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Abstract This paper presents three versions of maximum principle for a stochastic
optimal control problem of Markov regime-switching forward–backward stochastic
differential equations with jumps. First, a general sufficient maximum principle for
optimal control for a system, driven by aMarkov regime-switching forward–backward
jump–diffusion model, is developed. In the regime-switching case, it might happen
that the associated Hamiltonian is not concave and hence the classical maximum prin-
ciple cannot be applied. Hence, an equivalent type maximum principle is introduced
and proved. In view of solving an optimal control problem when the Hamiltonian is
not concave, we use a third approach based on Malliavin calculus to derive a general
stochastic maximum principle. This approach also enables us to derive an explicit
solution of a control problem when the concavity assumption is not satisfied. In addi-
tion, the framework we propose allows us to apply our results to solve a recursive
utility maximization problem.
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1 Introduction

The optimal control problem for regime-switching models has received a lot of atten-
tion recently, see, for example, [1–5]. There are two existing approaches to solving
stochastic optimal control problem in the literature: the dynamic programming and
the stochastic maximum principle. We refer the reader to [6–8] and references therein
for more information on the dynamic programming approach. The stochastic max-
imum principle is a generalization of the Pontryagin maximum principle, in which
optimizing a value function corresponds to optimizing a functional called Hamilto-
nian. The stochastic maximum principle is presented in terms of an adjoint equation,
which is a solution to a backward stochastic differential equation (BSDE). There is a
vast literature on stochastic maximum principle, and the reader may consult [7,9–13]
for more information. Some applications of stochastic maximum principle in finance
include: the mean–variance portfolio selection (see, e.g. [7,12] and references therein)
and the utility maximization (classical and recursive) or risk minimization (see, e.g.
[12,14,15]);

The stochastic maximum principle for regime-switching models was introduced in
[1,2] for Markov regime-switching diffusion systems and extended in [5] for Markov
regime-switching jump–diffusion systems. In both cases, the authors developed a suf-
ficient stochastic maximum principle. However, when solving the sufficient maximum
principle, one of the main assumption is the concavity of the Hamiltonian which may
be violated in some applications. In [3], the authors prove a weak sufficient and nec-
essary maximum principle (that does not require concavity assumption) for Markov
regime-switching diffusion systems. Let us mention that [5, Theorem 3.1] does not
include the cases in which the profit Hamiltonian is not concave (see, e.g. Sect. 5.1).

This paper discusses a partial information stochastic maximum principle for opti-
mal control of forward–backward stochastic differential equation (FBSDE) driven by
Markov regime-switching jump–diffusion process. We first prove a general sufficient
maximum principle for optimal control with partial information (Theorem 3.1). This
can be seen as a generalization of [5, Theorem 3.1] to the FBSDE setting and [15, The-
orem 2.3] to the regime-switching setting. Second, we prove a stochastic maximum
principle that does not require a concavity condition (Theorem 3.2). In fact, we prove
the following: a critical point of the performance functional of a partial information
FBSDE problem is a conditional critical point for the associated Hamiltonian, and
vice versa. The proof of Theorem 3.2 requires the use of some variational equations
(compare with [16, Section 4]), and themaximum principle obtained is of a local form.
One of the drawbacks of the two preceding maximum principles is, the need of an
assumption on existence and uniqueness of the solution to the BSDE characterizing
the adjoint processes. These equations are usually hard to solve explicitly in the partial
information case and worse, may not have a solution. Therefore, a stochastic maxi-
mum principle via Malliavin calculus is proposed to overcome this problem. In this
approach, the adjoint processes are given in terms of the coefficients of the system and
their Malliavin derivatives and not by a BSDE. The Malliavin calculus approach was
introduced in [17] and further developed in [18,19], where the authors study optimal
control in the presence of additional information. Let us mention that the latter works
do not consider systems of forward–backward stochastic differential equations nor
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the presence of an external Markov chain in the coefficients of the systems. Using the
aforementioned technique, the results obtained in [3, Example 4.7] can be extended
to the jump–diffusion case. Our results also generalize the ones derived in [4].

One of the motivations of this paper is the problem of stochastic differential util-
ity (SDU) maximization of terminal wealth under Markov switching. The notion of
recursive utility in discrete time was introduced in [20,21] in order to separate the risk
aversion and intertemporal substitution aversion of a decisionmaker. This concept was
generalized to that of stochastic differential utility (SDU) in [22]. The cost function in
the stochastic differential utility depends on an intermediate consumption rate and a
future utility and can be expressed as a BSDE. For more information on maximization
of SDU, the reader may consult [14,15,23,24] and references therein.

The paper is organized as follows: In Sect. 2, the framework for the partial informa-
tion control problem is introduced. Section 3 presents a partial information sufficient
maximum principle for a forward–backward stochastic differential equation (FBSDE)
drivenby aMarkov switching jump–diffusionprocess.Anequivalentmaximumprinci-
ple is also given, andwe end the section by presenting theMalliavin calculus approach.
In Sect. 4, we prove the main results. Section 5 uses the results obtained to solve a
problem of optimal control for Markov switching jump–diffusion model. A problem
of recursive utility maximization with Markov regime switching is also studied.

2 Framework

This section presents the model and formulates the stochastic control problem for a
Markov regime-switching forward–backward SDE with jumps. The model in [5] is
adopted for the forward Markov regime-switching jump diffusion.

Let (Ω,F , P) be a complete probability space, where P is a reference probability
measure. On this probability space, we assume that we are given a one-dimensional
Brownian motion B = {B(t)}0≤t≤T , an irreducible homogeneous continuous-time,
finite state spaceMarkov chain α := {α(t)}0≤t≤T and an independent Poisson random
measure N (dζ, ds) on (R+ ×R0,B(R+) ⊗B0) under P . Here R0 = R\{0} andB0
is the Borel σ -algebra generated by open subset O of R0.

We suppose that the filtration F = {Ft }0≤t≤T is the P-augmented natural filtration
generated by B, N and α (see, e.g. [1, Section 2] or [25, Page 369]).

α := {α(t)}0≤t≤T is an irreducible homogeneous continuous-time Markov chain
with a finite state space S = {e1, e2, . . . , eD} ⊂ R

D , where D ∈ N, and the j th
component of ei is the Kronecker delta δi j for each i, j = 1, . . . , D. The Markov
chain is characterized by a rate (or intensity) matrix Λ := {λi j : 1 ≤ i, j ≤ D} under
P . Note that, for each 1 ≤ i, j ≤ D, λi j is the constant transition intensity of the chain
from state ei to state e j at time t . In addition for i �= j, λi j ≥ 0 and

∑D
j=1 λi j = 0,

therefore λi i ≤ 0. It follows from [26] that the dynamics of the semi-martingale α is
given as follows

α(t) = α(0) +
∫ t

0
ΛTα(s)ds + M(t), (1)
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where M := {M(t)}t∈[0,T ] is a RD-valued (F, P)-martingale and ΛT is the transpose
of the matrix Λ. Let us now present the set of jump martingales associated with
the Markov chain α, see, for example, [5] or [26] for more information. For each
1 ≤ i, j ≤ D, with i �= j , and t ∈ [0, T ], let J i j (t) be the number of jumps from
state ei to state e j up to time t . It follows from [26] that

J i j (t) = λi j

∫ t

0
〈α(s−), ei 〉ds + mi j (t), (2)

with mi j := {mi j (t)}t∈[0,T ], where mi j (t) := ∫ t
0 〈α(s−), ei 〉〈dM(s), e j 〉 is a (F, P)-

martingale.
Fix j ∈ {1, 2, . . . , D} and let Φ j (t) be the number of jumps into state e j up to time

t . Then

Φ j (t) :=
D∑

i=1,i �= j

J i j (t) =
D∑

i=1,i �= j

λi j

∫ t

0
〈α(s−), ei 〉ds + Φ̃ j (t)

= λ j (t) + Φ̃ j (t), (3)

where Φ̃ j (t) = ∑D
i=1,i �= j mi j (t) and λ j (t) = ∑D

i=1,i �= j λi j
∫ t
0 〈α(s−), ei 〉ds. It is

worth mentioning that for each j ∈ {1, 2, . . . , D}, Φ̃ j := {Φ̃ j (t)}t∈[0,T ] is a (F, P)-
martingale.

Assume that the compensator of N (dζ, ds) is defined by

ηα(dζ, ds) := να(dζ |s)η(ds) = 〈α(s−), ν(dζ |s)〉η(ds), (4)

where η(ds) is a σ -finite measure on R+ and
ν(dζ |s) := (νe1(dζ |s), νe2(dζ |s), . . . , νeD (dζ |t)) ∈ R

D is a function of s. Let
us observe that for each j = 1, . . . , D, νe j (dζ |s) = ν j (dζ |s) is the conditional
Lévy density of jump sizes of N (dζ, ds) at time s when α(s−) = e j and satisfies∫
R0

min(1, ζ 2)ν j (dζ |s) < ∞. In this work, we further suppose that η(ds) = ds and
ν(dζ |s) is a function of ζ , that is,

ν(dζ |s) = ν(dζ ).

Let
Ñα(dζ, ds) := N (dζ, ds) − να(dζ )ds, (5)

be the compensated Markov regime-switching Poisson random measure.
Suppose that the state process X (t) = X (u)(t, ω); 0 ≤ t ≤ T, ω ∈ Ω is a

controlled Markov regime-switching jump diffusion of the form
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dX (t) = b(t, X (t), α(t), u(t), ω) dt + σ(t, X (t), α(t), u(t), ω) dB(t)

+
∫

R0

γ (t, X (t), α(t), u(t), ζ, ω) Ñα(dζ, dt)

+ η(t, X (t), α(t), u(t), ω) · dΦ̃(t), t ∈ [0, T ]
X (0) = x0,

(6)

where T > 0 is a given constant. u(·) is the control process.
The functions b : [0, T ]×R×S×U ×Ω → R , σ : [0, T ]×R×S×U ×Ω → R,

γ : [0, T ] × R × S × U × R0 × Ω → R and η : [0, T ] × R × S × U × Ω → R

are given such that for all t, b(t, x, ei , u, ·), σ(t, x, ei , u, ·), γ (t, x, ei , u, z, ·) and
η(t, x, ei , u, ·) are F-progressively measurable for all x ∈ R, ei ∈ S, u ∈ U and
z ∈ R0.

We suppose that we are given a subfiltration

Et ⊂ Ft ; t ∈ [0, T ], (7)

representing the information available to the controller at time t . A possible subfil-
tration Et in (7) is the δ-delayed information given by Et = F(t−δ)+; t ≥ 0, where
δ ≥ 0 is a known constant delay.

We consider the associated BSDE’s in the unknowns
(
Y (t), Z(t), K (t, ζ ), V (t)

)

of the form

⎧
⎪⎪⎨

⎪⎪⎩

dY (t) = −g(t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u(t)) dt + Z(t) dB(t)

+
∫

R0

K (t, ζ ) Ñα(dζ, dt) + V (t) · dΦ̃(t); t ∈ [0, T ]
Y (T ) = h(X (T ), α(T )) ,

(8)

where g : [0, T ]×R×S×R×R×R×R×U ×Ω → R and h : R×S → R are such
that the BSDE (8) has a unique solution. As for sufficient conditions for existence and
uniqueness of Markov regime-switching BSDEs, we refer the reader, for example, to
[27–29] and references therein.

Let f : [0, T ] ×R× S×R×R×R ×R×U × Ω → R, ϕ : R× S → R and
ψ : R → R be given C1 functions with respect to their arguments. Assume that the
performance functional is as follows

J (u) := E

[∫ T

0
f (s, X (s), α(s), Y (s), Z(s), K (s, ·), V (s), u(s)) ds + ϕ(X (T ), α(T )) + ψ(Y (0))

]

.

(9)

Here, f, ϕ and ψ represent profit rates, bequest functions and “utility evaluations”,
respectively, of the controller.

Let AE denote the family of admissible control u, such that they are contained in
the set of Et -predictable control, and systems (6)–(8) have a unique solution, and
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E

[∫ T

0
{| f (t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u(t))|

+
∣
∣
∣
∂ f

∂xi
(t, X (t), , α(t),Y (t), Z(t), K (t, ·), V (t), u(t))

∣
∣
∣
2
}

dt

ϕ(X (T ), α(T )) + |ϕ′(X (T ), α(T ))|2 + |ψ(Y (0))| + |ψ ′(Y (0))|2
]

< ∞ for xi = x, y, z, k and u.

The setU ⊂ R is a given convex set such that u(t) ∈ U for all t ∈ [0, T ] a.s., for all
u ∈ AE .

Remark 2.1 Systems (6)–(8) are a semi-coupled forward–backward stochastic dif-
ferential equations (SDEs). Under globally Lipschitz continuity and linear growth
condition of the coefficients, there exists a unique strong solution to the SDE (6).
Therefore, existence and uniqueness of the solution to systems (6)–(8) will follow
from the existence and uniqueness of the BSDE (8).

The problem we consider is the following: find u∗ ∈ AE such that

J (u∗) = sup
u∈AE

J (u). (10)

3 Maximum Principle for a Markov Regime-Switching
Forward–Backward Stochastic Differential Equation with Jumps

In this section, we derive a general sufficient stochastic maximum principle for a
forward–backwardMarkov regime-switching jump–diffusion model. After, we derive
an equivalent type maximum principle.

For this purposes, define the Hamiltonian

H : [0, T ] × R × S × R × R × R × R × U × R × R × R × R × R −→ R,

by

H (t, x, ei , y, z, k, v, u, a, p, q, r(·), w)

:= f (t, x, ei , y, z, k, v, u) + ag(t, x, ei , y, z, k, v, u) + pb(t, x, ei , u)

+ qσ(t, x, ei , u)+
∫

R0

r(t, ζ )γ (t, x, ei , u, ζ )νi (dζ )+
D∑

j=1

η j (t, x, ei , u)w j (t)λi j ,

(11)

where R denotes the set of all functions k : [0, T ] × R0 → R for which the integral
in (11) converges.

We suppose that H is Fréchet differentiable in the variables x, y, z, k, v, u and that
∇k H(t, ζ ) is a random measure, which is absolutely continuous with respect to να .
This happens, for example, when f and g are “quasi-strong generator”, that is,

123



J Optim Theory Appl (2017) 175:373–410 379

g(t, x, ei , y, z, k, v, u) = g(t, x, ei , y, z,
∫

R0

k(ζ )Ψ (t, ζ )νi (dζ ), v, u),

whereΨ is predictable and satisfiesC1 min(1, |ζ |) ≤ Ψ (t, ζ ) ≤ C2 min(1, |ζ |) P-a.e.
In addition, the constants C1 and C2 are such that: C2 ≥ 0 and C1 ∈] − 1, 0]. Letting
k̃ = ∫

R0
k(ζ )Ψ (t, ζ )νi (dζ ) on the right-hand side, one can show that

∇kg(t, x, ei , y, z, k, v, u)(h) = ∇k̃ g(t, x, ei , y, z,
∫

R0

k(ζ )Ψ (ζ )νi (dζ ), v, u)

×
∫

R0

h(ζ )Ψ (t, ζ )νi (dζ ).

Next, define the adjoint processes A(t), p(t), q(t), r(t, ·) andw(t), t ∈ [0, T ] asso-
ciated with these Hamiltonians by the following system of Markov regime-switching
FBSDEJs:

1. Forward SDE in A(t):

dA(t) = ∂H

∂y
(t) dt + ∂H

∂z
(t)dB(t) +

∫

R0

d∇k H

dνα(ζ )
(t, ζ ) Ñα(dζ, dt)

+∇vH(t) · dΦ̃(t); t ∈ [0, T ]
A(0) = ψ ′(Y (0)). (12)

Here and in the sequel, we use the notation

∂H

∂y
(t) = ∂H

∂y
(t, X (t), α(t), u(t),Y (t), Z(t), K (t, ·), V (t), A(t), p(t),

q(t), r(t, ·), w(t)),

etc., d∇k H
dνα(ζ )

(t, ζ ) is the Radon–Nikodym derivative of ∇k H(t, ζ ) with respect to

να(ζ ) and ∇vH(t) · dΦ̃(t) = ∑D
j=1

∂H
∂v j (t)dΦ̃ j (t), with V j = V (t, e j ).

2. The Markov regime-switching BSDE in (p(t), q(t), r(t, ·), w(t)):

dp(t) = −∂H

∂x
(t)dt + q(t) dB(t) +

∫

R0

r(t, ζ ) Ñα(dζ, dt) + w(t) · dΦ̃(t); t ∈ [0, T ]

p(T ) = ∂ϕ

∂x
(X (T ), α(T )) + A(T )

∂h

∂x
(X (T ), α(T )). (13)

Remark 3.1 Let V be an open subset of a Banach space X and let F : V → R.

– We say that F has a directional derivative (or Gâteaux derivative) at x ∈ V in the
direction y ∈ X , if

DyF(x) := lim
ε→0

1

ε
(F(x + εy) − F(x)) exists.
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– We say that F is Fréchet differentiable at x ∈ V , if there exists a linear map

L : X → R,

such that

lim
h→0
h∈X

1

‖h‖ |F(x + h) − F(x) − L(h)| = 0.

In this case, we call L the Fréchet derivative of F at x , and we write

L = ∇x F.

– If F is Fréchet differentiable, then F has a directional derivative in all directions
y ∈ X and

DyF(x) = ∇x F(y).

3.1 A Sufficient Maximum Principle

In what follows, we give the sufficient maximum principle.

Theorem 3.1 (Sufficient maximum principle) Let û ∈ AE with corresponding solu-
tions X̂(t), (Ŷ (t), Ẑ(t), K̂ (t, ζ ), V̂ (t)), Â(t), ( p̂(t), q̂(t), r̂(t, ζ ), ŵ(t)) of (6), (8),
(12) and (13), respectively. Suppose that the following are true:

1. For each ei ∈ S, the functions

x �→ h(x, ei ), x �→ ϕ(x, ei ), y �→ ψ(y) (14)

are concave.
2. The function

H̃(x, y, z, k, v)

= ess supu∈U E
[
H(t, x, ei , y, z, k, v, u, â, p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]

(15)

is concave for all (t, ei ) ∈ [0, T ] × S a.s.
3.

ess sup
u∈U

{
E
[
H(t, X̂(t), α(t), u, Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t), Â(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

∣
∣
∣Et
]}

≤ E
[
H(t, X̂(t), α(t), û, Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t), Â(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

∣
∣
∣Et
]

(16)

for all t ∈ [0, T ], a.s.
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4. Assume that d
dν ∇k Ĥ(t, ζ ) > −1.

5. In addition, assume the following integrability condition:

E

[∫ T

0

{

p̂2(t)

(

(σ (t) − σ̂ (t))2 +
∫

R0

(γ (t, ζ ) − γ̂ (t, ζ ))2 να(dζ )

+
D∑

j=1

(η j (t) − η̂ j (t))2λ j (t)

⎞

⎠+ (X (t) − X̂(t))2
(

q̂2(t) +
∫

R0

r̂2(t, ζ )να(dζ )

+
D∑

j=1

(w j )2(t)λ j (t)

⎞

⎠+ (Y (t) − Ŷ (t))2

⎛

⎝(
∂ Ĥ

∂z
)2(t)

+
∫

R0

∥
∥
∥
d∇k H(t, ζ )

dνα(ζ )

∥
∥
∥
2
να(dζ ) +

D∑

j=1

(
∂ Ĥ

∂v j
)2(t)λ j (t)

⎞

⎠

+ Â2(t)

⎛

⎝(Z(t) − Ẑ(t))2 +
∫

R0

(
K (t, ζ ) − K̂ (t, ζ )

)2
να(dζ ) +

D∑

j=1

(V j (t)

−V̂ j (t))2λ j (t)
)}

dt

⎤

⎦ < ∞. (17)

Then, û is an optimal control process and X̂ is the corresponding controlled state
process.

Remark 3.2 In Theorem 3.1 and in the following, we shall use the notations
X (t) = Xû(t) and Y (t) = Y û(t) are the processes associated with the control û(t).
Furthermore, put ∂ Ĥ

∂x (t) := ∂H
∂x (t, X̂(t), α(t), û, Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t), Â(t), p̂(t),

q̂(t), r̂(t, ·), ŵ(t)) and similarly for ∂ Ĥ
∂y (t), ∂ Ĥ

∂z (t),∇k Ĥ(t, ζ ), ∂ Ĥ
∂v j (t) and

∂ Ĥ
∂u (t).

Remark 3.3 Let us mention that the above maximum principle requires some con-
cavity assumptions. However, this concavity assumption may not be satisfied in some
applications, see, for example, Sect. 5. Therefore, we need amaximumprinciplewhich
does not require the above assumption. The maximum principle derived in the next
section gives a first-order necessary and sufficient condition but not the optimality of
the control. In fact, it says that, if it exists, then the equivalent maximum principle
enables us to derive the expression for the optimal control.

3.2 An Equivalent Maximum Principle

In this section, we prove a version of the maximum principle that does not require
a concavity condition. We call it an equivalent maximum principle. Let us make the
following additional assumptions:
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Assumption A1 For all t0 ∈ [0, T ] and all bounded Et -measurable random variable
θ(ω), the control process β(t) defined by

β(t) := χ]t0,T [(t)θ(ω); t ∈ [0, T ], belongs to AE . (18)

Assumption A2 For all u ∈ AE and all bounded β ∈ AE , there exists δ > 0 such
that

ũ(t) := u(t) + �β(t) ∈ AE ; t ∈ [0, T ], belongs to AE for all � ∈] − δ, δ[. (19)

Assumption A3 For all bounded β ∈ AE , the derivatives processes

x1(t) = d

d�
X (u+�β)(t)

∣
∣
∣
�=0

; y1(t) = d

d�
Y (u+�β)(t)

∣
∣
∣
�=0

;

z1(t) = d

d�
Z (u+�β)(t)

∣
∣
∣
�=0

; k1(t) = d

d�
K (u+�β)(t, ·)

∣
∣
∣
�=0

;

v
j
1 (t) = d

d�
V j,(u+�β)(t)

∣
∣
∣
�=0

, j = 1, . . . , D

exist and belong to L2([0, T ] × Ω).

In the following, we write ∂b
∂x (t) for ∂b

∂x (t, X (t), α(t), u(t)), etc. It follows from (6)
and (8) that

dx1(t) =
{

∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

}

dt +
{

x1(t)
∂σ

∂x
(t) + ∂σ

∂u
(t)β(t)

}

dB(t)

+
∫

R0

{
∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

}

Ñα(dt, dζ )

+
{

∂η

∂x
(t)x1(t) + ∂η

∂u
(t)β(t)

}

· dΦ̃(t); t ∈ [0, T ]
x1(t) = 0 (20)

and

dy1(t)=−
⎧
⎨

⎩

∂g

∂x
(t)x1(t) + ∂g

∂y
(t)y1(t) + ∂g

∂z
(t)z1(t) +

∫

R0

∇kg(t, ζ )k1(t, ζ )να(dζ )

+
D∑

j=1

∂g

∂v j
(t)v j

1 (t)λ j (t) + ∂g

∂u
(t)β(t)

⎫
⎬

⎭
dt + z1(t) dB(t)

+
∫

R0

k1(t, ζ )Ñα(dζ, dt) + v1(t) · dΦ̃(t); t ∈ [0, T ]

y1(T ) = ∂h

∂x
(X (T ), α(T ))x1(T ). (21)
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Remark 3.4 For sufficient conditions for the existence and uniqueness of solutions to
(20) and (21), we refer the reader to [16, (4.1)]. A set of sufficient conditions under
which systems (20)–(21) admits a unique solution is as follows:

1. Assume that the coefficients b, σ, γ, η, g, f, ψ and φ are continuous
with respect to their arguments and are continuously differentiable
with respect to (x, y, z, k, v, u). (Here, the dependence of g and f on k is trough∫
R0

k(ζ )ρ(t, ζ )ν(dζ ), where ρ is a measurable function satisfying 0 ≤ ρ(t, ζ ) ≤
c(1 ∧ |ζ |), ∀ζ ∈ R0. Hence the differentiability in this argument is in the Fréchet
sense.)

2. The derivatives of b, σ, γ, η and g are bounded.
3. The derivatives of f are bounded by C(1+ |x | + |y| + (

∫
R0

|k(., ζ )|2ν(dζ ))1\2 +
|v| + |u|).

4. The derivatives of ψ and φ with respect to x are bounded by C(1 + |x |).
Remark 3.5 AssumptionA1 (which includes linearmodel) is common in the literature
and allows to build the control step by step, see, for example, [15,18,30]. However, a
drawback of this method is that it does not work when the set of controls is not convex.

Theorem 3.2 (EquivalentMaximum Principle) Let u ∈ AE with corresponding solu-
tions X (t) of (6), (Y (t), Z(t), K (t, ζ ), V (t)) of (8), A(t) of (12), (p(t), q(t), r(t, ζ ),

w(t)) of (13) and corresponding derivative processes x1(t) and (y1(t), z1(t), k1(t, ζ ),

v1(t)) given by (20) and (21), respectively. Suppose that Assumptions A1, A2 and A3
hold. Moreover, assume the following growth conditions

E

[∫ T

0
p2(t)

{(
∂σ

∂x

)2

(t)x21 (t) +
(

∂σ

∂u

)2

(t)β2(t) +
∫

R0

((
∂γ

∂x

)2

(t, ζ )x21 (t)

+
(

∂γ

∂u

)2

(t, ζ )β2(t)

)

να(dζ ) +
D∑

j=1

((
∂η j

∂x

)2

(t)x21 (t) +
(

∂η j

∂u

)2

(t)β2(t)

)

λ j (t)

⎫
⎬

⎭
dt

+
∫ T

0
x21 (t)

⎧
⎨

⎩
q2(t) +

∫

R0

r2(t, ζ )να(dζ ) +
D∑

j=1

(η j )2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞ (22)

and

E

⎡

⎣
∫ T

0
y21 (t)

⎧
⎨

⎩
(
∂H

∂z
)2(t) +

∫

R0

‖∇k H(t, ζ )‖2να(dζ ) +
D∑

j=1

(
∂H

∂v j
)2(t)λ j (t)

⎫
⎬

⎭
dt

+
∫ T

0
A2(t)

⎧
⎨

⎩
z21(t) +

∫

R0

k21(t, ζ )να(dζ ) +
D∑

j=1

(v
j
1 )

2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞.

(23)

Then the following are equivalent:

(A) d
d� J

(u+�β)(t)
∣
∣
∣
�=0

= 0 for all bounded β ∈ AE .
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(B) E
[

∂H
∂u (t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u, A(t), p(t), q(t), r(t, ·),

w(t))u=u(t)

∣
∣
∣Et
]

= 0 for almost all (a.a.) t ∈ [0, T ].

Remark 3.6 Let us observe that the two previous maximum principles require the
existence and uniqueness of the solution to theBSDE satisfied by the adjoint processes.
In the partial information case, the above result is not always true. Hence, in the
next section, we propose a stochastic maximum principle via Malliavin calculus. In
this approach, the adjoint processes depend on the coefficients of the system, their
Malliavin derivatives and a modified Hamiltonian.

3.3 A Malliavin Calculus Approach

In this section, we present a method based on Malliavin calculus. The set up we adopt
here is that of a Markov regime-switching forward–backward stochastic differential
equations with jumps, as in the previous sections and the notation are the same. For
basic concepts of Malliavin calculus, we refer the reader to [31,32].

In the sequel, let us denote by DB
t F (respectively DÑα

t,ζ F and DΦ̃
t F) the Malliavin

derivative in the direction of the Brownian motion B (respectively pure jump Lévy
process Ñα and the pure jump process Φ̃) of a given (Malliavin differentiable) random
variable F = F(ω); ω ∈ Ω . We denote by D1,2 the set of all random variables
which are Malliavin differentiable with respect to B(·), Ñα(·, ·) and Φ̃(·). A crucial
argument in the proof of our general maximum principle rests on duality formulas for
the Malliavin derivatives Dt and Dt,ζ (see, e.g. [31,32]):

E

[

F
∫ T

0
ϕ(t)dB(t)

]

= E

[∫ T

0
ϕ(t)DB

t Fdt

]

, (24)

E

[

F
∫ T

0

∫

R0

ψ(t, ζ )Ñα(dt, dζ )

]

= E

[∫ T

0

∫

R0

ψ(t, ζ )DÑα

t,ζ Fνα(dζ )dt

]

, (25)

E

[

F
∫ T

0
ϕ(t)dΦ̃(t)

]

= E

[∫ T

0
ϕ(t)DΦ̃

t Fλdt

]

. (26)

These formulae hold true for all Malliavin differentiable, random variable F andFt -
predictable processes ϕ and ψ such that the integrals on the right-hand side converge
absolutely.

We also need some basic properties of the Malliavin derivatives. Let F ∈ D1,2 be

a Fs-measurable random variable, then DB
t F = DÑα

t,ζ F = DΦ̃
t F = 0 for all t > s.

We have the following results known as the fundamental theorems of calculus

DB
s

(∫ t

0
ϕ(s) dB(s)

)

= ϕ(s)1[0,t](s) +
∫ t

s
Dsϕ(r) dB(r), (27)

DÑα

s,ζ

(∫ t

0

∫

R0

ψ(s, ζ )Ñ (ds, dζ )

)

= ψ(s, ζ )1[0,t](s) +
∫ t

s

∫

R0

DÑ
s,ζ ψ(r, ζ )Ñα(dr, dζ ),

(28)
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DΦ̃
s

(∫ t

0
ϕ(s)dΦ̃(s)

)

= ϕ(s)1[0,t](s) +
∫ t

s
DΦ̃
s ϕ(r)dΦ̃(r), (29)

under the assumption that all the terms involved are well defined and belong to D1,2.
In view of the optimization problem (10), we define the following processes: sup-

pose that for all u ∈ AE the processes

κ(t) := ∇xh(X (T ), α(T )) Ã(T ) + ∇xϕ(X (T ), α(T ))

+
∫ T

t

∂ f

∂x
(s, X (s), α(s),Y (s), Z(s), K (s, ·), V (s), u(s))ds, (30)

H0 (t, x, ei , y, z, k, v, u, ã, κ) := ãg(t, x, ei , y, z, k, v, u) + κ(t)b(t, x, ei , u)

+ DB
t κ(t)σ (t, x, ei , u),

+
∫

R0

DÑ
t,ζ κ(t)γ (t, x, ei , u, ζ )νi (dζ )

+
D∑

j=1

D
Φ̃ j
t κ(t)η j (t, x, ei , u)λi j , (31)

F(T ) := ∂h

∂x
(X (T ), α(T )) Ã(T ) + ∂ϕ

∂x
(X (T ), α(T )), (32)

Θ(t, s) := ∂H0

∂x
(s)G(t, s), (33)

G(t, s) := exp

(∫ s

t

{
∂b

∂x
(r) − 1

2

(
∂σ

∂x
(r)

)2

+
∫

R0

(

ln

(

1 + ∂γ

∂x
(r, ζ )

)

− ∂γ

∂x
(r, ζ )

)

να(dζ )

+
D∑

j=1

(

ln

(

1 + ∂η j

∂x
(r)

)

− ∂η j

∂x
(r)

)

λ j (r)

⎫
⎬

⎭
dr +

∫ s

t

∂σ

∂x
(r) dB(r)

+
∫ s

t

∫

R0

ln

(

1 + ∂γ

∂x
(r, ζ )

)

Ñα(dζ, dr)

+
D∑

j=1

∫ s

t
ln

(

1 + ∂η j

∂x
(r)

)

dΦ̃ j (r)

⎞

⎠ , (34)

are all well defined. In (35) and in the sequel, we use the shorthand notation

H0(t) = H0

(
t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u, Ã(t), κ(t)

)
. We also assume

that the followingmodified adjoint processes ( p̃(t), q̃(t), r̃(t, ζ ), w̃(t)) and Ã(t) given
by
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p̃(t) := κ(t) +
∫ T

t

∂H0

∂x
(s)G(t, s)ds, (35)

q̃(t) := DB
t p̃(t), (36)

r̃(t, ζ ) := DÑα

t,ζ p̃(t), (37)

w̃ j (t) := D
Φ̃ j
t p̃(t), j = 1, . . . , D (38)

and

d Ã(t) = ∂H
∂y (t) dt + ∂H

∂z (t)dB(t) +
∫

R0

d∇k H

dν(ζ )
(t, ζ ) Ñα(dζ, dt)

+∇vH(t) · dΦ̃(t); t ∈ [0, T ]
Ã(0) = ψ ′(Y (0)).

(39)

are well defined. Here, the general Hamiltonian H is given by (11), with p, q, r, w
replaced by p̃, q̃, r̃ , w̃.

Remark 3.7 Assume that the coefficients of the control problem satisfy the conditions
for existence and uniqueness of solution to systems (6)–(8). Assume moreover that
conditions in Remark 3.4 hold. Then, the processes given by (30)–(39) arewell defined.
The conditions on existence of processes defined in (30)–(39) play an important role
in the proof of Theorem 3.3. For example, if the Malliavin differentiability of the
process p̃ with respect to B, Ñα, Φ̃ is not guaranteed, then the theorem cannot be
proved. We can now state a general stochastic maximum principle for our control
problem (10):

Theorem 3.3 Let u ∈ AE with corresponding solutions X (t) of (6), (Y (t), Z(t),
K (t, ζ ), V (t)) of (8), Ã(t) of (39), p̃(t), q̃(t), r̃(t, ζ ), w̃ j (t) of (35)–(38) and cor-
responding derivative processes x1(t) and (y1(t), z1(t), k1(t, ζ ), v1(t)) given by (20)
and (21), respectively. Suppose that Assumptions A1, A2 and A3 hold. Moreover,
suppose that the random variables F(T ),Θ(t, s) given by (32) and (33), and ∂ f

∂x (t)
are Malliavin differentiable with respect to B, Ñ and Φ̃. Furthermore, suppose the
following integrability conditions:

E

⎡

⎣
∫ T

0

{(∂σ

∂x

)2
(t)x21 (t) +

(∂σ

∂u

)2
(t)β2(t) +

∫

R0

((∂γ

∂x

)2
(t, ζ )x21 (t)

+
(∂γ

∂u

)2
(t, ζ )β2(t)

)
να(dζ ) +

D∑

j=1

((∂η j

∂x

)2
(t)x21 (t)

+
(∂η j

∂u

)2
(t)β2(t)

)
λ j (t)

}
dt

]

< ∞,

E

[∫ T

0

∫ T

0

{(
DB
s F(T )

)2 +
∫

R0

(
DÑα

s,ζ F(T )
)2

να(dζ )
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+
D∑

j=1

(
D

Φ̃ j
s F(T )

)2
λ j (t)

⎫
⎬

⎭
ds dt

⎤

⎦ < ∞,

E

[∫ T

0

∫ T

0

{(
DB
s

(∂ f

∂x
(t)
))2 +

∫

R0

(
DÑα

s,ζ

(∂ f

∂x
(t)
))2

να(dζ )

+
D∑

j=1

(

D
Φ̃ j
s

(∂ f

∂x
(t)
))2

λ j (t)

⎫
⎬

⎭
ds dt

⎤

⎦ < ∞,

E

[∫ T

0

∫ T

0

{(
DB
s Θ(t, s)

)2 +
∫

R0

(
DÑα

s,ζ Θ(t, s)
)2

να(dζ )

+
D∑

j=1

(
D

Φ̃ j
s Θ(t, s)

)2
λ j (t)

⎫
⎬

⎭
ds dt

⎤

⎦ < ∞. (40)

Then, the following are equivalent:

(A) d
d� J

(u+�β)(t)
∣
∣
∣
�=0

= 0 for all bounded β ∈ AE .

(B) E
[

∂H
∂u (t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u, Ã(t), p̃(t), q̃(t), r̃(t, ·),

w̃(t))u=u(t)

∣
∣
∣Et
]

= 0 for a.a. (t, ω) ∈ [0, T ] × Ω .

Remark 3.8 Assume that conditions in Remark 3.7 hold. Assume moreover that the
coefficients are twice continuously differentiable with the second-order derivatives
satisfying the conditions in Remark 3.7. Then, F(T ),Θ(t, s) and ∂ f

∂x (t) are Malliavin
differentiable with respect to B, Ñα and Φ̃.

4 Proof of the Results

In this section, we prove the main results.

Proof (Proof of Theorem 3.1)We prove that J (x, û, ei ) ≥ J (x, u, ei ) for all u ∈ AE .

Choose u ∈ AE and consider

J (x, u, ei ) − J (x, û, ei ) = I1 + I2 + I3, (41)

where

I1 = E

[∫ T

0
{ f (t, X (t), α(t),Y (t), Z(t), K (t, ·), V (t), u(t))

− f (t, X̂(t), α(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t), û(t))
}
dt
]
, (42)

I2 = E
[
ϕ(X (T ), α(T )) − ϕ(X̂(T ), α(T ))

]
, (43)

I3 = E
[
ψ(Y (0)) − ψ(Ŷ (0))

]
. (44)
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By the definition of H , we get

I1 = E

[∫ T

0

{
H(t) − Ĥ(t) − Â(t)(g(t) − ĝ(t)) − p̂(t)(b(t) − b̂(t)) − q̂(t)(σ (t) − σ̂ (t))

−
∫

R0

r̂(t, ζ )(γ (t, ζ ) − γ̂ (t, ζ ))να( dζ ) −
D∑

j=1

ŵ j (t)(η j (t) − η̂ j (t))λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ .

(45)

By the concavity of ϕ in x , the Itô’s formula (see, e.g. [5, Theorem 4.1]), (6), (13) and
(17), we get

I2 ≤ E

[
∂ϕ

∂x
(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

= E
[
p̂(T )(X (T ) − X̂(T ))

]− E

[

Â(T )
∂h

∂x
(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

= E

⎡

⎣
∫ T

0

⎧
⎨

⎩
p̂(t)(b(t) − b̂(t)) dt+(X (t−)− X̂(t−))

(

−∂ Ĥ

∂x
(t)

)

+ (σ (t) − σ̂ (t))q̂(t)

+
∫

R0

(γ (t, ζ ) − γ̂ (t, ζ ))̂r(t, ζ )να(dζ ) +
D∑

j=1

ŵ j (t)(η j (t) − η̂ j (t))λ j (t)

⎫
⎬

⎭
dt

⎤

⎦

− E
[
Â(T )

∂h

∂x
(X̂(T ), α(T ))(X (T ) − X̂(T ))

]
. (46)

By the concavity of ψ, h, the Itô’s formula, (8) and (12), we get

I3 ≤ E
[
ψ ′(Ŷ (0))(Y (0) − Ŷ (0))

]

= E
[
Â(0)(Y (0) − Ŷ (0))

]

= E
[
Â(T ){h(X (T ), α(T )) − h(X̂(T ), α(T ))}

]
− E

[∫ T

0

{
∂ Ĥ

∂y
(t)(Y (t) − Ŷ (t))

+ Â(t)(−g(t) + ĝ(t)) + (Z(t) − Ẑ(t))
∂ Ĥ

∂z
(t)

+
∫

R0

(K (t, ζ ) − K̂ (t, ζ ))∇k Ĥ(t, ζ )να(dζ ) +
D∑

j=1

∂ Ĥ

∂v j
(t)(V j (t) − V̂ j (t))λ j (t)

⎫
⎬

⎭
dt

⎤

⎦

≤ E

[

Â(T )
∂h

∂x
(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

− E

[∫ T

0

{
∂ Ĥ

∂y
(t)(Y (t) − Ŷ (t))

+ Â(t)(−g(t) + ĝ(t)) + (Z(t) − Ẑ(t))
∂ Ĥ

∂z
(t)

+
∫

R0

(K (t, ζ ) − K̂ (t, ζ ))∇k Ĥ(t, ζ )να(dζ ) +
D∑

j=1

∂ Ĥ

∂v j
(t)(V j (t) − V̂ j (t))λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ .

(47)
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Summing (45)–(47) up, we have

I1 + I2 + I3 ≤ E

⎡

⎣
∫ T

0

{
H(t) − Ĥ(t) − ∂ Ĥ

∂x
(t)(X (t) − X̂(t))

− ∂ Ĥ

∂y
(t)(Y (t) − Ŷ (t)) +

∫

R0

(K (t, ζ ) − K̂ (t, ζ ))∇k Ĥ(t, ζ )να(dζ )

+
D∑

j=1

∂ Ĥ

∂v j
(t)(V j (t) − V̂ j (t))λ j (t)

}
dt

⎤

⎦ . (48)

One can show, using similar arguments as in [33] (see also [5]), that the right-hand
side of (48) is non-positive. For sake of completeness, we give the details here.
Fix t ∈ [0, T ]. Since H̃(x, y, z, k, v) is concave, it follows by the standard hyper-
plane argument (see, e.g. [34, Chapter 5, Section 23]) that there exists a subgradient
d = (d1, d2, d3, d4(·), d5) ∈ R

3 × R × R for H̃(x, y, z, k, v) at x = X̂(t),
y = Ŷ (t), z = Ẑ(t), k = K̂ (t, ·), v = V̂ (t) such that, if we define

i(x, y, z, k, v) := H̃(x, y, z, k, v) − Ĥ(t) − d1(x − X̂(t)) − d2(y − Ŷ (t))

− d3(z − Ẑ(t)) −
∫

R0

d4(ζ )(k(ζ ) − K̂ (t, ζ ))να(dζ )

−
D∑

j=1

d j
5 (V j (t) − V̂ j (t))λ j (t). (49)

Then i(x, y, z, k, v) ≤ 0 for all x, y, z, k, v.
Furthermore, we have i(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)). It follows that,

d1 = ∂ H̃

∂x
(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)),

d2 = ∂ H̃

∂y
(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)),

d3 = ∂ H̃

∂z
(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)),

d4 = ∇k H̃(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)),

d j
5 = ∂ H̃

∂v j
(X̂(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t)).

Substituting this into (48), using conditions 2. and 3. in Theorem 3.1, and the concavity
of H̃ , we conclude that J (x, û, ei ) ≥ J (x, u, ei ) for all u ∈ AE . This completes the
proof. ��
Proof (Proof of Theorem 3.2) We have that

d

d�
J (u+�β)(t)

∣
∣
∣
�=0
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= E

[∫ T

0

{
∂ f

∂x
(t)x1(t) + ∂ f

∂y
(t)y1(t) + ∂ f

∂z
(t)z1(t) +

∫

R0

∇k f (t, ζ )k1(t, ζ )να(dζ )

+
D∑

j=1

∂ f

∂v j
(t)v j

1 (t)λ j (t)+ ∂ f

∂u
(t)β(t)

⎫
⎬

⎭
dt+ ∂ϕ

∂x
(X (T ), α(T ))x1(T ) + ψ ′(Y (0))y1(0)

⎤

⎦ .

(50)

By (13), the Itô’s formula, (20) and (22), we have

E

[
∂ϕ

∂x
(X (T ), α(T ))x1(T )

]

= E
[
p(T )X (T )

]
− E

[
∂h

∂x
(X (T ), α(T ))A(T )x1(T )

]

= E

[∫ T

0

{

p(t)

(
∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

)

− x1(t)
∂H

∂x
(t)

+ q(t)

(
∂σ

∂x
(t)x1(t) + ∂σ

∂u
(t)β(t)

)

+
∫

R0

r(t, ζ )

(
∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

)

να(dζ )

+
D∑

j=1

w j (t)
(∂η j

∂x
(t)x1(t) + ∂η j

∂u
(t)β(t)

)
λ j (t)

⎫
⎬

⎭
dt

⎤

⎦

− E
[∂h

∂x
(X (T ), α(T ))A(T )x1(T )

]
. (51)

By (12), the Itô’s formula, (21) and (23), we get

E
[
ψ ′(Y (0))y1(0)

]

= E
[
A(0)y1(0)

]

= E
[
A(T )y1(T )

]
− E

[∫ T

0

{

A(t−) dy1(t) + y1(t
−) dA(t) + ∂H

∂z
(t)z1(t) dt

+
∫

R0

∇k H(t, ζ )k1(t, ζ )να(dζ ) dt +
D∑

j=1

∂H

∂v j
(t)v j

1 (t)λ j (t) dt

⎫
⎬

⎭

⎤

⎦

= E

[
∂h

∂x
(X (T ), α(T ))A(T )x1(T ) +

∫ T

0

{

A(t)

(
∂g

∂x
(t)x1(t) + ∂g

∂y
(t)y1(t) + ∂g

∂z
(t)z1(t)

+
∫

R0

∇kg(t, ζ )k1(t, ζ )να(dζ ) +
D∑

j=1

∂g

∂v j
(t)v j

1 (t)λ j (t) + ∂g

∂u
(t)β(t)

⎞

⎠− ∂H

∂y
(t)y1(t)

−∂H

∂z
(t)z1(t) −

∫

R0

∇k H(t, ζ )k1(t, ζ )να(dζ ) −
D∑

j=1

∂H

∂v j
(t)v j

1 (t)λ j (t) }dt
⎤

⎦ . (52)
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Substituting (51) and (52) into (50), we get

d

d�
J (u+�β)(t)

∣
∣
∣
�=0

= E

[∫ T

0

(

x1(t)

{
∂ f

∂x
(t) + A(t)

∂g

∂x
(t) + p(t)

∂b

∂x
(t) + q(t)

∂σ

∂x
(t)

+
∫

R0

r(t, ζ )
∂γ

∂x
(t, ζ )να(dζ ) +

D∑

j=1

w j (t)
∂η j

∂x
(t)λ j (t) − ∂H

∂x
(t)

⎫
⎬

⎭

+ y1(t)

{
∂ f

∂y
(t) + A(t)

∂g

∂y
(t) − ∂H

∂y
(t)

}

+ z1(t)

{
∂ f

∂z
(t) + A(t)

∂g

∂z
(t) − ∂H

∂z
(t)

}

+
∫

R0

k1(t, ζ )
{
∇k f (t, ζ ) + A(t)∇kg(t, ζ ) − ∇k H(t, ζ )

}
να(dζ )

+
D∑

j=1

v
j
1 (t)

{
∂ f

∂v j
(t) + A(t)

∂g

∂v j
(t) − ∂H

∂v j
(t)

}

+ β(t)

{
∂ f

∂u
(t) + A(t)

∂g

∂u
(t) + p(t)

∂b

∂u
(t) + q(t)

∂σ

∂u
(t)

+
∫

R0

r(t, ζ )
∂γ

∂u
(t, ζ )να(dζ ) +

D∑

j=1

w j (t)
∂η j

∂u
(t)λ j (t)

⎫
⎬

⎭

⎞

⎠ dt

⎤

⎦ . (53)

By the definition of H , the coefficients of x1(t), y1(t), z1(t), k1(t, ζ ) and v1(t) are all
equal to zero in (53). Hence, if

d

d�
J (u+�β)(t) = 0 for all bounded β ∈ AE ,

it follows that

E
[ ∫ T

0

∂H

∂u
(t)β(t) dt

]
= 0 for all bounded β ∈ AE .

This holds in particular for β ∈ AE of the form β(t) = βt0(t, ω) = θ(ω)ξ[t0,T ](t) for
a fix t0 ∈ [0, T [, where θ(ω) is a bounded Et0 -measurable random variable. Hence

E
[ ∫ T

t0

∂H

∂u
(t) dt θ

]
= 0.

Differentiating with respect to t0, we have

E
[∂H

∂u
(s) θ

]
= 0 for a.a., t0.
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Since the equality is true for all bounded Et0 -measurable randomvariable, we conclude
that

E
[∂H

∂u
(t0)|Et0

]
= 0 for a.a., t0 ∈ [0, T ].

This shows that (A) ⇒ (B).
Conversely, using the fact that every bounded β ∈ AE can be approximated by

a linear combinations of controls β(t) of the form (18), the above argument can be
reversed to show that (B) ⇒ (A). ��
Proof (Proof of Theorem 3.3) (A) ⇒ (B). We split this proof into two steps: in the
first step, we show that the directional derivative of the value function can be written
as a sum of the two terms J1 and J2, given by (55) and (56). In the second step, we
show that the condition (A) implies the condition (B).

Lemma 4.1 Assume that the conditions of Theorem 3.3 hold. Then

d

d�
J (u+�β)(t) = J1(h) + J2(h), (54)

where

J1(h) = E

[∫ T

t

{

κ(s)
∂b

∂x
(s) + DB

s κ(s)
∂σ

∂x
(s) +

∫

R0

DÑα

s,ζ κ(s)
∂γ

∂x
(s, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
t κ(s)

∂η j

∂x
(s) + Ã(s)

∂g

∂x
(s)

⎫
⎬

⎭
x1(s)ds

⎤

⎦ , (55)

J2(h) = E

[

θ

∫ t+h

t

{

κ(s)
∂b

∂u
(s) + DB

t κ(s)
∂σ

∂u
(s) +

∫

R0

DÑα

s,ζ κ(s)
∂γ

∂u
(s, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
s κ(s)

∂η j

∂u
(s) + ∂ f

∂u
(s) + Ã(s)

∂g

∂u
(s)

⎫
⎬

⎭
ds

⎤

⎦ . (56)

Proof

d

d�
J (u+�β)(t)

∣
∣
∣
�=0

= E

[∫ T

0

{
∂ f

∂x
(t)x1(t) + ∂ f

∂y
(t)y1(t) + ∂ f

∂z
(t)z1(t)

+
∫

R0

∇k f (t, ζ )k1(t, ζ )να(dζ ) +
D∑

j=1

∂ f

∂v j
(t)v j

1 (t)λ j (t)

+∂ f

∂u
(t)β(t)

}

dt + ∂ϕ

∂x
(X (T ), α(T ))x1(T ) + ψ ′(Y (0))y1(0)

+∂h

∂x
(X (T ), α(T ))

(
Ã(T ) − Ã(T )

)
x1(T )

]

. (57)
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It follows from (20) and duality formula that for F(T ) defined by (32) we get

E
[
F(T )x1(T )

]
= E

[

F(T )

{∫ T

0

(
∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

)

dt

+
∫ T

0

(
∂σ

∂x
(t)x1(t) + ∂σ

∂u
(t)β(t)

)

dB(t)

+
∫ T

0

∫

R0

(
∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

)

Ñα(dζ, dt)

+
D∑

j=1

∫ T

0

(
∂η j

∂x
(t)x1(t) − ∂η j

∂u
(t)β(t)

)

dΦ̃ j (t)

⎫
⎬

⎭

⎤

⎦ .

= E

[∫ T

0

{

F(T )

(
∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

)

+ DB
t F(T )

(
∂σ

∂x
(t)x1(t) + ∂σ

∂u
(t)β(t)

)

+
∫

R0

DÑα

t,ζ F(T )

(
∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

)

να(dζ )

+
D∑

j=1

D
Φ̃ j
t F(T )

(
∂η j

∂x
(t)x1(t) − ∂η j

∂u
(t)β(t)

)

λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ .

(58)

Similarly, we have

E

[∫ T

0

∂ f

∂x
(t)x1(t)dt

]

= E

[∫ T

0

∂ f

∂x
(t)

{∫ t

0

(
∂b

∂x
(s)x1(s) + ∂b

∂u
(s)β(s)

)

ds

+
∫ t

0

(
∂σ

∂x
(s)x1(s) + ∂σ

∂u
(s)β(s)

)

dB(s)

+
∫ t

0

∫

R0

(∂γ

∂x
(s, ζ )x1(s) + ∂γ

∂u
(s, ζ )β(s)

)
Ñα(dζ, ds)

+
D∑

j=1

∫ t

0

(
∂η j

∂x
(s)x1(s) − ∂η j

∂u
(s)β(s)

)

dΦ̃ j (s)

⎫
⎬

⎭
dt

⎤

⎦ .

= E

[∫ T

0

(∫ T

s

∂ f

∂x
(t)dt

)(
∂b

∂x
(s)x1(t) + ∂b

∂u
(s)β(s)

)

+
(∫ T

s
DB
s

(
∂ f

∂x
(t)

)

dt

)(
∂σ

∂x
(s)x1(s) + ∂σ

∂u
(s)β(s)

)

+
∫

R0

(∫ T

s
DÑα

s,ζ

(
∂ f

∂x
(t)

)

dt

)
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×
(

∂γ

∂x
(s, ζ )x1(s) + ∂γ

∂u
(s, ζ )β(s)

)

να(dζ )

+
D∑

j=1

(∫ T

s
D

Φ̃ j
s

(
∂ f

∂x
(t)

)

dt

)

×
(∂η j

∂x
(s)x1(s) − ∂η j

∂u
(s)β(s)

)
λ j (s)

}

ds

]

.

Changing the notation s ↔ t , this becomes

= E

[∫ T

0

(∫ T

t

∂ f

∂x
(s)ds

)(
∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

)

+
(∫ T

t
DB
t

(∂ f

∂x
(s)
)
ds

)(
∂σ

∂x
(t)x1(t) + ∂σ

∂u
(t)β(t)

)

+
∫

R0

(∫ T

t
DÑα

t,ζ

(∂ f

∂x
(s)
)
ds

)(
∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

)

να(dζ )

+
D∑

j=1

(∫ T

t
D

Φ̃ j
t

(
∂ f

∂x
(s)

)

ds

)(
∂η j

∂x
(t)x1(t) − ∂η j

∂u
(t)β(t)

)

λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ .

(59)

Combining (30), (32), (58) and (59), we have

E

[∫ T

0

(
∂ f

∂x
(t)x1(t) + ∂ f

∂u
(t)β(t)

)

dt + ∂ϕ

∂x
(X (T ), α(T ))x1(T )

]

= E

[∫ T

0

∂ f

∂x
(t)x1(t)dt + F(T )x1(T ) +

∫ T

0

∂ f

∂u
(t)β(t)dt

−∂h

∂x
(X (T ), α(T )) Ã(T )x1(T )

]

= E

[∫ T

0

{

κ(t)

(
∂b

∂x
(t)x1(t) + ∂b

∂u
(t)β(t)

)

+ DB
t κ(t)

(
∂σ

∂x
(t)x1(t) + ∂σ

∂u
(t)β(t)

)

+
∫

R0

DÑα

t,ζ κ(t)
(∂γ

∂x
(t, ζ )x1(t) + ∂γ

∂u
(t, ζ )β(t)

)
να(dζ )

+
D∑

j=1

D
Φ̃ j
t κ(t)

(
∂η j

∂x
(t)x1(t) − ∂η j

∂u
(t)β(t)

)

λ j (t)

⎫
⎬

⎭
dt

+
∫ T

0

∂ f

∂u
(t)β(t)dt − ∂h

∂x
(X (T ), α(T )) Ã(T )x1(T )

]

. (60)

By the Itô’s formula and (39), it follows as in (52) that

E
[
ψ ′(Y (0))y1(0)

]
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= E
[
Ã(0)y1(0)

]

= E

[
∂h

∂x
(X (T ), α(T )) Ã(T )x1(T )

]

+ E

[∫ T

0

{

Ã(t)

(
∂g

∂x
(t)x1(t) + ∂g

∂y
(t)y1(t)

+ ∂g

∂z
(t)z1(t) +

∫

R0

∇kg(t, ζ )k1(t, ζ )να(dζ ) +
D∑

j=1

∂g

∂v j
(t)v j

1 (t)λ j (t)

+∂g

∂u
(t)β(t)

)

− ∂H

∂y
(t)y1(t) − ∂H

∂z
(t)z1(t) −

∫

R0

∇k H(t, ζ )k1(t, ζ )να(dζ )

−
D∑

j=1

∂H

∂v j
(t)v j

1 (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ .

But

∂H

∂y
(t) = ∂ f

∂y
(t) + Ã(t)

∂g

∂y
(t); ∂H

∂z
(t) = ∂ f

∂z
(t) + Ã(t)

∂g

∂z
(t)

∇k H(t) = ∇k f (t) + Ã(t)∇kg(t); ∂H

∂v j
(t) = ∂ f

∂v j
(t) + Ã(t)

∂g

∂v j
(t), j = 1, . . . , D.

Hence we have

E
[
ψ ′(Y (0))y1(0)

]

= E

[
∂h

∂x
(X (T ), α(T )) Ã(T )x1(T )

]

+ E

[∫ T

0

{

Ã(t)

(
∂g

∂x
(t)x1(t) + ∂g

∂u
(t)β(t)

)

dt

−
∫ T

0

{
∂ f

∂y
(t)y1(t) + ∂ f

∂z
(t)z1(t) +

∫

R0

∇k f (t, ζ )k1(t, ζ )να(dζ )

+
D∑

j=1

∂g

∂v j
(t)v j

1 (t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ . (61)

Substituting (58)–(61) into (57), we get

d

d�
J (u+�β)(t)

∣
∣
∣
�=0

= E

[∫ T

0

{
κ(t)

∂b

∂x
(t) + DB

t κ(t)
∂σ

∂x
(t) +

∫

R0

DÑα

t,ζ κ(t)
∂γ

∂x
(t, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
t κ(t)

∂η j

∂x
(t) + Ã(t)

∂g

∂x
(t)
}
x1(t)dt

⎤

⎦

+ E

[∫ T

0

{
κ(t)

∂b

∂u
(t) + DB

t κ(t)
∂σ

∂u
(t) +

∫

R0

DÑα

t,ζ κ(t)
∂γ

∂u
(t, ζ )να(dζ )
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+
D∑

j=1

D
Φ̃ j
t κ(t)

∂η j

∂u
(t) + ∂ f

∂u
(t) + Ã(t)

∂g

∂u
(t)
}
β(t)dt

⎤

⎦ . (62)

Equation (62) holds for all β ∈ AE . In particular, choose
βθ = βθ (s) = θ(ω)χ(t,t+h](s), where θ(ω) is Et -measure and 0 ≤ t ≤ t + h ≤ T .

Then, (20) yields x1 = x (βθ )
1 (s) = 0 for 0 ≤ s ≤ t. Hence (62) can be rewritten as

J1(h) + J2(h) = 0, (63)

where

J1(h) = E

[∫ T

t

{

κ(s)
∂b

∂x
(s) + DB

s κ(s)
∂σ

∂x
(s) +

∫

R0

DÑα

s,ζ κ(s)
∂γ

∂x
(s, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
t κ(s)

∂η j

∂x
(s) + Ã(s)

∂g

∂x
(s)

⎫
⎬

⎭
x1(s)ds

⎤

⎦ , (64)

J2(h) = E

[

θ

∫ t+h

t

{

κ(s)
∂b

∂u
(s) + DB

t κ(s)
∂σ

∂u
(s) +

∫

R0

DÑα

s,ζ κ(s)
∂γ

∂u
(s, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
s κ(s)

∂η j

∂u
(s) + ∂ f

∂u
(s) + Ã(s)

∂g

∂u
(s)

⎫
⎬

⎭
ds

⎤

⎦ . (65)

This completes the first step. ��

Next, we conclude the proof of (A) ⇒ (B).

Lemma 4.2 Assume that the conditions of Theorem 3.3 are satisfied. Assume that (A)
in Theorem 3.3 holds. Then, (B) in Theorem 3.3 also holds.

Proof Assume that (A) holds, that is, d
d� J

(u+�β)(t) = 0. Then, from Lemma 4.1, we
have J1(h) + J2(h) = 0.

Let x1(s) = x (βθ )
1 (s). Assume that s ≥ t + h. Then, it follows from the choice of

βθ and (20) that

dx1(s) = x1(s−)

{
∂b

∂x
(s)ds + ∂σ

∂x
(s)dB(s) +

∫

R0

∂γ

∂x
(s, ζ )Ñα(ds, dζ )

+∂η

∂x
(s) · dΦ̃(s)

}

; s ∈ [t + h, T ].

By the Itô’s formula, it is easy to show that x1(s) = x1(t + h)G(t + h, s); s ≥ t + h,

whereG is defined by (34). Let us observe thatG(t, s) does not depend on h. It follows
from the definition of H0 [see (31)] that
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J1(h) = E

[∫ T

t

∂H0

∂x
(s)x1(s)ds

]

= E

[∫ t+h

t

∂H0

∂x
(s)x1(s)ds

]

+ E

[∫ T

t+h

∂H0

∂x
(s)x1(s)ds

]

.

Differentiating with respect to h at h = 0 gives

d

dh
J1(h)

∣
∣
∣
h=0

= d

dh
E

[∫ t+h

t

∂H0

∂x
(s)x1(s)ds

]

h=0

+ d

dh
E

[∫ T

t+h

∂H0

∂x
(s)x1(s)ds

]

h=0
. (66)

Since x1(t) = 0, we get d
dh E

[∫ t+h

t

∂H0

∂x
(s)x1(s)ds

]

h=0
= 0. Using the definition

of x1(s), we have

d

dh
E

[∫ T

t+h

∂H0

∂x
(s)x1(s)ds

]

h=0
= d

dh
E

[∫ T

t+h

∂H0

∂x
(s)x1(t + h)G(t + h, s)ds

]

h=0

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)x1(t + h)G(t + h, s)

]

h=0
ds

=
∫ T

t

d

dh
E

[
∂H0

∂x
(s)x1(t + h)G(t, s)

]

h=0
ds,

(67)

where x1(t + h) is given by

x1(t + h) =
∫ t+h

t

(

x1(r−)

{
∂b

∂x
(r)dr + ∂σ

∂x
(r)dB(r)

+
∫

R0

∂γ

∂x
(r, ζ )Ñα(dt, dζ ) + ∂η

∂x
(r) · dΦ̃(r)

}

+ θ

{
∂b

∂u
(r)dr + ∂σ

∂u
(r)dB(r) +

∫

R0

∂γ

∂u
(r, ζ )Ñα(dt, dζ )

+∂η

∂u
(r) · dΦ̃(r)

})

. (68)

Therefore, by (67) and (68) d
dh J1(h)

∣
∣
∣
h=0

= J1,1(0) + J1,2(0), with

J1,1(0) =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)θ

∫ t+h

t

{
∂b

∂u
(r)dr + ∂σ

∂u
(r)dB(r)

+
∫

R0

∂γ

∂u
(r, ζ )Ñα(dt, dζ ) + ∂η

∂u
(r) · dΦ̃(r)

}]

h=0
ds (69)
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J1,2(0) =
∫ T

t

d

dh
E

[
∂H0

∂x
(s)G(t, s)

∫ t+h

t
x1(r−)

{
∂b

∂x
(r)dr + ∂σ

∂x
(r)dB(r)

+
∫

R0

∂γ

∂x
(r, ζ )Ñα(dt, dζ ) + ∂η

∂x
(r) · dΦ̃(r)

}]

h=0
ds. (70)

Since x1(t) = 0, we have J1,2(0) = 0, from which we get d
dh J1(h)

∣
∣
∣
h=0

= J1,1(0).

Using once more the duality formula, we get from (33) that

J1,1(0) =
∫ T

t

d

dh
E
[
θ

∫ t+h

t

{
∂b

∂u
(r)Θ(t, s) + ∂σ

∂u
(r)DB

r Θ(t, s)

+
∫

R0

∂γ

∂u
(r, ζ )DÑα

r,ζ Θ(t, s)να(dζ ) +
D∑

j=1

∂η j

∂u
(r)D

Φ̃ j
r Θ(t, s)

⎫
⎬

⎭
dr
]

h=0
ds

=
∫ T

t
E

[{
∂b

∂u
(t)Θ(t, s) + ∂σ

∂u
(t)DB

t Θ(t, s)

+
∫

R0

∂γ

∂u
(t, ζ )DÑα

t,ζ Θ(t, s)να(dζ ) +
D∑

j=1

∂η j

∂u
(t)D

Φ̃ j
t Θ(t, s)λ j (t)

⎫
⎬

⎭

⎤

⎦ ds.

(71)

On the other hand, differentiating (65) with respect to h at h = 0, we have

d

dh
J2(h)

∣
∣
∣
h=0

= E

[

θ

{

κ(t)
∂b

∂u
(t) + DB

t κ(t)
∂σ

∂u
(t) +

∫

R0

DÑα

t,ζ κ(t)
∂γ

∂u
(t, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
t κ(t)

∂η j

∂u
(t)λ j (t) + ∂ f

∂u
(t) + Ã(t)

∂g

∂u
(t)

⎫
⎬

⎭

⎤

⎦ . (72)

Summing (71) and (72) yields

E

[

θ

{(

κ(t) +
∫ T

t
Θ(t, s)ds

)
∂b

∂u
(t) + DB

t

(

κ(t) +
∫ T

t
Θ(t, s)ds

)
∂σ

∂u
(t)

+
∫

R0

DÑα

t,ζ

(

κ(t) +
∫ T

t
Θ(t, s)ds

)
∂γ

∂u
(t, ζ )να(dζ )

+
D∑

j=1

D
Φ̃ j
t

(

κ(t) +
∫ T

t
Θ(t, s)ds

)
∂η j

∂u
(t)λ j (t) + ∂ f

∂u
(t) + Ã(t)

∂g

∂u
(t)

⎫
⎬

⎭

⎤

⎦ = 0.

(73)

Using (36)–(38) and (11) with A, p, q, r, w replaced by Ã, p̃, q̃, r̃ , w̃, we get

E

[

θ
∂H

∂u

(
t, X (t), α(t), Y (t), Z(t), K (t, ·), V (t), u, Ã(t), p̃(t), q̃(t), r̃(t, ·), w̃(t)

)

u=u(t)

]

= 0.
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Since this holds for all Et -measurable random variables θ , we conclude that

E
[∂H

∂u
(t, X (t), α(t), Y (t), Z(t), K (t, ·), V (t), u, A(t), p̃(t), q̃(t), r̃(t, ·), w̃(t))u=u(t)

∣
∣
∣Et
]

= 0.

(74)

The proof of (A) ⇒ (B) is completed. ��
Finally, we prove that (B) ⇒ (A). Conversely, assume that there exists u ∈ AE
such that (74) holds. Then by reversing the previous argument, we obtain that (A)
holds for βθ (s) = θ(ω)χ(t,t+h](s) ∈ AE , where θ is bounded and Et -measurable.
Then (63) holds for all linear combinations of βθ . Since all bounded β ∈ AE can be
approximated pointwise boundedly in (t, ω) by such linear combination, it follows
that (63) is satisfied for all bounded β ∈ AE . Thus, reversing the remaining part of

the previous proof, we get d
d� J

(u+�β)(t)
∣
∣
∣
�=0

= 0 for all bounded β ∈ AE . ��

5 Applications

5.1 Application to Optimal Control Problem for Markov Regime Switching
with No Concave Value Function

In this section, we apply the results obtained to study an optimal control problem for
a Markov regime-switching system, assuming that the value function is not concave.
Suppose that the state process X (t) = X (u)(t, ω); 0 ≤ t ≤ T, ω ∈ Ω is a controlled
Markov regime-switching jump diffusion of the form

dX (t) = u(t)

{

σ(t) dB(t) +
∫

R0

γ (t, ζ ) Ñα(dζ, dt)

}

, t ∈ [0, T ], X (0) = 0,

(75)
where T > 0 is a given constant. u(·) is the control process. We assume here that
Ñα = Ñ for any state of theMarkov chain. Let us introduce the performance functional

J (u) = E

[∫ T

0

{
C1(α(t))u(t) + C2(α(t))u2(t) + C3(α(t))X2(t)

}
dt + C4(α(T ))X2(T )

]

.

(76)

In this case, we have that

f (t, x, α, y, z, k, v, u) = C1(α)u + C2(α)u2 + C3(α)x2, ϕ(x, α) = C4(α)x2, g = ψ = 0,

κ(t) = 2C4(α(T ))X (T ) + 2
∫ T

t
C3(α(s))X (s)ds, A(t) = G(t, s) = 0,

H0 (t, x, ei , y, z, k, v, u, ã, κ) = DB
t κ(t)uσ(t) +

∫

R0

DÑα

t,ζ κ(t)γ (t, ζ )uνi (dζ )

H (t, x, ei , y, z, k, v, u, a, p, q, r, w) = C1(ei )u + C2(ei )u
2 + C3(ei )x

2 + q̃(t)σ (t)u

+
∫

R0

r̃(t, ζ )γ (t, ζ )uνi (dζ ),
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with the modified adjoint processes are reduced to

p̃(t) = κ(t) +
∫ T

t

∂H0

∂x
(s)G(t, s)ds = κ(t), q̃(t) = DB

t κ(t),

r̃(t, ζ ) = DÑα

t,ζ κ(t), w̃ j (t) = D
Φ̃ j
t κ(t), j = 1, . . . , D.

Remark 5.1 The Hamiltonian in this case is not concave and therefore Theorem 3.1
cannot be applied. Using theMalliavin calculus approach (Theorem 3.3), we derive the
expressionof theoptimal control if it exists.Note that,whenEt = Ft for all t ∈ [0, T ],
one can also use Theorem 3.2 to derive the optimal control. In fact, in this case, it
is possible to guess the form of the adjoint processes and employ techniques from
ordinary differential equations to get the solution and hence the optimal control.

Theorem 5.1 Assume that the state process is given by (75) and let the performance
functional be given by (76). Moreover, assume that α(t) is a two-state Markov chain
and Et = Ft for all t ∈ [0, T ]. Assume in addition that an optimal control exists.
Then, u∗ is an optimal control for (10) iff

u∗(t) = −C1(1)

2C2(1) + 2Γ (t, T, 1)
(
σ 2(t) + ∫

R0
γ 2(t, ζ )ν(dζ )

)χ{α(t−)=1}

+ −C1(2)

2C2(2) + 2Γ (t, T, 2)
(
σ 2(t) + ∫

R0
γ 2(t, ζ )ν(dζ )

)χ{α(t−)=2}, (77)

where

Γ (t, T, 1) = C4(1) + C3(1)(T − t) + C3(2, 1)
λ1,2

λ1,2 + λ2,1
(T − t)

+
λ1,2

{
C4(2, 1)(λ1,2 + λ2,1) − C3(2, 1)

}

(λ1,2 + λ2,1)2

{
1 − e(λ1,2+λ2,1)(t−T )

}

(78)

and Γ (t, T, 2) is obtained in a similar way.

Proof The condition (2) in Theorem 3.3 for an optimal control û(t) is one of the two

E

[

C1(α(t)) + 2C2(α(t))u(t) + σ(t)q̃(t) +
∫

R0

r̃(t, ζ )γ (t, ζ )να(dζ )

∣
∣
∣Et

]

= 0,

(79)

E

[

C1(α(t)) + 2C2(α(t))u(t) + σ(t)DB
t p̃(t) +

∫

R0

DÑα

t,ζ p̃(t)γ (t, ζ )να(dζ )

∣
∣
∣Et

]

= 0.

(80)

Equation (80) can be seen as a partial information, Markov switching Malliavin-
differential type equation in the unknown random variable p̃(t). A similar equation
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was solved in [15] without regime switching, when Et = Ft . For simplicity, we
assume from now on that Et = Ft for all t ∈ [0, T ] and that α is a two-state Markov
chain. Using the fundamental theorem of calculus (see, e.g. [31, Theorem 3.1]), we
have

q̃(t) = DB
t p̃(t) = 2C4(α(T ))DB

t X (T ) + 2
∫ T

t
C3(α(s))DB

t X (s)ds

= 2C4(α(T ))

{∫ T

t
DB
t

(
u(r)σ (r)

)
dB(r) + u(t)σ (t)

+
∫ T

t

∫

R0

DB
t

(
u(r)γ (r, ζ )

)
Ñα(dζ, dr)

}

+ 2
∫ T

t
C3(α(s))

{∫ s

t
DB
t

(
u(r)σ (r)

)
dB(r) + u(t)σ (t)

+
∫ s

t

∫

R0

DB
t

(
u(r)γ (r, ζ )

)
Ñα(dζ, dr)

}

ds.

Using integration by parts formula (or product rule), we get

q̃(t) = DB
t p̃(t) = 2

{

C4(α(t))u(t)σ (t) +
∫ T

t
C4(α(r))DB

t

(
u(r)σ (r)

)
dB(r)

+
∫ T

t

∫

R0

C4(α(r))DB
t

(
u(r)γ (r, ζ )

)
Ñα(dζ, dr)

+
∫ T

t
DB
t X (r)

D∑

j=1,i �= j

λi, j (C4( j) − C4(i))χ(α(r)=i)dr

+
∫ T

t
DB
t X (r)

D∑

j=1,i �= j

λi, j (C4( j) − C4(i))χ(α(r)=i)dmi j (t)

⎫
⎬

⎭

+ 2

{∫ T

t

(

C3(α(t))u(t)σ (t) +
∫ s

t
C3(α(r))DB

t

(
u(r)σ (r)

)
dB(r)

+
∫

R0

∫ s

t
C3(α(r))DB

t

(
u(r)γ (r, ζ )

)
Ñα(dζ, dr)

+
∫ s

t
DB
t X (r)

D∑

j=1,i �= j

λi, j (C3( j) − C3(i))χ(α(r)=i)dr

+
∫ s

t
DB
t X (r)

D∑

j=1,i �= j

λi, j (C3( j) − C3(i))χ(α(r)=i)dmi j (t)

⎞

⎠ ds

⎫
⎬

⎭
.

(81)

Taking conditional expectation with respect to Ft , we have
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E
[
q̃(t)

∣
∣
∣Ft

]
= 2C4(α(t))u(t)σ (t) + 2

∫ T

t
u(t)σ (t)

D∑

j=1,i �= j

λi, j (C4( j) − C4(i))

E
[
χ(α(r)=i)

∣
∣
∣Ft

]
dr + 2C3(α(t))u(t)σ (t)(T−t) + 2

∫ T

t

∫ s

t
u(t)σ (t)

×
D∑

j=1,i �= j

λi, j (C3( j) − C3(i))E
[
χ(α(r)=i)

∣
∣
∣Ft

]
dr ds. (82)

Let α(t) = e1 and for n = 1, 2, 3, 4, let Cn(i) be the value of the function Cn at 1.
Define Cn(2, 1) for n = 1, 2, 3, 4 by Cn(2, 1) := Cn(2) − Cn(1). Then, we have

E
[
q̃(t)

∣
∣
∣Ft

]
= 2C4(1)u(t)σ (t) + 2

∫ T

t
u(t)σ (t)

(
λ1,2(C4(2) − C4(1))E

[
χ(α(r)=1)

∣
∣
∣α(t) = 1

]

+ λ2,1(C4(1) − C4(2))E
[
χ(α(r)=2)

∣
∣
∣α(t) = 1

])
dr + 2C3(1)u(t)σ (t)(T − t)

+ 2
∫ T

t

∫ s

t
u(t)σ (t)

(
λ1,2(C3(2) − C3(1))E

[
χ(α(r)=1)

∣
∣
∣α(t) = 1

]

+ λ2,1(C3(1) − C3(2))E
[
χ(α(r)=2)

∣
∣
∣α(t) = 1

])
dr ds

= 2C4(1)u(t)σ (t) + 2
∫ T

t
u(t)σ (t)

(
λ1,2(C4(2) − C4(1))P(α(r) = 1|α(t) = 1)

+ λ2,1(C4(1) − C4(2))P(α(r) = 2|α(t) = 1)
)
dr + 2C3(1)u(t)σ (t)(T − t)

+ 2
∫ T

t

∫ s

t
u(t)σ (t)

(
λ1,2(C3(2) − C3(1))P(α(r) = 1|α(t) = 1)

+ λ2,1(C3(1) − C3(2))P(α(r) = 2|α(t) = 1)
)
dr ds.

It follows from the transition probability of a two-state Markov chain that

E
[
q̃(t)

∣
∣
∣Ft

]
= 2C4(1)u(t)σ (t) + 2u(t)σ (t)C4(2, 1)

∫ T

t

(

λ1,2
λ1,2e

(λ1,2+λ2,1)(t−r) + λ2,1

λ1,2 + λ2,1

−λ2,1
λ1,2 − λ1,2e

(λ1,2+λ2,1)(t−r)

λ1,2 + λ2,1

)

dr + 2C3(1)u(t)σ (t)(T − t)

+ 2C3(2, 1)u(t)σ (t)
∫ T

t

∫ s

t

(

λ1,2
λ1,2e

(λ1,2+λ2,1)(t−r) + λ2,1

λ1,2 + λ2,1

−λ2,1
λ1,2 − λ1,2e

(λ1,2+λ2,1)(t−r)

λ1,2 + λ2,2

)

dr ds

= 2C4(1)u(t)σ (t) + 2u(t)σ (t)C4(2, 1)
λ1,2

λ1,2 + λ2,1

(
1 − e(λ1,2+λ2,1)(t−T )

)

+ 2C3(1)u(t)σ (t)(T − t) + 2C3(2, 1)u(t)σ (t)
λ1,2

λ1,2 + λ2,1
(T − t)

− 2C3(2, 1)u(t)σ (t)
λ1,2

(λ1,2 + λ2,1)
2

(
1 − e(λ1,2+λ2,1)(t−T )

)
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= 2u(t)σ (t)
(
C4(1) + C3(1)(T − t) + C3(2, 1)

λ1,2

λ1,2 + λ2,1
(T − t)

+
λ1,2

{
C4(2, 1)(λ1,2 + λ2,1) − C3(2, 1)

}

(λ1,2 + λ2,1)
2

{
1 − e(λ1,2+λ2,1)(t−T )

})
. (83)

On the other hand, set α(t) = e1. Using the integration by parts formula and the
fundamental theorem of calculus, we have

E
[
r̃(t, ζ )

∣
∣
∣Ft

]

= 2C4(1)u(t)γ (t, ζ ) + 2
∫ T

t
u(t)γ (t, ζ )

(
λ1,2(C4(2) − C4(1))E

[
χ(α(r)=1)

∣
∣
∣α(t) = 1

]

+ λ2,1(C4(1) − C4(2))E
[
χ(α(r)=2)

∣
∣
∣α(t) = 1

])
dr + 2C3(1)u(t)γ (t, ζ )(T − t)

+ 2
∫ T

t

∫ s

t
u(t)γ (t, ζ )

(
λ1,2(C3(2) − C3(1))E

[
χ(α(r)=1)

∣
∣
∣α(t) = 1

]

+ λ2,1(C3(1) − C3(2))E
[
χ(α(r)=2)

∣
∣
∣α(t) = 1

])
dr ds

= 2C4(1)u(t)γ (t, ζ ) + 2
∫ T

t
u(t)γ (t, ζ )

(
λ1,2(C4(2) − C4(1))P(α(r) = 1|α(t) = 1)

+ λ2,1(C4(1) − C4(2))P(α(r) = 2|α(t) = 1)
)
dr + 2C3(1)u(t)γ (t, ζ )(T − t)

+ 2
∫ T

t

∫ s

t
u(t)γ (t, ζ )

(
λ1,2(C3(2) − C3(1))P(α(r) = 1|α(t) = 1)

+ λ2,1(C3(1) − C3(2))P(α(r) = 2|α(t) = 1)
)
dr ds.

Similarly, we get

E
[
r̃(t, ζ )

∣
∣
∣Ft

]
= 2u(t)γ (t, ζ )

(

C4(1) + C3(1)(T − t) + C3(2, 1)
λ1,2

λ1,2 + λ2,1
(T − t)

+λ1,2
{
C4(2, 1)(λ1,2 + λ2,1) − C3(2, 1)

}

(λ1,2 + λ2,1)2

{
1 − e(λ1,2+λ2,1)(t−T )

}
)

.

(84)

Then, the result follows for α(t) = e1. Performing the same computations, one get an
expression for Γ (t, T, 2). This completes the proof. ��

The following corollary is a generalization of [3, Example 4.7].

Corollary 5.1 Assume that conditions of Theorem5.1are satisfied.Moreover, assume
that C1,C2,C3,C4 : I → R satisfy C1(1) = −1,C1(2) = 0,C2(1) = 0,C2(2) =
− 1

2 ,C3(1) = 0,C3(2) = 1, C4(1) = 1
2 ,C4(2) = 1.
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Then, the optimal control u∗ for (10) satisfies:

u∗(t) = 1

2Γ (t, T, 1)
(
σ 2(t) + ∫

R0
γ 2(t, ζ )ν(dζ )

)χ{α(t−)=1} + 0 × χ{α(t−)=2},

(85)

where Γ (t, T, 1) = 1
2 + λ1,2

λ1,2+λ2,1
(T − t)+

λ1,2

{
1
2 (λ1,2+λ2,1)−1

}

(λ1,2+λ2,1)2

{
1−e(λ1,2+λ2,1)(t−T )

}
.

5.2 Application to Recursive Utility Maximization

In this section, we use the results from Sect. 3.3 to study a problem of recursive utility
maximization. Consider a financial market with two investments possibilities: a risk-
free asset (bond) with the unit price S0(t) at time t and a risky asset (stock) with unit
price S(t) at time t . Let r(t) be the instantaneous interest rate of the risk-free asset at
time t . If rt := r(t, α(t)) = 〈r |α(t)〉, where 〈·|·〉 is the usual scalar product in RD and
r = (r1, r2, . . . , rD) ∈ R+D , then the price dynamic of S0 is given by:

dS0(t) = r(t)S0(t)dt, S0(0) = 1. (86)

The appreciation rate μ(t) and the volatility σ(t) of the stock at time t are defined by

μ(t) := μ(t, α(t)) = 〈μ|α(t)〉, σ (t) := σ(t, α(t)) = 〈σ |α(t)〉 t ∈ [0, T ], (87)

where μ = (μ1, μ2, . . . , μD) ∈ R
D and σ = (σ1, σ2, . . . , σD) ∈ R+D . The stock

price process S is described by the following Markov modulated Lévy process:

dS(t) = S(t−)

(

μ(t)dt + σ(t)dB(t) +
∫

R\{0}
γ (t, ζ )Ñα(dt, dζ )

)

, S(0) > 0.

(88)

The general setting considered here can be seen as an extension of the exponential-
Lévy model described in [35], where a factor of modulation is introduced. Hence, we
can retrieve in a simple way some of the existing models in the literature (e.g. the
classical Black–Scholes model and the family of exponential-Lévy models.)

Here r(t) ≥ 0, μ(t), σ (t) and γ (t, ζ ) > −1 + ε (for some constant ε > 0) are
given Et -predictable, integrable processes, with {Et }t∈[0,T ] being a given filtration,
such that

Et ⊂ Ft for all t ∈ [0, T ].

Suppose that a trader in thismarket chooses a portfoliou(t), representing the amount
she invests in the risky asset at time t . In the partial information case, this portfolio is a
Et -predictable stochastic process. Choosing S0(t) as a numeraire, and setting without
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loss of generality r(t) = 0, one can show (see [18] for such a derivation) that the
corresponding wealth process X (t) = X (u)(t) satisfies

dX (t) = u(t)

[

μ(t)dt + σ(t)dB(t) +
∫

R0

γ (t, ζ )Ñα(dt, dζ )

]

, X (0) = x > 0.

(89)
The above process is a controlled Itô-Lévy process.

We consider a small agent endowed with an initial wealth x , who can choose her
portfolio between time 0 and time T . We suppose that there exists a terminal reward
X (T ) at time T . In this setting, the utility at time t depends on the utility up to time t
and on the future utility. More precisely, the recursive utility at time t is defined by

Y (t) = E

[

X (T ) +
∫ T

t
g(s,Y (s), α(s), ω)ds

]

, (90)

where g is called the driver. One can show as in [14] (see also [29,36]) that the
above process can be regarded as a solution to the followingMarkov regime-switching
BSDE.

⎧
⎪⎪⎨

⎪⎪⎩

dY (t) = −g(t,Y (t), α(t), ω) dt + Z(t) dB(t)

+
∫

R0

K (t, ζ ) Ñα(dζ, dt) + V (t) · dΦ̃(t); t ∈ [0, T ]
Y (T ) = X (T ),

(91)

where g : [0, T ] × R × S × U × Ω → R is such that the BSDE (91) has a unique
solution and (t, ω) → g(t, x, ei , ω) is Ft -predictable for each given x and ei . For
more information about recursive utility, the reader may consult [14,20,22]. Such
unique solution exists if one assumes that g(·, y, ei ) is uniformly Lipschitz continuous
with respect to y, the random variable X (T ) is squared integrable and g(t, 0, ei ) is
uniformly bounded.”

We want to apply Theorem 3.3 to find the control u (if it exists) that maximizes the
recursive utility Y (0) defined by (91). This means that we aim at finding u∗ and Y ∗
such that

Y (u∗)(0) = sup
u∈AE

Y (u)(0) = Y ∗.

Note that the performance functional J (u) given by (9) is reduced to:

J (u) = Y (u)(0).

This means that

f = 0, ϕ = 0, and ψ(x) = x .
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We also have

h(x, α) = x,

b(t, x, α, u, ω) = uμ(t, α, ω),

σ (t, x, α, u, ω) = uσ(t, α, ω),

γ (t, x, α, u, ω) = uγ (t, α, ζ, ω),

η j (t, x, α, u, ω) = 0.

The Hamiltonian is therefore reduced to:

H (t, x, ei , y, z, k, v, u, ã, p̃, q̃, r̃ , w̃, ω)

= ag(t, x, ei , ω) + puμ(t, ei , ω) + quσ(t, ei , ω)

+
∫

R0

r(t, ζ )uγ (t, ei , ζ, ω)νi (dζ ), (92)

with the modified adjoint processes Ã and ( p̃(t), q̃(t), r̃(t, ζ ), w̃(t)) given, respec-
tively by:

d Ã(t) = Ã(t)∇x g(t,Y (t), α(t), ω) dt
Ã(0) = 1,

(93)

and

p̃(t) := κ(t) +
∫ T

t

∂H0

∂x
(s)G(t, s)ds = Ã(T ), (94)

q̃(t) := DB
t Ã(T ), (95)

r̃(t, ζ ) := DÑ
t,ζ Ã(T ), (96)

w̃ j (t) := D
Φ̃ j
t Ã(T ), j = 1, . . . , D. (97)

Equation (93) can be solved explicitly and the solution is given by:

Ã(t) = exp

(∫ t

0
∇x g(t,Y (t), α(t), ω) ds

)

. (98)

Condition (B) in Theorem 3.3 for an optimal control u∗ becomes

E

[

μ(t, ei ) Ã(T ) + σ(t, ei )D
B
t Ã(T ) +

∫

R0

γ (t, ei , ζ )DÑ
t,ζ Ã(T )νi (dζ )|Et

]

= 0

(99)

for i = 1, . . . , D. For each i = 1, . . . , D, Eq. (99) is called a partial information,Malli-
avin differentiable type of equation in the unknown variable Ã(T ), see, for example,
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[15,17]. For Et = Ft , one can solve this equation explicitly (see [15]) and get

Ã(T ) = E[ Ã(T )] exp
(∫ T

0
β(t, α)dB(t) − 1

2

∫ T

0
β2(t, α)dt

+
∫ T

0

∫

R0

ln(1 + θ(t, α, ζ ))Ñα(dt, dζ )

+
∫ T

0

∫

R0

{ln(1 + θ(t, α, ζ )) − θ(t, α, ζ )} να(dζ )dt

)

(100)

for some Ft -predictable processes β(t, α) and θ(t, α, ζ ) such that

μ(t, α) + σ(t, α)β(t, α) +
∫

R0

γ (t, α, ζ )θ(t, α, ζ )νi (dζ ) = 0 for a.a. (t, ω).

(101)

The processes β and θ are completely determined by the vector (β1, . . . , βD) and
(θ1, . . . , θD), solutions to the system of equations

μ(t, ei ) + σ(t, ei )β(t, ei ) +
∫

R0

γ (t, ei , ζ )θ(t, ei , ζ )νi (dζ ) = 0 for a.a. (t, ω)

(102)

for all i = 1, . . . , D. Under condition (101), the measure Q defined by

dQ(ω) = Ã(T )

E[ Ã(T )]dP(ω) on FT (103)

is an equivalent local martingale measure (ELMM) for the process X (t). For more
discussion on this, we refer the reader to [15, Section 5].

Assume that α(t) is a two-stateMarkov process and that g(t,Y (t), α(t), ω) is given
by:

g(t,Y (t), 1, ω) = −c1(t)Y (t) ln Y (t) + c2(t)Y (t), g(t,Y (t), 2, ω)

= c(t)Y (t) + c0(t). (104)

Using Theorem 3.3, similar arguments as in [15, Section 5] yield the following:

Theorem 5.2 Suppose that g(t, y, α) is as in (104) and c1 is deterministic. Let Ã(T )

be the solution of the modified forward adjoint equation and suppose that β and θ

satisfy

μ(t, α) + σ(t, α)β(t, α) +
∫

R0

γ (t, α, ζ )θ(t, α, ζ )να(dζ ) = 0 for a.a. (t, ω).

123



408 J Optim Theory Appl (2017) 175:373–410

Moreover, assume that E
[
exp

( ∫ T
0 c(t)dt

)(
1 + ∫ T

0 |c0(t)|dt
)]

< ∞. In addition,

suppose that an optimal control u∗ exists . Then, the maximal differential utility is
given by:

Y ∗(0, 1) = x

(

exp
∫ T

0
c1(t)dt

)

E[ Ã(T )], (105)

Y ∗(0, 2) = xE

[

exp
∫ T

0
c(t)dt

]

+
∫ T

0
E
[
c0(t) exp

∫ T

0
c(t)dt

]
dt. (106)

Proof It follows from Theorem 3.3 and the arguments in [15, Section 5]. ��

6 Conclusions

In this paper, we presented three versions of the stochastic maximum principle for
Markov regime-switching forward–backward stochastic differential equation with
jumps. We then applied the results to study both the problem of optimal control when
the Hamiltonian is not concave and the problem of recursive utility maximization. In
the former case, theMalliavin calculus approachwas used. There aremany advantages
of usingMalliavin calculus approach. First, it does not require the studyof the existence
and uniqueness of the solution of a BSDE usually satisfied by the adjoint equation.
Second, it does not assume concavity of the Hamiltonian. Third, it enables us to get
an “explicit” solution for the optimal control problem for non-concave Hamiltonian
in some cases.

In this work, it is assumed that the sensitivity towards risk of the controller when
making decisions is implicitly given in the utility function. It is often the case that the
risk-sensitive parameter is explicitly taken into consideration when dealing with the
controller preference. Such control problem is known as risk-sensitive control and has
been studied in the past years by several authors, see, for example, [37–40]. It would
therefore be interesting to extend the current Malliavin calculus approach to the risk-
sensitive case. A risk-sensitive maximum principle for a Markov regime-switching
jump–diffusion system is derived in [41] using the classical approach.

Another interesting study would be to address the problem of partial observation
maximum principle for Markov regime-switching systems. In fact, in many economic
applications the target variables are not always observed and a specific observation
process is given (see, e.g. [37]). A way of solving the control problem in this case
is to derive the stochastic partial differential equation of the associated filtering and
consider an optimal control problem for stochastic partial differential equations.

In this paper, we do not analyse the effect of a change in a parameter (e.g. volatility,
initial value) of the state process could have in the obtained optimal control. Such
study could also be of interest.
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