
J Optim Theory Appl (2009) 141: 429–443
DOI 10.1007/s10957-008-9477-0

Isotonic Regression under Lipschitz Constraint

L. Yeganova · W.J. Wilbur

Published online: 7 January 2009
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract The pool adjacent violators (PAV) algorithm is an efficient technique for
the class of isotonic regression problems with complete ordering. The algorithm
yields a stepwise isotonic estimate which approximates the function and assigns max-
imum likelihood to the data. However, if one has reasons to believe that the data were
generated by a continuous function, a smoother estimate may provide a better ap-
proximation to that function.

In this paper, we consider the formulation which assumes that the data were gen-
erated by a continuous monotonic function obeying the Lipschitz condition. We pro-
pose a new algorithm, the Lipschitz pool adjacent violators (LPAV) algorithm, which
approximates that function; we prove the convergence of the algorithm and examine
its complexity.

Keywords Isotonic regression · Lipschitz continuous function · PAV algorithm

1 Introduction

Given a set of observations, one wants to describe the data by fitting them to a model
that describes accurately the relationship between the dependent and independent

Communicated by P.M. Pardalos.

The authors were supported by the Intramural Research Program of NIH, National Library
of Medicine.

L. Yeganova (�) · W.J. Wilbur
Computational Biology Branch, National Center for Biotechnology Information, National Library
of Medicine, National Institutes of Health, Bldg. 38A, 8600 Rockville Pike, Bethesda, MD 20894,
USA
e-mail: yeganova@ncbi.nlm.nih.gov

W.J. Wilbur
e-mail: wilbur@ncbi.nlm.nih.gov

mailto:yeganova@ncbi.nlm.nih.gov
mailto:wilbur@ncbi.nlm.nih.gov

430 J Optim Theory Appl (2009) 141: 429–443

variables. The model may be used to predict unknown values of the dependent vari-
able for a given value of the independent variable. Such problem falls into the realm
of regression analysis. In parametric regression, the data are assumed to come from
an a priori known class of functions and one wants to find the parameters of the
function that yield the best fit to the data. Assuming that the knowledge is correct, the
parametric approach provides a simple solution to the regression problem, but it may
not capture the whole functional form or the wrong functional form might be chosen.
We are, on the other hand, interested in a nonparametric regression where a regression
function is estimated without a priori knowledge of the parametric form. In particu-
lar, we consider here an isotonic regression problem under complete ordering, which
belongs to the class of shape-constrained nonparametric regression problems.

The pool adjacent violators algorithm [1–4] is a simple and efficient algorithm of-
ten used for the problems of isotonic regression with complete order, which provides
an estimate in linear time. PAV does not yield a smooth curve but rather a collection
of blocks where the regression function is constant. However, one could have reasons
to believe that the data originated from some continuous function. Hence, despite the
fact that PAV provides the estimate that minimizes the squared error from the data,
one may be able to find a better estimate for the function.

In this paper, we consider the formulation where the regression function is required
to be isotonic and Lipschitz continuous, which we refer to as isotonic regression
under the Lipschitz constraint. We develop the LPAV algorithm, which is a PAV-based
algorithm providing the maximum likelihood solution under the Lipschitz constraint.
We claim that the solution to that problem can yield a better approximation to the
function that generated the data than does PAV.

Section 2 of the paper reviews the PAV algorithm, deals with theoretical issues
pertinent to defining the algorithm, and provides the pseudocode. Section 3 general-
izes the PAV algorithm to be applied to the groups of points that we call knots, instead
of individual data points. Section 4 formulates the isotonic regression problem under
the Lipschitz constraint, develops the LPAV algorithm, establishes its complexity as
O(N2), and provides the pseudocode for its efficient implementation. We conclude
the paper with some remarks.

2 Pool Adjacent Violators

Let p(s) be an unknown monotonically nondecreasing function of some ordered pa-
rameter s that describes a process. Suppose that the data {(si ,wi,pi)}Ni=1 are ran-
domly sampled from that process, where si is a parameter value, wi is the weight
or importance of the data at si , and pi is the observed value associated with si . In
general, such data will be noisy and the monotonic nature of p(s) may not be appar-
ent. The pool adjacent violators (PAV) algorithm provides a simple and efficient way
to derive that monotonically nondecreasing estimate of p(s) which minimizes the
squared error of an estimate to the data. Under the appropriate assumptions where
p(s) can be interpreted as a probability function, the monotonically nondecreasing
estimate derived by PAV assigns maximum likelihood to the data. We may assume
that no parameter value si is repeated in the set. If a value is repeated we simply re-
place the points that have the given value si with a single new point that has the same

J Optim Theory Appl (2009) 141: 429–443 431

parameter value, for which pi is the weighted average of the contributing points and
wi is the sum of the weights for the contributing points. We may assume also that the
data are in order so that i < j ⇒ si < sj .

We seek a set of values {yi}Ni=1 that solve the following problem:

min
N∑

i=1

wi(pi − yi)
2, (1)

s.t. yi ≤ yi+1, ∀i = 1, . . . ,N − 1. (2)

This is a convex quadratic programming problem and we will refer to the set of
constraints (2) as monotonicity constraints.

If the sequence {yi}Ni=1 is a constant value y, then by elementary calculus it is easy
to show that y is the weighted average of p’s and this is the unique optimal solution.
If the y’s are not constant, they partition the set N into K nonempty subsets, called
solution blocks, defined by a set of intervals {[r(j), t (j)]}Kj=1 on each of which y

takes a different constant value. That value of y is determined as an optimal solution
to the following subproblem of (1):

min
t (j)∑

i=r(j)

wi(pi − y)2. (3)

By setting the derivative of the function (3) to zero, we obtain the solution to the
convex optimization problem as

yi =
∑t (j)

k=r(j) wkpk

∑t (j)

k=r(j) wk

, r(j) ≤ i ≤ t (j). (4)

Let us now consider the properties of these solution blocks. If we split the solution
block [r(j), t (j)] at any n, r(j) ≤ n < t(j) into two consecutive intervals [r(j), n]
and [n + 1, t (j)], then the corresponding solutions satisfy the inequality

∑n
k=r(j) wkpk∑n

k=r(j) wk

≥
∑t (j)

k=r(j)
wkpk

∑t (j)

k=r(j) wk

≥
∑t (j)

k=n+1 wkpk

∑t (j)

k=n+1 wk

, r(j) ≤ n < t(j). (5)

This must be true because if one of the ≥ in inequality (5) could be replaced by <

for some n, then the interval [r(j), t (j)] could be broken at that n into two solution
blocks with solutions as given by (4) that would yield a better fit to the problem (1).
We call the intervals that satisfy condition (5) irreducible. The solution blocks are
then irreducible intervals. We will use the terms interval and block to mean the same
thing.

Solution blocks are maximal among irreducible intervals. This follows from the
observation that the union of two overlapping irreducible intervals is again an irre-
ducible interval. That uniquely characterizes solution blocks as being maximal irre-
ducible intervals. It remains to show that these solution blocks exist and how to find
them.

432 J Optim Theory Appl (2009) 141: 429–443

We refer to two blocks [r(j), t (j)] and [r(j + 1), t (j + 1)], where r(j + 1) =
t (j) + 1, as consecutive. Two consecutive blocks are in order if

∑t (j)

k=r(j) wkpk

∑t (j)

k=r(j) wk

= yt(j) < yr(j+1) =
∑t (j+1)

k=r(j+1) wkpk

∑t (j+1)

k=r(j+1) wk

;

otherwise, if yt(j) ≥ yr(j+1), we say that they are adjacent violators. Given such a
pair of irreducible violators, it is elementary to show that the pair can be pooled into
the union of two blocks to obtain a larger irreducible block. This is the origin of the
PAV algorithm. One begins with all blocks consisting of a single integer (degenerate
blocks) from 0 to N −1. All such blocks are irreducible by default. Adjacent violators
are then pooled until this process of pooling is no longer applicable. The end result
is a partition of the space into solution blocks, which provide the solution to the
minimization problem (1) and (2).

As an illustration of irreducible blocks and pooling to obtain them, consider the
set of points

w0 = 1, . . . , w5 = 1,

p0 = 1

4
, p1 = 1

3
, p2 = 1

5
, p3 = 1

4
, p4 = 1, p5 = 1

2
.

One pass through this set of points identifies that the pairs [1] and [2] as well as
[4] and [5] are adjacent violators. When these are pooled, they each result in single
blocks of weight 2 with the values 4

15 and 3
4 , respectively. A second pass through the

resulting set of four blocks shows that [1, 2] and [3] are now adjacent violators. They
may be pooled to produce the block [1, 3] and the value 47

180 . There are no further
violations so that the solution blocks are [0], [1, 3], [4, 5].

Since this is a convex problem with a unique optimum, the order in which the
blocks are pooled does not affect the solution. However, to obtain an efficient im-
plementation of PAV one must pool in a careful way. The scheme that we use is to
keep two arrays of pointers of length N . An array of forward pointers F keeps at
the beginning of each irreducible interval the position of the beginning of the next
interval (or N). Likewise, an array of backward pointers B keeps at the beginning
of each interval the position of the beginning of the previous interval (or −1). The
pseudocode for the algorithm follows.

2.1 PAV Algorithm

Step 1. Set F [k] := k + 1 and B[k] := k − 1, 0 ≤ k < N .
Step 2. Set up two first-in-first-out (FIFO) queues Q1 and Q2; populate Q1 with

numbers 0, . . . ,N − 1, in order, while Q2 remains empty.
Step 3. Define a marker variable m and a flag.
Step 4. While Q1 is nonempty, perform Steps 5–7.
Step 5. Set m := 0.
Step 6. While Q1 is nonempty, execute:

Step 6A. k := dequeue Q1.

J Optim Theory Appl (2009) 141: 429–443 433

Step 6B. If (m ≤ k) perform steps 6C–6D.
Step 6C. Set flag := 0.
Step 6D. While F [k] �= N and intervals at k and F [k] are adjacent violators

execute:
Step 6D.I. Pool intervals beginning at k and F [k].

Step 6D.II. Set u := F [F [k]].
Step 6D.III. Redefine F [k] := u.
Step 6D.IV. If (u < N) redefine B[u] := k.
Step 6D.V. Update m := u.

Step 6D.VI. Update flag := 1.
Step 6E. If (flag = 1 and B[k] ≥ 0) enqueue B[k] in Q2.

Step 7. Interchange Q1 and Q2.

This is an efficient algorithm because, after the initial filling of Q1, an element is
added to Q2 only if a pooling took place. Thus, in a single invocation of the algorithm,
a total of no more than N elements can ever be added to Q2 and this, in turn, limits
the number of tests for violators to at most 2N . We may conclude that both the space
and time complexity of PAV are O(N). See also [5].

The PAV algorithm may be applied to any totally ordered data set and it assigns
the estimates to those parameter values that actually occur in the data set. For general
applications, it will be important to interpolate and extrapolate from these assigned
values to obtain a function estimate for any parameter value. We do this in perhaps
the simplest possible way based on the values of p just defined on the points {si}Ni=1.

2.2 Interpolated PAV

Given the function p defined on the set {si}Ni=1, assume that the points come from a
totally ordered space S and are listed in increasing order. Then, for any s ∈ S, define
p(s) as follows:

Case 1: If s = si , set p(s) = p(si).
Case 2: If s < s1, set p(s) = p(s1).
Case 3: If si < s < si+1, set p(s) = p(si)+p(si+1)

2 .
Case 4: If s > sN , set p(s) = p(sN).

While one could desire a smoother interpolation, the above interpolation is gen-
eral. In cases where the data are sparse and the parameter s belongs to the real num-
bers, one might replace Case 3 by a linear interpolation. However, there is no optimal
solution to the interpolation problem without further assumptions. Therefore Sect. 2.2
simply lets us generalize and apply this learning to new parameter values not seen in
the training data.

3 Extended PAV

Suppose that, as in the previous section, we have ordered data {(si ,wi,pi)}Ni=1 sam-
pled from some process and we wish to derive a monotonically nondecreasing es-
timate of the function p(s) describing that process. Assume now that the data are

434 J Optim Theory Appl (2009) 141: 429–443

partitioned into fixed segments of one or several contiguous points, and with each of
these segments we associate a knot. The knot Ki defined on a segment [kr(i), kt (i)],
is an object that starts at kr(i), ends at kt (i), and is characterized by the tuple of
heights [hkr(i)+1, . . . , hkt (i)], where each hj , kr(i) + 1 ≤ j ≤ kt (i), is the difference
between two consecutive ordinate values of adjacent points in the knot and is positive.

Define the height of the knot Ki as the sum h[Ki] = ∑kt (i)
j=kr(i)+1 hj . The height of

the knot is positive except for the degenerate case of a knot, i.e. the knot consisting
of a single point, whose height is zero. The tuple of heights [hkr(i)+1, . . . , hkt (i)] is
assumed fixed for any knot. A knot determines a quadratic distance function,

Ki(x) =
kt (i)∑

j=kr(i)

wj

(
pj −

[
x +

j∑

u=kr(i)+1

hu

])2

. (6)

The x that minimizes the distance function Ki(x) is called the knot solution. It is
obtained by setting the derivative of the convex function (6) to zero,

x =
∑kt (i)

j=kr(i) wjpj − ∑kt (i)
j=kr(i)+1 hj

∑kt (i)
u=j wu

∑kt (i)
j=kr(i) wj

. (7)

The knot solution is referred to as x(Ki) and may be thought of as determining the
position of the leftmost point in the knot Ki . Combined with the tuple of heights,
x(Ki) determines uniquely the solution at all points within the knot Ki as follows:

xj = x(Ki) +
j∑

u=kr(i)+1

hu

is the solution at the point j , kr(i) ≤ j ≤ kt (i). Note that the solution at the rightmost
point of the knot kt (i) is just

xkt (i) = x(Ki) + h[Ki].

Thus, the fixed tuple of heights represents a restriction on the solution, and once
x(Ki) is found, all values within the knot are uniquely defined. That characterizes
the knot as a rigid object that can shift up and down moving all the points in the knot
at once.

Assume now that knots represent the finest possible partition of the set and we
would like to derive a monotonically nondecreasing estimate of p(s) by applying the
PAV algorithm to the knots {Ki}Gi=1. We are looking for a set of values {yi}Gi=1 that
solve the problem

min
G∑

i=1

Ki(yi), (8)

s.t. yi + h[Ki] ≤ yi+1, ∀i = 1, . . . ,G − 1. (9)

J Optim Theory Appl (2009) 141: 429–443 435

This is again a convex optimization problem, as we are minimizing a convex function
(a sum of quadratic functions) over a convex set, so the local solution of the problem
is also global.

If the set of optimal solutions for the knots {x(Ki)}Gi=1 is feasible, i.e. the con-
straints x(Ki)+h[Ki] ≤ x(Ki+1) are satisfied for all pairs of consecutive knots, then
{x(Ki)}Gi=1 is the optimal solution to the problem (8), (9) and partitions the set into G

subsets, each consisting of a single knot. In general, {yi}Gi=1 and {x(Ki)}Gi=1 are not
the same.

Define a block of knots BKj to be a set of consecutive knots {Ki}t (j)

i=r(j). Solution

for the block BKj is the set of values {yi}t (j)

i=r(j) that solve the following problem:

min
t (j)∑

i=r(j)

Ki(yi), (10)

s.t. yi + h[Ki] ≤ yi+1, ∀i = r(j), . . . , t (j) − 1. (11)

For any q , 0 ≤ q < t(j) − r(j) the block BKj can be partitioned into two blocks

{Ki}r(j)+q

i=r(j) and {Ki}t (j)

i=r(j)+q+1, whose corresponding solutions are {yi}r(j)+q

i=r(j) and

{yi}t (j)

i=r(j)+q+1. Define the block of knots to be irreducible if any partition of the

block into two blocks produces solutions {yi}r(j)+q

i=r(j) and {yi}t (j)

i=r(j)+q+1 that satisfy
the inequality

yr(j)+q + h[Kr(j)+q] ≥ yr(j)+q+1, ∀q,0 ≤ q < t(j) − r(j).

These solutions are called violating solutions.
A block of knots determines a distance function BKj(y)

BKj (y) =
t (j)∑

i=r(j)

Ki

(
y +

i−1∑

p=r(j)

h[Kp]
)

. (12)

It is a quadratic function and therefore it has a unique unconstrained minimum. The
y that minimizes the distance function BKj(y) is called the block solution and is
found by setting the derivative of the convex function (12) to zero. We will refer to
it as y(BKj). It may be thought of as determining the position of the leftmost knot
in the block BKj . Minimizing the distance function for the block BKj is equivalent
to finding the minimum of (10) under the assumption that constraints (11) are active,
i.e. solving the problem

min
t (j)∑

i=r(j)

Ki(yi),

s.t. yi + h[Ki] = yi+1, ∀i = r(j), . . . , t (j) − 1.

Combined with the heights of knots in the block BKj ,y(BKj) uniquely deter-
mines a value at the beginning of every knot Ki in the block BKj , as y(BKj) +

436 J Optim Theory Appl (2009) 141: 429–443

∑i−1
p=r(j) h[Kp]. To distinguish the block solution, we will denote it with a tilde as

ỹi = y(BKj) + ∑i−1
p=r(j) h[Kp],∀i = r(j), . . . , t (j), and use y(BKj) and {ỹi}t (j)

i=r(j)

interchangeably.
Let us now examine the properties of the blocks.

Theorem 3.1 A block of knots is irreducible if and only if its block solution is the
solution.

Proof Consider the block BKj = {Ki}t (j)

i=r(j). The solution for the block BKj is the

set of values {yi}t (j)

i=r(j) that solve the problem (10), (11). This solution exists and is
unique.

Let us first show that, if the block BKj is irreducible, then the block solu-
tion y(BKj) is the solution for the problem (10), (11), i.e. yi+1 = yi + h[Ki],
∀i = r(j), . . . , t (j) − 1. Assume, by contradiction, that the block solution is
not the solution, and there exists at least one q,0 ≤ q < t(j) − r(j), such that
yr(j)+q + h[Kr(j)+q] < yr(j)+q+1. Then, the block BKj can be partitioned into two

blocks {Ki}r(j)+q

i=r(j)
and {Ki}t (j)

i=r(j)+q+1 with nonviolating solutions {yi}r(j)+q

i=r(j)
and

{yi}t (j)

i=r(j)+q+1. That contradicts the fact that the block BKj is irreducible. Hence, if

the block BKj is irreducible, the block solution must be the solution.
Now let us show that, if the block solution is the solution, then the block is ir-

reducible. Let y(BKj) be the block solution and assume, by contradiction, that the
block BKj is not irreducible. Then, there exists a partition of the block BKj into two

blocks {Ki}r(j)+q

i=r(j) and {Ki}t (j)

i=r(j)+q+1 with solutions {yi}r(j)+q

i=r(j) and {yi}t (j)

i=r(j)+q+1

such that yr(j)+q + h[Kr(j)+q] < yr(j)+q+1. This contradicts the assumption that the
block solution is the solution, i.e., yr(j)+q +h[Kr(j)+q] = yr(j)+q+1. Then, the block
BKj must be irreducible. �

Let us now take a closer look at the distance function (12), that can be written as

BKj(y) =
t (j)∑

i=r(j)

Ki

(
y +

i−1∑

p=r(j)

h[Kp]
)

=
t (j)∑

i=r(j)

kt (i)∑

l=kr(i)

wl

(
pl −

(
y +

i−1∑

p=r(j)

h[Kp] +
l∑

u=kr(i)+1

hu

))2

. (13)

The derivative of the distance function BKj(y) is

∂BKj (y)/∂y = −2 ∗
t (j)∑

i=r(j)

kt (i)∑

l=kr(i)

wl

(
pl −

(
y +

i−1∑

p=r(j)

h[Kp] +
l∑

u=kr(i)+1

hu

))
.

(14)
That derivative could be thought of as the spring force; ∀l ∈ [r(j), t (j)] the weight
wl is equivalent to the spring constant and the term (pl − (y + ∑i−1

p=r(j) h[Kp] +
∑l

u=kr(i)+1 hu)) is equivalent to the distance from the equilibrium point pl at l.

J Optim Theory Appl (2009) 141: 429–443 437

The distance function itself could be thought of as the spring potential energy. The
spring is in equilibrium when the spring force is zero.

Equivalently, the minimum of the distance function is found by setting its deriva-
tive (14) to zero,

t (j)∑

i=r(j)

kt (i)∑

l=kr(i)

wl

(
pl −

(
y +

i−1∑

p=r(j)

h[Kp] +
l∑

u=kr(i)+1

hu

))
= 0.

At equilibrium, ∀q,0 ≤ q < t(j) − r(j) within the block BKj (y), the force on the
left side of q and the force on the right side are equal in value and opposite in sign

r(j)+q∑

i=r(j)

Ki

(
y +

i−1∑

p=r(j)

h[Kp]
)

= −
t (j)∑

i=r(j)+q+1

Ki

(
y +

i−1∑

p=r(j)

h[Kp]
)

. (15)

Combining that observation with the definition of irreducible block, i.e. with the fact
that any partition of the irreducible block into two blocks produces violating solutions

yr(j)+q + h[Kr(j)+q] ≥ yr(j)+q+1,

we conclude that the force on the left side of the irreducible block in equilibrium
is nonnegative and that the force on the right side is nonpositive. These forces are
exerted by the data and point toward the data.

Two consecutive blocks BKj = {Ki}t (j)

i=r(j) and BKj+1 = {Ki}t (j+1)

i=r(j+1) with cor-

responding solutions {yi}t (j)

i=r(j) and {yi}t (j+1)

i=r(j+1) are in order if yt(j) + h[Kt(j)] <

yr(j+1); otherwise, we say that they are adjacent violators. Given such violators, the
pair can be pooled into a larger block.

If the violating blocks BKj and BKj+1 are irreducible, then the following theo-
rem holds.

Theorem 3.2 Two consecutive violating irreducible blocks of knots, when pooled
together, form a larger irreducible block.

Proof Consider two consecutive violating irreducible blocks BKj = {Ki}t (j)

i=r(j)

and BKj+1 = {Ki}t (j+1)

i=r(j+1), with corresponding block solutions {ỹi}t (j)

i=r(j) and

{ỹi}t (j+1)

i=r(j+1). The blocks are adjacent violators, i.e.

ỹt (j) + h[Kt(j)] ≥ ỹr(j+1);
hence, their solutions have to be adjusted to satisfy the monotonicity constraint. Let

yt(j) = ỹt (j) − �yt(j), �yt(j) ≥ 0,

and

yr(j+1) = ỹr(j+1) + �yr(j+1), �yr(j+1) ≥ 0,

438 J Optim Theory Appl (2009) 141: 429–443

be the new values of the solution at t (j) and r(j + 1), so that the knots at t (j) and
r(j + 1) do not violate the monotonicity constraint, i.e.

yt(j) + h[Kt(j)] = yr(j+1).

Since {ỹi}t (j+1)

i=r(j+1)
is the block solution, then

ỹi+1 = ỹi + h[Ki], ∀i ∈ [r(j + 1), t (j + 1)).

Now yr(j+1) = ỹr(j+1) + �yr(j+1) and ỹr(j+1)+1 are adjacent violators. From (15),
we know that, ∀q,0 ≤ q < t(j) − r(j), the data on the right side of q exert non-
positive force pushing down the right side of the irreducible block BKj+1, and
hence ỹr(j+1)+1. Then, the minimum energy subject to the monotonicity constraint is
achieved at

yr(j+1)+1 = yr(j+1) + h[Kr(j+1)].
That argument is true along the whole block BKj+1, as positive shift in the left side
of an irreducible block results in a cascade of adjacent violators in the right side
of the block. Using the same argument, the negative shift on the right side of the
irreducible block BKj produces a cascade of adjacent violators in the left side of

the block. Hence, the block solutions {ỹi}t (j)

i=r(j) and {ỹi}t (j+1)

i=r(j+1) will rigidly shift to

{ỹi − �yt(j)}t (j)

i=r(j) and {ỹi + �yr(j+1)}t (j+1)

i=r(j+1), such that

yr(j+1)+1 = yr(j+1) + h[Kr(j+1)].
Then, the resulting solution is the block solution, which proves that the union of two
irreducible blocks is a larger irreducible block. �

Thus, maximal irreducible blocks characterize the unique optimal solution to the
problem (8), (9). These blocks are found by pooling violating irreducible blocks into
larger irreducible blocks. One begins with all blocks consisting of a single knot; such
blocks are irreducible by default. Adjacent violators are then pooled until this process
of pooling is no longer applicable. The end result is a partition of the space into
irreducible blocks which provide the solution to the order constrained minimization
problem (8), (9).

The pseudocode for the PAV algorithm applied to the knots is similar to the one
presented in Sect. 2.1 of the paper, with the only difference that the definition of
adjacent violators for blocks of knots takes into consideration the heights of knots.

4 Pool Adjacent Violators under the Lipschitz Condition

Suppose that we wish to derive a monotonically nondecreasing estimate of the func-
tion p(s) given the ordered data {(si ,wi,pi)}Ni=1. Additionally, assume that the data
were generated by a process described by a continuous monotonically nondecreas-
ing function obeying the Lipschitz condition suggesting that the regression function

J Optim Theory Appl (2009) 141: 429–443 439

should also belong to the class of Lipschitz functions with some nonnegative para-
meter λ [6], i.e. p(s) ∈ L(λ),

L(λ) = {p : |p(r) − p(q)| ≤ λ|r − q|, for all r, q ∈ R}. (16)

In this section, we consider the problem of the isotonic regression under the Lipschitz
constraint, which we formulate as a convex quadratic programming problem. Given
the ordered data {(si ,wi,pi)}Ni=1, find a set of values {yi}Ni=1 such that

min
N∑

i=1

wi(pi − yi)
2, (17)

s.t. yi ≤ yi+1, ∀i = 1, . . . ,N − 1, (18)

yi+1 − yi ≤ λ(si+1 − si), ∀i = 1, . . . ,N − 1. (19)

We will refer to every segment [i, i + 1] as a junction. Then, the constraints (18)
and (19) provide upper and lower bounds on the difference between two consecutive
values of y at every junction,

0 ≤ yi+1 − yi ≤ λ(si+1 − si), ∀i = 1, . . . ,N − 1,

where the parameter λ determines the upper bound on the slope of the function that
we are trying to predict. Actually, we need not restrict the parameter λ to have a
constant value; instead, we may suppose that the steepness of the function is governed
by a set {λi}N−1

i=1 of N − 1 parameters, where for each i, λi restricts the slope of the
function at the junction [i, i + 1]. That assumption generalizes the set of constraints
(19), which we refer to as Lipschitz constraints, and the problem that we seek to solve
becomes

min
N∑

i=1

wi(pi − yi)
2, (20)

s.t. yi ≤ yi+1, ∀i = 1, . . . ,N − 1, (21)

yi+1 − yi ≤ λi(si+1 − si), ∀i = 1, . . . ,N − 1. (22)

Now, for each i ∈ [1,N − 1], the parameter λi determines the maximum slope of the
function at the junction [i, i + 1]. We will refer to the junctions that are within a knot
as bound junctions; otherwise, we will call them unbound junctions.

Let us now consider a knot Kj defined along a segment [kr(j), kt (j)]. The knot
can be partitioned into two knots at any bound junction within the knot. Define a knot
to be tight at a junction [i, i + 1], kr(j) ≤ i < kt (j) if the partition of the knot at that
junction results in two knots whose knot solutions violate the Lipschitz constraint at
that junction. Define a knot to be tight if it is tight at every junction in that knot.

The knot solution is found by unconstrained minimization of the corresponding
distance function, i.e. by setting the derivative of the distance function to zero, which
is equivalent to setting its force to zero. Hence at the equilibrium, the force is zero,
which implies that, at any junction within that knot, there are forces acting on both

440 J Optim Theory Appl (2009) 141: 429–443

sides of that junction that are of the same value and different signs. If the knot is
tight, the force exerted by the data on the left side is negative and on the right side is
positive; otherwise, the Lipschitz condition would not be violated if we partitioned at
that junction.

Consider now two consecutive knots Kj and Kj+1 defined along the segments
[kr(j), kt (j)] and [kr(j +1), kt (j +1)], whose corresponding knot solutions violate
the Lipschitz constraint

x(Kj+1) − (x(Kj) + h[Kj]) > λkt(j)(skr(j+1) − skt (j))

at the junction [kt (j), kr(j + 1)]. Given such a pair of violators, the two knots can
be tied into a union to obtain a larger knot, by restricting the height at the junction
[kt (j), kr(j + 1)] to

hkt(j) = ykr(j+1) − ykt (j) = λkt(j)(skr(j+1) − skt (j)). (23)

If the violating knots are tight, then the following theorem holds.

Theorem 4.1 Two consecutive tight knots, whose solutions violate the Lipschitz con-
straint, when tied together, form a larger tight knot.

Proof Consider two consecutive tight knots Kj and Kj+1, violating the Lipschitz
constraint, that have been tied. We want to show that the new knot Kj ∪ Kj+1 is also
tight.

The knot solution for Kj ∪ Kj+1 is obtained by minimizing the distance function

kt (j+1)∑

i=kr(j)

wi

(
pi −

[
x +

i∑

u=kr(i)+1

hu

])2

.

Let x(Kj ∪Kj+1) be the knot solution and let {yi}kt (j+1)

i=kr(j) be the set of values defining
the solution at every point within the knot Kj ∪ Kj+1 as

yi = x(Kj ∪ Kj+1) +
i∑

u=kr(j)+1

hu, ∀i ∈ [kr(j), kt (j + 1)].

Because the knots were tied to satisfy the Lipschitz constraint, then

yi ≥ x(Kj) +
i∑

u=kr(j)+1

hu, ∀i ∈ [kr(j), kt (j)], (24a)

yi ≤ x(Kj+1) +
i∑

u=kr(j+1)+1

hu, ∀i ∈ [kr(j + 1), kt (j + 1)]. (24b)

The original knot Kj+1(x) is tight; hence, if we partition that knot at some bound
junction [i, i + 1], kr(j + 1) ≤ i < kt (j + 1), the force acting on the left of that

J Optim Theory Appl (2009) 141: 429–443 441

junction is negative, and on the right side of it is positive. Let us now split the union
Kj ∪ Kj+1 at the same junction [i, i + 1], kr(j + 1) ≤ i < kt (j + 1) and consider
the forces on the both sides of the junction. The force on the right side of the junction
is positive because the new solution is bounded by the original solution as shown in
(24a); due to the total force at equilibrium being zero, there must be a negative force
acting on the left side of the junction. Since at the solution {yi}kt (j+1)

i=kr(j) the Lipschitz

constraint is active, then if we split the knot at any junction [i, i + 1], kr(j + 1) ≤
i < kt (j + 1), the solution will violate the Lipschitz constraint. A similar argument
holds for any junction [i, i + 1] in the knot Kj . Hence, at any junction, if we split, the
solutions violate the Lipschitz constraint. Thus, the knot Kj ∪ Kj+1 is tight. �

Let us now consider irreducible blocks of knots that characterize the solution to
the problem (17), (18) obtained by PAV. That solution is said to be tight at a bound
junction if partition of the knot at that junction results in a solution that violates the
Lipschitz constraint at that junction. A PAV solution is called a tight solution, if it is
tight at every bound junction.

Theorem 4.2 If PAV results in a tight solution violating the Lipschitz constraint at
an unbound junction, tying the knots at that junction results in another tight solution.

Proof Consider two consecutive irreducible blocks BKj = {Ki}t (j)

i=r(j) and BKj+1 =
{Ki}t (j+1)

i=r(j+1), part of PAV solution, with corresponding block solutions {ỹi}t (j)

i=r(j) and

{ỹi}t (j+1)

i=r(j+1) that are tight. Suppose that these blocks violate the Lipschitz constraint
at the unbound junction [r(j + 1) − 1, r(j + 1)],

ỹr(j+1) − (ỹt (j) + h[Kt(j)]) > λr(j+1)−1(sr(j+1) − sr(j+1)−1),

and that the knots Kt(j) and Kr(j+1) are tied to satisfy the Lipschitz constraint at that
junction. The partition of the irreducible block at any unbound junction results in two
blocks with solutions violating the monotonicity constraint. That implies that there is
a nonnegative force acting on the left side of the unbound junction and a nonpositive
force acting on the right side of it. On the other hand, we assumed that the PAV
solution is tight; hence, partition of the block at any bound junction results in blocks
with solutions violating the Lipschitz constraint at that junction implying that there is
negative force acting on the left side of the bound junction and positive force acting
on the right side of it. These suggest that, if we split the block BKj+1 = {Ki}t (j+1)

i=r(j+1)

at a bound junction and consider the segment on left side of that junction, excluding
the knot Kr(j+1) because it has been tied with the knot Kt(j), the force acting on that
segment will be at least as negative as it was with the knot Kr(j+1). Hence, if splitting
at a bound junction before produced violating solutions, splitting at that junction will
again produce violating solutions. A similar argument holds for all the knots in the
solution; therefore, the new PAV solution is tight. �

We mentioned in the proof of the above theorem that, when we tie the consecu-
tive knots Kt(j) and Kr(j+1) which are part of blocks with Lipschitz violating solu-

tions {ỹi}t (j)

i=r(j) and {ỹi}t (j+1)

i=r(j+1), there arises a nonnegative force acting on the block

442 J Optim Theory Appl (2009) 141: 429–443

{Ki}t (j)−1
i=r(j) and a nonpositive force acting on the block {Ki}t (j+1)

i=r(j+1)+1. These forces

cause changes in the solutions that may propagate to the knot Kr(j) on the left side
and the knot Kt(j+1) on the right, the margins of the initial blocks. Moreover, these
changes do not correct a Lipschitz violation at the junction [r(j) − 1, r(j)] preced-
ing the block {Ki}t (j)

i=r(j) and the junction [t (j + 2)− 1, t (j + 2)] following the block

{Ki}t (j+1)

i=r(j+1) because the new solutions {yi}t (j)−1
i=r(j) and {yi}t (j+1)

i=r(j+1)+1 for the blocks

{Ki}t (j)−1
i=r(j) and {Ki}t (j+1)

i=r(j+1)+1 are bounded by the original solutions ỹt (j)−1 ≤ yt(j)−1

and yr(j+1)+1 ≤ ỹr(j+1)+1. Hence, if the Lipschitz condition was violated at these
junctions before the knots Kt(j) and Kr(j+1) were tied, it will remain violating after
they are tied. So we have the following theorem.

Theorem 4.3 If PAV results in a tight solution violating the Lipschitz constraint at
L unbound junctions, tying the knots at one of these junctions results in a new tight
solution that violates the Lipschitz constraint in at least the same remaining L − 1
unbound junctions.

Clearly, the Lipschitz constraint is not violated at the unbound junctions within an
irreducible block of knots; it can only be violated at the unbound junctions between
two consecutive irreducible blocks of knots. If the Lipschitz constraint is violated
in more then one such unbound junction of the PAV solution, the pairs of violating
irreducible blocks may all be tied at the same time based on Theorem 4.3.

Here, we develop the LPAV algorithm, the pool adjacent violators under the Lip-
schitz constraint, which derives a monotonically nondecreasing estimate of p(s),
that finds the least-squared error estimate while satisfying the Lipschitz constraint.
The algorithm starts with all knots consisting of a single point, degenerate knots
{Ki}Ni=1, and the partition of the set of N into G nonempty irreducible blocks of
knots {BKj }Gj=1 resulting from PAV. Then, it ties the knots at the unbound junc-
tions violating the Lipschitz constraint, thus redefining the set of knots. At this point,
we have built up the knots consisting of up to two points. Now, the old solution is
dropped, PAV is applied to the modified set of knots, and the new solution is found.

This describes a single iteration of the algorithm, which continues until there are
no more pairs of consecutive irreducible blocks that violate the Lipschitz condition.
This is a finite algorithm because, at every iteration, there is at least one less unbound
junction where the Lipschitz constraint can be violated. The worst case time com-
plexity of the LPAV algorithm is O(N2), because there are at most N − 1 unbound
junctions; hence, the PAV algorithm is repeated at most N − 1 times.

In the implementation of the LPAV algorithm, we use the arrays of pointers from
the PAV, and define a new array of pointers K of length N . The array K keeps at the
beginning of each knot the position of the beginning of the previous knot.

4.1 LPAV Algorithm

Step 1. Run PAV so as to generate arrays F and B .
Step 2. Set K[k] := k − 1,1 ≤ k < N .

J Optim Theory Appl (2009) 141: 429–443 443

Step 3. Set up a FIFO queue Q1 and enqueue F(j) into Q1 in increasing order of
j,0 ≤ j < G; and set flag = 1.

Step 4. While (flag = 1) perform steps 5–8.
Step 5. Set flag := 0.
Step 6. While Q1 is nonempty execute:

Step 6A. j := dequeue Q1.
Step 6B. If the Lipschitz Constraint is violated at the junction [j − 1, j]

execute:
Step 6B.I. Tie the knots beginning at K[j] and j .

Step 6B.II. Redefine K[j + 1] := K[j].
Step 6B.III. Update flag := 1.

Step 7. If (flag > 0) run PAV so as to redefine arrays F and B .
Step 8. Reset Q1 by enqueueing F(j) into Q1 in increasing order of j,0 ≤ j < G.

Similar to PAV, the LPAV algorithm assigns an estimate only to those parameter
values that actually occur in the data set. For applications, it is important to interpo-
late and extrapolate from these assigned values to obtain a function estimate for any
parameter value. That may be done as described in Sect. 2.2.

5 Concluding Remarks

We have presented the LPAV algorithm such that, given the data, it obtains an accurate
approximation of the function that generated the data. We have shown that this is a
finite algorithm with the computational complexity of O(N2).

PAV has been used often for converting a score into a probability. Such probabil-
ities might be used in isolation or could be used as inputs to another classifier. We
believe that the LPAV algorithm may be particularly useful in the later cases, as it
provides a smoother and more accurate estimate.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empirical distribution function for
sampling with incomplete information. Ann. Math. Stat. 26, 641–647 (1954)

2. De Simone, V., Marino, M., Toraldo, G.: Isotonic regression problems. In: Floudas, C.A., Pardalos,
P.M. (eds.) Encyclopedia of Optimization, vol. 3, pp. 86–89. Kluwer Academic, Dordrecht (2001)

3. Pardalos, P.M., Xue, G.L., Yong, L.: Efficient computation of an isotonic median regression. Appl.
Math. Lett. 8, 67–70 (1995)

4. Wilbur, J., Yeganova, L., Kim, W.: The Synergy between PAV and AdaBoost. Mach. Learn. 61, 71–103
(2005)

5. Pardalos, P.M., Xue, G.L.: Algorithms for a class of isotonic regression problems. Algorithmica 23,
211–222 (1999)

6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming Theory and Algorithms. Wiley,
New York (1979)

	Isotonic Regression under Lipschitz Constraint
	Abstract
	Introduction
	Pool Adjacent Violators
	PAV Algorithm
	Interpolated PAV

	Extended PAV
	Pool Adjacent Violators under the Lipschitz Condition
	LPAV Algorithm

	Concluding Remarks
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

