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Abstract In this paper, the problem of relations between closed loop and open loop
Nash equilibria is examined in the environment of discrete time dynamic games with
a continuum of players and a compound structure encompassing both private and
global state variables. An equivalence theorem between these classes of equilibria is
proven, important implications for the calculation of these equilibria are derived and
the results are presented on models of a common ecosystem exploited by a contin-
uum of players. An example of an analogous game with finitely many players is also
presented for comparison.

Keywords Games with a continuum of players · Dynamic games · Nash equilibria ·
Open loop · Closed loop

1 Introduction

Nash equilibrium is the most important concept in noncooperative game theory.
When dynamic games are considered, researchers usually examine two types of

Nash equilibria—open loop Nash equilibria and closed loop Nash equilibria. These
classes of equilibria are usually not equivalent in any sense, unlike closed and open
loop solutions of deterministic optimal control problems, from which dynamic games
originate. Moreover, in some dynamic games, including most of zero-sum games,
there is no open loop Nash equilibrium, while a closed loop Nash equilibrium usually
exists. The simplest and most illustrative examples are pursuit–evasion games around
a pond.
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In this paper, an equivalence theorem between closed loop and open loop Nash
equilibria is proven for a very large class of deterministic dynamic games with a
continuum of players and discrete time.

With this result, we can use the Bellman equation to calculate open loop Nash
equilibria, as well as Lagrange multipliers techniques to calculate closed loop Nash
equilibria, or to combine both methods. Applying each of these three procedures
to games in which such an equivalence result does not hold may lead to erroneous
results.

Non-equivalence between closed loop and open loop Nash equilibria is a well
known fact in dynamic games. Beside papers concentrating on only one kind of
equilibrium, there are numerous papers, especially with economic applications, in
which both kinds of Nash equilibria are calculated and compared (see e.g. Fersth-
man, Kamien [1] or Cellini, Lambertini [2]).

The literature focused on equivalence is rather scarce.
The first group consists of papers stating special cases, when an open loop equi-

librium is also a closed loop equilibrium: Clemhout, Wan [3], Fersthman [4], Fe-
ichtinger [5], Leitmann, Schmittendorf [6], Cellini, Lambertini, Leitmann [7], Drag-
one, Cellini, Palestini [8] and Reinganum [9]. This equivalence means that an open
loop equilibrium is in fact a degenerate feedback equilibrium, which is different from
the equivalence result stated in this paper.

There is also a paper by Fudenberg, Levine [10] examining two stage games with
a continuum of players, but without state variables at all. Because of lack of state
variables, the authors present an example of a game with a continuum of players in
which the equivalence between closed loop and open loop Nash equilibria does not
hold. To obtain this, they assume that players are able to observe the past actions
of all the continuum of players, which is against the assumptions that gave birth to
games with a continuum of players.

A separate introduction to games with a continuum of players can be found at the
end of this section.

There are also papers by Wiszniewska-Matyszkiel concerning dynamic games
with a continuum of players without private state variables, but with some global
state variable only: [11–14]. The author proves various equivalence results between
a dynamic Nash equilibrium profile and a sequence of equilibria in one stage games
along this profile. Those results are referred to as decomposition theorems and two of
them are presented in Sect. 3. Those papers are not focused on the problem whether
the set of open loop Nash equilibria coincides in some way with the set of closed
loop Nash equilibria, so only one kind of dynamic equilibria is considered in each of
them.

This paper considers deterministic discrete time dynamic games (or multistage
games), as defined in contemporary dynamic game theory (see e.g. Başar and Olsder
[15]), in which there are state variables changing in response to players’ decisions,
and with a continuum of players. There are two types of state variables: a global state
variable and private state variables of players.

For such games, equivalence between open loop Nash equilibria (i.e. Nash equilib-
ria for a game in which players’ strategies depend on time only) and closed loop Nash
equilibria (i.e. Nash equilibria for an analogous game in which players’ strategies de-
pend also on current values of observed state variables) of the same open loop form
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is proven. This implies that we can mix the techniques used to calculate open loop
and closed loop Nash equilibria: the Lagrange multiplier method (or, more precisely,
Karush–Kuhn–Tucker necessary conditions) and Bellman equation, respectively.

This class of dynamic games has never been considered in papers concerning pos-
sible equivalence between closed loop and open loop Nash equilibria. Filling this
gap is very important, since such games have numerous applications in modelling
many real life problems, e.g. large financial markets, global ecological problems or
some public goods problems. Moreover, the calculation of Nash equilibria in games
with a continuum of players is often substantially simpler than in games with only
finitely many players, while the results for the case of a continuum of players may be
regarded as an approximation of results for finitely many players.

1.1 Games with a Continuum of Players

Games with a continuum of players were introduced in order to illustrate situations,
where the number of agents is large enough to make a single player insignificant—
negligible—when we consider the impact of his/her action on aggregate variables,
while joint action of the whole set of such negligible players is not negligible. This
happens in many real situations: on competitive markets, stock exchange, or when
we consider emission of greenhouse gases and similar global effects of exploitation
of the common global ecosystem.

Although it is possible to construct models with countably or even finitely many
players to illustrate this negligibility, they are very inconvenient to cope with.

The first attempts to use models with a continuum of players are contained in
Aumann [16, 17] and Vind [18].

Some theoretical works on large games are Schmeidler [19], Mas-Colell [20],
Balder [21], Wieczorek [22, 23], Wieczorek and Wiszniewska [24], Wiszniewska-
Matyszkiel [25]. An extensive survey of such games is Khan and Sun [26].

The general theory of dynamic games with a continuum of players is still being de-
veloped. On one hand, there are papers on decomposition theorems by Wiszniewska-
Matyszkiel cited in Sect. 3, on the other hand, there is a new branch of stochastic
mean-field games represented by e.g. Lasry, Lions [27], Weintraub, Benkard and Van
Roy [28], Huang, Caines and Malhamé [29] or Huang, Malhamé, and Caines [30].

There are already many interesting applications of dynamic games with a con-
tinuum of players. Some examples are Wiszniewska-Matyszkiel [31, 32] concerning
models of exploitation of common ecosystems by large groups of players, Karatzas,
Shubik and Sudderth [33] and Wiszniewska-Matyszkiel [13, 34] analyzing dynamic
games with a continuum of players modeling financial markets, Miao [35] modeling
competitive equilibria in economies with aggregate shocks, Wiszniewska-Matyszkiel
[36] and Huang [37] analyzing an oligopolistic market treated as a mixed large game
(with both atomic players and a continuum part), and [12] containing an example
of a dynamic game modeling presidential elections preceded by a campaign. Other
models of election using games with a continuum of players are in Ekes [38].

Introducing a continuum of players instead of a finite number—however, large—
can essentially change properties of equilibria and simplify their calculation, even if
the measure of the space of players is preserved in order to make the results compa-
rable. At the same time, equilibria in games with a continuum of players constitute a



J Optim Theory Appl (2014) 160:280–301 283

kind of limit of the corresponding equilibria in games with finitely many players, and,
sometimes, this limit can be reached even in finitely many steps, which makes the re-
sults obtained in this paper directly applicable to games with finitely many players.
Such comparisons were made by the author in [39, 40]. Moreover, in [40], the limit
is attained already for finitely many players.

2 Formulation of the Problem

Generally, the definition of a noncooperative game in its strategic (or normal) form re-
quires stating its set of players, sets of players’ strategies (and, consequently, strategy
profiles) and payoff functions of the players. In dynamic games, especially dynamic
games with a continuum of players, those terms require introduction of some primary
components.

We consider a dynamic game with a continuum of players—the set of players
being the unit interval I with Lebesgue measure λ (and the σ -field of Lebesgue mea-
surable sets denoted by L). Players are represented by points of I.

If, instead of points, we considered players as non-negligible and mutually exclu-
sive subsets with union I, which can be understood as a partition into coalitions of
players, then, even if players from the same subset were identical and chose the same
strategy, the results would differ substantially, which is illustrated by Example 6.2.

The time set T is discrete—without any loss of generality T = {0, . . . , T } or T =
{0,1, . . .} (we refer to the latter case as time horizon T = +∞). We also use the
auxiliary notation T to denote the set {0, . . . , T + 1} if the time horizon T is finite,
while in the opposite case T = T (it stands for the time set extended by the time
instant after termination of the game, if possible).

Every player i has his/her own private state variable wi ∈ Wi ⊂ W, whose trajec-
tory is denoted by Wi : T → W. There is also a σ -field W of subsets of W. Obviously,
Wi ∈ W .

There is also a global (or external) state variable x ∈ X with trajectory denoted
by X : T → X and a σ -field X of subsets of X.

The set of actions (or decisions) of player i is Di ⊂ D, but there are also constraints
defined by the correspondence of available actions Di : T × Wi × X ⇒ Di . We also
need a σ -field D of subsets of D. Obviously, Di ∈ D.

Any L − D-measurable function δ : I → D, such that δ(i) ∈ Di(t,wi, x) for w =
{wi}i∈I ∈ W

I and x ∈ X, is called a static profile (of players’ strategies) available at
w and x. The set of all the static profiles (of players strategies) available at w and x

is denoted by SP(t,w,x), while the union of these sets—by SP.
Generally, by the term profile of players’ strategies or, for short, profile, we under-

stand an assignment of strategies to the players. In the literature on n-player games,
the term n-tuple of strategies is often used instead.

In this paper, we consider three types of profiles.
First come static profiles, which we have just defined. They represent functions

assigning strategies to players in one stage games of which the original dynamic
game consists. Static profile is not only an auxiliary concept to define dynamic game.
As it is shown in Sect. 3, static profiles appear naturally in decomposition theorems,
which simplify the calculation of equilibria in a dynamic game (Theorem 3.3).
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In the original dynamic game, we consider open loop profiles, in which players’
strategies depend only on time, and closed loop profiles, in which strategies depend
also on current values of state variables.

The influence of a static profile on the global state variable is via its m-dimensional
statistic, where m is any fixed positive integer.

The statistic function U : SP → R
m is defined by U(δ) := [∫

I
gk(i, δ(i))dλ(i)]mk=1

for a collection of functions gk : I×D → R which are L⊗D-measurable for every k.
In most applications and theoretical papers on games with a continuum of players,

the statistic is one dimensional and it is usually the aggregate of players’ decisions,
which corresponds to g(i, d) = d . If some higher dimensional statistic is used, it may
encompass also higher moments of static profiles or the aggregates over several non-
negligible subsets of players.

We assume that the statistic is always well defined (which holds e.g. if the func-
tions gk are integrably bounded and Di are bounded). The set of all profile statistics
is denoted by U.

In order to define payoff functions of players, we first introduce an instantaneous
payoff function of player i, Pi : D × U × W × X × T →R ∪ {−∞}. Given state
variables wi and x and time t , if the players choose a static profile δ, then player i

obtains instantaneous payoff Pi(δ(i),U(δ),wi, x, t), i.e., instantaneous payoffs de-
pend on player’s own strategy at the profile, the statistic of the profile, private state
variable of the player, global state variable and some dependence on time excluding
discounting (e.g. seasonality).

When the time horizon is finite, players obtain also terminal payoffs Gi : W ×
X → R ∪ {−∞} after termination of the game (for uniformity of notation we include
them also in the case of the infinite horizon by assuming that Gi ≡ 0).

At the beginning of the game we have initial conditions X(0) = x̄ and Wi(0) = w̄i

for i ∈ I.
The regeneration functions of the state variables are φ : X × U → X for the global

state trajectory X and κi : W×X×D×U → Wi for the private state trajectories Wi ,
and they define these trajectories as follows. If at a time instant t a static profile δ is
chosen, then

X(t + 1) = φ
(
X(t),U(δ)

)

and

Wi(t + 1) = κi

(
Wi(t),X(t), δ(i),U(δ)

)
.

Now it is time to introduce the notion of dynamic strategies and dynamic profiles.
First, we need some auxiliary notation.
If � : T → SP represents choices of static profiles at various time instants, then

we denote by U(�) the function u : T → U such that u(t) = U(�(t)). The set of all
such functions u is denoted by U.

Given a function u ∈ U (representing the statistics of profiles chosen at various
time instants), the external system evolves according to the equation X(t + 1) =
φ(X(t), u(t)) with the initial condition X(0) = x̄.

Such a trajectory of the global state variable is said to be corresponding to u and
we denote it by Xu.
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If u = U(�), then, by a slight abuse of notation, we write X� instead of XU(�).
Given functions u : T → U and ω : T → Di representing, respectively, the statistic

of static profiles chosen at various time instants and decisions of player i at those
time instants, the private state variable of player i evolves according to the equation
Wi(t + 1) = κi(Wi(t),ω(t),Xu(t), u(t)), with the initial condition Wi(0) = w̄i .

Such a trajectory of the private state variable is said to be corresponding to ω and
u and it is denoted by W

ω,u
i .

If a function � : T → SP represents choices of profiles at various time instants,
then the trajectory of private state variables W� defined by (W�)i := W

�(·)(i),U(�)
i

is called corresponding to � and denoted by W� (with coordinates W�
i ).

Now it is time to define open and closed loop strategies and profiles in the dynamic
game.

A strategy of a player in game theory is a function assigning an available deci-
sion to the information about the current state of the game that the player takes into
account. For open loop strategies, the only information that the player takes into ac-
count at each stage of the game is time. This definition is identical in all the dynamic
games and optimal control literature.

The concept of closed loop is not so unequivocal. This term is used with at least
three different meanings. In each of them, the current value of the state variable is a
part of information. In this paper, closed loop strategy uses information consisting of
both the private state variable of the player and the global state variable, as well as
time.

Formally, we have the following definitions.
A function ω : T → Di is called an open loop strategy of player i. It is called ad-

missible at u ∈ U iff for every t ∈ T, ω(t) ∈ Di(t,W
ω,u
i (t),Xu(t)). Note that, in gen-

eral, if we do not know the statistic, we cannot say whether a strategy is admissible—
it may be treated only as the player’s plan and its realization depends on the behavior
of the state variables, which, in turn, depends on the strategies of the other players.

An open loop profile (of players’ strategies) is any function Ω : I × T → D such
that {Ω(i, ·)}i∈I is a collection of open loop strategies admissible at u ∈ U defined by
u(t) = U(Ω(·, t)) and such that for every t , Ω(·, t) is L − D-measurable.

Equivalently, we may represent it as � : T → SP such that for every t , �(t) ∈
SP(t,W�(t),X�(t)). Therefore, we use analogous notation for the trajectories cor-
responding to an open loop profile, WΩ

i and XΩ , and for its statistics U(Ω). The set
of all the open loop strategies of player i admissible at u is denoted by OLi (u), while
the set of all the open loop profiles is denoted by O L.

A function ψ : T × X × Wi → Di is called a closed loop strategy of player i iff
for every t ∈ T, x ∈ X and wi ∈ Wi , we have ψ(t, x,wi) ∈ Di(t,wi, x). Note that,
unlike the definition of open loop strategies, we can guarantee admissibility already
in the definition of strategy.

A closed loop profile (of players’ strategies) is any function Ψ : I×T×X×W →
D satisfying the following condition: {Ψ (i, ·, ·, ·)}i∈I is a collection of closed loop
strategies such that for every t ∈ T and x ∈ X, the function Ψ (·, t, x, ·) is L⊗ W −D-
measurable (which implies measurability of the function i 	→ Ψ (i, t, x,wi) for every
measurable function i 	→ wi ). The set of all the closed loop strategies of player i is
denoted by CLi , while the set of all the closed loop profiles is denoted by C L.
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For a closed loop profile Ψ ∈ C L, we define its open loop form Ψ OL ∈ O L and
the corresponding trajectories of state variables XΨ and WΨ , recursively, by

Ψ OL(i,0) := Ψ (i,0, x̄, w̄i), XΨ (0) := x̄, WΨ (0) := w̄,

WΨ
i (t + 1) := κi

(
WΨ

i (t),Ψ OL(i, t),XΨ (t), u(t)
)
,

XΨ (t + 1) := φ
(
XΨ (t), u(t)

)
,

Ψ OL(i, t + 1) := Ψ
(
i, t,XΨ (t + 1),WΨ

i (t + 1)
)
,

u(t) := U
(
Ψ OL(·, t)).

For an open loop profile Ω ∈ O L, we define its closed loop form ΩCL ∈ P(C L)

by ΩCL := {Ψ ∈ C L : Ψ (i, t,XΩ(t),WΩ
i (t)) = Ω(i, t) for a.e. i and every t}.

The payoff that a player obtains in the game is equal to the suitably discounted
sum of instantaneous payoffs obtained during the game and the terminal payoff. It
is always a function from the set of profiles into extended reals. For our two types
of information structure defining sets of strategies—open and closed loop—we have,
respectively, ΠOL

i : O L → R and ΠCL
i : C L → R.

For an open loop profile Ω , the payoff of player i is defined by

ΠOL
i (Ω) :=

T∑

t=0

Pi(Ω(i, t),U(Ω(·, t)),WΩ
i (t),XΩ(t), t)

(1 + ri)t

+ Gi(W
Ω
i (T + 1),XΩ(T + 1))

(1 + ri)T +1

for a constant ri > 0, called the discount rate of player i.
The definition of a closed loop profile is an obvious consequence—we can simply

define it by ΠCL
i (Ψ ) := ΠOL

i (Ψ OL).
Without any additional assumptions, payoffs do not have to be well defined in the

infinite time horizon, therefore we add the assumption that they are well defined (this
is satisfied if, e.g., Pi are bounded from above). Then we have well defined ΠOL

i

and ΠCL
i , which completes the definition of the two kinds of games: with open loop

information structure and with closed loop information structure.

2.1 Nash Equilibria

One of the basic concepts in game theory, the Nash equilibrium, assumes that every
player chooses a strategy which maximizes his/her payoff given the strategies of the
remaining players. In the case of games with a continuum of players, the term “every”
has to be replaced by “almost every”.

In order to simplify the notation, we need the following abbreviation: for a profile
S and a strategy d of player i, the symbol Si,d for a strategy d of player i denotes the
profile such that Si,d(i) = d and Si,d(j) = S(j) for j 
= i.

Definition 2.1 A profile S is a Nash equilibrium iff for a.e. i ∈ I and every strategy
d of player i, we have Πi(S) ≥ Πi(S

i,d ).
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This definition applies both to open and closed loop Nash equilibria—in each of
these cases strategies/profiles are open or closed loop strategies/profiles, respectively,
and the appropriate payoff function is applied.

3 Games Without Private State Variables—Decomposition and Equivalence

In this section, we recall some existing results concerning games without private state
variables and derive their obvious consequence.

For simplicity of notation, we omit the private state variables w.
In this section, we use the notion of static equilibrium at a time t and state x: this is

a Nash equilibrium in a one shot game played at the time instant t at state x in which
players’ sets of strategies are Di(t, x), while the payoff functions are instantaneous
payoffs Pi(·, ·, x, t).

It may seem that static equilibria are useless in dynamic games. However, in earlier
papers of the author, various decomposition results are proven, stating how an equi-
librium in the original dynamic game can be decomposed into a coupled sequence of
equilibria in one stage games.

In Wiszniewska-Matyszkiel [12], a wide class of discrete time dynamic games
with a continuum of players and open loop strategies is considered. We can use The-
orem 5.1(ii) of that paper in a form updated to the games considered in this paper.

Theorem 3.1 We consider two conditions.

(*) For every t , the static profile Ω(·, t) is a static equilibrium at time t and state
XΩ(t);

(**) The open loop profile Ω is an open loop Nash equilibrium.

For every Ω ∈ O L, condition (*) implies (**).
If for a.e. player i, the payoff ΠOL

i (Ω) is finite, then (*) and (**) are equivalent.

In Wiszniewska-Matyszkiel [11], an analogous theorem for games with arbitrary
time set is proven. We do not cite it here, since—in order to make it work in a more
general environment—the assumptions necessary to obtain equivalence are stronger
(similar to those in Theorem 3.2 below) and, therefore, in the case of discrete time,
that result is weaker than Theorem 3.1.

In Wiszniewska-Matyszkiel [14], a wide class of stochastic games with a contin-
uum of players and closed loop strategies are considered. We can use Theorem 1 of
that paper (to be more specific: b and f of it) simplified to suit the deterministic games
considered in this paper.

Theorem 3.2

(a) If Ψ is a closed loop profile and, for all t , the static profiles Ψ (·, t,XΨ (t)) are
static equilibria at time t and state of the system XΨ (t), then Ψ is a closed loop
Nash equilibrium.
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(b) Let the space of strategies D be such that diag D := {(d, d) : d ∈ D} is D ⊗ D-
measurable and D is a measurable image of a measurable space (Z, Z) that is
an analytic subspace of a separable compact topological space S (with the σ -
field of Borel subsets B(S)). Assume that, for a.e. i, t and every u, x, the function
Pi(·, u, x, t) is upper semi-continuous, for a.e. i, the function Pi is such that
inverse images of measurable sets are D ⊗ B(U) ⊗ X ⊗ P (T)-analytic and the
correspondence Di has an X ⊗ D-analytic graph and compact values. Every
closed loop Nash equilibrium Ψ such that, for almost every player i, the payoff
ΠCL

i (Ψ (i, ·, ·),U(Ψ ),XΨ ) is finite, satisfies the following condition: for all t ,
static profiles Ψ (·, t,XΨ (t)) are static equilibria at time t and state of the system
XΨ (t).

The assumptions are satisfied in quite a general framework: e.g. measurability of
the diagonal in the product σ -field holds for every complete separable metric space
(or, even more generally, for its continuous image) with the σ -field of Borel subsets,
and, usually, if we cope with sets which are not measurable, then they are projections
or continuous images of measurable sets, which are usually analytic. Nevertheless,
even these assumptions, especially continuity and compactness assumptions, are too
restrictive and can be weakened, as we do in Theorem 3.3, in which we assemble and
generalize results stated in Theorems 3.1 and 3.2.

Theorem 3.3

(a) If Ψ is a closed loop profile and, for all t and x, the static profiles Ψ (·, t, x) are
static equilibria at time t and state of the system x, then Ψ is a closed loop Nash
equilibrium.

(b) If Ψ is a closed loop profile and, for every t , the static profiles Ψ OL(·, t) are static
equilibria at time t and state of the system XΨ (t), then Ψ is a closed loop Nash
equilibrium.

(c) If Ω is an open loop profile and, for every t , the static profiles Ω(·, t) are static
equilibria at time t and state of the system XΩ(t), then Ω is an open loop Nash
equilibrium.

(d) Every closed loop Nash equilibrium Ψ such that for almost every player i, the
payoff ΠCL

i (Ψ (i, ·, ·),U(Ψ ),XΨ ) is finite, satisfies the following condition: for
all t , static profiles Ψ (·, t,XΨ (t)) are static equilibria at time t and state of the
system XΨ (t).

(e) Every open loop Nash equilibrium Ω such that for almost every player i, the
payoff ΠOL

i (Ω(i, ·),U(Ω),XΩ) is finite, satisfies the following condition: for
all t , static profiles Ω(·, t) are static equilibria at time t and state of the system
XΩ(t).

Proof Since this theorem contains some parts of Theorem 3.1 and 3.2, the only thing
that remains to be proven is d).

Let us take any closed loop Nash equilibrium Ψ with finite payoff of almost every
player and any t such that Ψ (t,XΨ (t)), which, for brevity, we denote as δ, is not a
static Nash equilibrium. It means that there exists a set J ⊂ I of positive measure for
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which, for every i ∈ J, there exists d ∈ Di(t,X
Ψ (t)) such that we increase instanta-

neous payoff by changing player’s i strategy to d , since, due to nonatomicity of the
measure on the space of players, the statistic does not change.

So, Pi(δ(i),U(δ),XΨ (t), t) < Pi(d,U(δ),XΨ (t), t).
If we change the strategy of player i by only replacing the value of Ψ (i, t,XΨ (t))

by d , then we change neither the statistic nor the global state trajectory. Therefore,
we can increase the instantaneous payoff at time t without changing payoffs in any
other time instant, which contradicts the optimality of player’s i strategy. �

As a consequence of Theorem 3.3, we can derive an equivalence result between
open and closed loop Nash equilibria. However, we do it in a more general frame-
work.

4 Games with Private State Variables—Equivalence

In this section we formulate the main result—equivalence between open loop and
closed loop Nash equilibria in a more general case, when there is a nontrivial depen-
dence on private state variables.

Theorem 4.1

(a) A closed loop profile Ψ is a closed loop Nash equilibrium if and only if Ψ OL is
an open loop Nash equilibrium.

(b) An open loop profile Ω is an open loop Nash equilibrium if and only if there exits
a profile Ψ ∈ ΩCL that is a closed loop Nash equilibrium.

(c) An open loop profile Ω is an open loop Nash equilibrium if and only if every
profile Ψ ∈ ΩCL is a closed loop Nash equilibrium.

Proof The first thing that should be emphasized is the fact that X is identical for all
the profiles with the same open loop form.

Besides, by nonatomicity of λ, changing a strategy by a single player changes
neither X nor u.

Therefore, we have independent dynamic optimization problems with X and u

treated as parameters only, since player i has negligible influence on them (unlike in
games with finitely many players).

The only variable treated as a state variable in the optimization problem of player
i remains his/her private state variable wi . Coupling by u does not change anything
in players’ optimization given u, since u is identical for every profile with the same
open loop form. As is well known, in deterministic problems with perfect information
about the state variable, optimization over the sets of closed and open loop strategies
leads to equivalent results. �

5 Implications for the Calculation of Equilibria

As a consequence of Theorem 3.3, in the case when there is no nontrivial dependence
on private state variables, the only procedure we need is the calculation of a sequence
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of equilibria in static games and construction of a dynamic open/closed loop profile
consisting of them. In this case, the problem of finding an equilibrium in a dynamic
game is decomposed into static problems coupled by the statistic and the global state
variable trajectory.

In the nontrivial case, we can find—as in usual dynamic optimization—an open
or closed loop equilibrium profile using both methods: the Bellman equation and the
Lagrange or Karush–Kuhn–Tucker multiplier method.

If we use a system of discrete time Bellman equations, which generally leads to
closed loop equilibria, we can turn it into an open loop equilibrium just by taking the
open loop form of it. By Theorem 4.1, it is an open loop equilibrium.

If we use the system of equations from Karush–Kuhn–Tucker necessary condi-
tions, which returns an open loop equilibrium, we can easily turn it into a closed loop
equilibrium by taking any representative of its closed loop form.

5.1 Discrete Time Bellman Equation System

We start by considering the optimization problem of player i, given the choices of the
remaining players, and consequently, the function of statistics over time u ∈ U (with
the trajectory of the global state variable Xu).

If a function V u
i : T × W → R represents the value function of this problem, the

Bellman equation is

V u
i (t,wi) = sup

d∈Di(t,wi ,X
u(t))

Pi

(
d,u(t),Xu(t),wi, t

)

+ V u
i (t + 1, κi(wi,X

u(t), d,u(t)))

1 + ri
.

The Bellman equation is always considered together with a certain terminal con-
dition.

In the finite horizon case, it is always V u
i (T + 1,wi) = Gi(wi,X

u(T + 1)).
In the infinite horizon case, the terminal condition can have various forms. The

simplest of them, which, together with the Bellman equation, is a sufficient condition
for payoff optimization by player i, is limt→∞ V u

i (t,W
ω,u
i (t)) · (1 + r)−t = 0 for

every open loop strategy ω of player i admissible at u.
If there exists a function V u

i satisfying the Bellman equation together with an
appropriate terminal condition, then it defines the best payoff that can be obtained by
player i if the statistics of static profiles chosen over time constitute the function u.

In such a case, every optimal closed loop strategy of player i can be found by
solving the inclusion

ψ
(
t,Xu(t),wi

) ∈ Argmaxd∈Di(t,wi ,X
u(t))Pi

(
d,u(t),wi,X

u(t), t
)

+ V u
i (t + 1, κi(wi,X

u(t), d,u(t)))

1 + ri
.
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Therefore, a closed loop equilibrium profile Ψ can be found by solving the set of
inclusions

Ψ
(
i, t,Xu(t),wi

) ∈ Argmaxd∈Di(t,wi ,X
u(t))Pi

(
d,u(t),wi,X

u(t), t
)

+ V u
i (t + 1, κi(wi,X

u(t), d,u(t)))

1 + ri

for a.e. i ∈ I, with the coupling condition u = U(Ψ OL).
Various versions of Bellman equation, together with appropriate terminal condi-

tions, can be found in e.g. Bellman [41], Blackwell [42], Stokey and Lucas [43] or
Wiszniewska-Matyszkiel [44].

5.2 Karush–Kuhn–Tucker Necessary Conditions

Similarly to the previous procedure, if we want to calculate an open loop Nash equi-
librium, we first solve the optimization problem of player i, given choices of the
remaining players resulting in u ∈ U.

Player i faces the maximization problem of

T∑

t=0

Pi(ω(t), u(t),W
ω,u
i (t),Xu(t), t)

(1 + r)t
+ Gi(W

ω,u
i (T + 1),Xu(T + 1))

(1 + r)T +1

over the set of open loop strategies ω admissible at u.
To formulate the necessary conditions, we assume that both functions κi and Pi

are continuously differentiable with respect to player’s own strategy and private state
variable.

Obviously, the necessary conditions for the optimization of player i depend on the
form of the sets of available actions Di(t,wi, x).

In the simplest case, when these sets are open, or the optimal strategy is always
an interior point, we can write Karush–Kuhn–Tucker necessary conditions using the
discrete time Hamiltonian Hu

i : D × W × T × R → R. With the costate variable of
player i denoted by μi ∈ R, it has the form

Hu
i (d,wi, t,μi) := Pi

(
d,u(t),wi,X

u(t), t
) · (1 + r)−t + μi · κi

(
wi,X

u(t), d,u(t)
)
.

In this case, the necessary conditions for an open loop strategy ω optimizing the
payoff of player i, given u, are for every t

0 = ∂Hu
i (ω(t),Wi(t), t,μi(t + 1))

∂d
,

Wi(t + 1) = ∂Hu
i (ω(t),Wi(t), t,μi(t + 1))

∂μi

,

(
which equals κi

(
Wi(t),X

u(t),ω(t), u(t)
))

,

with Wi(0) = w̄i,
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μi(t) = ∂Hu
i (ω(t),Wi(t), t,μi(t + 1))

∂wi

,

with μi(T + 1) = ∂Gu
i (Wi(T + 1),Xu(T + 1)) · (1 + r)−T −1

∂wi

.

For a dynamic open loop profile which is an open loop Nash equilibrium, these
necessary conditions hold for almost every player.

As in the case of Bellman equation, the players’ equation system is coupled by
u = U(Ω).

This form of necessary conditions can be easily derived from the standard La-
grange multipliers technique.

However, the sets Di(t,wi, x) are usually not open and we cannot assume that,
at every time instant t , ωi(t) is an interior point of Di(t,Wi(t),X(t)). In such a
case, depending on the form of Di , additional multipliers appear, corresponding to
constraints active at this point.

In the case when we have an open set D and Di(t,wi, x) = {d ∈ D : h(d,wi, x) ≥
0}, for a differentiable function h with nonzero gradient, the Hamiltonian is replaced
by a Hamiltonian with constraints

Hc
i

u
(
d,wi, t,μi, νi

) := Pi(d,u(t),wi,X
u(t), t)

(1 + r)t

+ μi · κi

(
wi,X

u(t), d,u(t)
) + νi · h(

d,wi,X
u(t)

)
.

The necessary condition contains all the conditions as before, with H replaced by
Hc and, additionally, νi(t) ≥ 0, and a complementary slackness condition νi(t) = 0
whenever h(ω)(t,Wi(t),X

u(t)) > 0.
If there are more inequality constraints and the constraints satisfy some constraint

qualification, e.g. gradients of active constraints are linearly independent at each point
of Di(t,Wi(t),X

u(t)), then we have similar necessary conditions, but we have to
consider more multipliers.

Although the formulation of Karush–Kuhn–Tucker necessary conditions using
Hamiltonian or Hamiltonian with constraints is not a standard formulation in nonlinear
optimization, it seems quite common in dynamic optimization (see e.g. Başar, Older
[15]), and they can be easily derived from the standard textbook form of Karush–
Kuhn–Tucker necessary conditions (e.g. like in Bazaraa, Sherali and Shetty [45]).

6 Examples

6.1 Common Ecosystem Without Private State Variables

We consider a simple model of a common renewable resource exploited by many
users for whom it is the only source of income.

Example 6.1 The statistic function is the aggregate i.e. g(i, d) := d .
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The function describing the behavior of the external ecosystem is φ(x,u) := (1 +
ζ )x − u, for ζ > 0, called the regeneration rate, and the initial state is x̄ > 0.

Since the ecosystem is a common property, the private states do not change and
they are skipped for simplicity of notation.

The set of available strategies is Di(t, x) := [0, cx], where c is a constant satisfy-
ing c ≤ 1 + ζ (which guarantees that the players are not able to extract more than is
available).

The instantaneous payoff functions are Pi(d,u, x, t) := lnd , with ln 0 understood
as −∞. The discount rate is r > 0, identical for all the players.

The time horizon is either a finite T or +∞.
In the case of finite T , the terminal payoff is Gi(x) := lnx.

In this example, the so called “tragedy of the commons” is present in a very drastic
form. In the case of a continuum of players, considered in this paper, the equilibrium
extraction of the players can be high enough to lead to total destruction of the resource
in finite time and, consequently, players’ payoffs are equal to −∞, if possible.

Proposition 6.1

(a) If c = 1 + ζ , then no open/closed loop dynamic profile such that a set of players
of positive measure get finite payoffs is an equilibrium, and every dynamic profile
yielding the destruction of the system in finite time (i.e. there exists t̄ such that
∀t > t̄ , X(t) = 0) is an open/closed loop Nash equilibrium. For every open/closed
loop Nash equilibrium, for a.e. player, the payoff is −∞.

(b) If c < 1 + ζ , then the only (up to measure equivalence of the open loop forms)
closed loop Nash equilibria are profiles Ψ such that Ψ OL(i, t) = c · XΨ (t) for
all i, t .

(c) If c < 1 + ζ , then the only (up to measure equivalence) open loop Nash equilib-
rium is the profile Ω such that Ω(i, t) = c · x̄ · (1 + ζ − c)t (the profile defined
by the equation Ω(i, t) = c · XΩ(t)).

Proof By the decomposition Theorem 3.3, every open or closed loop Nash equilib-
rium of finite payoff is composed of static Nash equilibria.

The only static Nash equilibria are the static profiles at which almost every player
extracts the maximal amount c · x.

In the case when c < 1 + ζ , every profile is such that the trajectory of the state
variable X(t) is bounded from below by x̄ ·(1+ζ −c)t and from above by x̄ ·(1+ζ )t .
This gives a finite upper bound for player’s payoff and a finite lower bound for the
player’s optimal payoff, given the behavior of the remaining players resulting in the
global state variable trajectory X.

Therefore, a profile in which a set of players of positive measure gets payoff −∞
cannot be a Nash equilibrium and every Nash equilibrium has finite payoff. This
completes the proof of (b) and (c).

In (a), if there existed a profile with finite payoffs for almost every player, then it
would consist of static Nash equilibria, and, consequently, almost every player would
extract c = 1 + ζ . This would result in X(1) = 0 and payoff equal to −∞ for almost
every player—a contradiction. �
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6.2 An Analogue with Finitely Many Players

For comparison, we present a simple example showing what happens if instead of a
continuum we consider finitely many players.

For maximal simplicity of calculations, we consider a two stage game (i.e. T = 1).
We consider a modification of Example 6.1 with n players.

We can think of it as of the initial game in which the continuum of players is
divided into n identical subsets, players in one subset choosing identical decision in
order to maximize the payoff of the whole subset, treated as one decision maker.

Such an approach often appears in economics, especially in macroeconomics, and
it is called the representative consumer approach. In cooperative game theory such
sets are called coalitions. A measure 1

n
is assigned to each of such artificial players.

Therefore, the aggregates are preserved and the statistic of a profile remains the same.

Example 6.2 This example differs from Example 6.1 only by the measure space of
players: the set of players is {1, . . . , n} with a measure (by a slight abuse of notation
let us denote it also by λ) being the normed counting measure, i.e. λ(i) := 1

n
.

We consider only the case of c = 1 + ζ and T = 1.
All the other objects remain the same (we do not even have to change notation

in the definition of the statistic, since we can understand the integral as the Stieltjes
integral with respect to the new λ).

So, as before, we have an open loop Nash equilibrium problem and a closed loop
Nash equilibrium problem—the only difference in their definitions is that the statistic
is the mean of n strategies (instead of the Lebesgue integral over the unit interval).

Nevertheless, it should be noted that each player has a non-negligible impact on
u and, consequently, on Xu. Therefore, when using Bellman equation or Karush–
Kuhn–Tucker conditions, as described in Sect. 5, for the optimization problem of
player i, we have to treat X as his/her private state variable and do not lose influence
of his/her own strategy on the statistic.

We are only interested in symmetric equilibria.
First, we consider the game with open loop strategies.
In order to find a symmetric open loop Nash equilibrium, we first look for the best

response of player i to a profile Ω in which the other players choose Ω(i, t) = bt for
t = 0,1.

The optimization problem of player i in this case is to find an open loop strategy
ω maximizing

lnω(0) + 1

1 + r
lnω(1) + 1

(1 + r)2
lnX(2),

with

X(2) = (1 + ζ )X(1) − 1

n
ω(1) − n − 1

n
b1

= (1 + ζ )2x̄ − 1 + ζ

n
ω(0) − (n − 1)(1 + ζ )

n
b0 − 1

n
ω(1) − n − 1

n
b1,

subject to the constraints 0 ≤ ω(0) ≤ (1 + ζ )X(0) and 0 ≤ ω(1) ≤ (1 + ζ )X(1).
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After calculation of the best response, we substitute ω(i) = bi and we get the
unique symmetric open loop equilibrium:

ω(0) = n(1 + ζ )x̄(1 + r)2

1 + n(1 + r) + n(1 + r)2
= Ω(i,0)

and

ω(1) = n(1 + ζ )2x̄(1 + r)

1 + n(1 + r) + n(1 + r)2
= Ω(i,1),

with all constraints satisfied with strict inequalities.
In order to find a closed loop Nash equilibrium, we use the Bellman equation.

Again, we assume that the remaining n − 1 players choose identical closed loop
strategies Ψ (i, t, x) = bt (x), we find ψ(t, x) as the best response of player i to them.
Afterwards, we substitute bt (x) = ψ(t, x). The value function of player i, Vi , is cal-
culated recursively, starting with time 2.

Vi(2, x) = lnx.
Using this, we can calculate

Vi(1, x) = max
d∈[0,cx]

lnd + 1

1 + r
V

(

2, (1 + ζ )x − 1

n
d − n − 1

n
b1(x)

)

,

which gives Vi(1, x) = 2+r
1+r

lnx + const, necessary to find the optimum at time 0, the
optimum at time 1 is attained at

d = min

(
(1 + r)[n(1 + ζ )x − (n − 1)b1(x)]

2 + r
, (1 + ζ )x

)

,

and, after substituting d = b1(x), we get

ψ(1, x) = (1 + r)n(1 + ζ )x

1 + n(1 + r)
= Ψ (i,1, x).

And, finally,

Vi(0, x) = max
d∈[0,cx]

lnd + 1

1 + r
V

(

1, (1 + ζ )x − 1

n
d − n − 1

n
b0(x)

)

,

the optimum is attained at

d = min

(
(1 + r)2[n(1 + ζ )x − (n − 1)b0(x)]

2 + r + (1 + r)2
, (1 + ζ )x

)

,

and, after substituting d = b0(x), we get

ψ(0, x) = (1 + r)2n(1 + ζ )x

2 + r + n(1 + r)2
= Ψ (i,0, x).

As we can see that, for any finite n, these two kinds of equilibria are not equivalent
in any sense.
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We can also see that, as n tends to infinity, the closed loop Nash equilibria in this
example converge to a closed loop Nash equilibrium of Example 6.1, while there is
no such convergence for open loop Nash equilibria.

6.3 Common Ecosystem with Private State Variables

In this example, we reformulate Example 6.1 in another direction, in order to take
into account the fact that instantaneous payoffs can be partly invested to build a kind
of capital which increases effectiveness of exploitation. This is described by a one
dimensional private state variable wi .

Example 6.3 The set of players is, as in Example 6.1, the unit interval with Lebesgue
measure.

The set of players’ strategies is two-dimensional, since the amount of extracted
resource is divided in order to be used in two ways: consumption or investment. So,
we have decisions d = [ d1

d2

] ∈ R
2+ with d1 denoting consumption and d2 – investment.

The availability condition becomes Di(t,wi, x) = {d ∈ R
2+ : d1 + d2 ≤ wi · x},

where the private state variables, wi ≥ 0, have some initial conditions defined by a
measurable function i 	→ w̄i > 0.

The statistic function is the aggregate of the exploitation, i.e. the sum of both
coordinates of strategy g(i, d) := d1 + d2.

The utility of consumption remains logarithmic, which partly defines the instan-
taneous payoff functions. However, since players can increase their constraint on
exploitation, it cannot be guaranteed that they do not want to extract more than is
available, i.e. that u ≤ (1 + ζ ) · x. In such a case, the extractions have to be pro-
portionally reduced to the highest admissible level, which leads to the instantaneous
payoff function

Pi(d,u, x, t) :=
{

lnd1 if u ≤ (1 + ζ ) · x,

ln d1(·1+ζ )·x
u

otherwise

(again with ln 0 understood as −∞).
The function determining the behavior of the global state variable is

φ(x,u) :=
{

(1 + ζ )x − u if u ≤ (1 + ζ ) · x,

0 otherwise,

while for the private state variables we have

κi(wi, x, d,u) :=
{

wi + e · d2 if u ≤ (1 + ζ ) · x,

wi + e · d2(·1+ξ)·x
u

otherwise.

We consider both infinite and finite time horizons with G(x) := lnx.

Proposition 6.2

(a) If
∫

I
w̄idλ(wi) ≥ 1 + ξ , then no open/closed loop dynamic profile such that a

set of players of positive measure get finite payoffs is an equilibrium, and every
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dynamic profile yielding the destruction of the system in finite time (i.e. such that
∃t̄ ≤ T ∀t > t̄ X(t) = 0) is an open/closed loop Nash equilibrium. For every
open/closed loop Nash equilibrium, for a.e. player, the payoff is −∞.

(b) Let us consider an open/closed loop Nash equilibrium with finite payoffs. For
its open loop form Ω , for a.e. i and every t , we have (Ω(i, t))1 + (Ω(i, t))2 =
WΩ

i (t) · XΩ(t).
(c) Every open/closed loop profile satisfying X(t) = 0 for some t ∈ T, is an

open/closed loop Nash equilibrium.

Proof (a) and (b). Assume that there exists an open loop Nash equilibrium profile Ω

such that the set of players with finite payoffs is of positive measure.
This implies that XΩ(t) > 0 for every t ∈ T.
Let us consider the optimization of player i and his/her strategy at some time

instant t̄ .
Either Ω1(i, t̄) + Ω2(i, t̄) = WΩ

i (t̄) · XΩ(t̄) is satisfied, or Ω1(i, t̄) + Ω2(i, t̄) <

WΩ
i (t̄) · XΩ(t̄).
If the latter holds, player i can improve his/her instantaneous payoff at time t̄

without changing any other instantaneous payoff by replacing Ω1(i, t̄ ) by (WΩ
i (t̄) ·

XΩ(t̄) − Ω2(i, t̄)).
If such players constitute a set of positive measure, then the profile is not a Nash

equilibrium.
Otherwise, u(Ω)(t̄) ≥ (1 + ζ )XΩ(t̄). Therefore, XΩ(t̄ + 1) = 0 and the payoff is

−∞.
For closed loop profiles, the proof follows from the previous reasoning and the

fact that for a closed loop profile that is a closed loop Nash equilibrium, its open loop
form should be an open loop Nash equilibrium.

(c) Assuming the remaining players behave according to this profile, the payoff
of every player is −∞, whatever strategy he/she chooses, so he/she cannot improve
his/her payoff. �

Proposition 6.3 Let T be finite. For every u ∈ U such that for every t ≤ T + 1,
Xu(t) > 0, the best response of player i to u has the open loop form ω which is
unique, and there exist real constants μ(t) (for t = 0, . . . , T + 1), positive constants
ν1(t) and nonnegative constants ν2(t) (for t = 0, . . . , T ), such that the following sys-
tem of equations is satisfied for t = 0, . . . , T :

ω1(t) = 1

ν1(t) · (1 + r)t
,

ω2(t) = Wi(t) · Xu(t) − ω1(t),

ω2(T ) = 0,

μ(t + 1)e = ν1(t) − ν2(t),

with ν2(t) = 0 whenever ω2(t) > 0,

μ(t) = μ(t + 1) + ν1(t)X
u(t),

with μ(T + 1) = 0,
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Wi(t + 1) = Wi(t) + e · ω2(t),

with Wi(0) = w̄i .

Proof First, we focus on open loop strategies only.
To find the optimal strategy of player i, we can use an appropriate form of Karush–

Kuhn–Tucker conditions.
We have two kinds of inequality constraints which can be active at the optimum:

ω1(t) + ω2(t) ≤ Wi(t)X
u(t), which we rewrite as Wi(t)X

u(t) − ω1(t) − ω2(t) ≥ 0
and we assign to this constraint a nonnegative multiplier ν1(t); and
ω2(t) ≥ 0, to which we assign a nonnegative multiplier ν2(t).

Constraint qualifications hold—the gradients of all the active constraints are lin-
early independent.

The Hamiltonian with constraints is Hc
i

u(d,wi, t,μ, ν1, ν2) := lnd1
(1+r)t

+ μ(wi −
ed2) + ν1(wiX

u(t) − d1 − d2) + ν2d2.
The equations are an immediate consequence of Karush–Kuhn–Tucker necessary

conditions.
The multipliers ν1 are strictly positive, since ν1(t) = 1

ω1(t)(1+r)t
, with ω1(t) strictly

positive.
We also get ω2(T ) = 0, since ν2(T ) > 0.
Note that the instantaneous payoff is strictly concave, while all the other functions

of the model are linear in both player’s strategy and private state variable, so the
necessary condition is also sufficient and the maximum is unique.

On the other hand, it exists, since we optimize an upper semi-continuous function
over a compact set. �

Proposition 6.4 Let us consider the case of finite T and the initial w̄i identical for
all the players.

Every Nash equilibrium profile with open loop form Ω such that XΩ(t) > 0 for ev-
ery t ≤ T + 1, satisfies the condition for a.e. i, Ω(i, ·) = ω for the open loop strategy
ω defined in Proposition 6.3, given u = ω1 + ω2.

Proof First, let us consider an open loop profile Ω that is an open loop Nash equilib-
rium.

If w̄i are identical for all players, then every player faces the same optimization
problem, which has a unique solution, equal to ω defined in Proposition 6.3 for u =
U(Ω).

If the profile is a Nash equilibrium, then the payoff of a.e. player is optimal, i.e., in
our case, a.e. player chooses a strategy equal to ω from Proposition 6.3. The statistic
of a profile at which players’ strategies are identical and equal to ω for a.e. player is
equal to ω1 + ω2.

For closed loop profiles it is immediate by the above reasoning and Theo-
rem 4.1. �
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7 Conclusions and Further Research

In this paper, equivalence between open loop and closed loop Nash equilibria in a
wide class of discrete time dynamic games with a continuum of players has been
proven.

Besides the general theory, its implications for the simplification of methods for
calculating Nash equilibria of both kinds have been shown.

The results have been used to solve various problems concerning exploitation of a
common renewable resource. Besides two examples of such games with a continuum
of players, an analogue of one of them with finitely many players has been examined
to show substantial differences in results and methods that can be used.

An obvious generalization of the results obtained in this paper can be obtained by
extending the notion of a closed loop strategy to a strategy dependent not only on time
and current values of state variables, but also on a part of, or even the whole, history
of the global variables (the statistic and the global state variable), player’s own past
actions and trajectory of his/her private state variable observed at time t . The results
proven in this paper remain valid and the proofs follow almost the same lines, only
the notation becomes much more complicated.

Another way to continue this work is to derive an equivalence result for differential
games with a continuum of players.

Such games without private state variables were considered by the author in the
papers Wiszniewska-Matyszkiel [11, 14], in which equivalence between a dynamic
equilibrium (open or closed loop, respectively) and a sequence of static equilibria
under strong assumptions, like those cited in Theorem 3.2, was proven. On the basis
of the results contained therein, an equivalence result can easily be proven. Neverthe-
less, it is weaker than the results obtained in this paper. Even in this simpler class of
games, serious measurability problems appear, which require additional assumptions
and the main difficulties in proofs are related to measurability problems.
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