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Abstract We present several improvements of the full-Newton step infeasible
interior-point method for linear optimization introduced by Roos (SIAM J. Optim.
16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step
and several centering steps. We use a more natural feasibility step, which targets the
μ+-center of the next pair of perturbed problems. As for the centering steps, we apply
a sharper quadratic convergence result, which leads to a slightly wider neighborhood
for the feasibility steps. Moreover, the analysis is much simplified and the iteration
bound is slightly better.
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1 Introduction

We consider the linear optimization (LO) problem in the standard form

(P) min{cTx : Ax = b, x ≥ 0},
with its dual problem

(D) max{bTy : ATy + s = c, s ≥ 0}.
Here A ∈ Rm×n, b, y ∈ Rm, and c, x, s ∈ Rn. Without loss of generality, we assume
that rank(A) = m. The vectors x, y, s are the vectors of variables.

In [1], a new infeasible interior-point method (IIPM) is proposed to solve the above
LO problems. It differs from the classical IIPMs (e.g. [2–9]) in that the new method
uses only full steps (instead of damped steps), which has the advantage that no line
searches are needed. Our motivation for the use of full-Newton steps is that, though
such methods are less greedy, the best complexity results for interior-point methods
are obtained for such methods. In our approach, as in [6], the size of the residual
vectors reduces with the same speed as the duality gap.

This paper is organized as follows. First, we present some results for feasible
interior-point methods (IPMs), as these will be used to analyze the centering steps
of our IIPM. Then, we present our improved full-Newton step IIPM. Each main step
of the method consists of a feasibility step and several centering steps. We use a more
natural feasibility step than in [1, 10], which targets the μ+-center (see Remark 3.1).
Moreover, for the centering steps, we apply a sharper quadratic convergence result,
which results in a slightly wider neighborhood for the feasibility steps. Besides these,
the analysis is much simplified and the iteration bound is slightly better. Finally, we
give some concluding remarks.

2 Full-Newton Step for Feasible IPMs

In preparation for dealing with our IIPM, we recall briefly the notions of central path
and of a feasible full-Newton step, as well as some of their properties. We refer to
[11, 12] for more details, where it is also described how to obtain a polynomial-time
algorithm by using such steps. To solve problems (P) and (D), one needs to find a
solution of the following system of equations:1

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = 0.

In these optimality conditions, the first two constraints represent primal and dual fea-
sibility, whereas the last equation is the so-called complementarity condition. The

1We denote by 0 and e (used later) the zero vector and the all-one vector, respectively, of appropriate size.
Moreover, if x, s ∈ Rn, then xs denotes the componentwise or Hadamard product of the vectors x and s.
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nonnegativity constraints in the feasibility conditions make the problem already non-
trivial: only iterative methods can find solutions of linear systems involving inequality
constraints. The complementarity condition is nonlinear, which makes it extra hard
to solve this system.

2.1 Central Path

IPMs replace the complementarity condition with the so-called centering condition
xs = μe, where μ may be any positive number. This yields the system

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = μe. (1)

Surprisingly enough, if this system has a solution for some μ > 0, then a solution
exists for every μ > 0, and this solution is unique. This happens if and only if prob-
lems (P) and (D) satisfy the interior-point condition (IPC); i.e., if (P) has a feasible
solution x > 0 and (D) has a solution (y, s) with s > 0 (see, e.g., [11]). If the IPC is
satisfied, then the solution of (1) is denoted by (x(μ), y(μ), s(μ)) and is called the
μ-center of (P) and (D). The set of all μ-centers forms a path, which is called the
central path. As μ goes to zero, x(μ), y(μ), s(μ) converge to optimal solutions of
problems (P) and (D). Of course, the system (1) is still hard to solve, but by applying
Newton’s method one can easily find approximate solutions.

2.2 Newton Step

We proceed to describe the Newton method for solving (1) with μ fixed. Given any
x and (y, s), we want to find displacements �x, �y, �s such that

A(x + �x) = b,

AT(y + �y) + s + �s = c,

(x + �x)(s + �s) = μe.

Neglecting the quadratic term �x�s in the left-hand side of the third equation, we
obtain the following linear system of equations in the search directions �x, �y, �s:

A�x = b − Ax,

AT�y + �s = c − ATy − s,

s�x + x�s = μe − xs. (2)

Since A has full row rank, and since the vectors x and s are positive, one may easily
verify that the coefficient matrix in the linear system (2) is nonsingular. Hence, this
system uniquely defines the search directions �x, �y, �s. These search directions
are used in all existing primal-dual (feasible and infeasible) IPMs.
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If x is primal feasible and (y, s) is dual feasible, then

b − Ax = 0,

c − ATy − s = 0,

whence the above system reduces to

A�x = 0,

AT�y + �s = 0,

s�x + x�s = μe − xs, (3)

which gives the usual search directions for feasible primal-dual IPMs. Then the new
iterates are given by

x+ = x + �x,

y+ = y + �y,

s+ = s + �s.

An important observation is that �x lies in the null space of A, whereas �s belongs
to the row space of A. This implies that �x and �s are orthogonal, i.e., �xT�s = 0.
As a consequence, we have the important property that, after a full-Newton step, the
duality gap assumes the same value as at the μ-centers, namely nμ.

Lemma 2.1 (See [11], Lemma II.47) After a primal-dual Newton step, one has
(x+)Ts+ = nμ.

We use the quantity δ(x, s;μ) to measure the proximity of a feasible triple (x, y, s)

to the μ-center (x(μ), y(μ), s(μ)). Following [1, 11], this quantity is defined as fol-
lows:2

δ(x, s;μ) := δ(v) := 1

2
‖v − v−1‖, where v :=

√
xs

μ
. (4)

It is crucial for us to know the effect on δ(x, s;μ) of a full-Newton step targeting
the μ-center of (P) and (D). For that purpose, Theorem II.50 of [11] was used in [1].
This theorem states that, if δ := δ(x, s;μ) ≤ 1, then the primal-dual Newton step is
feasible, i.e., x+ and s+ are nonnegative; moreover, if δ < 1, then x+ and s+ are
positive and

δ(x+, s+;μ) ≤ δ2√
2(1 − δ2)

.

This result implies that the Newton process is locally quadratically convergent, and
has been crucial in the analysis in [1]. We use a tighter upper bound for δ(x+, s+;μ),

2The short-hand notation in the definition of v means that v is the vector obtained by taking square roots
of the elements of the vector xs/μ.
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which provides a slightly wider neighborhood for the feasibility step of our IIPM. As
the previous lemma, we recall it without proof.

Theorem 2.1 ([11], Theorem II.52) If δ := δ(x, s;μ) < 1, then

δ(x+, s+;μ) ≤ δ2√
2(1 − δ4)

.

As a result, the following corollary follows trivially.

Corollary 2.1 If δ := δ(x, s;μ) ≤ 1
4√2

, then δ(x+, s+;μ) ≤ δ2.

3 Full-Newton Step IIPM

In the case of an infeasible method, we call the triple (x, y, s) an ε-optimal solution
of (P) and (D) if the 2-norms of the residual vectors b − Ax and c − ATy − s do
not exceed ε, and if the duality gap satisfies xTs ≤ ε. In this section, we present an
infeasible-start algorithm that generates an ε-optimal solution of (P) and (D), if it
exists, or establishes that no such solution exists.

3.1 Perturbed Problems

We start with choosing arbitrarily x0 > 0 and (y0, s0), with s0 > 0 such that x0s0 =
μ0e for some (positive) number μ0. We denote the initial values of the primal and
dual residuals r0

b and r0
c respectively as

r0
b = b − Ax0,

r0
c = c − ATy0 − s0.

For any ν with 0 < ν ≤ 1 we consider the perturbed problem (Pν ), defined by

(Pν ) min{(c − νr0
c )Tx : Ax = b − νr0

b , x ≥ 0},
and its dual problem (Dν ), which is given by

(Dν ) max{(b − νr0
b )Ty : ATy + s = c − νr0

c , s ≥ 0}.
We note that, if ν = 1, then x = x0 yields a strictly feasible solution of (Pν ) and
(y, s) = (y0, s0) yields a strictly feasible solution of (Dν ). We conclude that, if ν = 1,
then (Pν ) and (Dν ) satisfy the IPC.

Theorem 3.1 ([12, Theorem 5.13]) The original problems (P) and (D) are feasible
if and only if, for each ν satisfying 0 < ν ≤ 1, the perturbed problems (Pν ) and (Dν )
satisfy the IPC.
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In the sections to follow, we assume that (P) and (D) are feasible. Only in Sect. 4.5
will we discuss how our algorithm can be used to detect infeasibility or unbounded-
ness of (P) and (D). It may be worth noting that, if x0 and (y0, s0) are feasible for (P)
and (D), then (Pν ) ≡ (P) and (Dν ) ≡ (D) for each ν ∈ (0,1].

3.2 Central Path of the Perturbed Problems

Let (P) and (D) be feasible and 0 < ν ≤ 1. Then, Theorem 3.1 implies that the per-
turbed problems (Pν ) and (Dν ) satisfy the IPC; hence, their central paths exist. This
means that the system

Ax = b − νr0
b , x ≥ 0, (5)

ATy + s = c − νr0
c , s ≥ 0, (6)

xs = μe

has a unique solution for every μ > 0. This unique solution is denoted by
(x(μ, ν), y(μ, ν), s(μ, ν)) and is the μ-center of the perturbed problems (Pν ) and
(Dν ). In what follows, the parameters μ and ν always satisfy the relation μ = νμ0.
Thus, we may denote the μ-centers of the perturbed problems (Pν ) and (Dν ) simply
as (x(ν), y(ν), s(ν)).

Note that, since x0s0 = μ0e, x0 is the μ0-center of the perturbed problem
(P1) and (y0, s0) is the μ0-center of the perturbed problem (D1). In other words,
(x(1), y(1), s(1)) = (x0, y0, s0).

3.3 An Iteration of the Algorithm

We just established that, if ν = 1 and μ = μ0, then x = x0 is the μ-center of the
perturbed problem (Pν ) and (y, s) = (y0, s0) is the μ-center of (Dν ). This pair is our
initial iterate.

We measure proximity to the μ-center of the perturbed problems by the quantity
δ(x, s;μ) as defined in (4). Thus, initially we have δ(x, s;μ) = 0. In what follows,
we assume that, at the start of each iteration, just before the feasibility step, δ(x, s;μ)

is smaller than or equal to a (small) threshold value τ > 0. So, this is certainly true at
the start of the first iteration.

Now, we describe one (main) iteration of our algorithm. Suppose that, for some
μ ∈ (0,μ0], we have (x, y, s) satisfying the feasibility conditions (5) and (6) with
ν = μ/μ0 and such that xTs = nμ and δ(x, s;μ) ≤ τ . We reduce μ to μ+ =
(1 − θ)μ, with θ ∈ (0,1), and find a new iterate (x+, y+, s+) that satisfies (5) and
(6), with ν replaced by ν+ = (1 − θ)ν = μ+/μ0, and such that (x+)Ts+ = nμ+ and
δ(x+, s+;μ+) ≤ τ .

To be more precise, this is achieved as follows. Each main iteration consists of a
feasibility step and a few centering steps. The feasibility step serves to get an iterate
(xf , yf , sf ) that is strictly feasible for (Pν+ ) and (Dν+ ) and close to their μ+-center
(x(ν+), y(ν+), s(ν+)). In fact, the feasibility step is designed in such a way that
δ(xf , sf ;μ+) ≤ 1/

4
√

2, i.e., (xf , yf , sf ) lies in the quadratic convergence neigh-
borhood with respect to the μ+-center of (Pν+ ) and (Dν+ ). Then we can easily get
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an iterate (x+, y+, s+) that is strictly feasible for (Pν+ ) and (Dν+ ) and such that
(x+)Ts+ = nμ+ and δ(x+, s+;μ+) ≤ τ , just by performing a few centering steps
starting from (xf , yf , sf ) and targeting the μ+-center of (Pν+ ) and (Dν+ ).

In the following, we describe the feasibility step in detail. Suppose that we have a
strictly feasible iterate (x, y, s) for (Pν ) and (Dν ). This means that (x, y, s) satisfies
(5) and (6), with ν = μ/μ0. We need displacements �f x, �f y, �f s such that

xf = x + �f x,

yf = y + �f y,

sf = s + �f s,

are feasible for (Pν+ ) and (Dν+ ). One may verify easily that (xf , yf , sf ) satisfies
(5) and (6), with ν replaced by ν+ = (1 − θ)ν, only if the first two equations in the
following system are satisfied:

A�f x = θνr0
b , (7)

AT�f y + �f s = θνr0
c , (8)

s�f x + x�f s = (1 − θ)μe − xs. (9)

The third equation is inspired by the third equation in the system (3) that we used to
define the search directions for the feasible case, except that we target the μ+-centers
of (Pν+ ) and (Dν+ ).

Remark 3.1 For (9), we use the linearization of xf sf = (1− θ)μe, which means that
we are targeting the μ+-center of (Pν+ ) and (Dν+ ). While in [1], the linearization of
xf sf = μe is used (targeting the μ-center), and in [10], the linearization of xf sf =
xs is used (targeting the old xs). As our aim is to calculate a feasible solution to
(Pν+ ) and (Dν+ ), which should also lie in the quadratic convergence neighborhood to
its μ+-center, the direction used here is more natural and better intuitively.

We conclude that, after the feasibility step, the iterate satisfies the affine equa-
tions (5) and (6), with ν = ν+. The hard part in the analysis is to guarantee that xf

and sf are positive and satisfy δ(xf , sf ;μ+) ≤ 1/
4
√

2.
After the feasibility step, we perform a few centering steps in order to get iter-

ate (x+, y+, s+) which satisfies (x+)Ts+ = nμ+ and δ(x+, s+;μ+) ≤ τ . By using
Corollary 2.1, the required number of centering steps can be obtained easily. Indeed,
assuming δ = δ(xf , sf ;μ+) ≤ 1/

4
√

2, after k centering steps we will have iterates
(x+, y+, s+) that are still feasible for (Pν+ ) and (Dν+ ) and satisfy

δ(x+, s+;μ+) ≤
(

1
4
√

2

)2k

.

From this, one deduces easily that δ(x+, s+;μ+) ≤ τ holds after at most

2 +
⌈

log2

(
log2

1

τ

)⌉
(10)

centering steps.
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3.4 Algorithm

A more formal description of the algorithm is given in Algorithm 1.

Algorithm 1 A Full-Newton Step Infeasible IPM for LO

Step 0: Accuracy parameter ε > 0;
update parameter θ , 0 < θ < 1;
threshold parameter τ > 0;
starting point (x0, y0, s0) with x0 > 0, s0 > 0 and x0s0 = μ0e;
x := x0; y := y0; s := s0; μ := μ0; ν := 1.

Step 1: Feasibility step: (x, y, s) := (x, y, s) + (�f x,�f y,�f s).
Step 2: Update of μ and ν: μ := (1 − θ)μ; ν := (1 − θ)ν.
Step 3: Centering step: (x, y, s) := (x, y, s) + (�x,�y,�s).
Step 4: If δ(x, s;μ) > τ , go to Step 3.
Step 5: If max(xTs,‖b − Ax‖,‖c − ATy − s‖) ≤ ε, stop; else, go to Step 1.

Note that, after each iteration, the residuals and the duality gap are reduced the
factor 1 − θ . The algorithm stops if the norms of the residuals and the duality gap are
less than the accuracy parameter ε.

4 Analysis of the Algorithm

Let x, y, s denote the iterates at the start of a main iteration; i.e., for some μ ∈ (0,μ0],
we have x, y, s satisfying the feasibility conditions (5) and (6) with μ = νμ0 and such
that xTs = nμ and δ(x, s;μ) ≤ τ . Recall that, at the start of the first iteration, this is
certainly true.

4.1 Feasibility Step

As we established in Sect. 3.3, the feasibility step generates new iterate (xf , yf , sf )

that satisfies the feasibility conditions for (Pν+ ) and (Dν+ ), except possibly the non-
negativity constraints. A crucial element in the analysis is to show that, after the fea-
sibility step δ(xf , sf ;μ+) ≤ 1/

4
√

2, i.e., the iterate (xf , yf , sf ) is within the neigh-
borhood where the Newton process targeting the μ+-center of (Pν+ ) and (Dν+ ) is
quadratically convergent.

Define

d
f
x := v�f x

x
, d

f
s := v�f s

s
, (11)

where v is defined in (4). We have, using (9) and (11),

xf sf = xs + (s�f x + x�f s) + �f x�f s

= (1 − θ)μe + �f x�f s

= μ
[
(1 − θ)e + d

f
x d

f
s

]
. (12)



J Optim Theory Appl (2010) 145: 271–288 279

Lemma 4.1 (See [11], Lemma II.46) The iterates (xf , yf , sf ) are strictly feasible if
and only if (1 − θ)e + d

f
x d

f
s > 0.

Proof Note that, if xf and sf are positive, then (12) makes clear that (1 − θ)e +
d

f
x d

f
s > 0, proving the only if part of the lemma. For the proof of the converse impli-

cation, we introduce a steplength α ∈ [0,1] and we define

xα = x + α�f x, sα = s + α�f s.

We then have x0 = x, x1 = xf and a similar convention for s. Hence, we have x0s0 =
xs > 0. We write

xαsα = (x + α�f x)(s + α�f s) = xs + α(s�f x + x�f s) + α2�f x�f s.

Using (4), (9), (11) gives

xαsα = xs + α[(1 − θ)μe − xs] + α2�f x�f s

= μ[(1 − α)v2 + α(1 − θ)e + α2d
f
x d

f
s ].

Now, suppose that

(1 − θ)e + d
f
x d

f
s > 0.

Then,

d
f
x d

f
s > −(1 − θ)e.

Substitution gives

xαsα > μ
[
(1 − α)v2 + α(1 − θ)e − α2(1 − θ)e

]
= μ(1 − α)

[
v2 + α(1 − θ)e

]
, α ∈ [0,1].

Since

μ(1 − α)
[
v2 + α(1 − θ)e

] ≥ 0,

it follows that xαsα > 0 for 0 ≤ α ≤ 1. Hence, none of the entries of xα and sα

vanishes for 0 ≤ α ≤ 1. Since x0 and s0 are positive, and since xα and sα depend
linearly on α, this implies that xα > 0 and sα > 0 for 0 ≤ α ≤ 1. Hence, x1 and s1

must be positive, proving the if part of Lemma 4.1. �

We proceed by deriving an upper bound for δ(xf , sf ;μ+). According to defini-
tion (4), one has

δ(xf , sf ;μ+) = 1

2

∥∥∥vf − e

vf

∥∥∥ , where vf =
√

xf sf

μ+ .

In the sequel, we denote δ(xf , sf ;μ+) by δ(vf ) and we have the following result.
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Lemma 4.2 If ‖df
x d

f
s ‖∞ < 1 − θ , then

4δ(vf )2 ≤
∥∥ d

f
x d

f
s

1−θ

∥∥2

1 − ∥∥ d
f
x d

f
s

1−θ

∥∥∞
.

Proof To simplify the notation in this proof, let z := d
f
x d

f
s

1−θ
. After division of both

sides in (12) by μ+, we get

(vf )2 = μ[(1 − θ)e + d
f
x d

f
s ]

μ+ = μ[(1 − θ)e + (1 − θ)z]
(1 − θ)μ

= e + z.

Hence, we have

4δ(vf )2 =
n∑

i=1

(
(v

f
i )2 + (v

f
i )−2 − 2

)
=

n∑
i=1

(
1 + zi + 1

1 + zi

− 2

)

=
n∑

i=1

z2
i

1 + zi

≤
n∑

i=1

z2
i

1 − |zi | ≤
n∑

i=1

z2
i

1 − ‖z‖∞
= ‖z‖2

1 − ‖z‖∞
,

where the inequalities are due to ‖z‖∞ < 1. This proves Lemma 4.2. �

4.2 First Upper Bound for θ

Because we need to have δ(vf ) ≤ 1/
4
√

2, it follows from Lemma 4.2 that it suffices
to have ∥∥ d

f
x d

f
s

1−θ

∥∥2

1 − ∥∥ d
f
x d

f
s

1−θ

∥∥∞
≤ 2

√
2. (13)

We may easily verify that

‖df
x d

f
s ‖2 ≤

(
‖df

x ‖‖df
s ‖

)2 ≤ 1

4

(
‖df

x ‖2 + ‖df
s ‖2

)2

and

‖df
x d

f
s ‖∞ ≤ 1

2

(
‖df

x ‖2∞ + ‖df
s ‖2∞

)
≤ 1

2

(
‖df

x ‖2 + ‖df
s ‖2

)
. (14)

For the moment, we assume that

‖df
x ‖2 + ‖df

s ‖2

1 − θ
< 2.

Then, ∥∥∥∥∥
d

f
x d

f
s

1 − θ

∥∥∥∥∥∞
< 1,
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whence inequality (13) holds if

1
4

( ‖df
x ‖2+‖df

s ‖2

1−θ

)2

1 − 1
2

‖df
x ‖2+‖df

s ‖2

1−θ

≤ 2
√

2.

Considering ‖df
x ‖2+‖df

s ‖2

1−θ
as a single term, and by some elementary calculations, we

obtain that (13) holds if

‖df
x ‖2 + ‖df

s ‖2

1 − θ
≤ 2

√
2

(√
1 + √

2 − 1

)
≈ 1.566. (15)

Also by Lemma 4.1 and inequality (14), the strict feasibility of (xf , yf , sf ) can be
derived from (15). In other words, the inequality (15) implies that, after the feasibility
step, (xf , yf , sf ) is strictly feasible and lies in the quadratic convergence neighbor-
hood with respect to the μ+-center of (Pν+ ) and (Dν+ ).

4.3 Upper Bound for ‖df
x ‖2 + ‖df

s ‖2

Obtaining an upper bound for ‖df
x ‖2 + ‖df

s ‖2 is the subject of this subsection. In
subsequent subsections, this will enable us to find a default value for θ .

One may easily check that the system (7)–(9), which defines the search directions
�f x, �f y, �f s, can be expressed in terms of the scaled search directions d

f
x and

d
f
s as follows:

Ād
f
x = θνr0

b , (16)

ĀT �f y

μ
+ d

f
s = θνvs−1r0

c , (17)

d
f
x + d

f
s = (1 − θ)v−1 − v, (18)

where

Ā = AV −1X, V = diag(v), X = diag(x).

From the above definition of Ā we deduce that Ā = √
μAD, where

D = diag

(
xv−1

√
μ

)
= diag

(√
x

s

)
= diag

(√
μvs−1

)
.

For the moment, let us define

rb := θνr0
b , rc := θνr0

c , r := (1 − θ)v−1 − v. (19)

With ξ = −�f y
μ

, by eliminating d
f
s from (16)–(18), we then have

√
μADd

f
x = rb, (20)
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√
μDATξ + d

f
x = r − 1√

μ
Drc. (21)

By multiplying both sides of (21) from the left with
√

μAD and using (20), it follows
that

μAD2ATξ + rb = √
μAD

(
r − 1√

μ
Drc

)
.

Therefore,

ξ = 1

μ
(AD2AT)−1

[√
μAD

(
r − 1√

μ
Drc

)
− rb

]
.

Substitution into (21) gives

d
f
x = r − 1√

μ
Drc − 1√

μ
DAT(AD2AT)−1

[√
μAD

(
r − 1√

μ
Drc

)
− rb

]

=
[
I − DAT(AD2AT)−1AD

](
r − 1√

μ
Drc

)
+ 1√

μ
DAT(AD2AT)−1rb.

To simplify notation, we denote

P = DAT(AD2AT)−1AD.

Note that P is the matrix of the orthogonal projection to the row space of the matrix
AD. Now, we may write

d
f
x = [I − P ]

(
r − 1√

μ
Drc

)
+ 1√

μ
DAT(AD2AT)−1rb.

Let (x̄, ȳ, s̄) be such that Ax̄ = b and ATȳ + s̄ = c. Then, we may write

rb = θνr0
b = θν(b − Ax0) = θνA(x̄ − x0),

rc = θνr0
c = θν(c − ATy0 − s0) = θν

(
AT(ȳ − y0) + s̄ − s0

)
.

Thus, we obtain

d
f
x = [I − P ]

(
r − θν√

μ
D

(
AT(ȳ − y0) + s̄ − s0

))
+ θν√

μ
PD−1(x̄ − x0).

Since I − P is the orthogonal projection to the null space of AD, we have

[I − P ]DAT(ȳ − y0) = 0

and the expression for d
f
x reduces to

d
f
x = [I − P ]

(
r − θν√

μ
D

(
s̄ − s0

))
+ θν√

μ
PD−1(x̄ − x0).
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To proceed, we further simplify the notation by defining

ux = θν√
μ

D−1(x̄ − x0), us = θν√
μ

D(s̄ − s0). (22)

Then, we may write

d
f
x = [I − P ](r − us) + Pux.

For d
f
s , by using (18) and the definition (19) of r , we obtain

d
f
s = r − d

f
x = r − [I − P ]r + [I − P ]us − Pux

= [I − P ]us + P(r − ux).

We denote [I −P ]r = r1 and Pr = r2, and use similar notations for the projection of
ux and us . Then, from the above expressions for d

f
x and d

f
s , we derive that

d
f
x = r1 − us

1 + ux
2, d

f
s = us

1 + r2 − ux
2 .

Therefore, using the orthogonality of vectors with different subscripts, we may write

‖df
x ‖2 + ‖df

s ‖2

= ‖r1 − us
1‖2 + ‖ux

2‖2 + ‖us
1‖2 + ‖r2 − ux

2‖2

= ‖r1‖2 + ‖us
1‖2 − 2rT

1 us
1 + ‖ux

2‖2 + ‖us
1‖2 + ‖r2‖2 + ‖ux

2‖2 − 2rT
2 ux

2

= ‖r‖2 + 2‖ux
2‖2 + 2‖us

1‖2 − 2rT
1 us

1 − 2rT
2 ux

2 .

Further by the Cauchy-Schwartz inequality, the inequality 2ab ≤ a2 + b2 and the
properties of the orthogonal projection, we obtain

‖df
x ‖2 + ‖df

s ‖2 ≤ ‖r‖2 + 2‖ux
2‖2 + 2‖us

1‖2 + 2‖r1‖‖us
1‖ + 2‖r2‖‖ux

2‖
≤ ‖r‖2 + 2‖ux

2‖2 + 2‖us
1‖2 + ‖r1‖2 + ‖us

1‖2 + ‖r2‖2 + ‖ux
2‖2

≤ 2‖r‖2 + 3
(
‖ux‖2 + ‖us‖2

)
. (23)

Since v and v−1 − v are orthogonal and since ‖v‖2 = n, we have

‖r‖2 =
∥∥∥(1 − θ)v−1 − v

∥∥∥2 =
∥∥∥(1 − θ)(v−1 − v) − θv

∥∥∥2

= (1 − θ)2
∥∥∥v−1 − v

∥∥∥2 + θ2 ‖v‖2 = 4(1 − θ)2δ2 + θ2n. (24)

Due to (22), we have

‖ux‖2 + ‖us‖2 = θ2ν2

μ

(
‖D−1(x̄ − x0)‖2 + ‖D(s̄ − s0)‖2

)
. (25)
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To proceed, we have to specify our initial iterate (x0, y0, s0). We assume that ζ > 0
is such that

‖x∗ + s∗‖∞ ≤ ζ, (26)

for some optimal solutions x∗ of (P) and (y∗, s∗) of (D); as usual, we start the algo-
rithm with

x0 = s0 = ζe, y0 = 0, μ0 = ζ 2. (27)

We are still free to choose x̄ and s̄, subject to the constraints Ax̄ = b and ATȳ + s̄ = c.
Taking x̄ = x∗ and s̄ = s∗, then the entries of the vectors x0 − x̄ and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.

Thus, it follows that

‖D−1(x̄ − x0)‖2 + ‖D(s̄ − s0)‖2

≤ ζ 2
(
‖De‖2 + ‖D−1e‖2

)
= ζ 2eT

(x

s
+ s

x

)

= ζ 2eT
(

x2 + s2

xs

)
≤ ζ 2eT

(
x2 + s2

)
mini |xisi | ≤ ζ 2

[
eT(x + s)

]2

μmini v
2
i

. (28)

Summarizing, while using (23), (24), (25), (28) and μ = νζ 2, we obtain

‖df
x ‖2 + ‖df

s ‖2 ≤ 8(1 − θ)2δ2 + 2θ2n + 3θ2
[
eT(x + s)

]2

ζ 2 mini v
2
i

. (29)

Recall that x is feasible for (Pν ) and (y, s) is feasible for (Dν ), with xTs = nμ

and, moreover δ(x, s;μ) ≤ τ ; i.e., these iterates are close to the μ-centers of (Pν ) and
(Dν ). Based on this information, we present the following two lemmas to estimate an
upper bound for eT(x + s) and a lower bound for mini v

2
i .

Lemma 4.3 Let x and (y, s) be feasible for the perturbed problems (Pν ) and (Dν ),
respectively, with xTs = nμ, ζ as defined in (26), and (x0, y0, s0) as in (27). We then
have

eT(x + s) ≤ 2nζ.

Proof Let (x∗, y∗, s∗) be optimal solutions satisfying (26). Then, from the feasibility
conditions (5) and (6) of the perturbed problems (Pν ) and (Dν ), it is easily seen that

A
[
x − νx0 − (1 − ν)x∗] = 0,

AT
[
y − νy0 − (1 − ν)y∗] +

[
s − νs0 − (1 − ν)s∗] = 0.

This implies that

[
x − νx0 − (1 − ν)x∗]T [

s − νs0 − (1 − ν)s∗] = 0.
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By expanding the above equality and using the fact that (x∗)Ts∗ = 0, we obtain

ν
(
(x0)Ts + (s0)Tx

) =xTs + ν2(x0)Ts0 − (1 − ν)(xTs∗ + sTx∗)

+ ν(1 − ν)
(
(x0)Ts∗ + (s0)Tx∗).

Since (x0, y0, s0) are as defined in (27), we have

(x0)Ts + (s0)Tx = ζeT(x + s),

(x0)Ts0 = nζ 2,

(x0)Ts∗ + (s0)Tx∗ = ζeT(x∗ + s∗).

Due to (26), we have

eT(x∗ + s∗) ≤ nζ.

Furthermore,

xTs = nμ = νζ 2n and xTs∗ + sTx∗ ≥ 0.

Substitution of these relations gives

νζeT(x + s) ≤ νζ 2n + nν2ζ 2 + ν(1 − ν)nζ 2 = 2nνζ 2.

This implies the lemma. �

Lemma 4.4 (See [11], Theorem II.62) Let ρ(δ) = δ + √
1 + δ2. Then,

1

ρ(δ)
≤ vi ≤ ρ(δ), 1 ≤ i ≤ n.

Substituting the results of the above two lemmas into (29), we obtain

‖df
x ‖2 + ‖df

s ‖2 ≤ 8(1 − θ)2δ2 + 2θ2n + 12θ2n2ρ(δ)2

≤ 8δ2 + 2θ2n + 12θ2n2ρ(δ)2. (30)

4.4 Value for θ

We have found so far that δ(vf ) ≤ 1/
4
√

2 certainly holds if the inequality (15) is
satisfied. Then, by (30), inequality (15) holds if

8δ2 + 2θ2n + 12θ2n2ρ(δ)2 ≤ 2
√

2

(√
1 + √

2 − 1

)
(1 − θ).

We set τ = 1/16. Obviously, the left-hand side of the above inequality is increasing
in δ, due to the definition

ρ(δ) = δ +
√

1 + δ2.
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Using this, one may easily verify that, if

τ = 1

16
, θ = 1

4n
, (31)

then the above inequality is satisfied.
Then, according to (10), with τ as given, after the feasibility step at most

2 +
⌈

log2

(
log2

1

τ

)⌉
= 4 (32)

centering steps suffice to get an iterate (x+, y+, s+) that satisfies δ(x+, s+;μ+) ≤ τ .

4.5 Complexity Analysis

In the previous sections, we have found that, if at the start of an iteration the iter-
ate satisfies δ(x, s;μ) ≤ τ , with τ = 1/16, then after the feasibility step, with θ as
defined in (31), the iterate satisfies δ(xf , sf ;μ+) ≤ 1/

4
√

2.
According to (32), at most 4 centering steps suffice to get the iterate (x+, y+, s+)

that satisfies δ(x+, s+;μ+) ≤ τ again. So, each main iteration consists of at most 5
so-called inner iterations, in each of which we need to compute a search direction
(for either a feasibility step or a centering step).

It has become customary to measure the complexity of an IPM by the required
number of inner iterations. In each main iteration, both the duality gap and the norms
of the residual vectors are reduced by the factor 1 − θ . Hence, using (x0)Ts0 = nζ 2,
the total number of main iterations is bounded above by

1

θ
log

max{nζ 2,‖r0
b‖,‖r0

c ‖}
ε

.

Taking the value of θ as in (31), the total number of inner iterations is bounded above
by

20n log
max{nζ 2,‖r0

b‖,‖r0
c ‖}

ε
.

Thus, we may state without further proof the main result of the paper.

Theorem 4.1 If (P) and (D) are feasible and ζ > 0 is such that ‖x∗ + s∗‖∞ ≤ ζ for
some optimal solutions x∗ of (P) and (y∗, s∗) of (D), then after at most

20n log
max{nζ 2,‖r0

b‖,‖r0
c ‖}

ε

inner iterations, the algorithm finds an ε-optimal solution of (P) and (D).

Note that this bound is slightly better than that in [1, Theorem 4.8].
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Remark 4.1 The above iteration bound is derived under the assumption that there ex-
ists some optimal solutions of (P) and (D) with ‖x∗ + s∗‖∞ ≤ ζ . One might ask what
happens if this condition is not satisfied. In that case, during the course of the algo-
rithm, it may happen that, after some main steps, the proximity measure δ (after the
feasibility step) exceeds 1/

4
√

2, because otherwise there is no reason why the algo-
rithm would not generate an ε-optimal solution. So, if this happens, it tells us that the
problems (P) and (D) do not have any optimal solution that satisfies ‖x∗ + s∗‖∞ ≤ ζ .
Recall that our starting point is defined in (27), which depends on ζ .

5 Concluding Remarks

We presented an improved full-Newton step IIPM for LO, which is motivated by [1].
The new method can be viewed as a homotopy method, which turns out to have many
nice properties. First, as the name suggests, it uses full steps (instead of damped
steps), so there is no need to calculate the step length (which is always 1). Second,
the iterates always lie in the quadratic convergence neighborhood with respect to
some perturbed problems, which makes the algorithm more stable. Third, during the
solution process, both “feasibility” and “optimality” are improved at the same rate,
which is also credited by Potra [6]. Finally, the iteration bound coincides with the
currently best-known bound for IIPMs.

Each main step of our method consists of a feasibility step and at most 4 cen-
tering steps. The new feasibility step is more natural than in [1, 10], as it targets the
μ+-center with respect to the next pair of perturbed problems. For the centering steps,
a sharper quadratic convergence result is used, which results in a wider neighborhood
for the feasibility steps. Moreover, the analysis is much simplified and the iteration
bound is slightly better. For our iteration bound, we mention that it does not depend
on the big O notation.

Our new method admits the best known iteration bound, but from a practical per-
spective a severe shortcoming is its worst-case-oriented nature: it will always perform
according to its worst-case theoretical complexity bound. A topic of further research
is the use of adaptive updates, as described in [11]. This may enhance significantly
the practical performance of the algorithm; thereby, we may take profit of the wider
neighborhood for the feasibility steps that is proposed in this paper. Another topic
for further research is the generalization to other classes of optimization problems, as
second-order cone optimization, semidefinite optimization, and also P∗-matrix LCP.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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