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Abstract
This study examined the effects of an Arduino microrobot activity on college students’ interest in robotics through three 
specific objectives: (1) determining how students’ conceptual understanding regarding the basics of microcomputing and 
computer programming changes after engaging in an engineering robotics learning module, (2) assessing the impact of 
these changes on students’ sense of competence in engineering robotics, and (3) explaining the role of students’ perceived 
knowledge transferability in the relationship between their sense of competence and changes in their interest for pursuing 
engineering robotics. Participants (n = 58) were recruited from two Engineering Physics courses and surveyed before (Time 
1) and after (Time 2) an Arduino microcomputing learning activity. First, significant increases were reported post-activity for 
interest in robotics, as well as conceptual understanding of microelectronics and computer programming. Second, changes 
in the understanding of computer programming significantly predicted students’ sense of competence at Time 2. Finally, 
high and low levels of competence and perceived knowledge transferability were related to changes in students’ interest in 
robotics. Moreover, high levels of perceived knowledge transferability alone played an important role in students’ interest 
in robotics. Transferring complex engineering ideas to novel situations was beneficial regarding students’ learning gains 
associated with computer programming and with the Arduino microcontroller platform. An overview of the virtual lab 
architecture used is provided with suggested novel directions for teaching college-level courses about engineering robotics.
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Disrupted Lessons in Engineering Robotics: 
Pivoting Knowledge Transfer From Physical 
to Virtual Learning Environments

In the last decade, a growing number of studies have applied 
robotics to existing curricula to motivate students in their 
persistence toward STEM-related programs (Caron, 2010; 
Ivey & Quam, 2009; Yuen et al., 2014), while also increas-
ing students’ comfort level with practical applications of 
STEM (Grubbs, 2013). The latter is well-aligned with a 
critical goal in higher education and an important indicator 

of educational success: The capacity to transfer or apply 
knowledge and skills that have been learned in a specific 
context into a novel context (Wang et al., 2020). Given 
how employers expect students to apply what they learned 
in schools immediately after graduation upon entry to the 
workforce, identifying factors that contribute to students’ 
capacity building for knowledge transfer would be a valu-
able asset for curriculum development that also strives to 
meet this goal.

Recent digital technologies have shown great potential in 
making it possible to offer students authentic STEM learning 
experiences through gamification, visualization, and simula-
tion (Ibáñez & Delgado-Kloos, 2018). Better performance 
outcomes have also been observed when digital applications 
are used to enhance student interaction, as well as develop 
STEM awareness and interest (Dalgarno & Lee, 2010; Rawat 
et al., 2018). Similarly, using open-source microcontroller 
technologies such as Arduinos during experimentations 
has also led to increases in students’ problem-solving skills 
and self-confidence (Wahyuni & Analita, 2017) which in 
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turn have resulted in significant learning gains in discipli-
nary knowledge (Papadimitropulos et al., 2021). Moreover, 
technological advances have supported young students’ 
understanding of science concepts, specifically procedural 
knowledge. For example, simulation environments provide 
worthwhile opportunities for students to exercise higher-
order capabilities such as reflective thinking processes and 
abstraction, skills that are often measured as outcomes but 
in much older students (Falloon, 2019). Additionally, the 
effects of having participated in microcontroller and cod-
ing activities positively impact students’ motivation toward 
STEM majors and careers (Bicer et al., 2018; Nite et al., 
2020).

To date, most studies regarding knowledge transfer have 
focused on prior knowledge, cognitive load, and task dif-
ficulty (Billing, 2007; Day & Goldstone, 2012), without 
paying much attention to motivational factors that account 
for much of people’s attitudes and behaviors (Belenky & 
Nokes-Malach, 2012; Burke & Hutchins, 2007; Perkins &  
Salomon, 2012). As such, this study uses the self-determination 
theory (SDT; Deci & Ryan, 1985a; Ryan & Deci, 2017)  
as a framework for understanding how certain motivational 
constructs influence students’ perceived knowledge transfer-
ability (Bereby-Meyer & Kaplan, 2005) and their accrued 
interest in pursuing STEM disciplines (Wang & Degol, 
2013). SDT-related variables applied in educational con-
texts have so far been recognized as reliable predictors of 
college students’ motivation, learning behaviors, and overall 
academic performance (Hsu et al., 2019; Levesque- Bristol 
et al., 2020; Wang et al., 2020). For educational researchers 
and practitioners to design learning modules across the cur-
riculum that have the characteristics to influence students’ 
academic motivation and interest, understanding the qual-
ity of the associations between perceived knowledge trans-
ferability and SDT or other closely related variables (e.g., 
autonomy support, learning climate) would be imperative.

Theoretical Framework

Self‑Determination Theory

This study is based on the self-determination theory (SDT), 
suggesting that individuals thrive in environments that sat-
isfy the three basic psychological needs: autonomy, com-
petence, and relatedness, which, in turn, foster learning, 
performance, and well-being (Deci & Ryan, 2015). In edu-
cational settings, autonomy refers to the freedom of choice 
provided by the instructor within a classroom structure. 
Competence is the ability to effectively accomplish tasks or 
master certain skills. This need is satisfied when instructors 
help students see the progress they are making in developing 
a skill through informational feedback. Relatedness denotes 

feelings of connection and a sense of belonging through 
some form of interaction with peers, teachers, or learning 
artifacts. Empirical evidence has demonstrated that the sat-
isfaction of these three needs is conducive to positive out-
comes, which in turn enhances students’ goal achievements 
(Jang et al., 2012).

Past research has shown how autonomy-supportive 
learning environments satisfy the three basic psychological 
needs, which then lead to more positive learning outcomes, 
including a greater sense of perceived knowledge transfer-
ability. While numerous studies have provided evidence of 
predictive paths leading to improved learning outcomes 
(Levesque-Bristol et al., 2010), empirical evidence on SDT 
and knowledge transferability is still scarce, especially in the 
field of education. So far, most studies have focused on dem-
onstrating the positive relationship between self-determined 
motivation and college students’ perceived knowledge trans-
ferability (Hsu et al., 2019; Levesque-Bristol et al., 2020; 
Wang et al., 2020); however, there seems to be a need to 
examine the unique effects of not only motivation but also 
other sources of variance influencing college students’ per-
ceived knowledge transferability.

Perceived Knowledge Transferability

Perceived knowledge transferability is the belief that what 
has been learned is important and can transfer beyond 
the immediate learning environment and into a new situ-
ation (Belenky & Nokes-Malach, 2012). The information 
presented is viewed as relevant to the learner, and there-
fore important to know, which enhances the likelihood of 
learning (Martin & Dowson, 2009). Evidence suggests that 
knowledge transfer is more likely when individuals feel 
competent in the subject matter because they are better 
able to cope with constraints in the new environment where 
they are trying to apply previously learned skills (Billing, 
2007; Wang & Haggerty, 2009). As such, competence has 
been identified as a key variable in the learning process 
and a major antecedent of knowledge transfer and future 
performance (Hsu et al., 2019; Wang et al., 2020). Previ-
ous research suggests that college students who have had 
substantial learning experiences can provide accurate and 
appropriate data regarding their perceptions and ability to 
transfer knowledge to a novel setting or problem (Fedesco 
et al., 2019; McKay et al., 2015; Zilvinskis et al., 2017). It 
is, therefore, important to conduct longitudinal studies that 
would allow the evaluation of long-lasting effects of a learn-
ing experience and also provide feedback on what specific 
components of a learning activity influence students’ com-
petence, knowledge transfer, and interest in the field.

In the current study, perceived knowledge transfer-
ability refers to the extent to which students perceive the 
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connections between their initial learning in a given con-
text and a new situation in which they can confidently apply 
the newly acquired knowledge. Although the connection 
between competence and knowledge transferability makes 
intuitive sense, this link has not been well explored. In 
addition, the focus of previous studies (Hsu et al., 2019; 
Levesque-Bristol et al., 2020; Wang et al., 2020) was not 
to examine the relationships between SDT-related vari-
ables and college students’ perceived knowledge transfer-
ability, but rather on the differential role of various types 
of self-determined motivation or the extent to which some 
basic psychological needs were more salient in certain situ-
ations. In the present research, we use SDT as a framework 
for understanding how college students’ perceived knowl-
edge transferability may be influenced by competence and 
how this relationship impacts their interests in engineering 
robotics.

The Present Research

In line with previous research (Hsu et al., 2019; Levesque-
Bristol et al., 2020; Wang et al., 2020), the current study 
used SDT as a framework to explore how competence in 
computer programming influences college students’ per-
ceived knowledge transferability and, ultimately, their inter-
ests in robotics. Students were recruited from two engineer-
ing physics courses that implemented a four-lab sequence on 
robotics based on the Arduino microcontroller platform (an 
open-source hardware and software prototyping platform) 
as an enrichment to the existing curriculum. The following 
research questions guided this study:

1.	 How do students’ conceptual understanding of the basics 
of microelectronics and computer programming change 
after engaging in an engineering robotics learning mod-
ule?

2.	 What is the impact of the changes in students’ under-
standing of the Arduino platform and computer pro-
gramming on their sense of competence in engineering 
robotics?

3.	 What is the role of students’ perceived knowledge trans-
ferability in the relationship between their sense of com-
petence and changes in students’ interest in engineering 
robotics?

Based on prior research demonstrating learning gains 
after having interacted with digital applications (Dalgarno 
& Lee, 2010) and simulation environments (Martin & 
Bollinger, 2018), we expected students who participated 
in the four-lab sequence of Arduino microrobot learning 
activity to develop a more refined conceptual understand-
ing of the basic concepts of microelectronics and computer 

programming over time (H1). Second, unlike changes in 
students’ understanding of the Arduino platform, it was 
expected that changes in students’ understanding of basic 
concepts in programming would be more significantly asso-
ciated with their sense of competence (Tsai et al., 2019) 
(H2). Feeling competent plays a significant role in the learn-
ing of programming concepts and this was especially impor-
tant given the pivot to online learning in mid-semester due 
to the pandemic because these labs were never intended to 
be delivered virtually or through simulations. The plan had 
always been for in-person robotic learning activities.

To adapt quickly and preserve the lab goals, the last 
two labs which were originally designed to be completed 
through experimental and hands-on activities were rede-
signed with the assistance of two teachers with program-
ming backgrounds. When the pandemic lockdown started, 
a search began to look at virtual options and continue the 
labs without sacrificing the learning objectives. The exist-
ing virtual environments such as Tinkercad had limitations 
when it came to the design of an algorithmic strategy that 
used the sensors and motors of the robot to solve a problem. 
For example, although a motor could be controlled by the 
simulated Arduino in Tinkercad and rotate properly, it could 
not affect any physical simulation (i.e., movement in the vir-
tual simulation). Consequently, we gravitated toward a new 
open-source library that was released in early development 
AVR8js ( https://​github.​com/​wokwi/​avr8js). This library 
is a JavaScript simulation of the microcontroller chip that 
powers the Arduino Uno board, which means it can eas-
ily run in a browser. We developed a virtual environment 
by building the robot simulation as a 2D web game that is 
controlled with an Arduino simulation based on AVR8js. 
Additionally, to meet the specifications of the real hardware 
and provide a faithful representation of what labs 3 and 4 
would have been in a physical environment, we also devel-
oped an electronic simulation to simulate servo motors and 
the ultrasonic sensor.

This pivot (i.e., from a physical to a virtual learning envi-
ronment) was expected to facilitate student learning, allow 
for the applications of concepts acquired in the classroom 
to realistic scenarios in a virtual setting, and, ultimately, 
foster a sense of accomplishment. Finally, given that the 
Arduino microrobot labs were originally designed as a class-
room activity and later pivoted to an online environment, 
we expected students’ perceived knowledge transferability 
to future learning experiences to moderate the relationship 
between their sense of competence and changes in their 
interest in robotics (Martin et al., 2013) (H3). This is in line 
with past research showing how teaching students complex 
systems can lead to deeper understanding more easily and 
more quickly than traditional science instruction (Wilensky 
& Reisman, 2006) and help students transfer knowledge in 
different disciplines (Goldstone & Wilensky, 2008).

https://github.com/wokwi/avr8js
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The conceptual model of the study is displayed in Fig. 1.

Methods

Context and Sample

The participants were students ranging from 18–19 years old 
from an urban, public college in Eastern Canada that offered 
19 pre-university and 22 technical programs to more than 
10 000 postsecondary students and was well-known for its 
competitive programs in STEM fields. Participants (n = 58; 
17F, 40 M, 1 missing) were recruited from two Engineer-
ing Physics courses that had been part of a campus-wide 
initiative for piloting Artificial Intelligence competencies. 
The engineering physics course was offered over five hours 
weekly (two days of 90 min of lecture and another day for 
a two-hour lab) during an entire semester and included top-
ics related to computer programming and microelectronics 
using Arduino. Engineering Physics is an optional course 
offered to all students in their final semester of the Science 
program for which the requirements were Calculus and 
Mechanics. Most participants (n = 46) had already applied 
and been admitted to an Engineering program at university 
for the next term, while others were admitted in Architecture 
(n = 3) or fundamental sciences (n = 5) (4 did not answer).

Designing the Virtual Lab Pivot

A four-lab sequence was designed to introduce students to 
robotics using mobile robots.

The basic components of any mobile robot are a con-
troller, actuators, sensors, and a power system. Typical 

programmable controllers that could be used for this activ-
ity include the Arduino Uno microcontroller board or the 
Raspberry PI single-board computer. With the addition of 
actuators like servos or DC motors for motion and sensors to 
collect feedback data about the environment, mobile robots 
can be programmed to perform navigation tasks. For exam-
ple, an ultrasonic sensor can detect and measure the distance 
to obstacles. The sensor data can then be processed with the 
controller where the motors respond accordingly.

While there are many options for constructing basic 
mobile robots, they vary widely in price and complexity 
of use. As an open-source electronics prototyping platform 
with extensive documentation and an active online com-
munity sharing resources, tutorials, and example projects, 
Arduino was chosen for its accessibility and adaptability in 
the design of this robotics activity. The software to program 
the Arduino board is free and straightforward to install on 
most operating systems or ready to be used directly from a 
web browser. Also, given that the hardware is inexpensive, 
Arduino provides a cost-effective option for designing cus-
tomizable educational robotics activities. This activity used 
simple two-wheel mobile robots with an Arduino Uno com-
patible board as the controller, two continuous rotation servo 
motors, one ultrasonic sensor, and a rechargeable 5 V power 
bank. These components were selected carefully to accom-
modate the requirements of the lab which included the cost 
of the robotics kit, the learning curve required to program 
the robots, the maintainability of the hardware used, and the 
relevance to the engineering physics curriculum.

Of the four-lab sequence, the first two took place in 
classrooms. The objective of lab one was to provide an 
overview of engineering robotics with microcontrollers, 
introduce the Arduino platform, assemble the robots, and 
then perform a simple control task using boilerplate code 

Fig. 1   Conceptual model of 
study
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(i.e., a standardized code that can be reused in new con-
texts or applications without requiring significant changes). 
Students, in groups of three or four, were presented with a 
demonstration and given instructions on how to assemble 
the robot and connect the servo motors to an Arduino Uno 
microcontroller. They were then introduced to the Arduino 
software and asked to upload a simple program to make the 
robots move. Finally, they were tasked with modifying one 
variable in the code to have the robots move in a straight 
line. In theory, there is an expected answer, but what the 
students were made to observe is that getting these robots to 
move in straight lines is a nontrivial problem that requires 
more than applying correct logic. A discussion about robot 
design, the uses of sensor feedback for control, and assigned 
readings exploring the programming basics needed for the 
project prepared students for the next lab. In lab two, stu-
dents were introduced to the ultrasonic sensor and connected 
it to their robots. After exploring relevant C++ program-
ming concepts for Arduino, students were then asked to plan 
a strategy for a wall-following task leading to straight-line 
motion. The problem given was to get the robots to move 
along a 4.00 m long narrow tape line at a distance of 50 cm 
from a straight wall (see Fig. 2). Groups were asked to sub-
mit their plans in plain language to be used as pseudocode 
logic for writing an Arduino program. The overall objective 
was to begin applying algorithmic thinking strategies needed 
for the navigation challenge in lab four.

When teaching moved to an online mode, due to COVID-
19 restrictions, the last two labs which were originally 
designed to be completed through experimental and hands-
on activities were redesigned with the assistance of two 
teachers with programming backgrounds. Hardware and 
robot simulations were created along with a virtual envi-
ronment for carrying out an analogous navigation task to 
the original class challenge (lab 4). To prepare for lab three, 
students were asked to do some background research on the 
ultrasonic sensor. The goal was to understand more precisely 
how the sensor works and the programming basics needed 
to provide a solution to the more complex navigation chal-
lenge that builds on the “Follow the wall” problem. Dur-
ing lab three, presented in a Zoom meeting, students were 
directed to the created online resources to understand how to 
control the simulated hardware. To show that the simulator 
captured expected results from the actual hardware in the 

lab, students were asked to apply programming logic from 
the boilerplate code of the ultrasonic sensor homework to a 
simple object detection task. The task was to convert tim-
ing signals, related to the interval between an emitted sonic 
pulse and a received pulse upon reflection from an object, 
into distances using prior knowledge about sound waves (see 
Fig. 3). Students were able to confirm the object distances 
set in the virtual environment and the teaching assistants 
reinforced the concept by demonstrating on screen how the 
real ultrasonic sensor worked with the same boilerplate code 
by moving their hands closer and away from the sensor and 
observing the time the sonic signal took. Students were then 
introduced to a follow the wall virtual problem analogous 
to the lab two in-class activity and asked to work on a group 
solution that applied their revised pseudocode strategies in 
breakout rooms. Finally, students were presented with the 
virtual navigation challenge and asked to begin program-
ming their solutions in groups. Two weeks were given to 
collaborate on solutions to the challenge and then submitted 
just before lab four. Lab four was the challenge demo day. 
The final autonomous navigation challenge was: Using sen-
sor feedback, program a robot to navigate along a complex 
path in the shortest possible time. During a zoom class, each 
group of students presented their solutions and explained the 
logic behind their program to solve the challenge. Then the 
teacher ran each solution submitted by the students on the 
simulation while sharing the screen and recorded the time it 
took for the robot to navigate through the virtual challenge. 
The assessment was given based on the degree of complete-
ness of the task (i.e., based on the number of coins collected 
within a thirty-second time limit). All student groups were 
able to complete the challenge and were ranked according to 
the total time required to complete the challenge.

Reports were submitted describing their group strategies 
and an analysis of their performance along with specula-
tions of how they could improve their solutions. Notably, 
the virtual navigation challenge was a faithful representation 
of the in-class challenge. While the students did not have 
the opportunity to test their solutions on real hardware, the 
virtual environments with the simulated hardware allowed 
the originally planned sequence of labs to be completed 
analogously.

Virtual Lab Design Considerations  Although the virtual 
environment faithfully reproduced the design of what 
was intended in the “hands-on” part of working with the 
Arduino, the students were not able to use real hardware 
because the college was closed and all the robots remained 
at the college. They did, however, continue group work in 
Zoom breakout rooms where students collaborated on devis-
ing navigation strategies and writing programs to control the 
virtual robot. The missing criterion in the simulation over 
the real hardware was the actual connection of wires and Fig. 2   Follow the Wall Problem (Lab 2)
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electronics on a board because, in the simulation, the robot 
was already connected. However, in terms of programming 
the Arduino robot and writing a program in C++ to control 
the robot, the simulation was very close to the real robot. 
The students would have been able to take the same code 
that was used in the simulation and upload it to the real robot 
and expect a similar behavior to that of the simulation.

One criterion that we considered when deciding on the 
design of the virtual environment was student engagement 
with the inclusion of gamification elements. Given that the 
navigation challenge (lab 4) was a collaborative activity with a 
set of rules to follow and an end goal, we added game-playing 
elements such as points and timers. The addition of the gami-
fication elements allowed us to design the virtual challenge by 
adding a set of coins lined up parallel to each wall at different 
unknown distances (see Fig. 4) and that needed to be collected 
by the robot within a set period. Additionally, we also debated 
the most appropriate online environment for students to be 
introduced to electronics needed for robotics in an engaging 

way that included these gamification elements. We considered 
the Tinkercad environment as our first choice to help students 
understand how each electronic part worked separately through 
Arduino board simulation, but it was limited in its interac-
tive elements. There was a simulation for the electronics, but 
none for the needed physics aspects of the electronics. For 
example, the ultrasonic sensor was not able to detect anything 
in the simulated environment except for a small ball that the 
user moved with their mouse pointer. This was a restriction 
with the Tinkercad environment as we could not construct a 
lab exercise that fully met the learning goals we had for these 
learning activities. As such, the Arduino platform was deemed 
appropriate in both the physical and virtual learning environ-
ment because it could integrate virtual objects with activities 
that incorporated physical counterparts using Arduino sensors.

For the virtual labs, students continued to work in teams 
of three or four using breakout rooms in Zoom and were pro-
vided with online tutorials (link to be provided for publica-
tion after peer review) to learn how to design algorithms that 
would help them complete the virtual navigation challenge. 

Fig. 3   Detection Task Using 
Ultrasonic Sensors (Lab 3)
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The virtual environment allowed students to run their pro-
grams and observe the robot in the simulated environment as 
many times as they wanted in and out of class. Students were 
observed spending more time working on the labs outside the 
classroom which was not possible to do previously given that 
they were restricted to running their experiments in the col-
lege labs. Before COVID-19, students had to wait about two 
weeks between every lab session to get access to their robots 
and proceed with testing and debugging. The convenience of 
a flexible learning schedule, as opposed to a fixed schedule, 
was beneficial for students to control their own learning time 
and, consequently, engage in a more meaningful way in the 
online exercises. Additionally, the virtual lab was a web page 
that could be accessed from anywhere and the simulation ran 
in a browser.

The gamification was strictly related to the addition of the 
coins. It clarified the goal for each learning activity by facilitat-
ing students’ visualization of the robot’s performance (collect-
ing several virtual coins). At the end of the four labs, students 
had acquired substantial learning experiences to know how 
to connect motors and sensors to a microcontroller and write 
simple programs in the C++ programming language to control 
the connected hardware.

Data Sources

A survey was administered by a research assistant during 
class time at the beginning (Time 1) and online at the end 
(after four weeks) of the robotics learning activity (Time 
2). All 58 students participated at both times. In Time 1, a 
questionnaire was administered asking students about their 
interests in robotics, as well as their basic understanding of 
microcontrollers (1 locally developed item: I understand 
the basics of micro-computing platforms like Arduino) and 
programming (1 locally developed item: I understand the 
basics of computer programming). In Time 2, in addition 
to the questionnaire from Time 1, two more scales were 
used to assess college students’ sense of competence and 
perceived knowledge transferability regarding the mate-
rial covered in the Arduino microrobot activity. All scales 
ranged from 1 (strongly disagree) to 7 (strongly agree).

Perceived Knowledge Transferability Scale (PKT)  PKT 
(Cronbach’s α = 0.90) was measured using four items from 
Levesque-Bristol et al. (2010). The items were adapted to 
assess one’s confidence in applying the course material in 
other classes and also in assessing its relevance to future 

Fig. 4   Navigation Challenge Ported to a Virtual Lab Environment Instructions: The coins are approximately 110 cm away from the top wall and 
approximately 70 cm from the right wall. Use the data from the ultrasonic sensor to navigate the robot to collect all coins
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career options (e.g., “I feel as if the material covered in this 
activity is relevant to my future career.”).

Competence (CP)  This six-item scale (Cronbach’s α = 0.89) 
was derived from the Modified Basic Psychological Needs 
Scale (BPNS) (Levesque‑ Bristol et al., 2010) and assessed 
the extent to which students perceived their need for compe-
tence was met. The scale was adapted and modified for the 
learning activity in this study (e.g., “Most days I feel a sense 
of accomplishment from this activity.”).

Interest in Robotics (ItRb)  This three-item scale (Cronbach’s 
α = 0.81 at Time 1 and 0.88 at Time 2) was derived from the 
Academic Interest scale (Corbière et al., 2006) and assessed 
the extent to which students were interested in the Robotics 
learning module. The scale was adapted and modified for 
the learning activity in this study (e.g., “I like the field of 
robotics”, “I enjoy learning about robotics”, “Robotics is an 
important field of study for me.”).

Post-activity student reflections were also collected regard-
ing the challenges and benefits of transferring the lab out of 
the classroom and into an online environment. Teams were 
evaluated based on their robot’s navigation of the final chal-
lenge and the time required for the completion. All students 
successfully completed the modules for the lab (M = 95.6, 
SD = 9.8, mark includes bonus points), the assigned home-
work in relation to the labs (M = 82.7, SD = 20.8), class tests 
(M = 79.0, SD = 11.9), and passed the course at the end of the 
semester (M = 83.6, SD = 10.3).

This study was conducted as per the ethical standards of 
the granting institution and the national funding organiza-
tion. Informed consent was obtained from all participants 
included in the study.

Results

Data were checked for outliers and assumptions of regres-
sion were checked before analyses. Five multivariate and 
one univariate case with outliers were removed (N = 52 final 
sample). Data were analyzed using PROCESS in SPSS. Cor-
relations, as well as means and standard deviations at Times 
1 and 2 of the study variables, are presented in Table 1.

RQ1: How do students’ conceptual understanding 
of the basics of microelectronics and computer 
programming change after engaging 
in an engineering robotics learning module?

We measured changes in students’ conceptual understand-
ing regarding the basics of microelectronics and com-
puter programming from Time 1 (prior to beginning the 
learning module) to Time 2 (after completing the learn-
ing activity) by using paired-sample t-tests. In Time 1, 

students had displayed a basic understanding of computer 
programming (M = 4.53, SD = 1.70) and a limited under-
standing regarding microcontroller platforms like Arduinos 
(M = 2.75, SD = 1.75). At Time 2, significant increases were 
reported for computer programming (M = 5.69, SD = 1.36), 
t(51) = 5.60, p < 0.001 and understanding of the Arduino 
platform (M = 5.37, SD = 1.28), t(51) = 10.51, p < 0.001.

RQ2: What is the impact of the changes in students’ 
understanding of the Arduino platform 
and computer programming on their sense 
of competence in engineering robotics?

A backward stepwise regression analysis was conducted to 
develop a model predicting students’ sense of competence 
in the learning activity from the changes in their increased 
understanding of microcontrollers (i.e., Arduinos) and com-
puter programming. Backward elimination was selected to 
consider the effects of the two variables simultaneously in 
the case of collinearity (the two predictors correlated at 0.60 
at Time 1). To create a variable representing a change, the 
manifest residuals from the regression analyses (from Time 
1 to Time 2) were used (Gunnell et al., 2017). The residual 
for a variable was obtained by conducting a regression anal-
ysis with the Time 2 measurement entered as the outcome 
and the Time 1 measurement entered as the predictor. The 
residual values from this analysis represented changes in 
the variable that were not predicted from the initial value.

The assumptions of independence, normality, linearity, 
and homoscedasticity were assessed and found to be met. A 
significant regression equation was found for Model 1 which 
included both predictors (F(2, 49) = 6.311, p < 0.004, with 
an R2 of 0.205. In Model 2, changes in the understanding 
of the Arduino platform were removed using the backward 
criterion resulting in an R2

= 0.166 which was not a sig-
nificant decrease of R2 from Model 1, p = 0.128. The linear 
regression in Model 2 revealed that changes in computer 
programming alone significantly predicted students’ sense 
of competence, F(1,50) = 6.792, p = 0.003 (See Fig. 5).

RQ3: What is the role of students’ perceived 
knowledge transferability in the relationship 
between their sense of competence and interest 
in engineering robotics?

First, we measured changes in students’ interest in robotics 
by using paired-sample t- tests. At Time 1, students had 
displayed an above average interest in robotics (M = 4.15, 
SD = 0.99). At Time 2, significant increases were reported 
for students’ interest in robotics (M = 4.73, SD = 1.25), 
t(51) = 4.08, p < 0.001. A moderation analysis using the 
PROCESS plug-in from SPSS (Hayes, 2012) was used 
to assess perceived knowledge transferability (PKT) as 



563Journal of Science Education and Technology (2022) 31:555–569	

1 3

a moderator in the relationship between students’ sense 
of competence (CP) and changes in their interests in 
engineering robotics from Time 1 to Time 2 (from the 
beginning to the end of the learning module). The over-
all model was significant F(3,48) = 6.60, p < 0.001, R2 = 
0.292. Although students’ interest in robotics increased as 
CP and PKT increased, CP was not a significant predic-
tor, b = 0.10, t(48) = 0.61, p = 0.546, whereas PKT was, 

b = 0.43, t(48) = 3.13, p = 0.003. The interaction effect 
between CP and PKT was also non-significant, b = 0.06, 
t(48) = 0.54, p = 0.595.

Because of a non-significant interaction effect, we cal-
culated only simple slopes.

Predicted values of mean changes in students’ inter-
est in robotics from Time 1 to Time 2 were calculated 
across low (-1SD) and high (+ 1SD) values of CP and PKT 

Fig. 5   Model Predicting Students’ Sense of Competence as a Function of Changes in their Understanding of Computer Programming

Fig. 6   Changes in Students’ 
Interest in Robotics as a Func-
tion of Sense of Competence 
and Perceived Knowledge 
Transferability
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(see Fig. 6). The following linear regression equations as 
suggested for a 2 × 2 model (Gaudreau, 2012) were used 
to calculate the predicted changes in students’ interest in 
engineering robotics:

1.	 Y of Low CP-PKT = Intercept + (B CP. Low CP) + (B 
PKT. Low PKT).

2.	 Y of High PKT = Intercept + (B CP. Low CP) + (B PKT. 
High PKT).

3.	 Y of High CP = Intercept + (B CP.High CP) + (B PKT. 
Low PKT).

4.	 Y of High CP-PKT = Intercept + (B CP.High CP) + (B 
PKT. High PKT).

Based on the 2 × 2 model (Gaudreau & Thompson, 2010), 
we assumed that both CP and PKT would be present to vary-
ing degrees within each individual rather than differences 
that lie within the dimensions themselves. By focusing on 
the within-person combinations of low and high levels of 
CP and PKT, a more meaningful level of analysis could take 
place to differentiate the relationship between the two pre-
dictors. As such, changes in students’ interest in engineering 

robotics could be examined based on the quantitative scores 
of CP and PKT at four distinct levels, while also delineating 
ways to examine hypotheses in the absence of a significant 
interaction.

Results indicated that high levels of both CP and PKT, 
compared to all other.

possibilities were related to the highest increases in inter-
est in robotics (M = 0.58). Second, it seems that only a high 
level of PKT played an important role in students’ increased 
interest in robotics (M = 0.41) compared to only high lev-
els of CP (M = -0.42). Finally, low levels of both CP and 
PKT were related to the most decrease in interest in robotics 
(M = -0.59). There were significant differences between all 
predicted values for changes in students’ interests in robotics 
as demonstrated by Cohen’s d (see Table 2).

At the end of the semester, all teams were able to suc-
cessfully solve the culminating class challenge, addressing 
the primary goal of the pivot to a virtual lab setting from 
in-person learning.

Discussion

The purpose of the present research was to determine: (1) 
the impact of a microrobot learning activity on college 
students’ conceptual understanding of microelectronics 
and computer programming, (2) the relationship between 
students’ understanding of programming and their sense 
of competence within the activity, and (3) the role of per-
ceived knowledge transferability and sense of competence 
in students’ interest in engineering robotics. The results 
generally supported our hypotheses. After having com-
pleted four labs designed around the Arduino microrobot 
activity, students’ understanding of microcontrollers (i.e., 

Table 1   Correlations, Means, 
and Standard Deviations at 
Times 1 and 2

CP_T2: Sense of Competence at Time 2
PKT_T2: Perceived Knowledge Transferability at Time 2
Ard_T1: Understanding of Arduino at Time 1 + Ard_T2: Understanding of Arduino at Time 2
Prg_T1: Understanding of Computer Programming at Time 1 Prg_T2: Understanding of Computer Pro-
gramming at Time 2
ItRb_T1: Interest in Robotics at Time 1 ItRb_T2: Interest in Robotics at Time 2
* p < .05; ** p < .01; *** p < .001

CP_T2 PKT_T2 Ard_T1 Ard_T2 Prg_T1 Prg_T2 ItRb_T1 ItRb_T2

CP_T2 5.25(0.90)
PKT_T2 0.58*** 5.40(1.13)
Ard_T1 0.21 0.02 2.75(1.75)
Ard_T2 0.45** 0.34* 0.33* 5.37(1.28)
Prg_T1 0.06 0.02 0.60*** 0.20 4.56(1.70)
Prg_T2 0.40** 0.23 0.35* 0.59*** 0.56*** 5.69(1.36)
ItRb_T1 0.20 0.26 0.55*** 0.22 0.37** 0.23 4.15(0.99)
ItRb_T2 0.42** 0.58*** 0.32* 0.42** 0.18 0.35* 0.61*** 4.73(1.25)

Table 2   Planned Comparisons of High and Low Levels of Compe-
tence and Perceived Knowledge Transferability

Planned contrasts Cohen’s d

Low CP_Low PKT vs High CP_High PKT 1.18
Low CP_Low PKT vs Low CP_High PKT 1.01
Low CP_Low PKT vs High CP_Low PKT 0.17
Low CP_High PKT vs High CP_High PKT 0.17
Low CP_High PKT vs High CP_Low PKT 0.84
High CP_Low PKT vs High CP_High PKT 1.01
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Arduinos) and computer programming showed significant 
increases, thus confirming H1. The results also suggested 
an intercorrelation pattern between students’ understand-
ing of programming and their sense of competence. Com-
pared to an understanding of Arduino, the regression 
model identified the understanding of computer program-
ming as a more important factor in influencing students’ 
sense of competence which confirmed H2. Unexpectedly, 
perceived knowledge transferability, as opposed to compe-
tence, was a better predictor of students’ increased interest 
in robotics which partially supported what we had hypoth-
esized in H3. The present findings led to several implica-
tions for STEM-related pedagogical activities that strive 
to foster knowledge transfer.

Enabling students to grasp engineering concepts dur-
ing later high school or in early undergraduate years often 
proves to be challenging. The introduction of an Arduino 
microcontroller into a learning activity designed for senior 
college students in an engineering physics course proved 
to be beneficial in the development of a key attribute for 
engineering: designing and developing solutions for real-
life situations (Ziaeefard et al., 2017). This study repli-
cated outcomes from past research associated with Arduino 
experiments in virtual and physical learning environments 
(Papadimitropoulos et al., 2021) by demonstrating signifi-
cant increases in students’ understanding of Arduino and 
computer programming. While initial knowledge about 
Arduino as a microcomputing platform was minimal as 
indicated by their mean scores at Time 1 (2.75 / 7), students’ 
mean scores increased significantly at Time 2, after the 
four-lab sequence (5.37 / 7). Similar significant increases 
were observed in students’ understanding of computer 
programming although their base knowledge was higher 
at Time 1 (4.56 / 7) compared to that of Arduino. Based 
on past studies (e.g., Hong et al., 2018), these significant 
learning gains were expected given that the pivot from a 
physical to a virtual learning environment went beyond the 
simple accompaniment of static visualizations. It promoted 
the activation of cognitive skills such as understanding and 
memorizing content while also fostering the application 
of procedural knowledge (Kump et al., 2015). The latter 
has implications on students’ ability to organize complex 
knowledge in a meaningful way (Ambrose et al., 2010).

For example, this organizational structure facilitates the 
potential for knowledge transfer to new situations, a useful 
and effective skill for bridging concepts from high school 
to the first year of an engineering undergraduate program.

The present findings also align with past research that 
advocates the positive effects on students’ interest in engi-
neering education (Brophy et al., 2008) following the use 
of microcomputing platforms during hands-on learn-
ing (Ziaeefard et al., 2017). Furthermore, given that stu-
dents interacted with both physical and virtual learning 

environments in this study, they were provided with oppor-
tunities to remain engaged in a learning activity when physi-
cal laboratories were no longer accessible (Davenport et al., 
2018). Therefore, students’ interest in robotics still occupied 
an important place even though physical engagement had 
disappeared. The latter was demonstrated by their sustained 
interest after having completed four Arduino-based modules 
through blended representations due to the shift to online 
learning brought on by COVID-19. It seems that Arduino-
based experiments can be designed to bridge the gap between 
virtual and physical learning environments, hence, creating 
opportunities that are conducive to the development of skills 
required for knowledge transferability. This suggests that both 
physical and virtual learning environments may be the ideal 
contexts for sustaining college students’ motivation during 
laboratory experiments. The simulated environment, in par-
ticular, was advantageous given that students were observed 
spending more time working on the lab experiments outside 
the classroom, which is not always a possibility when in per-
son given the scheduling conflicts with other courses taking 
place in those lab spaces. It seems that a blended combina-
tion of virtual and physical learning environments is more 
conducive to the development of competence for laboratory 
experimentation (Olympiou & Zacharia, 2012).

Another motivational factor for the ongoing development 
of students’ interest in robotics was their sense of compe-
tence. Research has consistently shown that the satisfaction 
of basic psychological needs for autonomy, competence, and 
relatedness is associated with positive outcomes in education 
(Ryan & Deci, 2017). Our findings extend the SDT literature 
and highlight the role of competence in light of students’ 
perceived knowledge transferability (PKT) in the context 
of postsecondary education. Specifically, learning gains in 
students’ understanding of computer programming were 
strongly associated with their sense of competence, however, 
PKT was more predictive of increases in students’ interest in 
robotics. This implies that interest in STEM develops when 
students are provided with opportunities to bridge theory 
and practice in novel learning environments (e.g., through 
lecture notes as well as physical and virtual labs), and not 
simply by drawing links between conceptualizations or static 
visualizations and highly controlled learning environments.

Designing and implementing a robotics learning activity 
in the curriculum of an engineering physics course provided 
opportunities for students to learn, apply, and experiment 
with competencies that often overlap between college and 
undergraduate levels. It seems that a blended combination 
of virtual and physical learning environments is more con-
ducive to the development of competence for laboratory 
experimentation. Furthermore, the COVID-19 pandemic 
challenged the existing infrastructure of lab experiments by 
encouraging the emergence of blended environments, thus 
forcing a redefinition of authentic learning experiences. 
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For example, the Arduino-based virtual labs described in 
this study, inspired by the immediate need to pivot online, 
formed a fertile ground for a potential knowledge transfer 
and, ultimately, an increased interest in pursuing studies in 
STEM-related fields.

In sum, it seems competence and knowledge transfer 
pinpointed a differential influence on students’ interest in 
robotics. Specifically, students who experienced high lev-
els of perceived knowledge transferability and low levels of 
competence displayed a higher increase in interest in robot-
ics than students who experienced high levels of competence 
but low levels of perceived knowledge transferability. This 
implies that students who feel a high sense of competence 
may have greater content mastery (Chi & VanLehn, 2012); 
however, this may be limited to in situ contexts and may not 
necessarily lead to knowledge transfer (Bonem et al., 2020).

Theoretical Contributions

Using self-determination theory (SDT), proposed by Deci 
and Ryan (1985b), as the motivational framework on which 
to base this study has led to a couple of theoretical implica-
tions. First, given that competence is one of the psychologi-
cal needs as defined by SDT, individuals experienced greater 
perceived knowledge transferability through the satisfaction 
of their sense of competence. This has implications when 
considering how pedagogical design in engineering educa-
tion can adequately address heightened feelings of compe-
tence, which in turn, leads to students actively engaging in 
learning tasks (Hsu et al., 2019; Reeve, 2013).

Second, this study investigated the relationships between 
competence and perceived knowledge transferability in an 
online learning context through the lens of SDT during the 
pandemic (Chiu, 2021). Although SDT has been widely 
applied to optimize student learning in face-to-face teach-
ing and learning contexts (Ryan & Deci, 2017), it has been 
largely overlooked in online learning settings (Chen & Jang, 
2010; Hsu et al., 2019). Moreover, in the majority of SDT-
related studies, the core focus has been on how teachers 
should be acting while teaching, and not on technological 
design. The technological environment in this study pro-
vided preliminary evidence of how SDT could be applied 
(Ryan & Deci, 2020) in classroom-based research and 
how technologies in e-learning and remote classrooms can 
enhance students’ interests. It contributed to SDT by dem-
onstrating how instructors can use technological design to 
target the satisfaction of college students’ competence by 
suggesting diverse strategies for online learning and, ulti-
mately, increasing students’ interest.

Finally, the findings of this study highlight how instruc-
tion and technology have the potential to differentially influ-
ence student learning and the extent to which they engage 

with the content. Compared to the effects of technologically 
driven environments, instruction in face-to-face contexts 
have been researched much more thoroughly (e.g., Lietaert 
et al., 2015; Vollet et al., 2017). The potential of individual-
ized impact from physical (classrooms) and virtual (digital 
support) learning environments is indicative that they should 
be designed separately and independently to contribute to 
student learning because although they are interrelated, they 
are operationalized and conceptualized as distinct.

Conclusion, Limitations, and Future 
Directions

The pivot to a virtual lab setting from in-person learning 
allowed for all students to complete the robotics activities. 
Transferring complex engineering ideas to novel situations, 
even with the challenges of the COVID-19 lockdown, proved 
to be beneficial for students’ learning gains associated with 
computer programming and the Arduino platform. While 
acquiring knowledge might be the main purpose in educa-
tion, knowledge usability in different contexts deserves equal 
attention as it plays an important role in preparing students 
to transition to the workforce, graduate school, and real life.

This study was conducted under some limitations which 
should be considered when interpreting the current findings. 
First, measures were mostly based on self-report scales, how-
ever, we did use a methodological process that was replicated 
by other authors who used more objective measures render-
ing similar outcomes when using a 2 × 2 model to interpret 
their findings (e.g., Gaudreau & Thompson, 2010; Gaudreau 
& Verner-Filion, 2012; Gaudreau et al., 2018; Schellenberg 
et al., 2019). Consequently, future research is needed to rep-
licate the present findings either with more objective assess-
ments regarding autonomy support or by triangulating findings 
with qualitative data such as individual interviews or videos 
of task analysis. Second, the participants in this study were 
from the same age group (18–19 years old) and the same pro-
gram (sciences). It would thus appear important to replicate 
the present findings with other student populations from other 
disciplines (outside of science). Third, given that affordable 
and free learning kits such as Arduino kits employed for robot-
ics education among pre-college students lack curricula for 
STEM educators, it is suggested (as indicated in the student 
reflections) that future iterations incorporate more instruction 
or tutorials regarding programming basics to improve learn-
ing outcomes. Finally, the female sample size was not suffi-
cient to conduct any separate analyses and draw more specific 
conclusions. Given what is known about the impact of self-
efficacy on females in computer science (Tsai et al., 2019), 
future research should consider investigating such factors in 
female-dominant areas of study (e.g., psychology, liberal arts).
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The present research demonstrated the importance of 
looking at variables more dynamically (e.g., low and high 
levels) to ascertain conclusions. Future research in which 
the 2 X 2 model is used to examine such constructs in dif-
ferent disciplines and populations is encouraged to extend 
and replicate these findings. Future investigation also calls 
for more studies to examine promoting college students’ 
perceived knowledge transferability by considering the 
meaningful contributions from constructs aligned with the 
self-determination theory in the context of higher education. 
Furthermore, these findings have practical implications for 
educators as they show the vital function that learning envi-
ronments play in fostering students’ interest and, ultimately, 
passion for a field of study (Bonneville-Roussy et al., 2011). 
Therefore, this study underscores another avenue for future 
research wherein training teachers to integrate pedagogical 
activities in the curriculum that offer the potential for stu-
dents to transfer knowledge between physical and virtual 
learning environments.
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