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Abstract
For various reasons, students receive less formative feedback at post-secondary institutions compared to secondary school. 
Considering feedback as one of the most important influencing factors on learning processes, formative feedback is a promis-
ing approach to improving students’ performances. In this context, new technologies, such as learning management systems 
(LMS) or intelligent tutoring systems (ITS), can make a valuable contribution to improving higher education teaching by 
providing automated and individualized error-specific just-in-time (JIT) feedback. However, the digitalization especially 
of paper-based open-ended tasks that can be used by LMS is currently still associated with a loss of quality. In this paper, 
we present an approach that allows us to transfer open-ended paper-based tasks in the field of chemistry into online tasks 
without losing quality and provide large university courses with automated and individualized error-specific JIT feedback. 
Results of a study of 238 first-year chemistry students reveal that the automated individualized error-specific JIT feedback 
had a significant positive influence on students’ performance.
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Introduction

Formative Feedback in Higher Education

Professional assistance and academic support are of par-
ticular importance for students’ study success since students 
receive feedback on their performances as well as hints on 
how to solve problems in personal contact with tutors or 
instructors (Heublein et al., 2017). In view of large num-
bers of participants in introductory courses, universities have 
to allocate vast personnel resources to provide appropriate 
support. Due to limited financial means, universities are 
often not in a position to satisfy students’ needs for indi-
vidual feedback sufficiently. As a result, students receive 
less feedback from tutors or professors in university than 

they do in school (York, 2003). In this context, the most 
common form of feedback is summative feedback given by 
the final exam grade at the end of the semester. However, 
formative feedback has the potential to support students in 
their exam preparation (Hattie, 2013) since students often 
overestimate their abilities, especially the low-performing 
students in general chemistry (Pazicni & Bauer, 2014), and 
do not prepare themselves sufficiently (de Bruin et al., 2017; 
Kruger & Dunning, 1999). This may lead to performance 
problems that, in turn, are a main reason for students’ high 
dropout rates in chemistry in German higher education 
institutions (Heublein et al., 2020). Students who discon-
tinue their studies are defined as persons who have taken up 
their first degree in chemistry at a German higher education 
institution through enrollment but leave the system without 
a (first) degree. Comparable results are reported by Chen 
(2013) for the USA.

In addition, students spend a lot of time learning out-
side lectures and tutorials, where they often do not receive 
any kind of professional feedback (Heublein et al., 2017). 
Kanuka (2001) found that students in distance learning 
programs identified a lack of timely and informative feed-
back as a problem. Thus, an important goal of academic 
teaching is to support students’ learning process through 
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formative feedback during private study time. New tech-
nologies, such as learning management systems (LMS) 
or intelligent tutoring systems (ITS), can make a valu-
able contribution to improving higher education teach-
ing by providing individualized JIT feedback (Ma et al., 
2014). Immediate feedback is easy to implement there 
and has many advantages over manual correction regard-
ing consistency and accuracy. In this context, a system-
atic literature review on automatic feedback generation 
in LMS shows that 82.5% of the included studies could 
not find evidence that manual feedback is more efficient 
than automatic feedback (Cavalcanti et al., 2021). In addi-
tion, the majority of the papers retrieved in the literature 
review (65%) concluded that the automatic feedback had 
a positive impact on students’ performance. Immediate 
feedback in homework programs can also offer advantages 
in terms of timing of feedback to students compared to 
written homework where a large time gap between when 
the assignment is completed and when it is returned exists 
(Malik et al., 2014). Additionally, studies show that web-
based homework with instant feedback has a positive 
influence on student achievement (Cole & Todd, 2003; 
Freasier et al., 2003).

Online Tasks—Opportunities and Limitations

Electronic tasks for digital learning systems are a promis-
ing approach to giving students formative feedback in their 
private learning time. These tasks have to be realistic in 
task procedure and have to automatically assess students’ 
solutions and generate appropriate feedback. With the 
help of modern systems (e.g., the LMS Moodle), many 
paper-based tasks have already been successfully digitized 
without loss of quality (Trauten et al., 2019). However, 
traditional task formats like multiple-choice, drop-down, 
or fill-in that are provided by most of the LMS are not 
sufficient for the digitalization especially of paper-based 
open-ended tasks. This will be illustrated by a chemistry-
specific exercise type below.

The concept of chemical reactions is of particular rel-
evance for chemistry as it is internationally regarded as 
fundamental to the area (American Association for the 
Advancement of Science, 2001). Therefore, knowledge and 
skill acquisition in the field of chemical reactions are essen-
tial for the successful study in chemistry. However, students 
have major deficits in this field (DeBoer et al., 2009; Ferber, 
2014; Walpuski et al., 2011), and studies confirm that some 
of the misconceptions still present at university level (Busker 
et al., 2010). Thus, online tasks that can provide formative 
feedback are required for the field of chemical reactions. 
A typical task is setting up a chemical reaction equation 
(cf. Fig. 1). However, the digitalization of corresponding 

open-ended paper-based tasks using traditional item formats 
(e.g., multiple-choice, fill-in) currently leads to a loss of 
quality, either through a change of the learning objective or 
a limited assessment or reduced feedback (i.e., knowledge 
of correct response). We will discuss the loss of quality in 
more detail in the two subsections below. These difficulties 
can be summed up in two major challenges that have to be 
overcome when digitizing paper–pencil tasks with tradi-
tional item formats (closed-ended vs. open-ended). On the 
one hand, these difficulties relate to the aspect of user input 
and the automated assessment of solutions and on the other 
hand to the provision of formative individualized feedback.

Closed‑Ended Tasks

User Input

When transferring open-ended paper-based tasks as seen in 
Fig. 1 into closed-ended online tasks, answers are inevitably 
predefined, even after thorough conception of distractors. 
A disadvantage of these tasks is that they require different 
skills. The recognition of a correct answer (e.g., a reaction 
equation) generally requires different, less complex cogni-
tive processes than the independent reproduction of knowl-
edge (Anderson & Bower, 1972). In the literature, it has 
been discussed for quite some time whether closed-ended 
task formats are able to represent higher learning goals at 
all in comparison to open-ended task formats (Lindner et al., 
2015). In accordance with this assumption, multiple-choice 
tasks have been proven to be easier than open-ended tasks in 
some studies (Bonner, 2013; Hohensinn et al., 2011; Kastner 
& Stangl, 2011; Liu et al., 2011). Moreover, multiple-choice 
tasks seem to differentiate more poorly in the marginal areas 
of competence than open-ended tasks (Liu et al., 2011). 
Hence, questions in which students have to apply or use the 

Fig. 1   Example of an open-ended exercise from the final exam in 
general chemistry at the end of the first semester
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knowledge they have acquired (in the sense of the applica-
tion level of Bloom’s taxonomy) are difficult to create in a 
closed-ended item format.

Assessment and Feedback

Closed-ended tasks, like multiple-choice tasks, can be 
checked fully automatically and can, therefore, be analyzed 
time efficiently and objectively for a long time now. Vari-
ous LMS, such as ILIAS or Moodle, already offer individual 
feedback components for closed-ended online tasks. How-
ever, the feedback is limited to information on the number of 
points achieved (knowledge of performance) and information 
on the correctness of an answer (knowledge of results) or the 
correct results (knowledge of correct response), which can be 
supplemented by multiple-try or answer-until-correct feed-
back depending on the setting. To support students’ learning 
processes individually with appropriate feedback, distrac-
tors have to be created carefully (Haladyna & Rodriguez, 
2013), which makes the transfer of paper-based tasks into 
online tasks a complex issue. Moreover, even with carefully 
designed distractors, students will not receive any appropriate 
feedback on their misconceptions if they reached an answer 
that is not available as distractor at all, and even feedback 
dealing with the various distractors remains highly specula-
tive concerning the underlying misconception.

Open‑Ended Tasks

Assessment and Feedback

In contrast, open-ended tasks allow individual feedback that can 
be tailored to the answers. Since there is no limit to the number 
of possible correct answers for open-ended tasks, generating 
meaningful feedback is much more complex than for closed-
ended tasks. Another disadvantage of open-ended tasks is that 
solutions often have to be checked manually to provide feedback. 
Although better software solutions that enable free text input are 
available now, the assessment of these approaches does not go 
beyond checking keywords (Bridgeman et al., 2012; Shermis 
& Burstein, 2002), using complex rulesets with higher preci-
sion but low recall (Leacock & Chodorow, 2003) or employing 
machine learning techniques that require large sets of training 
data (Hussein et al., 2019; Shermis & Burstein, 2013). Assess-
ment and feedback systems with open-ended tasks are, thus, 
mainly available for domains with comparatively structured 
content, since that makes it easier to check submitted solutions 
automatically. Examples can be found in programs for the fields 
of Boolean algebra (Herding et al., 2010), mathematical logic 
(Lodder & Heeren, 2011), and programming (Keuning et al., 
2018). However, so far, we do not know of any digital tool that 
allows to realize both, the input and valid assessment of a chemi-
cal reaction equation in LMS like Moodle.

User Input

It is much easier to realize challenging learning goals such 
as setting up a reaction equation with open-ended tasks. For 
the input and processing of reaction equations by mouse 
or keyboard, there are various programs (e.g., ChemDraw,1 
ChemDoodle,2 JSME3). However, these programs are unable 
to check the entered answers and provide feedback. A further 
disadvantage of these programs is that the degrees of free-
dom in drawing chemical compounds are often restricted. 
For example, these programs automatically flag viola-
tions of allowed valences. As these programs are used by 
experts, they usually know how to deal with the feedback. 
From a didactical point of view, however, the feedback is 
not sufficient.

Related Work

Individual Online Solutions

Surprisingly, there are only a few studies in literature that 
deal with the question of how paper-based chemistry-specific 
tasks can be digitized and provided with formative feedback. 
First of all, there are some studies, in which individual online 
solutions were developed to enable automated evaluation of 
free text responses in chemistry (Ashton et al., 2005; Chamala 
et al., 2006; Penn & Al-Shammari, 2008; Perry et al., 2007). 
For the PASS-IT Project (Project for Assessments in Scotland 
using Information Technology), traditional paper examina-
tions in Higher Chemistry and Computing were transferred 
into an electronic format and compared to each other (Ashton 
et al., 2005). Although the authors report on modifications 
that had to be made when transferring the paper-based tasks 
into an electronic version, no differences between the two 
types of assessment could be determined. For example, 
as it was technically too difficult at that time to convert a 
paper-based task, in which a graph had to be drawn into an 
electronic version, this task was transferred into a multiple-
choice question. Unfortunately, tasks that require students 
to set up reaction equations were not reported in the study. 
For the field of chemical engineering, Perry and colleagues 
developed a software solution that can automatically assess 
submitted solutions and provide formative feedback (Perry 
et al., 2007). However, the program, used by the University of 
Manchester, has no editor for entering chemical reaction equa-
tions. Although the program is an advanced tool for creating 
tasks, Perry and colleagues report difficulties in transferring 
graphics and formulas into the software (Perry et al., 2007). 

1  https://​chemd​rawdi​rect.​perki​nelmer.​cloud/​js/​sample/​index.​html
2  https://​web.​chemd​oodle.​com/​demos/​sketc​her/
3  https://​peter-​ertl.​com/​jsme/​JSME_​2017-​02-​26/​JSME.​html

https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html
https://web.chemdoodle.com/demos/sketcher/
https://peter-ertl.com/jsme/JSME_2017-02-26/JSME.html
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These are only transferred as images to the online tasks. To 
digitally represent paper-based tasks with the learning objec-
tive of setting up chemical reaction equations, closed-ended 
tasks are used that have the disadvantages described in the 
section above. In addition, for organic chemistry, more recent 
software packages exist that include tools for drawing struc-
tures and organic reaction mechanisms. For example, the elec-
tronic program for organic chemistry homework (EPOCH) is 
a Java-based web application that offers graphical input and 
provides response-specific feedback (Chamala et al., 2006). 
EPOCH uses a series of conditions to analyze each response. 
Each condition is associated with feedback that EPOCH pro-
vides to a student whose response satisfies that condition. A 
further approach for drawing reaction mechanisms provides 
the curved arrow neglect (CAN) method from Penn and Al-
Shammari (2008), which focuses on drawing and evaluation 
of reaction intermediates but ignores curved arrow notation 
itself. In addition, there are some online homework systems 
that allow for students to add the curved arrow notation for 
reaction equations (e.g., this is a feature in Achieve) (cf. sec-
tion below).

Homework Systems

Beyond that, there are commercial online homework sys-
tems, which respond to individual mistakes. Responsive 
or responsive-adaptive online homework systems widely 
used in chemistry include Pearson’s Mastering Chemistry,4 
ALEKS5 (Assessment and Learning in Knowledge Spaces), 
and Achieve,6 which all provide hints and feedback. For 
example, Pearson’s Mastering Chemistry provides specific 
hints and tutorials to a student based on how the problem 
was missed. The system has graphical templates for insert-
ing both mathematical and chemical formulas and symbols 
(Shepherd, 2009). However, homework systems are expen-
sive and a German-language version does not exist yet. 
They are widely used in the USA and Canada. In contrast, 
a majority of German universities use LMS like Moodle, 
ILIAS, or Blackboard (Schmid et al., 2017), for which digi-
tal tools for entering and assessing chemical reaction equa-
tions or molecular formulas currently do not exist.

Learning Management Systems (LMS)

Hedtrich and Graulich (2018) pursued an initial approach to 
developing chemistry-specific tools for LMS that provide auto-
mated, individual feedback. They developed two digital tools 

with which it is possible to support students in their learning 
processes with formative feedback. One of the two developed 
software components reads out students’ personal test results 
from the LMS, in which chemical-specific tasks were pro-
cessed. The second software component automatically and 
individually generates and gives students feedback on their 
achieved performance level based on these data. Since students 
have to work on tasks in a LMS for this approach, only the 
classic task formats provided by the LMS are available.

Research Aim and Questions

Against this background, an important question is how tasks 
representing the learning goal of setting up chemical reac-
tion equations can be digitized for the use of the LMS Moo-
dle without loss of quality. After extensive research, we have 
not found an existing type of task that can fully meet the 
described requirements. There are only online homework 
systems with corresponding features available for a fee (cf. 
section below), but these are rarely used outside the USA 
and Canada and do not offer a German-language version, 
for instance. The aim of this study was to develop and evalu-
ate a freely available digital tool for entering and assessing 
chemical reaction equations or molecular formulas as well 
as providing individualized error-specific JIT feedback. It is 
emphasized here that the assessment of students’ solutions 
should be automated and should not require manual correc-
tion by a human tutor. As derived above, the domain-specific 
requirements posed two major challenges for the develop-
ment of appropriate tasks. On the one hand, it must be possi-
ble to enter letters, numbers, indices, exponents, and special 
characters (e.g., arrows) in order to set up reaction equa-
tions. On the other hand, it is necessary to check students’ 
responses based on subject-specific rules in order to provide 
individualized error-specific and fully automated JIT feed-
back. Besides the development of such a digital tool, the 
aim of the study was to investigate how students learn with 
tasks (i.e., whether they can correct their mistakes with the 
help of the automated and individualized error-specific JIT 
feedback). The underlying research question is as follows:

RQ1: How helpful is the automated and individualized 
error-specific JIT feedback for error correction and solv-
ing the tasks?

Automated and individualized error-specific JIT feedback 
(IND-feedback) allows assisted multiple response tries for 
an exercise (a) by providing strategically useful information 
for error correction, but no immediate knowledge of cor-
rect response, and (b) by requiring the learner to apply the 
corrective information to a further attempt this exercise (cf. 
Narciss & Huth, 2006).

4  https://​www.​pears​onmyl​aband​maste​ring.​com/​north​ameri​ca/​
maste​ringc​hemis​try/
5  https://​www.​aleks.​com/​about_​aleks
6  https://​www.​macmi​llanl​earni​ng.​com/​colle​ge/​us/​digit​al/​achie​ve

https://www.pearsonmylabandmastering.com/northamerica/masteringchemistry/
https://www.pearsonmylabandmastering.com/northamerica/masteringchemistry/
https://www.aleks.com/about_aleks
https://www.macmillanlearning.com/college/us/digital/achieve


457Journal of Science Education and Technology (2023) 32:453–467	

1 3

As an indicator for the usefulness of the feedback, stu-
dents’ performance in subsequent attempts to solve the task 
is considered. The percentage of students who were able to 
correct their mistake and solve the task after an incorrect 
solution attempt with the help of the feedback can be used 
to assess the usefulness of the feedback.

Considering that feedback is one of the most impor-
tant influencing factors on learning processes (Hattie & 
Timperly, 2007), we wanted to further investigate whether 
the tasks providing automated and individualized error-
specific JIT feedback (IND-feedback) improve students’ 
performances compared to tasks providing automated cor-
rective JIT feedback (COR-feedback), which are widely used 
in LMS like Moodle. Automated and corrective JIT feed-
back (COR-feedback) also allows assisted multiple response 
tries for an exercise. In contrast to the IND-feedback, it pre-
sents only knowledge of results, but no strategically useful 
information for error correction and no immediate knowl-
edge of correct response. This type of feedback is usually 
implemented in computer based-trainings. The underlying 
research question is as follows:

RQ2: To what extent does the performance of students 
who learned with tasks providing individualized error-
specific feedback (IND-feedback) differ from that of stu-
dents who learned with tasks providing corrective feed-
back (COR-feedback)?

Research Design

In the winter terms 2019/2020 and 2020/2021, new learn-
ing tasks were provided to first-year B.Sc. Chemistry and 
B.Sc. Water Science students from authors’ university in 
an online course on general chemistry via the LMS Moo-
dle. In order to examine to what extent students’ benefit 
in their learning success from the learning tasks with 
individualized and automated error-specific JIT feedback 
(IND-feedback), the newly developed tasks were compared 
with classic tasks that regularly provide only corrective 
JIT feedback (COR-feedback). Against this background, 
students were randomly assigned to one of two interven-
tion groups. One intervention group learned with the tasks 
with individualized error-specific feedback (IND-feedback) 
while the other group worked on classic tasks with correc-
tive feedback (COR-feedback). The processing of the tasks 
was voluntary and could be repeated at any time during 
the winter term. By solving the tasks correctly, students 
could gather bonus points at the end of the semester if they 
passed the exam. Since experience has shown that many 
first-year students initially need support in using Moodle 
and completing the tasks, they received a short introduction 
at the beginning of their studies.

Since the performance of the students in the tasks 
depends to a large extent on their prior knowledge, students’ 
prior knowledge was also collected as a control variable via 
a standardized content knowledge test for the field of general 
chemistry (Averbeck, 2021; Freyer, 2013) at the beginning 
of the first semester. The content knowledge test consists 
of 35 multiple-choice single-select items and captures not 
only knowledge in the field of acid–base reactions or redox 
reactions but also knowledge in the field of atom models, 
stoichiometry, chemical equilibrium, and chemical bonds, 
for instance. As a result of the corona pandemic, the content 
knowledge test was administered online at the beginning of 
the winter term 2020/2021.

To answer the first research question, students’ activities 
were recorded in an individual log file so that solved tasks, 
received feedback messages, time on task, and received 
credit points could be calculated, for instance. Depending 
on the number of solution attempts, students could receive 
up to a maximum of 3 credit points per task. One credit point 
was deducted for each feedback message received. Students 
who solved a task on the first solution attempt received 3 
credit points, whereas students who solved a task correctly 
on the third attempt received 1 credit point. The deduction 
of credit points was not visible to the students and had no 
effect on their performance on the test items since the tasks 
were learning tasks. The point deduction served as an indica-
tor for assessing the difficulty of the learning tasks and the 
quality of the feedback.

To answer the second research question, students’ perfor-
mance was operationalized using self-developed test items. 
For this purpose, the students had to complete a test item 
after each task set that was identical to the learning tasks 
providing feedback in terms of content and task setting. In 
contrast to the learning tasks with feedback (IND- or COR-
feedback), test items are not used to acquire knowledge, but 
to determine performance. For this reason, they could only 
be completed once and were assessed by the program.

New Online Tasks for Reaction Equations

Based on the requirements presented in the previous sec-
tions, a new digital tool allowing the input and assessment 
of chemical reaction equations has been developed. The 
tool is based on the e-assessment system JACK® (Striewe, 
2016), which is one of the standard e-assessment systems 
at the university level. It can be used as a standalone tool 
as well as in conjunction with an LMS like Moodle. The 
new online tasks can be integrated into LMS via JACK®, 
which implements the LTI (Learning Tool Interoperabil-
ity) standard. This ensures a smooth exchange of data and 
learning content without having to create and manage 
additional accounts for the learners. A prerequisite for 
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using the tool is that the LMS used by the university also 
supports the LTI standard. This is the case with the LMS 
widely used at universities, such as Moodle or ILIAS. In 
addition to basic functions for the input and assessment 
of reaction equations, individualized error-specific feed-
back has been implemented in further development stages. 
Tasks were developed for two subtopics: acid–base reac-
tions and redox reactions (cf. Figs. 2 and 3).

1st Stage of Development

A new input editor has been developed to enable the input 
and assessment of reaction equations in symbol notation. This 
allows the input of reactants and products as molecular formu-
las in two separate fill-in fields that are connected to each other 
via a predefined reaction arrow to form a reaction equation (cf. 
Fig. 2). A new editor was necessary since molecular formulas 

Fig. 2   Screenshot of an acid–base reaction task (lg, decadic logarithm; c0, initial concentration)
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can be entered with an already existing mathematical formula 
editor but assessment of solutions with this editor is not pos-
sible. More specifically, the existing editor stores input data 
in a format named Open Math,7 which captures the semantics 
of mathematical formulas and equations. Since that format is 
not capable of capturing the semantics of chemical formulas, 
a similar data format named Open Chem was created and 
included in the formula editor (Pobel & Striewe, 2019). While 
mathematical formulas inherently provide appropriate func-
tions to check equality or specific properties, similar functions 
are not automatically available for chemical formulas. Hence, 
some new functions were added to the assessment module of 
JACK®, so that item authors can use them to design feedback: 
(1) A new function named “contains” can be used to check 
whether a fill-in box contains the requested (element) symbol 
notation(s) (e.g., if correct reactants and products have been 
formed). The order, in which the reagents are given, can vary 
there, whereby several answers are recognized as correct. (2) 
With a second function named “compareNumberOfAtoms,” it 
is possible to check whether the reaction equation is stoichio-
metrically balanced. This function ensures that several correct 
answers can be recognized. (3) With a third checker function 
“compareCharges,” it is possible to compare the net sum of 
charges in one input field with another and if it is the same. 

This function ensures that in addition to the stoichiometrically 
balance, the charge balance is also considered. The only sim-
plification is that the states of matter are currently excluded; 
an appropriate checker function is developed but has not been 
tested yet. Reaction conditions and catalysts also have to be 
determined in advance (e.g., by a drop-down menu). However, 
this should not change the necessary abilities for successful 
task processing in a fundamental way.

2nd Stage of Development

In order to identify typical solutions and provide automated 
feedback on standard errors using Intelligent Assessment 
(Müller et al., 2006), submitted exercises and exam solutions 
were analyzed in advance regarding typical errors. In this 
context, reaction equations had often not been stoichiometri-
cally balanced and extension factors had been determined 
incorrectly. Against this background, feedback was devel-
oped that indicates the location of error and provides hints 
for solving the task. If there are errors in one of the partial 
equations, the entire equation is incorrect or extension fac-
tors were determined incorrectly (cf. Fig. 3).

3rd Stage of Development

Since the tasks were designed for self-assessment, they are 
linked to a three-stage algorithm that allows the same task 

Fig. 3   Screenshot of a redox reaction task

7  https://​www.​openm​ath.​org/

https://www.openmath.org/
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to be completed several times (cf. Fig. 4). If students do 
not find the correct answer in the first or second solution 
attempt, they are given the opportunity to correct their solu-
tion with the help of feedback. After the third wrong sub-
mission, the correct result is displayed. Considering these 
construction principles, two subtopics (acid–base (AB) 
reactions and redox (RD) reactions, cf. Figs. 2 and 3) were 
realized in two sets of six tasks each. To complete a task set, 
students had to correctly solve two tasks successively at the 
first attempt. Furthermore, a task set could be finished by 
working on all of the six tasks with various success.

The tasks with corrective feedback (COR-feedback) differ 
from the tasks with individualized error-specific feedback 
(IND-feedback) only in terms of the type of feedback (cf. 
Fig. 4). The corrective feedback is also given immediately 
and automatically by the program. In addition, students have 
three solution attempts per task for the correct answer. An 
example of IND-feedback for a typical systematic error in 
redox reaction tasks is shown in Fig. 5.

In order to practice entering reaction equations, stu-
dents received some practical problems before the first 
exercise to familiarize themselves with the editor. This was 
necessary in order to understand the input editor, which 
can be used to write exponents and indices.

Data Collection

During the winter terms 2019/2020 and 2020/2021, the 
training was offered to 238 first-year B.Sc. Chemistry and 
B.Sc. Water Science students (60.7% male, average age 
20 years). To 124 of them, individual error-specific JIT 
feedback (IND-feedback) was offered while to 114 correc-
tive feedback (COR-feedback) was offered, although not all 
of them learned with the tasks. This group includes students 
who have received the learning tasks but have not entered 
anything. Overall, a maximum of 99 students worked on the 
tasks with IND-feedback (54 AB tasks, 45 RD tasks), and 
89 students worked with the tasks with COR-feedback (53 
AB task, 36 RD tasks). Data from students who repeated 
tasks at a later point in time (e.g., for exam preparation) were 
excluded from further analysis.

Results

The development of the new input editor allows digitizing 
tasks that require the input of chemical reaction equations or 
molecular formulas without using formats such as multiple-
choice, which alter the learning objective (cf. “Closed-Ended 

Fig. 4   IND- and COR-feedback algorithm for acid–base and redox reaction tasks
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Tasks” section). A requirement for the digitalization of tasks 
was the automated assessment of students’ solutions, which 
should be comparable to that of a human tutor. All of the 
three new functions of the editor (“contains,” “compareNum-
berOfAtoms,” “compareCharges”) check students’ solutions 
successfully to a large extent. This means that solutions can-
not only be compared with previously deposited solutions, 
but alternative solutions can also be identified as such. 
In addition, various errors can be identified and tailored 

feedback can be provided. In case of the redox reaction tasks, 
16 different errors could be distinguished and provided with 
feedback, while 6 errors were considered for the acid–base 
reaction tasks. Taking a closer look at how many feedback 
messages students from the IND-feedback group received, a 
log file analysis shows that, on average, 3 to 4 feedback mes-
sages were sent to the students during their training with both 
task sets, respectively (cf. Table 1). On average, 3–4 tasks are 
completed, with an average score of one point.

Fig. 5   Screenshot of an incorrect solution attempt and automatically generated IND-feedback for a systematic error
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Usefulness of the Automated Individualized 
Error‑Specific Feedback (IND‑Feedback) for Error 
Correction and Successful Task Completion

Based on the findings from the two cohorts, we can report that 
the AB tasks are, on average, of a reasonable difficulty. Log 
file analysis indicates that only 14.8% of the students (N = 54) 
could solve the first AB task without any feedback at the first 
attempt. But in 33.3% of the cases, students manage to solve 
the first AB task with the help of the feedback (cf. Fig. 6). In 
the following AB tasks, the percentage of students who solve 
the tasks also increases, so that 90% of the students manage to 
solve the third task within two attempts. After three completed 
tasks, it strikes that the percentage of students increases who 
skipped the tasks (cf. Fig. 6). We will discuss the reasons for 
skipping the answer later on this paper.

For solving the RD tasks, the feedback seems to be helpful 
as well, even if the percentage of students who answer the 
tasks incorrectly or skipped them is higher compared to the 
AB tasks. Overall, 55.6% of the students (N = 45) manage to 
solve the first RD task (cf. Fig. 6). In contrast, the percentage 
of students who answer the following tasks incorrectly or 
skipped them is greater than the percentage of students who 
answer the tasks correctly. Since there was no possibility to 
find out more about the reasons why these students skipped 

the tasks, we can only make assumptions at this point. One 
possible reason could be that the feedback is not targeted well 
enough to identify the mistakes and to correct the entered 
answer. Therefore, more precise and individualized error-
specific feedback is needed for successful task completion, 
especially for more complex exercises like the RD tasks. 
Based on the individual incorrect answers of the students, we 
will develop more individualized error-specific feedback in 
further iteration steps. In addition, it could be helpful to offer 
students more than three solution attempts for more complex 
tasks, because students may need several attempts to correct 
all errors. Another reason could be that the students lost their 
motivation to complete the tasks because they had to enter all 
answers, even the correct ones, again with each attempt. This 
is particularly noticeable in the RD tasks, which consisted 
of 13 input fields per task. Therefore, tasks with many input 
fields, like the RD tasks, should save correct answers and 
only request a new input for incorrect answers.

Benefits of Automated Individualized Error‑Specific 
JIT Feedback (IND‑Feedback) over Corrective 
Feedback (COR‑Feedback)

With regard to RQ2, an analysis of covariance (ANCOVA) 
was calculated, with prior knowledge serving as covariate. In 

Table 1   Means and standard 
deviations for the solved tasks, 
received feedback messages, 
and credit points from students 
of the IND-feedback group

Solved tasks Feedback messages Time on task (min) Credit points

M SD M SD M SD M SD

Acid–base 
task set (AB) 
N = 54

3.58 1.78 3.73 2.80 39.15 31.72 0.95 0.94

Redox reaction 
tasks (RD) 
N = 45

3.77 1.87 3.65 3.10 46.36 31.64 0.96 0.95

Fig. 6   Percentage of successful and unsuccessful solution attempts per task from students of the IND-feedback group (AB, acid–base reaction 
learning tasks; RD, redox reaction learning tasks)
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this context, the reliability of the content knowledge test can 
be valued as good in both winter terms with an EAP reliabil-
ity of 0.765 and 0.847. After adjusting for prior knowledge, 
results show that students who received individual error-
specific JIT feedback (IND-feedback) (N = 40, M = 1.23, 
SD = 0.73) perform significantly better in the test items 
than those who received only corrective feedback (COR-
feedback) (N = 38, M = 0.84, SD = 0.75) (F(1,75) = 4.78, 
p = 0.032, ƞ2 = 0.060).

In addition, we examined whether students’ performance 
on the learning tasks with feedback (AB and RD) had a 
further influence on their performance on the test items and 
whether this influence was moderated by the feedback. For 
this purpose, linear regression analyses were conducted, in 
which students’ performance on the test items was modeled 
hierarchically with prior knowledge, feedback, and perfor-
mance on the task with feedback as predictors. To better 
interpret the regression weights of the predictors, all vari-
ables were z-standardized before the regression analyses. 
Only the feedback group variable was left in its metric 
(COR-feedback: 0, IND-feedback: 1) because the weights 
can be easily interpreted.

In model 1 (M1), we first examined the extent to which the 
feedback group predicted performance on the test items while 
controlling for students’ prior knowledge. The results indi-
cate that feedback has a significant impact on performance 
on the test items, explaining 9.4% of variance (cf. Table 2). 
In a second model, the mean score of credits achieved while 
processing the learning tasks with feedback was included as 
another predictor. Results show that the mean score of credits 
also has a significant influence on performance on the test 

items, in addition to feedback and prior knowledge. Summing 
up, the predictors explain 15% of variance. In addition, the 
fit of the model M2 improves significantly compared to M1 
(ΔR2 = 0.056, p = 0.032). In M3, we finally tested whether 
feedback had a moderating influence in predicting students’ 
performance on the test items by including the interaction 
term of feedback group and mean score of credits as another 
predictor in the model. The results show that the regression 
weight of the interaction term does not become significant, 
nor does the inclusion of the predictor contribute to further 
explanation of variance. Likewise, this model has no signifi-
cant better fit than M2 (ΔR2 = 0.002, p = 0.705). Thus, it can 
be assumed that prior knowledge, feedback, and the mean 
score of credits have an independent influence on perfor-
mance on the test items. However, feedback as a moderator 
does not affect the relationship between mean score of credits 
and performance on the test items.

In contrast, further hierarchical regression analyses 
show a different interaction of the predictors if the per-
formance on the test items was predicted separately for 
both task sets with feedback (acid–base reactions and redox 
reactions). Since passing the test item for both task sets is a 
dichotomous variable, two binary logistic regression analy-
ses were calculated. Table 3 summarizes the results of the 
logistic regression analysis for the acid–base tasks while 
Table 4 summarizes the results for the redox reaction tasks.

In accordance with the hierarchical approach, the first 
model (M1) for the acid–base reaction test item considers 
only the feedback group and the students’ prior knowl-
edge, which was included in the model as a control vari-
able. Results show that the feedback group has a significant 

Table 2   Results of a 
hierarchical linear regression 
analyses predicting students’ 
performance in the test items of 
both task sets (AB, RD)

*p ≤ .05

Model M1 M2 M3

Predictor B s.e. β B s.e. β B s.e. β

Prior knowledge .141 .081 .193 .165 .080 .226* .167 .081 .229*
Feedback group .334 .168 .221* .361 .164 .239* .384 .176 .255*
Mean score of credits .187 .086 .239* .215 .113 .275
Feedback group × mean 

score of credits
−.066 .174 −.380

R2 .094 .150 .151

Table 3   Results of a 
hierarchical logistical regression 
analyses predicting students’ 
performance in the test items of 
the task set AB

n.s. not significant

Model M1 M2 M3

Predictor b p exp[b] b p exp[b] b p exp[b]

Prior knowledge .179 n.s 1.196 .285 n.s 1.330 .343 n.s 1.409
Feedback group 1.523 0.008 4.586 1.606 .007 4.983 .2034 .002 7.648
Mean credits acid–base task set .600 .050 1.822 1.298 .011 3.661
Feedback group × mean credits 

acid–base task set
 − 1.418 .030 .242

R2
N .167 .244 .332
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regression weight when controlling for prior knowledge (cf. 
Table 3). Thus, the chance of passing the test item increases 
by a factor of 4.58 if individual error-specific JIT feedback 
(IND-feedback) was received. This means that the chance 
of passing the test item increases approximately fourfold if 
students have received individual error-specific JIT feedback 
and prior knowledge remains constant.

In M2, the mean score of credits achieved in the exer-
cise task providing feedback was included in the model as 
a further predictor, since it stands to reason that the prob-
ability of passing the test item increases if many tasks with 
feedback were solved correctly. The results indicate that 
the mean score of credits also has a significant regression 
weight. With respect to passing the test item, the coeffi-
cient exp[b] = 1.82 states that the chance of passing the 
test item increases by a factor of 1.82 if the mean score 
improves by one unit (e.g., from 3 to 4 points). Likewise, 
the fit of the model improves significantly compared to M1 
(χ2(1) = 4.485, p = 0.034).

In a third model, we tested again whether feedback had a 
moderating influence on the relationship between the mean 
score of credits and the performance on the test item. For this 
purpose, the interaction term of feedback group and mean 
score of credits was additionally included in M3. The results 
reveal that there is a moderating influence of the feedback 
group, as the interaction term of feedback group and mean 
score of credits becomes significant. This means that a high 
mean score in the tasks with feedback that could be achieved 
through individual error-specific JIT feedback has a positive 
effect on passing the test item. In summary, this model has 
a significantly better fit than M2 (χ2(1) = 5.115, p = 0.024) 
and explains an overall variance of 33.2%.

A comparable interaction of the predictors cannot be 
found for the redox reaction tasks. The results of the hierar-
chical logistic regression analyses indicate that none of the 
predictors have a significant influence on students’ perfor-
mance in the test item (cf. Table 4).

learning systems can provide automated feedback, they are 
of particular importance for higher education teaching. Con-
sidering that feedback is one of the most important influenc-
ing factors on learning processes (Hattie & Timperly, 2007; 
Kluger & DeNisi, 1996; Wisniewski et al., 2020), it can make  
a valuable contribution to improving higher education. How-
ever, for the field of molecular formulas and chemical reaction 
equations, there is a lack of electronic tasks that automati-
cally check students’ input, generate appropriate individual-
ized error-specific feedback, and can be implemented in LMS. 
Previous attempts to digitize tasks with the help of classical 
task formats (multiple-choice, etc.) were accompanied by 
loss of quality (cf. “Closed-Ended Tasks” section). Thus, the 
aim of the study was to develop and evaluate such a digital 
tool for entering and assessing chemical reaction equations or 
molecular formulas and providing formative individualized 
error-specific JIT feedback. In addition, a further aim was 
to analyze how helpful the individualized error-specific JIT 
feedback was in solving the tasks compared to corrective JIT 
feedback, which is regularly used in LMS.

The results of the study reveal that the development of 
a new editor allows the digitalization of paper-based tasks 
with the learning objective of setting up chemical reaction 
equations. The new exercise types automatically check stu-
dents’ solutions and offer detailed error-specific feedback, 
so manual correction by a tutor is no longer necessary. This 
could be of particular interest to universities that have not 
been able to provide individual error-specific JIT feedback 
through existing LMS. The results are relevant for many 
instructors in chemistry, as student understanding of acid/
base and redox reactions are very important areas where 
a lack of understanding will affect student success in first 
year chemistry. In addition, the multistep exercises may also 
be of interest to other academic subjects where algorithmic 
problem solving is emphasized.

Based on the results so far, we assessed the usefulness 
of the individual error-specific feedback (IND-feedback) as 
satisfying, since a majority of students were able to correct 
their answers with the help of the feedback and solve the 
tasks within two or three attempts. Furthermore, the indi-
vidual error-specific JIT feedback has a significant impact 
on students’ performance in the test items. Given the same 

Table 4   Results of a 
hierarchical logistical regression 
analyses predicting students’ 
performance in the test item of 
the task set RD

n.s. not significant

Model M1 M2 M3

Predictor b p exp[b] b p exp[b] b p exp[b]

Prior knowledge .200 n.s 1.222 .194 n.s 1.214 .180 n.s 1.197
Feedback group .650 n.s 1.916 .644 n.s 1.904 .605 n.s .1832
Mean credits redox task set −.048 n.s .954 −.096 n.s .908
Feedback group × mean 

credits redox task set
.121 n.s 1.128

R2
N .048 .049 .050

Discussion and Conclusion

Learning management systems are widely used in modern 
university courses from various fields. Since these digital 
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prior knowledge, students who received individual error-
specific JIT feedback outperform students who worked with 
traditional learning tasks providing only corrective feedback.

However, results show space for improvements espe-
cially in the quality of the IND-feedback of the redox reac-
tion tasks. More individualized error-specific feedback as 
well as saving correct answers in the input fields may raise 
students’ motivation and solution frequency of the redox 
reaction tasks. Further research is needed to increase the 
use and fit of the feedback, for example, through qualitative 
interviews. In the view of the low proportion of students who 
answer the tasks with IND-feedback correctly after the third 
solution attempt, it might be promising to expand the three-
stage algorithm. For very complex tasks, such as the redox 
tasks with 13 input boxes, the students may need several 
attempts to find all errors. They should therefore be given 
several attempts to solve the task with the help of individual 
error-specific feedback.

In addition, one limitation compared to paper–pencil 
tasks is that states of matter and solution states can currently 
not be checked. An appropriate checker function is devel-
oped but has not been tested, yet. Moreover, the learning 
path of the digitalized chemistry tasks is more predefined 
compared to paper–pencil tasks. In order to be able to give 
individualized error-specific feedback, it was necessary to 
break down complex tasks into subtasks.

In summary, the present study indicates that the new 
digital tool for entering and assessing chemical reaction 
equations or molecular formulas is a promising approach to 
supporting students in large university courses by provid-
ing formative feedback via LMS. The new exercise types 
are a good opportunity to offer immediate individual error-
specific feedback during private study time, which is usually 
not possible otherwise.
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