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Abstract
Understanding the world around us is a growing necessity for the whole public, as citizens are required to make informed 
decisions in their everyday lives about complex issues. Systems thinking (ST) is a promising approach for developing solu-
tions to various problems that society faces and has been acknowledged as a crosscutting concept that should be integrated 
across educational science disciplines. However, studies show that engaging students in ST is challenging, especially con-
cerning aspects like change over time and feedback. Using computational system models and a system dynamics approach 
can support students in overcoming these challenges when making sense of complex phenomena. In this paper, we describe 
an empirical study that examines how 10th grade students engage in aspects of ST through computational system modeling 
as part of a Next Generation Science Standards-aligned project-based learning unit on chemical kinetics. We show students’ 
increased capacity to explain the underlying mechanism of the phenomenon in terms of change over time that goes beyond 
linear causal relationships. However, student models and their accompanying explanations were limited in scope as students 
did not address feedback mechanisms as part of their modeling and explanations. In addition, we describe specific challenges 
students encountered when evaluating and revising models. In particular, we show epistemological barriers to fruitful use 
of real-world data for model revision. Our findings provide insights into the opportunities of a system dynamics approach 
and the challenges that remain in supporting students to make sense of complex phenomena and nonlinear mechanisms.
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Introduction

Systems thinking, an approach used in many fields and 
across disciplines, supports understanding complex phenom-
ena and solving challenging problems. Science educators 
have been advocating in recent years for the integration of 
systems thinking in science education as part of an endeavor 
to prepare scientifically literate citizens who are equipped 
with thinking skills that would support them in making sense 
of the complex phenomena they experience in everyday 
life (Arndt, 2006; Assaraf et al., 2005; National Research 
Council [NRC], 2012). Modeling has been advocated as a 
promising practice that supports students in applying ST to 
make sense of a phenomenon (Arndt, 2006; Eilam, 2012; 
Yoon & Hmelo-Silver, 2017), and previous work has dem-
onstrated how modeling practices are aligned with aspects 
of systems thinking (ST) (Shin et al., 2022). In particular, 
computational models provide a promising avenue that sup-
ports students’ ST to make sense of various phenomena, 
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given the affordances that allow the computation of a web 
of interactions that would be very different to predict and 
interpret otherwise (Mandinach, 1989; Richmond, 1993). 
The authors’ work revealed opportunities and challenges 
about aspects of ST students encountered during the mod-
eling process as they use computational system modeling 
to make sense of a phenomenon. Building off that work, we 
broaden several of the ST aspects that are aligned with and 
informed by the modeling process and deepen the examina-
tion of opportunities and challenges of using computational 
system models.

Modeling is a critical practice used by scientists in their 
everyday work to make sense of the world and produce new 
knowledge. Indeed, modeling is one of the key science and 
engineering practices promoted in A Framework for K-12 
Science Education (NRC, 2012) and the Next Generation 
Science Standards (NGSS Lead States, 2013) for K-12 sci-
ence education. It is, therefore, essential that students are 
equipped with the epistemic foundations of the modeling 
process and are able to understand and evaluate scientific 
models (Acher et al., 2007; Louca & Zacharia, 2012) as 
preparation for active participation in public discourse (Ke 
et al., 2021). Lack of explicit preparation with the afore-
mentioned practices as well as nature of science and scien-
tific habits of mind (NRC, 2012; Osborne, 2014) may lead 
to misunderstanding, misinterpretation, and even denial 
of scientific research, as in the case of climate change and 
COVID-19 (Sinatra & Hofer, 2021).

Scholars distinguish between students using pre-existing  
models and students constructing their own models. The 
latter positions students as agents of knowledge who 
explain phenomena and solve problems (Lehrer et al., 2006; 
Schwarz et al., 2009). The modeling process is generally 
broken down into four practices: constructing, evaluating, 
revising, and using models (Schwarz et al., 2009). The 
advantages of students constructing models are broadly 
documented, including exposing learners to a realistic epis-
temological view of scientific knowledge and the nature 
and purpose of models as both sources of evidence and 
exploratory tools (Harrison & Treagust, 2000; Schwarz 
et al., 2017), supporting students in making sense of a phe-
nomenon (Acher et al., 2007; Windschitl et al., 2008), and 
giving students ownership of the modeling process and 
what they are figuring out (Stroupe, 2014).

Rapid technological improvements in recent years have 
enabled the introduction of computational modeling tools, 
offering students a suite of full-fledged tools to engage in  
modeling practices in which students can construct, evalu-
ate, revise, and use their models (Bielik et al., 2019; Clark &  
Ernst, 2008). Yet, despite the promising results of inte-
grating computational models, applying ST in model con-
struction still poses a challenge for students (Chi et al., 
2012; Jacobson & Wilensky, 2006; Tripto et al., 2018). 

Moreover, there is no description of how those challenges 
are aligned, if at all, with the modeling process and spe-
cific modeling practices. In this paper, we seek to describe 
the opportunities and challenges students encounter in 
applying ST during a model-building experience to make 
sense of scientific phenomena.

Theoretical Background

Systems Thinking

Systems thinking is a cognitive skill essential to support-
ing students in their efforts to make sense of complex phe-
nomena (Assaraf & Orion, 2005; Kali et al., 2003; Mathews 
et al., 2008) and has guided curriculum design policy (KMK, 
2005; NGSS Lead States, 2013). For example, systems and 
system models represent one of the crosscutting concepts 
in A Framework for K-12 Science Education (NRC, 2012), 
which acknowledges systems as both fundamental to scien-
tific thinking and a critical component of science education. 
There is a consensus about prominent aspects of ST and their 
practical manifestations (Assaraf et al., 2013; Hmelo-Silver 
et al., 2007; Sweeney & Sterman, 2000). A recent literature 
review (Shin et al., 2022) identifies five ST aspects that are 
common to a large body of work on ST.

1. Defining a system (boundaries and structure) requires 
identifying relevant components that make up a 
system, including specifying its inputs and outputs 
(Arnold & Wade, 2017; Assaraf & Orion, 2005; Stave 
& Hopper, 2007).

2. Framing problems or phenomena in terms of behavior 
over time involves considering the dynamic nature of a 
system, delays, and changes over time (Forrester, 1994; 
Richmond, 1993).

3. Engaging in causal reasoning involves specifying the 
relationships between variables and examining the 
process of constructing relationships and interactions 
between system components (Meadows, 2008; Stave & 
Hopper, 2007).

4. Identifying interconnections and feedback denotes 
considering the feedback structures formed by  
chains that loop back upon themselves, creating cir-
cular sequences of cause and effect (Haraldsson,  
2004; Richmond, 1993; Sweeney & Sterman, 2000; 
Zuckerman & Resnick, 2005).

5. Predicting system behavior based on system structure 
requires thinking of a system as a whole (Richmond, 
1993; Sweeney & Sterman, 2000), in which the network 
of relationships between the system’s components inter-
links to produce the emergent behavior of the system.
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Students’ Challenges in Applying ST

One of the most notable challenges regarding applying 
systems thinking to make sense of complex phenomena is 
students’ inclination to use linear causal chains (Assaraf & 
Orion, 2005; Grotzer et al., 2013; Jacobson & Wilensky, 
2006). Linear causal thinking is characterized by providing 
explanations in a succession of cause and effect relationships 
(Perkins & Grotzer, 2005). Though the use of linear causal 
mechanisms is useful in everyday life and in explaining some 
phenomena, it is not sufficient to account for mechanisms 
that often characterize steady states, feedback, cyclic pat-
terns, dynamic relationships, and occasional perturbations 
(Meadows, 2008), which are necessary to explain complex 
phenomena such as climate change, the spread of a disease, 
or a decline in an organism’s population. In particular, the 
inclination to use linear causal thinking is usually related 
to immediate direct cause and effect where change in one 
variable means an immediate change in something else. This 
stands in contrast with a critical aspect of systems thinking—
thinking in terms of change over time and feedback (Grotzer 
et al., 2013; Richmond, 1993; Tripto et al., 2013). For exam-
ple, students demonstrate challenges in considering change in 
processes that take place over a long period of time, such as 
evolution (Hermann, 2013), or processes that happen quickly, 
such as reaching a chemical equilibrium (Banerjee, 1991). 
Furthermore, researchers have described the habits of mind 
that coincide with linear causal thinking and are at odds with 
ST aspects. For example, Chi et al. (2012) described stu-
dents’ tendency to explain phenomena by attributing a central 
control and deterministic causality element that propels a 
sequential causal chain of events, which they named “direct 
causal schema.” However, this line of thinking was not suf-
ficient to explain the underlying mechanism in which vari-
ous elements interact simultaneously, producing an emergent 
behavior that differs from each element’s behavior or charac-
teristics (Chi, 2005; Jacobson & Wilensky, 2006; Richmond, 
1993). A promising approach to supporting students in apply-
ing systems thinking to make sense of complex phenomena 
is constructing models (Gilissen et al., 2021; Schwarz et al., 
2009; Sterman, 2002). In the next section, we elaborate on 
computational system models and their potential to support 
students’ engagement in ST.

Computational System Modeling

Computational system modeling has the potential to support 
students in learning how to solve thorny problems and make 
sense of scientific phenomena that relate to complex systems 
(Stratford et al., 1998; Chandrasekharan & Nersessian, 2015; 
Sins et al., 2009). The use of computational system models 
can enable students to explore an interconnected system of 
multiple variables to explain a phenomenon that learners 

might otherwise find very difficult to comprehend (Ainsworth,  
2008; Linn & Eylon, 2011). The most prominent advantage 
of computational system models is the ability to manipulate 
variables to generate model output (Damelin et al., 2017; 
Schwarz et al., 2007). By running simulations that generate 
an output, students can compare the model’s output to data 
available from external resources, such as empirical studies 
or their own investigations. If data obtained from the model’s 
output and data from an external source do not match, stu-
dents can revise their model or question the validity of the 
data source. Model revision at this point focuses on altering 
the inputs and relationships between variables. Students can 
iteratively refine their model, revising their model through-
out the modeling process.

Various computational system modeling tools offer differ-
ent affordances, which result in diverse learning opportuni-
ties. In some cases, students use pre-existing models, and in 
other cases, students construct their own models (Damelin 
et al., 2017; Mandinach, 1989; Tisue & Wilensky, 2004). 
We identify two main computational modeling approaches 
that support the learning of complex systems. The first is 
agent-based modeling (ABM), in which one makes sense 
of the system by analyzing interactions between individual 
constituents of the system, exploring how those interactions 
result in emergent behavior that is different from the behav-
ior that characterizes the individual constituents (Wilensky 
& Rand, 2015). The research on ABM has made significant 
contributions to supporting students in making sense of phe-
nomena and adopting an ST approach (Groeneveld et al., 
2017; Jacobson & Wilensky, 2006; Sengupta et al., 2013; 
Wilensky & Rand, 2015).

The second approach is system dynamics, which is 
another modeling approach used by scientists to explore 
phenomena and solve problems. This approach holds 
promise in supporting student learning. System dynamics 
models are based on aggregate reasoning in which interac-
tions between system components are considered as stocks 
and flows (Ossimitz, 2002; Sweeney & Sterman, 2000). 
Stocks refer to system components that can accumulate 
or deplete over time, just as containers can fill and empty. 
Flows refer to the system components that decrease or 
increase the amount in the container. System dynamic 
models allow the user to construct nonlinear interactions 
and structures such as feedback loops and to produce an 
output that represents system components that change over 
time (Forrester, 1994; Richmond, 1993, 1994; Sweeney & 
Sterman, 2000). This approach is beneficial to address two 
major aspects of systems thinking. The first is the feed-
back mechanism, which is often necessary to explain the 
behavior of complex systems (Forrester, 1994; Richmond, 
1993, 1994; Sweeney & Sterman, 2000). The concept of 
feedback can be defined as any action that causes an effect 
back to the starting point of the action (Haraldsson, 2004). 
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The second addresses a system’s change over time. Many 
phenomena require the consideration of change over time 
in which there is a time lag between the cause and effect. 
In some cases, the delay is negligible, as in certain chemi-
cal reactions, and in some cases, the time delay is thou-
sands or millions of years, as in evolution or the formation 
of a canyon (Assaraf & Orion, 2005; Grotzer, 2003; Kali 
et al., 2003; Meadows, 2008). Haraldsson (2004) con-
nects thinking in terms of change over time and feedback 
because feedback necessarily involves time in terms of a 
time lag. However, human tendency is to think in linear 
causal patterns and assign agency and responsibility to an 
event when attempting to make sense of a phenomenon 
(Galea et al., 2010; Kahneman, 2011; Resnick, 1996). This 
tendency is at the core of students’ challenges when they 
come to make sense of phenomena with innate dynamic 
aspects like erosion, evolution, the spread of disease, and 
rise in global average temperatures (Sander et al., 2006).

More research should systematically examine the oppor-
tunities that a system dynamics modeling tool can offer to 
students and which challenges still remain. Moreover, there 
is a lack of description of how such challenges and opportu-
nities align with specific modeling practices.

Modeling Practices and Their Alignment with ST Aspects

Schwarz et al. (2009) describe scientific modeling as “a 
process that allows a scientist or a learner to abstract and 
simplify a system by focusing on key characteristics of a 
system to explain and predict scientific phenomena” (p. 
633), implicitly suggesting that to make sense of a phe-
nomenon, it is helpful to think of it as a system and that a 
system is the modeling objective. Scholars have described 
aspects in which the modeling process aligns with and 
can be informed by ST while regarding ST as an inte-
gral cognitive facet of the modeling practice (Forrester, 
2007; Sterman, 2002; Weintrop et al., 2016; Wilensky & 
Reisman, 2006). Previous work (Shin et al., 2022) has 
further delineated how ST aspects align with modeling 
practices. This description is congruent with the literature 
on modeling practices, including the construction, evalu-
ation, revision, and use of a model (Martinez-Moyano 
& Richardson, 2013; Nunez-Oviedo & Clement, 2019; 
Schwarz et al., 2009; Sins et al., 2009). It is important to 
emphasize that the modeling process is dynamic and itera-
tive as students go back and forth between the practices 
(Pierson et al., 2017; Schwarz et al., 2009). For example, 
when students define relationships between variables, 
they might think about the system boundaries differently 
and, therefore, decide to add or omit a variable, thus con-
structing and revising simultaneously, or when students 
simulate a computational model and evaluate its behav-
ior, they may decide to revise their model by defining 

relationships differently. Next, we briefly describe how 
the modeling practices align with ST aspects. Because 
computational models are part of the context of our work, 
we provide examples for how the aspects are actualized 
in that context.

Constructing the Model

From an ST perspective, it is useful to think of model con-
struction primarily consisting of two modeling practices 
(Shin et al., 2022): defining system boundaries and designing 
and constructing model structure, which for clarity we refer 
to as setting relationships (between model components). 
Next, we elaborate on each practice.

Defining system Boundaries When constructing computa-
tional models to explain a phenomenon or to solve a prob-
lem, one should first determine systems’ components whose 
characteristics are mathematically represented by variables 
(Arnold & Wade, 2017; Assaraf & Orion, 2005; Stave & 
Hopper, 2007). Those variables can range across scales, as 
a foundation for explaining the mechanism that underlies 
the emergent behavior of the system (Hmelo-Silver, et al., 
2017; Levy & Wilensky, 2008). Specifically, in building 
computational systems models, scientists or students need 
to identify the input and output variables, defining variables 
that interact on a particular scale (input variables) and vari-
ables that represent the emergent behavior resulting from 
the network of interactions (output variables) (Arnold & 
Wade, 2017; Grover & Pea, 2013; Shute et al., 2017; Stave 
& Hopper, 2007).

Setting Relationships Setting relationships involves speci-
fying how a change in one variable affects one or more 
variables. This practice allows learners to examine the 
interconnected nature of the system they model (Meadows,  
2008; Stave & Hopper, 2007). Those relationships can 
vary in complexity, ranging from linear causal chain rela-
tionships to nonlinear relationships, including feedback 
that considers change over time (Assaraf & Orion, 2005; 
Grotzer et al., 2013). A model’s behavior is determined by 
the direction of the causal relationships between variables, 
how the definition of the relationships causes the value of 
one variable to affect the others, and the overall structure 
of how the variables are interconnected.

Evaluating and Revising the Model

These modeling practices encompass a continual reflection 
during the computational modeling process, which manifests 
students’ epistemological assumptions about model con-
struction (Berland et al., 2016; Pierson et al., 2017). Evalu-
ation allows learners the opportunity to run a simulation 
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and manipulate the variables (e.g., increase or decrease the 
quantity), resulting in an output that shows the effect on all 
the system’s variables. In general, revising a computational 
system model is easier than refining physical artifacts or 
illustrations (Fretz et al., 2002; Bielik et al., 2019; Nguyen & 
Santagata, 2021). We identify in the literature three observ-
able ST aspects that students use to evaluate their model: (a) 
identifying how individual cause and effect relationships 
impact the broader system’s behavior, (b) recognizing how 
various substructures within a system influence its behav-
ior (e.g., feedback structure), and (c) predicting how specific 
structural modifications change the dynamics of a system  
(Richmond, 1993; Sweeney & Sterman, 2000). Table 1 that sum-
marizes these evaluation strategies and their alignment with ST 
literature provides the rationale for focusing on these strategies.

Using the Model to Explain and Predict

This practice involves the assessment of a model as a method 
for communicating knowledge. In the context of systems 
modeling, the system’s behavior expresses the usefulness of 
the model in explaining the system. The behavior of a system 
represents the observed system’s attributes. For example, the 
rate of a chemical reaction is an attribute of the system that 
results from a set of relationships between various compo-
nents in the system, such as the concentration of reactants, 
temperature, pressure, and molecular shape. In computational 
system models, students can assess whether their model, 
which includes a network of interconnected relationships 
between variables, results in expected system behavior that 
is able to explain various conditions of the system and predict 
what happens in the case of a perturbation to the system. The 
assessment involves comparing the model’s output to other 
existing models or external data, articulating the differences 

between the model and the underlying real-world phenom-
enon and considering the limitations of their model (Schwarz 
et al., 2009). Specifically, some system models are used to 
describe and predict the behavior of a system over time, 
which renders a consideration of the dynamic nature of a 
system and its changes over time (Forrester, 1994; Keynan 
et al., 2014; Richmond, 1993).

Research Questions

This study aims to delineate the opportunities and challenges 
students encounter in applying ST aspects while modeling 
in a system dynamics approach to make sense of a phenom-
enon. Therefore, our main research question is: What are 
the opportunities and challenges students experience when 
constructing and using system dynamics models to make 
sense of a phenomenon? We focus on how students apply 
ST when using different modeling practices in the context of 
system dynamics modeling: constructing, evaluating, revis-
ing, and using the model.

Methodology

Development of Project‑Based Learning‑Aligned 
Curriculum Materials

A chemistry unit based on project-based learning (PBL) prin-
ciples (Krajcik & Blumenfeld, 2006) was co-designed by class-
room teachers and the authors of this paper. The unit aligns 
with the Next Generation Science Standards (NGSS Lead 
States, 2013) high school performance expectation HS-PS1-5 
– Apply scientific principles and evidence to provide an 

Table 1  Evaluation strategies in computational system modeling and their alignment with ST literature

Evaluation strategy ST literature

Identifying cause and effect relationships and their impact on the 
system’s behavior

Exploring multiple cause and effect relationships is a crucial 
component of systems thinking. To better understand complex 
phenomena, it is imperative to investigate how variables that do 
not have a direct impact on each other are interrelated and affect 
the system as a whole (Shin et al., 2022; Hmelo-Silver et al., 2017; 
Nguyen & Santagata, 2021)

Recognizing how substructures within a system influence its behavior Several studies have emphasized the significance of identifying 
structures within a model and the implications of those structures 
for the behavior of the system (Haraldsson, 2004; Hmelo-Silver & 
Azevedo, 2006; Hmelo-Silver et al., 2017). For instance, a circular 
structure in which a variable initiates a causal chain that loops 
back to the first variable can indicate the presence of a feedback 
mechanism

Predicting how structural modifications change the dynamics of a system Systems thinking involves thinking about change over time and considering 
a system’s dynamic equilibrium, as well as predicting potential behaviors 
of the system in response to a shift in that equilibrium (Assaraf et al., 
2013; Richmond, 1993; Stave & Hopper, 2007)
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explanation about the effects of changing the temperature or 
concentration of the reacting particles on the rate at which a 
reaction occurs. The unit focused on the kinetics of chemical 
reactions and consisted of five 80-min lesson blocks over 2 and 
a half weeks of classroom instruction (Bain & Towns, 2016). 
Before students started the unit, they discussed the purpose of 
building models and had hands-on experience with a system 
dynamics software called SageModeler for 4 h. SageModeler is 
a web-based open-source tool designed to support student learn-
ing through constructing, evaluating, revising, and using mod-
els (Bielik et al., 2018, 2020). Students used the dynamic time-
based setting in SageModeler, which utilizes a “stock and flow” 
system dynamics approach (Zuckerman & Resnick, 2005).

Students were introduced to the software and its basic 
functions and built models to explain phenomena about 
simple dynamic everyday life scenarios (e.g., bathtub water 
levels, money in the bank). At the beginning of the chemi-
cal kinetics curriculum unit, students were presented with a 
scenario of a stain on a shirt and a bleach pen that could not 
remove the stain. The driving question was, “What can you 
do to speed up the removal of a stain?” The anchoring phe-
nomenon was dissolved food coloring that gradually fades 
once bleach is added. At the beginning of the unit, students 
added their own questions about the phenomenon using a 
driving question board, which was addressed throughout the 
unit (Weizman et al., 2008). The unit introduced students to 
three key scientific principles related to the disciplinary core 
ideas found in the Framework (NRC, 2012): (1) reactions 
can occur due to a collision between molecules (i.e., reac-
tants), (2) an increase in temperature increases the frequency 
and force of these collisions, thereby increasing the reaction 
rate, and (3) higher concentrations of the reactants will result 
in an increased frequency of collisions, thereby increasing 
the rate of reaction. Initial conditions of the chemical system 
can be used to identify its emerging properties, specifically 
how changes in the initial conditions of reactants in a chemi-
cal reaction affect the rate of a reaction over time.

The scientific principles outlined above pertain to systems 
thinking concepts explored in this study. Properly defining 
the boundaries of the system is critical when investigating 
chemical reactions. To understand the phenomenon in ques-
tion, it is necessary to differentiate between reactants and 
products and to identify key variables such as temperature 
and concentration that impact the rate at which reactants are 
converted to products. Recognizing the rate of reaction as a 
crucial output variable that reflects the macroscopic behavior 
of the system is essential for comprehending the phenom-
enon and answering the curriculum unit’s driving question.

Addressing the reinforcing feedback mechanism that 
characterizes the chemical reaction between bleach and 
dye is crucial for understanding the behavior of the reaction 
rate over time. As the chances of collision between reactant 
molecules in the system increase, so does the likelihood of 

product formation, which consequently reduces the concen-
tration of reactants, and ultimately diminishes the possibil-
ity of additional collisions between reactants that result in 
product formation. This reduction is observed as a decrease 
in the rate of reaction.

Given that the phenomenon focuses on the rate of reac-
tion, which represents the change in reactants and products 
over a unit of time, it is necessary to think in terms of change 
of the system’s components over time to explain the phe-
nomenon under investigation.

The unit was administered through an online activity 
system, which embedded the SageModeler software. It 
also included science demonstration videos, simulations of 
particle behavior, and questions that aimed to help students 
construct, evaluate, revise, and use system models over 
four model revisions. Students were explicitly and often 
reminded that the goal of using SageModeler was to cre-
ate a model that supports them in answering the driving 
question. Most students worked in pairs with a few groups 
of three as they were sitting next to each other sharing one 
computer screen. The teacher walked around the class using 
probing questions and answering students’ questions. One 
of the researchers who attended the classes supported any 
technical issues that came up. The unit was arranged in a 
way that after approximately 20 min of student work on the 
computer, the teacher gathered students for a plenary discus-
sion about what was learned so far that addressed questions 
on the driving question board and invited students to add 
new questions as the learning progressed.

Throughout the unit, students collected and analyzed 
data that drove the revision of their models. The data could 
be experimental, or based on a simulation, table, or graph. 
They explored various factors that might affect reaction rate, 
including the temperature and concentrations of reactants. 
Important to note is a hands-on experience in which stu-
dents collected and analyzed real-world data using a spec-
trophotometer, entering their experimental data in a table 
in SageModeler, allowing comparison between graphs 
generated as the model’s output to those generated from 
experimental data. The activity was designed to provide 
students with the means to comprehend the emergent prop-
erties associated with each of the three key scientific ideas. 
Students conducted a number of experiments in which they 
kept a constant concentration of the reactants with a varied 
temperature of the solutions and alternatively a constant 
temperature with varied concentration. This activity also 
allowed students to generate and analyze graphs that feature 
exponential reductions in absorbance (a measure of unre-
acted dye) over time and provided them with an opportunity 
to visualize the decrease in the rate of reaction over time. 
Detailed descriptions of the unit and more information on 
how the phenomenon is represented in SageModeler can be 
found in Appendix 1.
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SageModeler Features That Support Aspects of ST

Time-based models are often challenging for students 
because they require consideration of changes in a system 
over time and include aspects that depend on feedback from 
interconnected and potentially rate-limiting factors (Sweeney 
& Sterman, 2000; Tadesse & Davidsen, 2019). SageMod-
eler’s dynamic time-based models serve as a promising plat-
form to investigate in more depth students’ engagement in ST 
aspects like feedback and change over time. As a computa-
tional model, it generates outputs, which can be represented 
as a graph showing a change of a designated variable over 
time. SageModeler also allows the ability to set causal rela-
tionships between designated variables, including the direc-
tionality (increase or decrease) and the magnitude, which is 
represented by words and an accompanying graph (“about 
the same” is a linear graph, “more and more” is a logarithmic 
graph, and “less and less” is an exponential graph). Another 
promising feature of SageModeler is that it allows learners 
to import real-world and experimental data or output from 
other expert models and compare it to simulation output gen-
erated from SageModeler. Learners can then create graphs 
from these various data sources and make decisions about 
the validity of their model. This functionality is essential 
for several reasons. First, from an epistemological stand-
point, this process allows learners to experience how com-
putational models help scientists make sense of the world. 
Second, revising models based on new data allows learners 
to experience the tentative nature of models, thus strength-
ening their metamodeling knowledge (Fortus et al., 2016; 
Schwarz & White, 2005). Finally, comparing real-world or 
experimental data and the output generated by the model 
supports learner reasoning and sensemaking (Schwarz et al., 
2009). As mentioned in the previous section, we utilized this 
unique affordance by allowing students to compare com-
puter simulation and experimental data with their models. 
For example, SageModeler automatically generated graphs 
from the uploaded experimental data, allowing the compari-
son between the graphs generated by the model students con-
structed and the experimental data. Additional information 
about SageModeler and the way its features align with the 
modeling process can be found in Appendix 2.

Participants

In the spring of 2019, the chemistry unit was enacted in 
five high school classes, taught by two science teachers, 
Mr. H. and Mr. M., and included 100 students. The high 
school was a US Midwestern STEM charter school with 
an accelerated STEM learning program. Students accepted 
to the charter school came from 16 school districts. We 
selected eight 10th grade students (seven female, one male) 
who completed the unit activities in pairs. Two pairs from 

each teacher (Groups 1–4) served as four participant groups, 
chosen based on our request to teachers to recruit students 
who tend to be more talkative and verbalize their thinking. 
The students varied with respect to individual academic 
achievements and backgrounds and are thus a representa-
tive sample of students in the classes that took part in the 
intervention. Although both teachers were experienced, 
they had different characteristics. Mr. H. had 15 years of 
teaching experience, a master’s degree in chemistry, and 
teaching certifications in chemistry and psychology. Mr. M. 
had 4 years of teaching experience, a bachelor’s degree in 
zoology, and teaching certifications in chemistry and biol-
ogy. The teachers participated in 10 h of face-to-face and 
remote professional learning via videoconference focused 
on how to support students in using SageModeler to model 
various phenomena. As part of this support, the authors 
familiarized teachers with the modeling process, practices, 
and ST jargon. Additionally, the authors conducted a reflec-
tive discussion with the teachers after each lesson.

Data Sources and Analysis

Some of the data that support the findings of this study are 
available in the supplementary material in the Appendix. 
Other data that support the findings of this research are on 
request from the corresponding author. The data are not 
publicly available due to containing information that could 
compromise research participants’ privacy/consent.

Student Models

Students constructed and revised SageModeler models in 
groups. Most groups had two students, with a few groups 
having three students. They saved their models to an 
online learning platform that allowed researchers to collect 
and examine their models. The curriculum was planned for 
students to complete four model revisions. We analyzed 
and scored the models using a quantitative rubric targeting 
two of the three modeling practices described above: defin-
ing system boundaries and setting relationships, which are 
both part of constructing and revising a model and using 
the model to explain and predict. The rubric was not used 
to assess the evaluating and revising modeling practice. 
We used screencasting software, which we describe in 
more detail below, to assess the evaluating and revising 
practice as students’ models do not provide much indica-
tion about the deliberation that took place during the itera-
tive refinement process (Shin et al., 2022). Our goal was  
to indirectly measure student use of ST through the scor-
ing of modeling practices, given our previous proposition 
that each practice involves specific aspects of ST. Due to 
its length, the rubric and the scoring method can be found 
in Appendix 3.
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The validity of the rubric was established by four internal 
scholars who have an expertise in modeling and systems 
thinking. The researchers were separately asked what mode-
ling practice and ST aspect they think each item in the rubric 
is designed to evaluate and whether they think it does. The 
researchers had a consensus on all the items. In addition, the 
rubric was sent to an advisory board that included experts in 
systems thinking and modeling. None of the board members 
reported any issue with the rubric.

To measure reliability, the researchers thoroughly dis-
cussed the scoring criteria, independently scored the fourth 
model revision (fifth model), compared scores, and reached 
a consensus. Only 8 of the 47 groups of students completed 
the fourth model revision. We started with the fourth model 
revision as it likely represented the most refined version of 
the students’ knowledge; the richness of the models allowed 
us to flesh out additional issues and potential disagreements 
between the scorers. The researchers reached an initial 90% 
agreement on the models’ evaluation and, after further 
discussion, reached full agreement. Next, two researchers 
independently scored the rest of the model revisions of all 
groups, reviewed each other’s scoring, and reached a full 
consensus after discussion about specific disagreements.

However, because most students did not get to their fourth 
model revision because of classroom time limitations, we 
decided to exclude the eight models of the groups who 
reached the fourth revision. Furthermore, we found almost 
no significant differences between the third and fourth revi-
sions. Therefore, in the results, we follow students’ modeling 
progression at four time points: initial model, first revision, 
second revision, and final model (third revision).

Student Responses on the Learning Platform

The chemical kinetics unit was administered through an 
interactive learning environment where students could enter 
their answers to various questions during the learning pro-
cess. We analyzed student responses to two questions, one 
related to the mechanism of the phenomenon and the sec-
ond related to the evaluation of the model using real-world 
data. Both questions were just prior to students’ final model 
revision (third revision). The first question was: “Explain, 
at a microscopic level, how the absorbance of the sample is 
affected over time.” We sorted the quality of the answers into 
seven levels. Students were asked to answer this question 
after they completed a hands-on experiment and obtained 
results from the spectrophotometer. The levels were based 
on Grotzer’s work on dimensions of causality (2003). The 
differences between the levels are based on a shift from a 
linear causal explanation to an explanation that considers 
change over time and feedback. The criteria for each level 
with students’ examples are shown in Table 2. Three authors 
reached an 85% and 100% inter-reliability agreement before 

and after discussion, respectively, on 47 cases (Kappa value 
0.84, P < 0.001).

The second question was: “Compare the graphs generated 
by your model and those that indicate the experiment results. 
Notice that the graphs indicate time as the independent 
variable and absorbance as the dependent variable. Do you 
notice any difference in the trend line between the graphs? 
If so, describe it.”

The rubric for evaluating the second question appears 
in Table 3. Three of the authors reached an 84% and 95% 
inter-reliability agreement before and after discussion, 
respectively, on 20 cases (Kappa value 0.694, P < 0.001). 
The significant drop in the number of cases is due to the 
fact that the teachers increased the pace towards the end 
of the unit as they felt pressure to cover other curriculum 
goals, resulting in many groups of students not completing 
the tasks that asked them to compare their model output to 
their experiment results. Thus, we did not include level zero 
in the rubric for those who did not answer the question.

Screencasts

A screencast video simultaneously captures the actions stu-
dents perform on screen including constructing their models 
as well as students’ voices using the computer’s microphone. 
The screencasts were recorded on classroom laptops and doc-
umented students’ interactions with the system modeling soft-
ware and discussions between students as they constructed, 
evaluated, revised, and used their models. Screencasts were 
recorded each time students used the modeling software. 
Approximately three screencasts were recorded for each par-
ticipant group, each 60–70 min long. The total time dedicated 
to modeling was 100–120 min.

We used screencasts for two main reasons. First, we 
wanted to capture students’ discussions to characterize the 
modeling practice of evaluating and revising. Second, we 
wanted to determine how students’ progress in evaluating 
and revising their models affects other modeling practices 
and their understanding of the phenomenon. The analysis was 
event-based, in which we looked at all student screencasts 
for specific events that demonstrate modeling practices and 
the operationalization of ST aspects. We identified events in 
which students performed model simulations and reflected 
aloud on the outcomes of the model behavior. An event was 
identified as an evaluating and revising episode if it met all 
of the following criteria: (1) students clicked the “Simulate” 
button in SageModeler, (2) students moved a slider that con-
trolled at least one variable, and (3) students verbalized their 
intentions with statements such as “So, what do you think?” 
“That works,” or “I do not understand what’s going on.” The 
screencasts also allowed us to follow teachers’ support that 
was given to the students who volunteered to take the screen-
cast because we could hear them through the microphone.
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We used ATLAS.ti 8 software to capture and mark the 
episodes. Two of the authors analyzed the screencasts. The 
authors independently identified and analyzed the evaluat-
ing and revising events. A comparison showed a complete 
agreement on the episodes in each model revision. Follow-
ing this, the two authors analyzed those episodes, identify-
ing students’ reasons for simulating the model, whether it 
was based on their own decision or initiated following a 
teacher’s suggestion. In addition, students’ reflections and 
software moves after simulating were followed. We defined 
teacher-prompted evaluating and revising events as ones in 
which the teacher explicitly told the students to test their 
model or to click the “Simulate” button. The prompts were 
obtained from an analysis of teacher-student interactions. 
The average length of such interaction was 3 min.

Student Interviews

Semi-structured interviews were conducted 2 weeks after the 
unit’s completion with four students, one from each case. 
Based on the teachers’ descriptions, the students moved on to 
learn a different concept in chemistry that was not related to 
kinetics. Each interview lasted approximately 30 min. During 
the interviews, students were asked to describe their thinking 
processes and strategies when building their final model, to 
explain how the model helped them answer the driving ques-
tion, and to share their overall experiences with the unit. A 
full transcription of the interview protocol can be found in 
Appendix 4. Interviews were recorded and fully transcribed. 
We analyzed the interviews using a set of codes, sorting the 
codes into categories, and defining relationships and patterns 
between the categories (Saldaña, 2021). We used ATLAS.ti 8 
software for analyzing the interviews. We based our primary 
coding on the four modeling practices (Schwarz et al., 2009) 
and prominent aspects of ST like thinking in terms of change 
over time, feedback mechanism, and thinking across scales. 
We also coded the interviews based on the key scientific ideas 
of the phenomenon. We searched for patterns in the data that 
examine the interconnection between modeling practices, 
ST aspects, and students’ use of key ideas to make sense of 
the phenomenon. We also looked for challenges in technical 
issues or user interface questions in addition to challenges 
that relate to ST. Additional categories emerged during the 
analysis of the interview data that relate to students’ episte-
mology about models, collaboration, interest, and motivation.

Results

We divide the results into two parts. In the first, we describe 
the results of students’ progression in the setting relationships 
modeling practice throughout the unit. In the second part, we Ta
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detail the opportunities and challenges students encountered 
when attempting to construct a time-based model and the rea-
sons that led to a shift from a linear causal explanation to an 
explanation that considers change over time and feedback. 
This analysis revealed two emerging themes. The first theme 
is related to the opportunities and challenges students’ face in 
constructing dynamic time-based models. The second theme 
is related to opportunities and challenges students face using 
real-world data when evaluating and revising their models.

Students’ Progression in the Setting Relationship 
Practice

Figure 1 shows the scoring range of students’ models 
related to the setting relationships practice at different 

time points in the unit (see Appendix 3 for the rubric). 
We defined three scoring ranges: top, middle, and  
bottom. In particular, we were interested in the points in 
which students’ scores increased or decreased between 
revisions. After comparing the models before and after  
a shift in the level of setting relationships modeling  
practice, our analysis showed that scores increased when 
students revised their model from a linear causal chain 
representation to a dynamic one (e.g., by adding collec-
tors and transfer valves). That means students set relation-
ships that properly represented the dynamic mechanism 
of the phenomenon. In this case, students represented 
the relationship between the amount of reactants and the 
amount of products as a transfer relationship rather than 
in terms of a causal relationship.

Fig. 1  Group scores for “set-
ting relationships” practice 
at four time points. Differ-
ent colors represent the three 
scoring ranges as shown. “NA” 
indicates that the students did 
not complete a model or that 
the model was not saved due to 
technical issues
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Also, we found that the main reason that hindered stu-
dents in making progress in the modeling process was set-
ting the relationship between variables in a linear causal 
chain. Moving to a more sophisticated relationship patterns 
resulted in improvement. We can identify those cases of 
improvement, especially between the initial model and the 
second revision. For example, Groups 124, 130, 136, and 
137 all showed improvements that resulted in models with 
a dynamic representation of transfer in which reactants turn 
into products.

Students’ Opportunities and Challenges

In this part, we identify two major themes. The first theme 
addresses opportunities and challenges in constructing 
dynamic models. The second theme addresses opportunities 
and challenges in using real-world data in evaluating and revis-
ing models. Each theme is further divided into two sections.

Theme 1: Opportunities and Challenges in Constructing 
Dynamic Time‑Based Models

This theme is divided into two sections. The first focuses on 
students’ challenges in representing reaction rate; the second 
shows how the simulation feature of the modeling software 
and teachers’ prompts both support students in evaluating 
and revising their model. Because the unit focuses on chemi-
cal kinetics, we were interested in determining how students 
defined changes in the reactants and products over time and 
how they represented the factors that affect reaction rate. To 
recognize time as an essential component of the system, stu-
dents needed to make sense of the rate of chemical reactions, 

but we found that students had difficulty conceptualizing rate 
in the context of the phenomenon.

Representing Reaction Rates All four participant groups 
included a “time” node in their initial models. By “time” 
students meant the “end of reaction” or “reaction com-
pletion” as the common terms used in the classroom to 
describe the time it takes for the reaction to reach equilib-
rium. (Students did not study and had limited knowledge of 
the concept of equilibrium when the unit took place.) It is 
important to note that time is part of the model simulation’s 
output that shows the change of a certain variable over time, 
rendering time as an unnecessary variable to model this 
scientific phenomenon.

Moreover, including time as a separate variable in the 
system affected students’ line of reasoning and the rela-
tionships they set in their models. Group 2’s model serves 
as an example of the linear causal line of reasoning that 
characterizes students’ initial attempts (Fig. 2a). Following 
the line of reasoning in the model, the initial concentration 
of reactants (represented by the amount of initial solution, 
which is the red dye and bleach) affects the time it takes for 
the reaction to reach equilibrium (represented in the model 
as “time taken”), and “time taken” affects the concentration 
of the products. The first relationship shows an appropriate 
relationship that ties the concentration of reactants with the 
“time taken” variable. However, the relationship in which 
“time taken” effects the “hue of color” positions time as a 
component that affects the products of the reaction. This 
line of thinking is analogous to thinking that time is a factor 
that affects the healing of a wound, when it is the various 

Fig. 2  Sample student models. a A model that represents no change over time (Group 2; initial model). b A model that represents change over 
time (Group 1; second revision). In each model, the “mini-graph” within each node shows the variable’s value over time
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factors that come into play that affect how long it takes for 
a wound to heal.

In addition, we paid close attention to students’ dis-
cussion of dynamic aspects while building their initial 
models. For all groups, the prevailing line of thinking 
regarding time was linear causal thinking. For example, 
Group 3 observed: “The red dye didn’t clear as fast as in 
the beginning (of the reaction).” Noticing that the reaction 
goes slower over time could have led to thinking about the 
mechanism that leads to the changes in the reaction rate 
over time; however, during their discussion, the students 
explained the phenomenon by following a causal chain of 
reasoning: “The amount of bleach affects the amount of 
time taken for the dye to fade, which affects how much 
red dye pigment is left.” These results show that the way 
students addressed time in their model affected their lin-
ear causal description and mechanism of the phenomenon. 
Furthermore, an analysis of students’ descriptions of the 
mechanism of the phenomenon reveals that 18 groups 
did not understand how absorbance is related to the rate 

of the chemical reaction. The most prevalent erroneous 
explanation is that the substance has a capacity to absorb 
light, and this capacity decreases over time. The rest of 
the groups used a linear causal relationship at different 
complexity levels with none addressing feedback mecha-
nisms (Fig. 3).

Despite the challenges mentioned above, we found that 
most students eventually revised their model to include 
dynamic features, and the revisions elicited students’ use of 
time-based terminology to explain their models. Three of the 
four participant groups (all except Group 2) expressed ideas 
that emphasized the dynamic properties of the phenomenon 
as they explained their model during the interviews. Those 
groups used words or phrases that included “During this…
that happens, over time, and as time goes by” to explain the 
mechanism of the phenomenon.

We further examined possible reasons that led to student 
groups deleting any variables related to “time,” identifying 
two main reasons for students’ revision of their models: 
simulating their models and teacher support.

Fig. 3  Distribution of students according to the level at which they addressed change over time in their explanation. (See Table 1 for a descrip-
tion of the levels.)
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Running a Simulation and Teacher Support Prompt Model 
Revision The screencasts show that running simulations led 
the students in Group 1 to conclude that the time variable 
did not contribute to their model, and therefore, they decided 
to delete it. The following quote from a student in Group 1 
describes how the simulation feature and teacher support 
helped them to make sense of the phenomenon.

“Well, we pretty much just decided it. Trial and error. 
We had these connected here at one point and this con-
nected to this [pointing at the screen]. Because at first, 
we didn’t have this valve [a symbol for a dynamic rela-
tionship] thing here. We had just a normal relationship. 
So, just trial and error, and conversations with Mr. H.”

When the student was asked what they meant by “trial 
and error,” they replied they ran a simulation of their model 
and moved the sliders of various variables to see if they 
matched the expected behavior.

However, conducting simulations (which we interpret as 
a sign of evaluating the model) was not as intuitive as we 
thought it would be for other groups. Examining the screen-
casts of students’ first attempts to run simulations using their 
model revealed that Groups 2 and 3 interpreted the mini-
graphs as a simplified bar graph and not as a representation 
of a variable’s change over time. Figure 2 presents exam-
ples of two model simulations. Figure 2a shows a simula-
tion from Group 2’s initial model, where one can observe 
no change over time as all the graphs inside the nodes show 
a horizontal straight line, while Fig. 2b shows a simulation 
from Group 1’s second revision in which one can observe 
linear change over time. The challenge in understanding that 
time is integrated and computed as part of the modeling 
output caused students to misinterpret the model output. 
In most cases, students required the teacher’s intervention 
with a suggestion or a hint to simulate the model. Table 4 
shows the number of simulations students initiated and those 
prompted by the teacher.

As the teachers helped students make sense of the 
model output, they also supported students in shifting to a 

time-based model representation and reasoning. For exam-
ple, Group 3, which made the most significant improve-
ment moving to self-initiated simulations, started with a 
linear causal chain representation of the phenomenon, then 
changed their representation and way of thinking after the 
teacher’s intervention. The teacher encouraged the students 
to simulate their model and pay attention to the model out-
put. Here are some quotes of prompts from both teachers:

“Are you looking at a scenario that is changing over 
time or is it static?”
“What is changing and how could you see it in the 
model?”
“What does the x-axis of the graph represent?”

Those prompts led the students to propose that “time is 
just there,” meaning it does not influence other variables but 
that the reactants and products change over time.

Theme 2: Opportunities and Challenges in Using 
Real‑World Data to Evaluate and Revise Models

As mentioned, students had the opportunity to compare their 
model with real-world experimental data as an opportunity 
to link the system’s behavior and its underlying feedback 
mechanism. We assumed that when students compared the 
experimental data and the model output and noticed any 
mismatch between the two that students would be encour-
aged to revise their model, which would lead to reconsidera-
tion or addition of relationships to the existing model. As 
described above, students collected data on the solution’s 
absorbance with red dye and bleach over time in different 
concentrations and temperatures, using this data to gener-
ate a graph of absorbance over time. The curriculum design 
is intended to motivate students to consider the connection 
between the behavior of the system and its underlying feed-
back mechanism. Although we did find that students used 
this opportunity to compare real-world data with the model 
output, students faced significant challenges in using the data 
as a source for a meaningful model revision.

This theme is divided into two sections. The first section 
discusses the characteristics of the revision that follows the 
comparison of the model to real-world data. The second sec-
tion describes students’ epistemological assumptions regard-
ing the use of real-world data.

Characterizing Model Revisions That Followed Comparison to 
Real‑World Data Figure 4 shows that 7 groups (14 students) 
who answered the question that asked them to compare their 
model output with the experimental data did not do so. Only 
three groups reached Level 5, noticing the difference in the 
data generated from the models and the experimental data 
(i.e., that the output from the model shows a linear trend 

Table 4  Number of simulations performed during Lessons 1 and 2 in 
the chemical kinetics unit

Group # Lesson 1
(Initial model 
construction)

Lesson 2
(First and second model 
revision)

Student-driven Teacher-
driven

Student-driven Teacher-
driven

1 6 0 5 0
2 0 2 3 2
3 0 2 2 0
4 3 2 3 0
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while the experimental data shows an exponential decrease 
over time). It is important to note that most students were 
able to compare the model output and the experimental data 
to various extents (Levels 2–5).

The quantitative analysis matches the results observed in 
the participant groups. All the participant groups noticed the 
difference between their model and the experimental results. 
The most common strategy to make the two outputs match 
was a trial-and-error approach in which students tried to 
change their model so the behavior of the output variable 
(absorbance) would fit the behavior of the experimental 
results. Groups 1, 3, and 4, all of whom had a dynamic rep-
resentation of the phenomenon by the time they generated 
their experimental data, tried to achieve the same behav-
ior by modifying the variables that were directly linked to 
the level of absorbance instead of examining the net of all 
relationships between variables in the model. The software 
allows one to set the magnitude of the relationship between 
variables, which is also represented by an accompanying 
graph. Students’ initial approach was to set a direct relation-
ship between variables, typically concentration of products 
to level of absorbance. The following provides an example of 
setting such a relationship in SageModeler: “an increase in 
the concentration of products causes absorbance to decrease 
by less and less” (an accompanying graph shows an expo-
nential decay). The logic that seemed to guide the students is 
whether the relationship graph resembled the experimental 
result graph.

Once that approach did not yield the expected behavior, 
those groups tried different relationship settings using a trial 
and error approach, yet all were focused on a direct rela-
tionship with the absorbance variable. In this case, student 

groups did not discuss the mechanism that underlies the 
emergent behavior that causes absorbance to behave the way 
it does. In those trials, the underlying assumption is that the 
change in behavior will result in a direct relationship and not 
in a network of relationships.

Groups 3 and 4 reached a model behavior that matched 
the experimental results’ trend (absorbance decreases over 
time) but not the exact behavior (exponential decay). Those 
students were satisfied with their effort, saying, “it looks 
more or less the same” and “good enough.” Fig. 5 shows the 
comparison that Group 3 made between the model output 
and experimental data. Group 1 model had a similar trend 
as Groups 3 and 4, but the students were not satisfied with 
the results and continued trying to achieve a more accurate 
matching.

Unfortunately, the teachers were not responsive to the stu-
dents’ challenges at that point of the unit and hurried to fin-
ish the unit with a brief summary that did not tie the change 
in absorbance over time to the mechanism that underlies 
this change.

Epistemological Assumptions About Using Real-World 
Data.

The interviews provided additional information about stu-
dents’ reasoning as they used real-world data to revise their 
model and address feedback. In the interview, a student from 
Group 1 said that they noted the differences between their 
model and the experimental data, but reported they could not 
get the model to behave the same as the experimental data. 
The following quote describes the challenges students faced 
in representing the mechanism of the phenomenon, which 
partly relates to the need to consider the change in reaction 
rate over time within the whole system.

Fig. 4  Distribution of students 
based on the level of their com-
parison between real-world data 
and model output (see Table 2 
for description of levels)
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“So, that was saying that the transmittance was going 
up and the reaction was going faster. That was just 
saying that the reaction was happening really fast and 
then it was slowing down...I think it’s just confusing 
to me. We set it up and it made sense with every step 
but looking at it as a whole it’s confusing.”

The interviewed student from Group 3 attributed the dif-
ference between the model and experimental data behavior 
to their lack of proficiency with the experimental procedure, 
even though their data collection was performed appropri-
ately. The student said they did not conduct more changes 
to fit the model to the results because they believed that the 
computer model was more accurate than their experimental 
results, as described in the following quote.

“Well, with the model, it is going to be a perfect 
scenario. Obviously, the data that we collected isn’t 
perfect because that’s just not how it works. It is as 
close as we could, but it couldn’t be exactly like the 
model. There are no outside factors affecting it [the 
model], other that [than what] you put into it.”

Only students from Groups 1 and 3 were able to address 
the dynamic nature and feedback of the phenomenon ver-
bally, as demonstrated in the following quotes:

Student from Group 1:

“Yes. So, it’s decreasing at a decreasing rate (the rate of 
reaction). At first, there are a lot of particles in there (the 
test tube) reacting with each other and then over time 
it just gets less and less. But they’re still reacting with 
each other. It just takes more time for them all to react.”

Student from Group 3:

“Initially, when you’re first introducing the bleach to 
the dye there’s a greater chance of the particles col-
liding because none of them have reacted with each 
other yet. Then as you go on, not as many of them still 
need to react so it takes time for them to actually react 
because of the bleach.”

In both examples, the students provide a mechanism that 
explains the decrease in the rate of reaction over time. They 
regard the time delay, which is explained by the dropping 
concentration of reactant, as resulting in more time to have 
a collision that results in a product. The difference between 
the students is that the student from Group 3 did not link the 
behavior (graph of change in absorbance over time) to the 
feedback mechanism because she perceived the real-world 
data as untrustworthy. Despite reaching the highest level 
of understanding of the phenomenon, the epistemological 
stance of Group 3 students blocked a possible link between 
the mechanism and real-world data.

Fig. 5  A screenshot taken from Group’s 3 model showing graphs of 
simulation results next to graphs of experimental results. The model 
behavior is represented both in a graph and inside the nodes, which 

generated a linear decay of absorbance. The experimental results 
show an exponential decay of absorbance over time as concentration 
of the reactants and temperature of the solution change
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It is interesting to note that those explanations came before 
students walked the interviewer through their model. Similar 
to students from the two other groups, they stated the key 
ideas of the phenomenon in a cause and effect fashion, show-
ing a tendency to default to linear causal explanations. Here 
is a quote from a Group 1 student who displays this thinking.

“If bleach increases and the amount of pigment 
increases, then that’ll increase the reaction. And then 
if temperature increases and the other variables are 
constant, then that will increase the rate at which the 
reaction happens.”

We summarize the major findings:

• Most students used linear causal mechanisms to explain 
the phenomenon even as they constructed dynamic time-
based models.

• Two important factors—students’ iterative model evalu-
ation and teacher prompts—resulted in the development 
of students’ ability to represent dynamic features in their 
model, which led to thinking of the phenomenon in terms 
of change over time, though to a limited extent.

• When students noticed the difference between real-world 
data and the model output, the model revision that fol-
lowed focused on a single relationship and not on the 
interconnections between the system’s components.

• Students’ epistemological assumptions about computa-
tional modeling may have dictated the way they consid-
ered and interpreted real-world data.

Discussion

In this study, we focus on the opportunities and challenges 
students encounter while constructing system dynamic mod-
els to make sense of a phenomenon. We observed challenges 
in modeling practices, reasoning regarding change over time, 
and using real-world data to revise models.

Based on other studies that describe the challenges indi-
viduals experience when required to reason in terms of change 
over time (Cronin et al., 2009; Sweeney & Sterman, 2000), we 
were interested in knowing to what extent a system dynam-
ics modeling approach can support students and what chal-
lenges remain. Similar to the findings reported by Sander 
et al. (2006), we noticed that students start constructing their 
models in a linear causal chain fashion. This demonstrated 
students’ tendency to identify different causal relationships 
in which components do not accumulate or deplete over time. 
Such a model would not demonstrate change over time. More-
over, we identified that setting “time” as a distinct variable 
might lead to fallacious reasoning, in which time is the cause 
for the chemical reaction. That provides another example of 
how linear causal thinking can lead to erroneous reasoning 

and conclusions (Assaraf & Orion, 2005; Chi, 2005; Grotzer 
et al., 2013).

However, despite students’ inclination to generate a lin-
ear causal chain rather than a dynamic representation of a 
chemical reaction, the affordances of the modeling environ-
ment eventually allowed most students to adopt a time-based 
modeling approach. Moreover, we show that a shift to a time-
based representation leads to a change in the terminology stu-
dents use to explain the phenomenon. Therefore, we see our 
contribution in presenting a case in which system dynamics 
modeling, informed by the modeling process, can potentially 
shift the way students think about a phenomenon from linear 
causal reasoning to time-based reasoning. Furthermore, we 
show that the iterative nature of the modeling process and the 
opportunities students received to evaluate and revise their 
models throughout the unit supported that shift.

It is essential to emphasize that the simulation feature, 
which allowed students to test and evaluate their model, does 
not come naturally to students, as students are inclined to 
rely more on the structure of the model rather than on its 
behavior (indicated by the simulation). We observed that 
teachers’ support in encouraging their students to simulate 
their model further sustained students’ self-initiated simu-
lations. This observation echoes similar findings that show 
that teacher support is essential to promote the evaluation 
and revision of models (Komis et al., 2007) and, further-
more, points out the importance of supporting students in 
developing agency in evaluating and revising models as cru-
cial in constructing usable models (Reeve & Tseng, 2011).

One of the significant advantages of computational mod-
els is the ability to compare the model behavior to real-world 
data, which allows one to revise their model in the case of 
incongruence. Unfortunately, this is not always the case, as 
some students do not understand the underlying nature of 
modeling and the use of data. We show a case in which 
this comparison is made superficially, with no reference to 
the mechanism that underlies the phenomenon. Similar to 
Sins et al. (2009), we show that students tend to focus on 
fitting the model to real-world data rather than using the 
model to comprehend the phenomenon. In addition, we show 
that students tend to apply direct causal relationships as a 
means to fit the model to the data rather than investigating 
the interconnections of the system as a whole. In that sense, 
the affordances of system dynamic modeling are limited in 
scope unless students experience more scaffolds that sup-
port them in shifting from linear causal thinking to systems 
thinking that examines the interconnections between vari-
ables that lead to emergent behavior.

Students’ tendency to apply linear causal thinking across 
modeling practices should not come as a surprise, as it is 
unrealistic to think that a short intervention would pro-
foundly affect habits of mind that have been encouraged 
since kindergarten, if not earlier. Indeed, other scholars have 
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pointed out that K-12 science is focused on linear causal 
thinking, which results in difficulty explaining dynamic, 
complex phenomena (Plate, 2010; Raia, 2005). Although 
linear causal thinking is a valuable strategy to start making 
sense of a phenomenon, it is not sufficient for understanding 
complex systems and their behavior over time. However, we 
suggest that even the slight change students demonstrated in 
reasoning in terms of change over time while constructing 
system dynamics models is a promising avenue that can lead 
to desired outcomes.

In addition to linear causal thinking that may hinder the 
consideration of interconnectivity between system variables, 
students’ understanding of how to construct and interpret 
graphs can account for the challenges students face in com-
paring their model output (represented in a graph) to real-
world data. Researchers report on challenges students face 
when interpreting graphs (Chinn & Brewer, 1993; Glazer, 
2011). Comparing graph trends, in particular, is considered 
an advanced graph interpretation competency (National 
Council of Teachers of Mathematics, 2000; Wainer, 1992). 
It might be the case that the students in our study did not 
have many opportunities before this unit to engage in such a 
high level of graph interpretation and, therefore, lacked the 
ability required to manage this task.

The interviews revealed different underlying epistemolo-
gies that drove students’ revision process to reconcile the 
discrepancies between the model behavior and the experi-
mental data. We noticed two different epistemologies regard-
ing the modeling practice of evaluating and revising. The 
first epistemology, elicited in two of the four participant 
groups, assumed that the model needs to match real-world 
data (assuming it is trustworthy), rendering a necessary revi-
sion of the model. This notion implies that those students 
perceive the model as an abstraction of reality. Although 
this epistemological stance drove the students to revise their 
model to match experimental data, it was done in a super-
ficial manner, with no consideration of the mechanism that 
underlies the behavior of the system.

We show that students’ describing their model as a “good 
enough match” when they compared it to real-world data 
might be due to the fact that students perceive the model 
as an absolute truth. Similar to findings reported by Cheng 
and Lin (2015), these results highlight the importance of 
the teacher and the curriculum providing synergistic sup-
port (Tabak, 2004) that specifically address the nature and 
purpose of models and the use of real-world experimental 
datasets in validating the usability of the model.

Unfortunately, the teachers did not provide students with 
sufficient support in using real-world data. The teachers 
encouraged the students to compare the data to the model 
and helped students to recognize the model output that they 
needed to compare with the real-world data; however, they 
did not provide the students with sufficient prompts that 

encouraged them to ponder the mechanism that would 
result in a matching system behavior and take a systems 
thinking approach that considers the interconnectivity 
between variables.

Therefore, like other scholars, we emphasize the need to 
develop strategies that teachers can apply to support students 
in using real-world data in a modeling context and explicitly 
address the epistemological assumptions that underlie stu-
dents’ evaluation and revision of models (Komis et al., 2007; 
Schwarz et al., 2012). For instance, teachers could present 
to students previously built models of everyday phenomena 
that do not behave as expected and ask students to figure 
out what is not working in the model (e.g., the amount of 
money in the bank and what affects it over time) and revise 
the model in a way that meets expectations.

We argue that students’ challenges using real-world data 
partly hold students back from applying a feedback mecha-
nism to explain the phenomenon. There is evidence in the lit-
erature for the challenges students face in understanding and 
using feedback mechanisms to explain phenomena (Tripto 
et al., 2013). Our curriculum, aligned with that challenge, 
was designed in such a manner that experimental data would 
encourage students to think about an alternative mechanism 
that would align with the expected behavior of the system. 
However, students’ revision of the model to fit real-world 
data, without accounting for the mechanism that underlies 
the behavior of a system, did not bring about a reasoning that 
goes beyond linear causal thinking. Hence, student models 
ultimately lacked feedback mechanisms.

Research Limitations

We acknowledge several limitations in this research. First, the 
student population was not fully representative of the USA 
as a whole; the students who participated in our study were 
enrolled in a charter school based on their above-average per-
formance in STEM subjects. Second, the number of students 
observed was insufficient to draw general conclusions. Third, 
SageModeler as any tool has its limitation. We acknowledge 
that in the context of chemical kinetics, the tool is limited in 
supporting students in fully understanding mechanism at the 
microscopic level, so we used simulations that demonstrate 
the behavior of particles at the microscopic level. Additional 
research needs to be done to understand if and how using 
simulations complements students’ modeling practices, and 
in particular how to support students in moving across the 
microscopic and macroscopic levels while applying ST. 
Finally, there may be aspects of the enacted unit that pertain 
specifically to the study of chemical kinetics and to modeling 
the rate of chemical reactions that pose unique challenges for 
students, including those that might be non-existent or negli-
gible in other contexts.
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Conclusions

This study highlights some of the opportunities and chal-
lenges students encounter when building system dynamic 
models as they engage in modeling practices. This study 
contributes to the call for supporting students in dynamic 
thinking and mechanistic reasoning in the context of com-
plex systems (Krist et al., 2019). We describe some success 
in students’ reasoning regarding change over time across 
modeling practices. We present the potential of using a 
system dynamics modeling approach to support students 
in thinking about change over time, which has been doc-
umented as a challenging ST aspect for students (Grotzer 
et al., 2013). We also show that students can represent some 
scientific principles in a dynamic model, making the case 
for the system dynamic approach as a viable way to support 
students in making sense of a phenomenon.

We also broaden the scope of challenges students face 
while engaging in system modeling to make sense of com-
plex phenomena, including those that exhibit exponential, 
logarithmic, oscillating, or other non-linear behaviors. Our 
findings show that students tend to use linear causal relation-
ships based on their prior academic experiences (Berkant, 
2009; Cronin et al., 2009; Sweeney & Sterman, 2000) rather 
than using other mechanisms such as feedback. If we wish to 
involve students in making sense of complex phenomena and 
to prepare future citizens with the means to approach complex 
systems to find solutions to problems, we need to provide 
them with opportunities to move beyond linear causal think-
ing and adopt thinking in terms of change over time. Further-
more, feedback should be explicitly addressed as an underly-
ing mechanism that explains systems behavior in everyday life 
to deepen and advance dynamic time-based reasoning. Most 

students’ default approach in conceptualizing systems focuses 
on linear causal chains, which as we showed, can present an 
obstacle when designing models of dynamic systems.

To summarize, our research suggests an avenue that sup-
ports students in the ST aspect of thinking in terms of change 
over time. We also present evidence that evaluating and revis-
ing a model using real-world data is not intuitive for high 
school students, even in a relatively supportive teaching and 
learning environment. In addition, we show that supporting 
student interpretation of data and graphs requires an attendance 
to underlying epistemological assumptions students have about 
using computational models. The findings in this study provide 
a foundation for further research on how teachers can support 
students in making sense of challenging ST aspects essential to 
making sense of dynamic systems, using computational system 
models aligned with the modeling process and its practices. An 
improved understanding of how to harness the use of modeling 
practices to support students in aspects of ST can lead to the 
development of new curriculum materials, assessment strate-
gies, and scaffolds teachers can use to improve student engage-
ment, understanding, and problem-solving skills.

Appendix 1. Students’ Interactive Unit

To access the interactive environment students have experi-
enced, go to learn.concord.org.

Enter in search by keyword box- “what makes chemical 
reactions go faster” and click “enter” (Fig. 6).

The next page should appear. Click the unit’s headline.
After you clicked the headline, the next page should 

appear; click the preview box, and you enter the interactive 
environment the students have experienced.

Fig. 6  Access page on the concords consortium STEM research finder
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Representation of the Phenomenon 
in SageModeler

For a better understanding of the educational context and 
how one can represent change over time of a chemical reac-
tion, we briefly explain how the reaction between bleach 
and dye is represented in SageModeler. To see behavioral 
change over time, one must utilize a unique variable known 
as a “collector.” Like a stock in a “stock and flow” model, a 
collector accumulates changes associated with successive 
calculations; as such, changes over time become evident 

in the model behavior. When performing a simulation, 
each variable node displays a graph that represents change 
over time. For example, a flat line indicates that a variable 
exhibits no change over time (e.g., temperature’s solution 
in Fig. 8). To represent change over time, one needs to set 
at least one variable as a collector (e.g., reaction products 
in Fig. 7). As mentioned previously, prior to beginning the 
kinetics unit, students completed an introductory unit on 
building dynamic models in SageModeler and interpret-
ing model output. The teacher explicitly mentioned that the 
model’s output represents change over time.

Fig. 7  A webpage that directs the user to the unit

Fig. 8  An example for a model that represents the phenomenon. One can notice the exponential decrease in the rate of reaction represented as a valve
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Appendix 2. More information  
About SageModeler

For more information and a first-hand experience with 
SageModeler, go to https:// sagem odeler. conco rd. org/.

Appendix 3. Scoring Rubric of Students’ Models

For the “defining system boundaries” practice, models were 
scored according to four criteria: (1) the number of key vari-
ables, (2) the number of content-inappropriate variables, 

Table 6  Design and construct the model structure- scoring relationships between variables

Relationship and score Variable to variable or 
variable to valve

Collector to collector Variable to collector

Right relationship, right type (+1) - - Right relationship
Right relationship, wrong type (+0.5) Wrong by the same/little… Wrong by add/subtract/transform -
Wrong relationship (−1) Wrong increase/ decrease Two collectors are not of the same entity Wrong by add/subtract
Reverse direction (−1) Reverse arrow Relationship between collectors should be 

the opposite
-

Number of connections between 
irrelevant variables (0)

- - -

Table 7  Using the model to explain or predict

General description Indicator in the kinetics unit Score

Model explains/predicts accurately the phenomena. Includes right 
trend and magnitude

Model predicts exponential behavior of decrease in reactants/ 
absorbance over time (Right trend, right magnitude)

4

Model partially explains/ predicts accurately the phenomena (right 
trend, wrong magnitude)

Model predicts a linear drop in reactants/ absorbance 3

Model includes key structural components but does not explain/ 
predict the phenomena

Model addresses change over time of reactants and products, but 
the prediction shows an opposite trend line

2

Model does not include key structural components and therefore 
does not explain/ predict the phenomena

Model does not predict change over time of reactants and products, 
a static model in a dynamic system

1

Table 5  Define the boundaries of the system-scoring variables in model

Defining a variable as collector does not affect this category

Code Definition Identification Score Example from kinetics unit

Key variable (KV) Variables that are crucial for the 
investigated system

Predetermined for each model 
based on curriculum

+1 Reactants, products, bleach, 
temperature, absorbance/
transmittance, number of 
collisions

Irrelevant variables (IRV) Variables that are not key to the 
system but are not a mistake

Predetermined for each model 
based on examples that are 
agreed between raters

0 pH, dye, particle size?
* If both absorbance and 

transmittance are included, 
one of them is irrelevant

Inappropriate variable in 
Content-level (IAV-C)

Variables that are wrong in the 
content-conceptual level

Not predetermined −1

Inappropriate variable in Model-
level (IAV-M)

Variables that are wrong in the 
model-conceptual level

Not predetermined −1 Time, multiple colors of dye 
variables

https://sagemodeler.concord.org/
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(3) the number of model-inappropriate variables, and (4) 
the number of irrelevant variables. Each of the criteria 
was scored separately and then combined into a composite 
score (Table 5).

• Key variables: Quantifiable model components that are 
essential to make sense of the phenomenon and with-
out which the system mechanism cannot be explained 
(Bielik et al., 2020).

• Content-inappropriate variables: Variables that do not 
belong to the system under study or whose inclusion 
results in the loss of coherent meaning.

• Model-inappropriate variables: Variables named such 
that they represent other entities (e.g., an event or object). 
Variables that are incongruent with a time-based model 
are also included under this category.

• Irrelevant variables: Variables that are not necessary to 
explain the phenomena yet can still be found within the 
system boundaries.

To assess the modeling practice of “setting relation-
ships,” we evaluated each relationship that appeared in the 
model according to the type of relationships that are pos-
sible in the software. As noted, SageModeler facilitates 
the setting of semi-quantitative relationships between 
variables, including several options for setting the magni-
tude of the impact of each of the variables on one another. 
For example, if students decided that an increase in one 
variable had an impact on another variable, they could set 
the magnitude that defines this relationship as (1) about 
the same (a linear graph), (2) a little (a linear graph with 
a gentle slope), (3) a lot (a linear graph with a steeper 
slope that levels off), (4) more and more (an exponential 
graph), or (5) less and less (a logarithmic graph). Each 
of these categories represents the type and quality of a 

given relationship. Inappropriate relationships were given 
a negative score, while appropriate relationships received 
a positive score. See Table 6.

For the “use of the model,” we evaluated each model for 
the representation of key scientific ideas used to explain 
the phenomenon based on model structure and output. We 
sorted the results into four categories, including (1) models 
that accurately explained and/or predicted the phenomenon 
and included correct trends and magnitudes, (2) models that 
partially explained or predicted the behavior of the phenom-
enon (i.e., correct trend but incorrect magnitude), (3) models 
that included key structural components but did not explain 
or predict the phenomenon (i.e., an incorrect trend), and (4) 
models that did not include key structural components and as 
such neither explained nor predicted the phenomenon (i.e., 
no trend predicted) (Table 7).

Attached is our scoring rubric for the students’ models.

Description of the Evaluation Process of Students’ 
Models

To better understand the evaluation process of the models 
and the modeling practices, we will use the next model 
example in Fig. 9 of a student to demonstrate the process.

Evaluation of “Defining System Boundaries”

To evaluate the “defining system boundaries” practice, we 
first count the number of key variables. In this case, most key 
variables are addressed. Students included the reactants, the 
products, temperature, concentration, and the empirical rep-
resentation of reaction rate (absorbance). We acknowledge 
that labeling the variables could have been more accurate; 
however, we decided not to score the wording of variables 
as long as the students’ intent was clear. For example, it 

Fig. 9  The last model revision 
of a pair of students
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would have been more accurate to label the variable “amount 
of bleach” rather than simply “bleach”; yet it is clear from 
the model structure and relationships that the variable refers 
to the amount or concentration. We believe that addressing 
errors in wording and labeling misses the purpose of evalu-
ation and shifts the focus away from evaluating students’ ST 
as manifested in the modeling practice being scored.

In this model, we find one irrelevant variable. Since 
both transmittance and absorbance are expressions of Beer- 
Lambert’s Law, it is sufficient to address either of them; includ-
ing both is unnecessary. (The spectrophotometer used in the 
experiment showed results of transmittance and absorbance.)

The model includes one inappropriate variable, “den-
sity of particles.” Because density does not contribute to 
the explanation of the driving question, it is inappropriate. 
Students received scores for including key variables and 
were penalized for an inappropriate variable. Students were 
not penalized for having irrelevant variables. Therefore, the 
score for including five key variables is 5, but one point 
was deducted for including an inappropriate variable. The 
composite score is 4.

Evaluation of “Setting Relationships”

Links between standard variables and flow control variables 
(represented by the valve symbol) are addressed as “vari-
able to variable” relationships. The valve references a water 
metaphor, in which a flow or rate of transfer from an entity 
in one form to the same entity in another form is controlled 
by the valve (Forrester, 1994; Sweeney & Sterman, 2000). In 
this model, there is a flow from reactants (i.e., “dyed water”) 
to products (i.e., “clear water”). Students constructed three 
relationships that point to the valve. We describe how we 
evaluated each relationship.

• The relationship between “bleach” and the valve is cor-
rect. An increase in reactants’ concentration causes the 
rate of reaction to increase proportionally.

• The relationship between “temperature” and the valve. 
The relationship has the appropriate direction of cau-
sality, but it is not specified correctly. An increase in 
temperature will cause the rate of reaction to increase 
exponentially. However, given that the students were not 
provided with any evidence during the unit that demon-
strates the relationship between temperature and rate of 
reaction, aside from the general trend, we gave the maxi-
mum score if students could point to the right direction 
of causality.

• The relationship between “density of particles” and the 
valve. Because the “density” variable is inappropriate 
given the context and purpose of the model, the rela-
tionship itself is irrelevant, and we do not include that 
relationship in our scoring.

The causal chain relationship between “clear water” 
(which represents products) and “transmittance” and 
between “transmittance” and “absorbance.” Because trans-
mittance is an irrelevant variable, we omitted the relation-
ship from the causal chain and evaluated the relationship 
between “clear water” and “absorbance.” This relationship 
has the right causal relationship but the wrong type of rela-
tionship. The amount of “clear water” (products) will reduce 
the absorbance, though not in “more and more” type of rela-
tionship; the correct relationship is “about the same.”

Each relationship that was partially correct received 0.5 
points (out of a possible 1 point). Because the “density of 
the particles” variable was already penalized for being inap-
propriate, we avoided double penalization and did not score 
that relationship.

Evaluating the “collector-to-collector” relationship. To 
set this relationship, students need to think of the reactants 
as a collection of particles that turn into a collection of 
product particles and set the relationship between the two 
that will cause that change from one to the other over time. 
In this case, students created an appropriate transfer link 
between variables that represent the reactants and products, 
for which they received 1 point.

Evaluation of “Use of the Model”

This model partially explains or predicts the behavior of 
the phenomenon (i.e., correct trend but incorrect type of 
relationship). The model predicts that reactants and products 
will behave linearly. It does not include a feedback mecha-
nism that would give rise to an exponential decay of reac-
tants as we would expect.

Using the rubric to evaluate student models provided us 
with a means to track learning quantitatively as students pro-
gressed through the different modeling practices and across 
different model iterations. Our goal was to indirectly meas-
ure student engagement in ST and CT through the scoring of 
modeling practices, given our previous proposition that each 
practice necessarily involves specific aspects of ST and CT.

Appendix 4. Interview Protocol

Introduction:
Script:
This will be said to the class as a whole
Hi X (state the student's name), my name is X (state your 

name) and I’m a researcher at Concord Consortium and I 
work with the Michigan State University team. I’ll be inter-
viewing several of you to learn about your experiences with 
the “–-” unit. I’m interested in your experiences of learning 
the “–-” unit, and I would like to ask you a few questions 
about it, if that’s ok (wait for their consent).
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This will be said in interview
Hi (state the student’s name). Thank you so much for agree-

ing to be interviewed. Your feedback will help us improve the 
software and make it better. Please be honest and open in your 
responses, they will only be used for our evaluation of the mod-
eling tool and will not affect your grades in any way.

(Follow the Script, Try to Remain Neutral, Don’t Give 
Feedback About Correctness)

Neutral probes

• What are you thinking? Can you think aloud?
• Can you say more about that?
• What do you mean?
• Why do you think that?

Part 1‑ Planning (Problem Decomposition/
System Thinking)

Before Navigating to the Student Pages

1. Can you tell me what the unit was about? What question 
were you trying to answer?

2. How do you think the model that you built could help 
someone to answer the question you are trying to 
answer? (combined w the next question below)

Part 2‑ Modeling Practice and Model‑based 
Explanation Questions

Ask the Student to Recall Developing and Revising 
Their Models Using SageModeler.

With their final SAGE model visible

1. Can you tell me the story of your model? How does it 
answer the driving question? Can you walk me through 
your model?

1. This one (collector) has little boxes in it and this 
one (variable) doesn’t. Why did you choose to make 
this one a collector (with little boxes)? [For Model 
1 only, which is all collectors, skip this question] 
How (or Why) did you define collectors among your 
variables (ideas)?

2. Which variables and relationships are most responsi-
ble for changes in the collector or collectors? (Point 
to a collector that has something pointing to it) 
What is causing this to change?

3. [If they do not refer to the flows when answering b] 
What do you think these pipes mean? (point so that 
they know what I mean)

4. (open box w description of link w variable directly 
pointing into collector where units don’t match) 
What does this sentence mean?

5. [If the model has red arrows or blue arrows] What 
do you think these arrows mean?

6. (open box w description of one of the arrows, read 
sentence) Why did you choose this one? (open drop-
down menu to show the other choices)

7. Can you tell me what transmittance means to you? 
What about absorbance?

2. [Different for each model]

Model 1

• Do you think there need to be any other arrows pointing 
to this pipe?

– What do you mean that amt of dye transfers to 
absorbance?

– When transmission goes up, does absorbance go up?

Model 2

– Really interesting that everything is pointing to this 
valve. Could have pointed to the collectors, for example. 
Can you explain your choice to do it this way?

– (Graph: hide one run, then the other, and ask difference 
between them)

– When absorbance goes up, does transmittance goes up?

Model 3

[Two things pointing to reaction rate. Do not have dye par-
ticles pointing in.]

• What things are influencing how fast the dye particles 
split? What about these orphan variables? Do they affect 
how fast? What happened when they were in your model?

– Can you tell me what this graph shows about the 
phenomenon?
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Model 4

– Bleach affects rate, temperature affects rate. What about 
red dye? Does it affect rate?

– Would like to ask you several questions about absorbance 
and what influences it.

– What do you think it means when two arrows point 
to the same thing? (absorbance) How does temp 
affect it? How does dye affect it?

– Is there anything else that impacts absorbance? 
Directly or indirectly? In class, did you put in bleach 
and color goes away? How is this shown in your 
model?

– How does temp affect absorbance? Long set of con-
nections, short (indirect) connection, need both?

All Models

• Did this model help you understand the phenomena? How?
• Your model indicates that an increase in temperature 

or concentration of bleach will increase the rate of the 
chemical reaction. Can you explain why these increase 
the rate? (edited)

• How does the absorbance/transmittance over time give 
an indication of the rate of a chemical reaction?

Let’s imagine for a moment. What if we change some-
thing in your model?

1. If we change the direction of this connection (choose a 
connection that is not in a feedback loop), what does that 
mean? How does that change what happens?

2. If we remove this connection (if there are feedback 
loops, choose one and point to a connection that 
would eliminate it), how does that change the behav-
ior of this collector? (Point to a collector in the loop 
or chain.)

3. If we add a connection here (choose a place that would 
create a feedback loop), what does your model predict 
would happen? Can you talk me through the effect of 
this change on your model?

Part 3‑ Evaluation: Revise/Debug/Test

With their initial, revise, or/and final models visible.

1. How would you evaluate whether your model is good or 
not? Can you explain why you built your model in this way?

1. (Probe for this)

With their revised parts in their models visible

2. Why did you revise (and please explain the revision) 
–– from the previous to the final models

Part 4‑ Data Practices: Interpret/Analyze/Visualize

With their data table, experimental graph(s) and Sage model 
visible [no Sage graphs saved].

1. I see the graphs you generated from your experiments. 
Did you generate any from your model?

1. If so, how did your model graphs compare with your 
experiment graphs? Can you tell me about that?

Closing

Do you have any questions for me?
Thank you so much, this was very helpful.
END OF INTERVIEW FOR CHEM STUDENTS
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