [9].
Let us note that by Rubinov’s theorem ([3], Example 6.6) a proper lower semicon-

tinuous function f : X → R ∪ {+ ∞} defined on Hilbert space X is Φlsc-convex if
there exists ϕ̄ ∈ Φlsc such that ϕ̄ < f .

The following theorem has been proved in [10].

Theorem 2.1 (Theorem 3.3.3 of [10]) Let X be a set and Y be a real vector space.
Let Φ be a class of real-valued functions ϕ : X → R which contains the constant
functions. Let a : X × Y → R ∪ {+ ∞} be a function such that

– for any y ∈ Y the function a(·, y) : X → R ∪ {+ ∞} is Φ-convex on X,
– for any x ∈ X the function a(x, ·) : Y → R ∪ {+ ∞} is concave on Y .

The following conditions are equivalent:

(i) for every α ∈ R, α < infx∈X supy∈Y a(x, y), there exist y1, y2 ∈ Y and
ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that the intersection property holds
for ϕ1, ϕ2 on X at the level α.

(ii) supy∈Y infx∈X a(x, y) = inf x∈X supy∈Y a(x, y).

The proof of this fact will be given as a corollary of Theorem 5.1.

123



J Optim Theory Appl (2018) 176:306–318 309

3 Generalized Intersection Property

Throughout this paper, we use the following convention

+ ∞ + (− ∞) = − ∞ + (+ ∞) = + ∞, 0 · (+ ∞) = 0, 0 · (− ∞) = 0,

∀t ∈ ]0, 1] : t · (+ ∞) = + ∞, t · (− ∞) = − ∞.

In [11], the above addition was called inf-addition (the authors considered also sup-
addition).

To derive necessary and sufficient conditions for the minimax equality for extended
real-valuedΦ-convex–concave functions we use the generalized intersection property
introduced below.

Definition 3.1 Let ϕ1, ϕ2 : X → R̄ be any two functions and α ∈ R. The functions
ϕ1 and ϕ2 are said to have the generalized intersection property on X at the level
α ∈ R iff (2) hold:

∀t ∈ [0, 1] : [tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ1 < α] = ∅ or [tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ2 < α] = ∅ (2)

and (3) or (4) or (5) hold:

[ϕ1 < α] = ∅ (3)

[ϕ2 < α] = ∅ (4)

∃t ∈ ]0, 1[ : [ϕ1 < α] ∩ [tϕ1 + (1 − t)ϕ2 < α] = ∅ (a)

∃t ∈]0, 1[ : [ϕ2 < α] ∩ [tϕ1 + (1 − t)ϕ2 < α] = ∅ (b) (5)

Proposition 3.1 Let ϕ1, ϕ2 admit only finite values, i.e., ϕ1, ϕ2 : X → R. Then,
ϕ1, ϕ2 have the generalized intersection property on X at the level α if and only if
ϕ1, ϕ2 have the intersection property on X at the level α.

Proof Assume that ϕ1, ϕ2 have the intersection property on X at the level α.
It is obvious that (2) holds. Then, the following situations may occur:

1. [ϕ1 < α] = ∅, hence (3) holds.
2. [ϕ2 < α] = ∅, hence (4) holds.
3. [ϕ1 < α] 	= ∅ and [ϕ2 < α] 	= ∅. Then, for any x̄ ∈ [ϕ1 < α], we have

0 ≤ F1(x̄) := α−ϕ2(x̄)
ϕ1(x̄)−ϕ2(x̄)

< 1 and for any t̄ , F1(x̄) < t̄ < 1 we get

[ϕ2 < α] ∩ [t̄ϕ1 + (1 − t̄)ϕ2 < α] = ∅,

and (5)b holds. Analogously, for any x̄ ∈ [ϕ2 < α], we have 0 < F2(x̄) :=
α−ϕ2(x̄)

ϕ1(x̄)−ϕ2(x̄)
≤ 1, and for any t̄ , 0 < t̄ < F2(x̄) we get

[ϕ1 < α] ∩ [t̄ϕ1 + (1 − t̄)ϕ2 < α] = ∅,

and (5)a holds. ��
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Remark 3.1 (a) If there exists x̄ ∈ X such that ϕ1(x̄) = − ∞ and ϕ2(x̄) < + ∞,
then [ϕ1 < α] 	= ∅ for all α ∈ R and

[tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ1 < α] 	= ∅ for t ∈ ]0, 1].

If there exists x̃ ∈ X such thatϕ2(x̃) = −∞ andϕ1(x̃) < +∞, then [ϕ2 < α] 	= ∅
for all α ∈ R and

[tϕ1 + (1 − t)ϕ2 < α] ∩ [ϕ2 < α] 	= ∅ for t ∈ [0, 1[.

Hence, (2) does not hold.
(b) If [tϕ1+(1−t)ϕ2 < α] = ∅ for every t ∈]0, 1[or [ϕ1 < α] = ∅ and [ϕ2 < α] = ∅,

then ϕ1, ϕ2 have the generalized intersection property on X at the level α.

Below we give examples related to generalized intersection property.

Example 3.1 1. Let ϕ1, ϕ2 : R → R̄ be defined as follows

ϕ1(x) =
⎧
⎨

⎩

− ∞ if, x < a1,
c1 if, x = a1,
+ ∞ if, x > a1,

ϕ2(x) =
⎧
⎨

⎩

− ∞ if, x > a2,
c2 if, x = a2,
+ ∞ if, x < a2,

where a1, a2, c1, c2 ∈ R, a1 < a2. It is easy to see that functions ϕ1, ϕ2 have the
generalized intersection property at every level α ∈ R.

2. Let ϕ1, ϕ2 : R → R̄ be defined as follows

ϕ1(x) =
⎧
⎨

⎩

− ∞ if, x < a1,
c1 if, x = a1,
+ ∞ if, x > a1,

ϕ2(x) =
⎧
⎨

⎩

− ∞ if, x > a2,
c2 if, x = a2,
+ ∞ if, x < a2,

where a1, a2, c1, c2 ∈ R, a1 > a2. It is easy to see that forϕ1, ϕ2 condition (5) does
not hold, thus functions ϕ1, ϕ2 do not have the generalized intersection property
at any level α.

4 An Auxiliary Lemma

Now we prove a lemma which is crucial for our results.

Lemma 4.1 Let ϕ1, ϕ2 : X → R̄ and α ∈ R. The functions ϕ1, ϕ2 have the general-
ized intersection property on X at the level α if and only if there exists t0 ∈ [0, 1] such
that

t0ϕ1(x) + (1 − t0)ϕ2(x) ≥ α for all x ∈ X. (6)

Proof Assume that ϕ1, ϕ2 have the generalized intersection property on X at the level
α. If [ϕ1 < α] = ∅, then ϕ1(x) ≥ α for all x ∈ X , thus, in view of convention adopted,
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(6) holds for t0 = 1. If [ϕ2 < α] = ∅, then ϕ2(x) ≥ α for x ∈ X , thus (6) holds for
t0 = 0.

Assume now that [ϕ1 < α] and [ϕ2 < α] are nonempty and define the sets T1, T2,

T1 := {t ∈ ]0, 1[: [ϕ1 < α] ∩ [tϕ1 + (1 − t)ϕ2 < α] 	= ∅},
T2 := {t ∈ ]0, 1[: [ϕ2 < α] ∩ [tϕ1 + (1 − t)ϕ2 < α] 	= ∅}.

We show that ]0, 1[ \(T1 ∪ T2) 	= ∅. Consider the following cases:

1. T1 = ∅. By (5)b, T2 	= ]0, 1[.
2. T2 = ∅. By (5)a, T1 	= ]0, 1[.
3. T1 	= ∅, T2 	= ∅. We need to show that there exists t0 ∈ ]0, 1[ \(T1 ∪ T2). Observe

that T1 ∩ T2 = ∅. We show that T1 and T2 are open subsets of ]0, 1[ . To show that
T1 is open, take any t̄ ∈ T1, i.e., there exists x̄ ∈ X such that

ϕ1(x̄) < α and t̄ϕ1(x̄) + (1 − t̄)ϕ2(x̄) < α.

Clearly, it must be ϕ1(x̄) < + ∞ and ϕ2(x̄) < + ∞. By (5)a, it cannot be
ϕ1(x̄) = − ∞. Hence, − ∞ < ϕ1(x̄) < + ∞. By (2), it must be ϕ2(x̄) > − ∞
since otherwise [ϕ1 < α] ∩ [ϕ2 < α] 	= ∅. Let

ε := α − (t̄ϕ1(x̄) + (1 − t̄)ϕ2(x̄))

ϕ2(x̄) − ϕ1(x̄)
> 0.

Then, for every t ∈ [t̄ − ε, t̄ + ε], we have t ∈ T1.
To show that T2 is open, take any t̃ ∈ T2, i.e., there exists x̃ ∈ X such that

ϕ2(x̃) < α and t̃ϕ1(x̃) + (1 − t̃)ϕ2(x̃) < α.

Clearly, ϕ1(x̃) and ϕ2(x̃) are finite. Let

ε := α − (t̃ϕ1(x̃) + (1 − t̃)ϕ2(x̃))

ϕ1(x̃) − ϕ2(x̃)
> 0

then for every t ∈ [t̃ − ε, t̃ + ε] we have t ∈ T2.
Since T1, T2 are nonempty and disjoint, and we showed that they are open, we get
]0, 1[ \(T1 ∪ T2) 	= ∅.

For all t0 ∈]0, 1[ \(T1 ∪ T2) we have

t0ϕ1(x) + (1 − t0)ϕ2(x) ≥ α for all x ∈ X.

To show the converse implication, assume now that (6) holds. If t0 = 0, then
ϕ2(x) ≥ α, for all x ∈ X , and conditions (2) and (4) of Definition 3.1 are fulfilled. If
t0 = 1, then ϕ1(x) ≥ α, for all x ∈ X, and conditions (2) and (3) of Definition 3.1
hold.
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Consider now the case where (6) holds with t0 ∈ ]0, 1[. It is easy to see that (5) is
true for t0.

To complete the proof we need to show that condition (2) holds. Observe first
that, by (6), it must be [ϕ1 < α] ∩ [ϕ2 < α] = ∅, since otherwise there exists
x̄ ∈ [ϕ1 < α] ∩ [ϕ2 < α] such that t0ϕ1(x̄) + (1 − t0)ϕ2(x̄) ≥ α.

By contradiction, suppose that [ϕ1 < α] ∩ [ϕ2 < α] = ∅ and (2) does not hold,
i.e., there exist t1 ∈ ]0, 1[ and x̄, x̃ ∈ X such that

x̄ ∈ [ϕ1 < α] ∩ [t1ϕ1 + (1 − t1)ϕ2 < α]
x̃ ∈ [ϕ2 < α] ∩ [t1ϕ1 + (1 − t1)ϕ2 < α]. (7)

Then

ϕ1(x̄) < α, ϕ2(x̄) ≥ α ϕ2(x̃) < α, ϕ1(x̃) ≥ α.

Now we show that ϕ1(x̄), ϕ2(x̄), ϕ1(x̃) and ϕ2(x̃) are finite. Clearly ϕ1(x̄) < + ∞,
ϕ1(x̃) > − ∞ and ϕ2(x̃) < + ∞, ϕ2(x̄) > − ∞. Moreover, by (7), it must be
ϕ1(x̃) < + ∞ and ϕ2(x̄) < + ∞; consequently, by (6) it must be ϕ1(x̄) > − ∞ and
ϕ2(x̃) > − ∞. By (7),

α − ϕ2(x̄)

ϕ1(x̄) − ϕ2(x̄)
< t1 <

α − ϕ2(x̃)

ϕ1(x̃) − ϕ2(x̃)
,

which contradicts (6). ��

5 Main Results

Now we are in a position to prove necessary and sufficient conditions for the minimax
equality for extended real-valued Φ-convex–concave functions.

We say that a function f : X → R̄ is concave in the sense of Ky Fan [12] if for
any x1, x2 ∈ X and t ∈ [0, 1] there exists x0 ∈ X such that
f (x0) ≥ t f (x1) + (1 − t) f (x2).

Theorem 5.1 Let X be a set and Y be a real vector space. Let a : X × Y → R̄,

– ∀ y ∈ Y , a(·, y) : X → R̄ is Φ-convex on X,
– ∀ x ∈ X, a(x, ·) : Y → R̄ is concave on Y .

If

(i) for every α ∈ R, α < inf x∈X supy∈Y a(x, y), there exist y1, y2 ∈ Y and
ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that the generalized intersection
property holds for ϕ1, ϕ2 on X at the level α.

then

(ii) supy∈Y inf x∈X a(x, y) = infx∈X supy∈Y a(x, y).

Moreover, if Φ contains all constant functions, then (ii) ⇒ (i).
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Proof (i) ⇒ (ii) If infx∈X supy∈Y a(x, y) = − ∞, then by the fact that the inequality

sup
y∈Y

inf
x∈X a(x, y) ≤ inf

x∈X sup
y∈Y

a(x, y)

always holds, we get the required conclusion.
Let α < infx∈X supy∈Y a(x, y). By Lemma 4.1, there exists t0 ∈ [0, 1] such that

t0ϕ1(x) + (1 − t0)ϕ2(x) ≥ α for all x ∈ X, (8)

where ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2), y1, y2 ∈ Y . Hence

t0a(x, y1) + (1 − t0)a(x, y2) ≥ α for all x ∈ X. (9)

By concavity of a(x, ·) and by (9), there exists y0 ∈ Y such that

a(x, y0) ≥ α for all x ∈ X.

Thus

sup
y∈Y

inf
x∈X a(x, y) ≥ α,

for all α < infx∈X supy∈Y a(x, y). Hence, we get

sup
y∈Y

inf
x∈X a(x, y) ≥ inf

x∈X sup
y∈Y

a(x, y).

(ii) ⇒ (i) We need only to consider the case infx∈X supy∈Y a(x, y) > − ∞. Let
α < inf x∈X supy∈Y a(x, y). By the equality, supy∈Y inf x∈X a(x, y) = inf x∈X supy∈Y
a(x, y), we get

sup
y∈Y

inf
x∈X a(x, y) > α.

So, there exists ȳ ∈ Y such that

a(x, ȳ) ≥ α for all x ∈ X.

Thus, the function ϕ̄ := α belongs to the support set supp a(·, ȳ). By the fact that
[ϕ̄ < α] = ∅, we get

[t ϕ̄ + (1 − t)ϕ < α] ∩ [ϕ̄ < α] = ∅ for all ϕ ∈ Φ.

Then, for all ϕ ∈ Φ, the functions ϕ̄ and ϕ have the generalized intersection property
on X at the level α. ��
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Proof of Theorem 2.1 The proof follows directly fromRemark 3.1a and Theorem 5.1.
��

Let us note that in the proof of Theorem 5.1 the roles of a(·, y) and a(x, ·) are not
symmetric, i.e., one cannot get the conclusion of Theorem 5.1 under the assumption
that a(x, ·) is �-concave for a certain class �.

By examining the proof of Theorem 5.1, we see that the fact, that functions a(·, y)
are pointwise suprema of functions from Φ is not used. What is needed in the proof
is that, for α < inf x∈X supy∈Y a(x, y) there exist y1, y2 ∈ Y and any functions

ϕ1, ϕ2 : X → R̄, ϕ1 ≤ a(·, y1), ϕ2 ≤ a(·, y2), satisfying the generalized intersection
property on X at the level α.

This allows to formulate the following theorem.

Theorem 5.2 Let X be a set and Y be a real vector space.
Let a : X × Y → R̄ be such that:

– for any x ∈ X the function a(x, ·) : Y → R̄ is concave on Y .

The following conditions are equivalent:

(i) for every α ∈ R, α < infx∈X supy∈Y a(x, y), there exist y1, y2 ∈ Y and
ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that the generalized intersection
property holds for ϕ1, ϕ2 on X at the level α.

(ii) supy∈Y infx∈X a(x, y) = inf x∈X supy∈Y a(x, y).

Proof The same as the proof of Theorem 5.1. ��
Remark 5.1 Let X,Y , Φ and a(·, ·) be as in Theorem 5.1.

1. If there exists ȳ ∈ Y such that a(·, ȳ) ≡ + ∞, then infx∈X a(x, ȳ) = + ∞,
hence supy∈Y infx∈X a(x, y) = + ∞. On the other hand supy∈Y a(x, y) = + ∞,
for every x ∈ X , so inf x∈X supy∈Y a(x, y) = + ∞ and minimax equality always
holds for function a(·, ·).

2. If there exists x̄ ∈ X such that a(x̄, ·) ≡ −∞, then inf x∈X supy∈Y a(x, y) = −∞,
and condition (i) of Theorem 5.1 always holds.

In Theorem 5.1 we can change the assumptions on function a(·, ·) symmetrically. It
is possible to assume that a(·, ·) is convex as a function of X and Φ-concave as a
function of y, i.e., is equal to the pointwise infimum of all functions ϕ grater than
or equal to a(·, ·). In such case condition (i) of Theorem 5.1 has to hold for all
α > supy∈Y inf x∈X a(x, y) and definition of generalized intersection property with
opposite inequalities.

6 Φ-convexity of Convex Functions

In this section, we present a class Φ such that all convex functions defined on R
n

are Φ-convex (Theorem 6.1). This class is used in next section to provide minimax
theorem for convex–concave functions.
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We recall that x = (x1, . . . , xn)T ∈ R
n is said to be “lexicographically less” than

y = (y1, . . . , yn)T ∈ R
n , denoted x <L y, if x 	= y and for

k = min{i ∈ {1, . . . , n} | xi 	= yi } we have xk < yk .
For k ∈ {0, 1, . . . , n}, we denote by L(Rn,Rk) the set of all linear mappings

u : Rn → R
k .

Following [13], for any u ∈ L(Rn,Rk), with rank u = k, z ∈ R
k , x∗ ∈ (Rn)∗ and

d ∈ R, we define ϕu,z,x∗,d : Rn → R̄ by

ϕu,z,x∗,d(x) =
⎧
⎨

⎩

− ∞ if, u(x) <L z,
〈x∗, x〉 + d if, u(x) = z,
+ ∞ if, u(x) >L z,

(�)

and let Φ̄ = {ϕu,z,x∗,d} be a set of all functions ϕu,z,x∗,d defined above.
A function f : Rn → R̄ is convex if epigraph of f is a convex set in Rn .

Theorem 6.1 (Theorem 2.1, [13]) Let f : Rn → R̄. The following statements are
equivalent

(i) f is convex
(ii) f is Φ̄-convex.

In the example, below we investigate functions ϕ1, ϕ2 : R → R̄, ϕ1, ϕ2 ∈ Φ̄ which
have the generalized intersection property on R at the given level α.

Example 6.1 Let ϕu1,z1,x∗
1 ,d1 , ϕu2,z2,x∗

2 ,d2 : R → R̄, ϕ1 := ϕu1,z1,x∗
1 ,d1 ,

ϕ2 := ϕu2,z2,x∗
2 ,d2 , ϕ1, ϕ2 ∈ Φ̄, α ∈ R. In this setting we have k = 0 or k = 1, then

either u1 ≡ 0 or u1 is linear function from R to R.

1. u1 ≡ 0.
(a) If z1 > 0, thenϕ1 ≡ −∞.ϕ1 andϕ2 have the generalized intersection property

if and only if u2 ≡ 0 and z2 < 0, i.e., ϕ2 ≡ + ∞.
(b) If z1 < 0, then ϕ1 ≡ + ∞. Thus, ϕ1 and ϕ2 have the generalized intersection

property for every u2, z2, x∗
2 , d2.

(c) If z1 = 0, then ϕ1 is affine function. Thus, ϕ1 and ϕ2 have the generalized
intersection property if and only if u2 ≡ 0, z2 = 0 and x∗

1 , d1, x
∗
2 , d2 are such

that [ϕ1 < α] ∩ [ϕ2 < α] = ∅.
2. u1(x) = a1x , a1 	= 0 then (�) takes the form

ϕ1(x) =
⎧
⎨

⎩

− ∞ if, a1x < z1,
〈x∗

1 , x〉 + d1 if, a1x = z1,
+ ∞ if, a1x > z1.

(��)

We have the following possible situations
(a) u2 ≡ 0, then ϕ1, ϕ2 have the generalized intersection property if and only if

z2 < 0, i.e., ϕ2 ≡ + ∞.
(b) u2(x) = a2x , a2 	= 0, a1 > 0, then ϕ1, ϕ2 have the generalized intersection

property if and only if a2 < 0 and z1 < z2.
(c) u2(x) = a2x , a2 	= 0, a1 < 0, then ϕ1, ϕ2 have the generalized intersection

property if and only if a2 > 0 and z1 > z2.
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7 Minimax Theorems for Convex–Concave Functions

Taking into account Theorem 6.1, we can formulate the minimax theorem for convex–
concave functions.

Theorem 7.1 Let Y be a real vector space. Let a : Rn × Y → R̄ be such that

– for any y ∈ Y the function a(·, y) : Rn → R̄ is convex on Rn,
– for any x ∈ R

n the function a(x, ·) : Y → R̄ is concave on Y .

The following conditions are equivalent:

(i) for every α ∈ R, α < infx∈Rn supy∈Y a(x, y), there exist y1, y2 ∈ Y and
ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that the generalized intersection
property holds for ϕ1, ϕ2 on Rn at the level α.

(ii) supy∈Y inf x∈Rn a(x, y) = infx∈Rn supy∈Y a(x, y).

Proof Follows from Theorems 6.1 and 5.1. ��
The following remark is based on Example 6.1.

Remark 7.1 Let X,Y = R, and function a(·, ·) be as in Theorem 7.1.

1. If there exists ȳ ∈ R such that a(·, ȳ) ≡ + ∞, then from Remark 5.1 we get that
minimax equality holds,

2. If for every y ∈ R and every x ∈ R we have a(x, y) < + ∞, then for every
ϕ ∈ supp a(·, y) and every x ∈ R we have ϕ(x) < + ∞. Thus, for given level
α ∈ R there exist y1, y2 ∈ R and ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that
the generalized intersection property holds for ϕ1, ϕ2 on R at the level α if and
only if ϕ1, ϕ2 are affine functions and [ϕ1 < α] ∩ [ϕ2 < α] = ∅.

3. If there exist ȳ ∈ R and x̄ ∈ R such that a(x̄, ȳ) = + ∞ and x̃ ∈ X such that
a(x̃, ȳ) < + ∞, then all situations from Example 6.1 may occur.

4. If function a(·, ·) takes value − ∞, then all situations from Example 6.1 may
occur.

We can formulate the following corollary of Theorem 7.1.

Corollary 7.1 Let a : R × R → R̄ be such that

– for every y ∈ R and every x ∈ R a(x, y) < + ∞.
– for any y ∈ R the function a(·, y) : R → R̄ is convex on R,
– for any x ∈ R the function a(x, ·) : R → R̄ is concave on R.

The following conditions are equivalent:

(i) for every α ∈ R, α < infx∈R supy∈R a(x, y), there exist y1, y2 ∈ R and
ϕ1 ∈ supp a(·, y1), ϕ2 ∈ supp a(·, y2) such that ϕ1, ϕ2 are affine functions and
[ϕ1 < α] ∩ [ϕ2 < α] = ∅.

(ii) supy∈R infx∈R a(x, y) = infx∈R supy∈R a(x, y).

Now, we present an example of improper convex–concave function a(·, ·), which dose
not possess the generalized intersection property at any level α.
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Example 7.1 Let X,Y = R and a : R × R → R̄.

a(x, y) =
{+ ∞ if, x ≥ 0, y < 0 or x < 0, y ≥ 0,

− ∞ if, x ≥ 0, y ≥ 0 or x < 0, y < 0,

then inf x∈R supy∈R a(x, y) = + ∞ and supy∈R infx∈R a(x, y) = − ∞. Then, for
every α ∈ R the generalized intersection property does not hold. Indeed, for ȳ ≥ 0
function a(·, ȳ) takes the form

a(x, ȳ) =
{+ ∞ if, x < 0,

− ∞ if, x ≥ 0,

and if ϕ ∈ supp a(·, ȳ), then ϕ ≡ − ∞.
For ȳ < 0 function a(·, ȳ) takes the form

a(x, ȳ) =
{+ ∞ if, x ≥ 0,

− ∞ if, x < 0,

and if ϕ ∈ supp a(·, ȳ), then

ϕ(x) =
⎧
⎨

⎩

− ∞ if, x < 0,
c if, x = 0,
+ ∞ if, x > 0,

where c ∈ R.

8 Conclusions

We provide minimax theorems for extended real-valuedΦ-convex–concave functions
(or symmetrically for convex-Φ-concave functions). A distinguished feature of these
results is that we do not need any topological structure on the spaces involved. On the
other hand, the results obtained are applicable to functions being pointwise suprema
of abstract affine functions. In particular, we obtain minimax theorems for extended
real-valued convex–concave functions which do not have to be proper or lower (upper)
semicontinuous.

Acknowledgements Author would like to thank Professor Jerzy Grzybowski from the University of Adam
Mickiewicz in Poznan for suggesting in private communication that the equivalence in Lemma 4.1 (⇐)
may hold.
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