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Abstract
Science education researchers typically face a trade-off between more quantitatively oriented confirmatory testing of hypoth-
eses, or more qualitatively oriented exploration of novel hypotheses. More recently, open-ended, constructed response items 
were used to combine both approaches and advance assessment of complex science-related skills and competencies. For 
example, research in assessing science teachers’ noticing and attention to classroom events benefitted from more open-ended 
response formats because teachers can present their own accounts. Then, open-ended responses are typically analyzed with 
some form of content analysis. However, language is noisy, ambiguous, and unsegmented and thus open-ended, constructed 
responses are complex to analyze. Uncovering patterns in these responses would benefit from more principled and systematic 
analysis tools. Consequently, computer-based methods with the help of machine learning and natural language processing 
were argued to be promising means to enhance assessment of noticing skills with constructed response formats. In particular, 
pretrained language models recently advanced the study of linguistic phenomena and thus could well advance assessment 
of complex constructs through constructed response items. This study examines potentials and challenges of a pretrained 
language model-based clustering approach to assess preservice physics teachers’ attention to classroom events as elicited 
through open-ended written descriptions. It was examined to what extent the clustering approach could identify meaningful 
patterns in the constructed responses, and in what ways textual organization of the responses could be analyzed with the 
clusters. Preservice physics teachers (N = 75) were instructed to describe a standardized, video-recorded teaching situation 
in physics. The clustering approach was used to group related sentences. Results indicate that the pretrained language model-
based clustering approach yields well-interpretable, specific, and robust clusters, which could be mapped to physics-specific 
and more general contents. Furthermore, the clusters facilitate advanced analysis of the textual organization of the constructed 
responses. Hence, we argue that machine learning and natural language processing provide science education researchers 
means to combine exploratory capabilities of qualitative research methods with the systematicity of quantitative methods.
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"You can have data without 
information, but you cannot 
have information without data." 
(Daniel Keys Moran)

Research methods in science education are commonly dif-
ferentiated into quantitative and qualitative methods (Krüger 
et al., 2014). The former allow for the confirmatory testing 
of statistical hypotheses, whereas the latter allow for more 
exploratory generation of novel hypotheses. This division 
is artificial and attributes to the imperfect capabilities of 
modeling complex systems that involve learning processes 
of humans. It would be desirable to better integrate both 
methods and conserve the predictive capabilities of quanti-
tative methods and the exploratory capabilities of qualita-
tive methods. It has been suggested that complex algorith-
mic approaches such as machine learning can better model 
assessment in science education (Breiman, 2001; Zhai, 
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2021) and eventually provide a new methods paradigm. 
“Machine learning is about inductively solving problems 
by machines, i.e., computers.” (Rauf, 2021, p.8). Induc-
tive learning requires appropriate data for the machines to 
improve on relevant tasks. Given advances in data storage 
and accessibility, machine learning (ML) models dramati-
cally improved their performance on many tasks such as 
image classification, or spoken and written language ana-
lytics (Goodfellow et al., 2016; Goldberg, 2017). Scholars 
in the fields of education and discipline-based educational 
research also argued that ML methods can advance educa-
tional research (Singer, 2019; Baig et al., 2020), even “revo-
lutionize” assessments (Zhai et al., 2020). Among others, the 
education sector presents a field where datasets of unprec-
edented size become available (Baig et al., 2020).

ML methods have been utilized in science education 
research in different contexts. Mostly, science education 
researchers employed supervised ML methods where a 
model is trained to map responses to predefined outputs 
(Zhai et al., 2020). However, oftentimes problems in science 
education research are less well defined and only small data-
sets can be collected with reasonable effort. For example, in 
research on university-based teacher education such as notic-
ing and attention to classroom events, typically small sam-
ples are available (Chan et al., 2021; Wilson et al., 2019). 
Noticing, among others, comprises the careful observation of 
events in a teaching situation. In science education research 
it has been highlighted that preservice science and math-
ematics teachers attend to many different events and contents 
in a teaching situation (Talanquer et al., 2015). To capture 
the complexity of noticing, science education researchers 
therefore used open-ended, constructed response formats to 
assess noticing and attention to classroom events (Barth-
Cohen et al., 2018; Luna et al., 2018; Chan et al., 2021). 
The responses are then analyzed with some form of content 
analysis. However, not only do the differences in attention 
between the teachers yield to the complexity of assessing 
noticing and attention processes, but also the teachers’ use of 
language in constructed-response items. Language use was 
characterized to be “noisy, ambiguous, und unsegmented” 
(Jurafsky, 2003, p.39). Hence, probabilistic approaches are 
required to analyze language-related processes and products. 
A probabilistic approach that also captures complexity is 
ML. The application of ML-based modeling could provide 
researchers means to gain novel insights into these complex 
constructs (Zhai et al., 2020). Yet, it is not clear in what ways 
ML-based approaches can be utilized to identify meaningful 
patterns in teachers’ constructed responses with respect to 
noticing and attention to classroom events.

In the present study we therefore evaluate potentials 
and challenges of using a pretrained language model-based 
clustering approach to analyze preservice physics teach-
ers’ open-ended, constructed responses in the context of 

describing a standardized teaching situation. We critically 
examine to what extent the application of ML in our research 
context can bridge the divide between quantitative and quali-
tative methods and provide a more integrative approach.

Utilizing NLP and ML to Model Complex 
Dataset

Applications with ML and natural language processing 
(NLP) attracted a lot of interest in the field of science edu-
cation research (Zhai et al., 2020). ML refers to comput-
ers’ inductive problem solving based on data (Zhai, 2021; 
Rauf, 2021). Two major types of ML are supervised and 
unsupervised ML (Jordan & Mitchell, 2015). In supervised 
ML, human-annotated data are provided for the models to 
learn a mapping from input to output in order to classify or 
predict unseen data (Marsland, 2015). Unsupervised ML, on 
the other hand, encompasses algorithms to reduce complex 
datasets and extract patterns in them. Both types of ML can 
be used to analyze natural language. The study of natural 
language by means of computers is called NLP. NLP refers 
to the systematic and structured processing of natural lan-
guage data. Natural language can be contrasted with artifi-
cial language such as programming languages or mathemat-
ics which are more aligned with formal logic. The attribute 
“natural” relates to the fact that this form of language can be 
characterized to be “noisy, ambiguous, and unsegmented” 
(Jurafsky, 2003). It has been argued that it is not possible 
to specify clear-cut rules for natural language (i.e., a gram-
mar) that explain phenomena of language comprehension 
and production: “we can’t reduce what we want to say to the 
free combination of a few abstract primitives” (Halevy et al., 
2009, p. 9). Hence, probabilistic approaches such as ML 
methods are increasingly incorporated into NLP research 
in addition to rule-based approaches, given the capacity of 
probabilistic approaches such as ML to systematically pro-
cess complex language data, extract patterns in it and clas-
sify instances of language use (Goldberg, 2017).

ML research experienced a new spring with the suc-
cessful application of deep neural networks to learn input-
output mappings that outperformed more simple (shallow) 
ML models in most tasks in image and language analysis 
(Goodfellow et al., 2016). A heuristic in ML research states 
that problems which are easy for humans are difficult for 
machines to solve such as character recognition or speech 
perception (Goodfellow et al., 2016). Simple ML algorithms 
like logistic regression excelled in problems where the input 
representation through features is particularly informative, 
e.g., the age of a student. The selection and engineering of 
inputs typically requires efforts for the human researcher, 
because data are not typically represented in this aggregated 
form in real-world contexts. Simple ML models would lose 
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performance when more complex data such as images or 
language form the input (Goodfellow et al., 2016). Deep 
neural networks have been found to be capable of represent-
ing the input as part of the modeling, which allowed ML and 
NLP researchers to apply these models to problems where 
complex data has to be represented in the first place. Thus, 
human feature selection and engineering is partly replaced 
by automated feature representation in the deep neural net-
work approaches oftentimes with the loss of interpretability 
of the model decisions.

A major facilitator for the deep learning revolution in the 
last decades was the availability of annotated data. For once, 
researchers spend tremendous efforts to annotate data manu-
ally in order to train deep neural networks that are capable of 
language comprehension and production, or image classifi-
cation. For the now famous ImageNet competition, research-
ers manually labeled over three million images in two years 
with the help of crowdsourcing (Mitchell, 2020). Similar 
efforts have been undertaken in NLP. To advance language 
translation, ML researchers were fortunate to find annotated 
datasets from the cold war where translations were important 
for intelligence or from the European Parliament that con-
sists of many different nations (Mitchell, 2020). However, 
curating and annotating these datasets captures resources 
that are not widely available such as money and compute 
time. Consequently, for most researchers in domains like 
science education no such well-developed datasets will be 
available for their specific research questions.

However, the ML paradigm of transfer learning that 
became important with increasingly complex deep neural net-
works (Devlin et al., 2018) might solve this problem. Transfer 
learning enables sharing of previously trained ML models for 
different tasks (Ruder, 2019). Much as humans learn language 
from experiences, feedback and reinforcement (Bruner, 1985) 
and build on learned structures (Rumelhart et al., 1986), the 
paradigm of transfer learning posits that prior trained weights 
in a given context can be further used to improve model per-
formance in different contexts/domains and with different 
tasks (Ruder, 2019). NLP researchers used transfer learning 
in the context of language modeling. While in image process-
ing models are oftentimes pretrained on the ImageNet dataset 
to improve downstream performance (Devlin et al., 2018), 
language models in NLP research can be trained on corpora 
such as the Internet or Wikipedia (Devlin et al., 2018; Ruder, 
2019). NLP researchers then pretrain language models that 
are capable of representing language in a way that researchers 
can use in downstream tasks (Mikolov et al., 2013). Typically, 
these language models are trained with the objective to sim-
ply predict context words. The pretrained language models 
can then be used to generate an informative representation of 
language to enhance task performance (Mikolov et al., 2013; 
Mikolov et al., 2013; Devlin et al., 2018).

Modeling Unstructured Data in Science 
Education Research with NLP and ML

“Perhaps when it comes to natural language processing and 
related fields [that model human behavior], we’re doomed to 
complex theories that will never have the elegance of phys-
ics equations” (Halevy et al., 2009, p.8). The “unreasonable 
effectiveness” (Wigner, 1960) of mathematics has been rec-
ognized for physics; however, educational sciences are far 
from having theories in this elegant formulation—given the 
complexity of the involved problems. In this context, NLP 
and ML have probably much to offer for these fields where 
complex theories prevail. Yet, especially more sophisticated 
NLP and ML applications such as deep neural networks 
might pose unfulfillable requirements on required size of 
training datasets and model implementation to be useful for 
science education research. The size of the training dataset 
should be judged against the complexity of the task and the 
complexity of the ML model. While the review by Zhai 
et al. (2020) shows that typical applications of NLP and ML 
in science education research comprise fewer than 30k train-
ing samples, the reviewed studies exclusively focus on sim-
pler ML models such as logistic regression, support-vector 
machines, or naive Bayes. More generally, data collection 
in domains such as science education is costly and time-
consuming, because large coordination efforts are necessary 
to recruit enough subjects. There are literally no studies 
in science education where millions of subjects have been 
collected that comprise datasets that seem to be required to 
train more general-purpose deep learning models. Does this 
imply that particularly the more complex ML methods are 
not applicable for science education researchers?

For supervised ML this hypothesis has been refuted in 
some science education research contexts. Wulff et al. (2022) 
could show that pretrained language models improve clas-
sification performance for discourse elements with preser-
vice physics teachers’ written reflections. The findings in this 
study suggest that complex ML models that are trained from 
scratch can reach classification accuracy of simpler ML mod-
els. Furthermore, the authors show that utilizing pretrained 
weights for the complex models enhances classification 
accuracy and generalizability further. Carpenter et al. (2020) 
showed that deep contextualized embeddings from pretrained 
language models could improve prediction of students’ reflec-
tive depth in a biology learning context. These findings but-
tress the applicability of complex ML models such as deep 
neural networks as facilitators for supervised ML. These stud-
ies, however, do not suggest that training the more performant 
deep learning models from scratch is possible with the avail-
able science education datasets. Furthermore, it is not clear 
from these studies to what extent pretrained language models 
could be used to extract patterns in the datasets.
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Prior research on pattern extraction from unstructured data 
with simpler unsupervised ML models and larger datasets in 
education and science education contexts focused on standard-
ized documents such as dissertation or conference abstracts. 
Munoz-Najar Galvez et al. (2020) established a data-driven 
way to systematically analyze the field of education research. 
They identified paradigm shifts in education research on the 
basis of 137,024 dissertation abstracts, reconstructing a shift 
from an outcome-oriented paradigm to an interpretative para-
digm. In science education research, Odden et al. (2020) used 
latent Dirichlet allocation (LDA), a generative probabilistic 
topic model, to analyze all papers that were extracted from 
the Physics Education Research Conference Proceedings from 
2001 to 2018 (overall 1,302 papers). They outline shifts in 
the paper’s topics in the conference over time. Despite the 
potentials of LDA to summarize occurring research topics 
and trends over time, the authors recognize some shortcom-
ings with this algorithm. For example, the LDA model groups 
together segments that use similar vocabulary. However, the 
segments might differ in meaning anyways (see also: Odden 
et al., 2021). Other researchers could show that simpler unsu-
pervised ML methods could also be used to explore patterns 
in comparably smaller datasets in science education. Sherin 
(2013) used a vector space model and a hierarchical agglom-
erative clustering algorithm to identify students’ science 
explanations in interview transcripts. He showed the general 
applicability of these NLP-based methods in this context, but 
contends that the algorithms could not account for word order-
ing effects. He also mentions the desire to more systematically 
extract the number of topics that are likely present in the data 
(see also: Xing et al., 2020). Also Rosenberg and Krist (2020) 
successfully applied an unsupervised clustering algorithm to 
assess students’ considerations of generality in science (see 
also: Xing et al., 2020; Zehner et al., 2016).

A domain of research in science education where NLP 
and ML in unsupervised contexts has not yet been applied 
widely is university-based science teacher education. In 
fact, no reviewed study in Zhai et al. (2020) engaged in 
university-based educational research. Besides supervised 
ML approaches in university-based science teacher educa-
tion that have been occasionally applied (Wulff et al., 2020), 
unsupervised approaches could facilitate researchers and 
instructors novel insights into relevant constructs because 
they can explore patterns in unstructured data (Halevy et al., 
2009; Hao, 2019).

Science Teachers’ Noticing of Classroom 
Events

Teachers face the challenge to professionally act in uncer-
tain situations (Clifton & Roberts, 1993; von Aufschnaiter 
et al., 2019; Chan et al., 2021). Learning to professionally 

act in uncertain situations requires teachers to develop 
the capacity to reflect on their teaching experiences 
(Korthagen, 1999). An important part of reflective com-
petencies are noticing skills that relate to perceptual and 
cognitive thinking processes (Chan et al., 2021). In par-
ticular, noticing comprises observation, interpretation, and 
reasoning about learning-relevant events in classrooms 
(Sherin & van Es, 2009; van Es & Sherin, 2002a; Chan 
et al., 2021; Furtak, 2012). Van Es & Sherin (2002) define 
noticing with regard to three key aspects: “(a) identify-
ing what is important or noteworthy about a classroom 
situation; (b) making connections between the specifics 
of classroom interactions and the broader principles of 
teaching and learning they represent; and (c) using what 
one knows about the context to reason about classroom 
interactions.” (p. 573) Noticing research has documented 
the difficulties that novice and even expert teachers have 
to direct their attention and notice relevant classroom 
events (Sherin & Han, 2004; Chan et al., 2021; Talanquer  
et al., 2015; Levin et al., 2009; Roth et al., 2011). For 
example, novice science and mathematics teachers strug-
gle to attend to student thinking and the substance of what 
they are saying (Sherin & Han, 2004; Hammer & van Zee, 
2006), and tend to strive for quick and conclusive infer-
ences that are right or wrong, rather than tentative inter-
pretations (Crespo, 2000). This strand of research also 
showed that science teachers provide more general evalu-
ations as compared to more specific accounts of student 
understanding (Hammer & van Zee, 2006). Mathematics 
and science education scholars generally highlighted the 
complexity of the noticing construct (Chan et al., 2021; 
Talanquer et al., 2015). Talanquer et al. (2015) summarize 
the noticing foci of teachers as: “the object of noticing 
(e.g., student actions, student thinking), the noticing stance 
(e.g., evaluative, interpretive), the specificity of noticing 
(e.g., specific student, whole class), and the noticing focus 
(e.g., specific concept, general topic)” (p. 587). To design 
authentic learning opportunities for mathematics and sci-
ence teachers to enhance noticing skills, valid, reliable, 
and scalable assessment of attention to classroom events 
and noticing is necessary.

To assess noticing and attention to classroom events, 
science education researchers increasingly embraced con-
structed response items, e.g., open-ended, free-recall writ-
ten responses (Barth-Cohen et al., 2018; Luna et al., 2018; 
Talanquer et al., 2015; Chan et al., 2021). Open response 
items have been argued to allow a more authentic examina-
tion of teachers’ professional competencies as compared 
to more closed-form questions (Nehm et al., 2012; Zhai, 
2021). Many of the noticing research then seeks to analyze 
inductively what teachers are noticing (Chan et al., 2021). 
However, the mere linguistic complexity of the constructed 
responses (noisy, ambiguous, and unsegmented) and the 
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complexity of the noticing construct make it challeng-
ing to integrate all information in the responses and infer 
the noticing skills. From their review on teacher noticing 
research in science education, Chan et al. (2021) conclude 
that “methodological trade-offs between different ways of 
investigating teacher noticing need to be better explored” 
(p. 37). We suggest that ML-based methods can provide 
novel means to analyze teachers’ responses inductively “to 
understand what teachers notice” (Chan et al., 2021, p.34). 
Thus, ML methods potentially help researchers to gather 
‘knowledge of teachers’ (Fenstermacher, 1994). We also 
concur with Lamb et al. (2021) that ML models are pow-
erful tools to advance algorithmic understanding of rel-
evant underlying cognitive processes that can explain the 
process and products of writing. Zhai et al. (2020) argued 
that ML models can particularly advance understanding 
and assessment of complex constructs such as noticing 
and provide means to automate assessment and feedback. 
Consequently, this study examines potentials and chal-
lenges of an ML-based clustering approach when applied 
in the context of assessing noticing of classroom events 
for preservice science teachers.

Research Questions

Noticing or directing attention to relevant classroom events 
is highly relevant for mathematics and science teachers and, 
thus, plays an important role in science education research. 
Attention to classroom events and contents played a particu-
larly important role in mathematics and science education 
research. Star and Strickland (2008) suggested that noticing 
research should focus particularly on what catches teachers’ 
attention and what is missed. 25 of the 26 science education 
studies reviewed by Chan et al. (2021) considered atten-
tion to classroom events as an essential aspect of noticing; 
11 studies even restricted noticing to attention. Attention 
to classroom events has often been studied through video 
clips that present teachers with a standardized teaching situ-
ation and are typically followed by some form of eliciting 
teachers’ observations (Zhai, 2021; van Es & Sherin, 2002a; 
Seidel & Stürmer, 2014; Putnam & Borko, 2000; Darling-
Hammond, 2000; Kleinknecht & Gröschner, 2016; Sherin 
& van Es, 2009).

Noticing research can be characterized as a context where 
it seems to be notoriously difficult to recruit large sample 
sizes, rendering quantitative research methods difficult to 
apply. Reviews suggest that studies typically comprise small 
samples of up to 241 teachers (Wilson et al., 2019; Chan et al.,  
2021). This restricts researchers to using mostly qualitative 
methods with some form of content analysis (Wilson et al., 
2019; Chan et al., 2021; Talanquer et al., 2015). As such, it  
is important to examine to what extent ML-based approaches 

can be utilized in this context as a means to advance quantifi-
able hypotheses. Particularly, pretrained language models 
can improve the ML methods to be more robust with small 
samples. Hence, we ask the following overarching research 
question: To what extent and in what ways can a pretrained 
language model-based clustering approach extract meaning-
ful patterns in preservice physics teachers’ written descrip-
tions of a teaching situation?

In the context of RQ1, we analyze the validity of the 
extracted clusters:

• RQ1: To what extend can a pretrained language model-
based clustering approach extract interpretable (RQ1a), 
specific (RQ1b), and robust (RQ1c) clusters in the pre-
service physics teachers’ written descriptions of a teach-
ing situation?

We then examined ways in which these clusters provide 
insights into the composition of the written descriptions. 
van Es and Sherin (2002) used the concept of analytical 
chunks in their noticing research, referring to experts’ ten-
dency to organize their essays more coherently in reference 
to teaching and learning principles. Based on this concept 
of analytical chunks, we hypothesize that the analysis of 
interconnections between the clusters in the teachers’ writ-
ten descriptions provides tools to develop a more quanti-
tative understanding of chunks in the writing. To analyze 
the organization of the teachers’ written descriptions based 
on the extracted clusters, we explored dependencies among 
clusters:

• RQ2: What kinds of dependencies with respect to textual 
organization can be analyzed based on the extracted clus-
ters?

Method

Written Descriptions of a Video‑Recorded Teaching 
Situation in Physics

In the present study preservice physics teachers’ were 
given the instruction to describe, evaluate and reason 
about a video-recorded lesson which presented the teach-
ers an authentic teaching situation in a 9th grade physics 
classroom held by an in-service physics teacher. Overall, 
the teaching goal of the observed lesson was to introduce 
influencing factors on the movement of falling objects and 
the definition of free fall. Table 2 outlines the chronologi-
cal order of events in the teaching situation. The teaching 
situation can be broadly divided into two phases. In the 
first phase, the teacher performed several experiments with 
falling objects (two masses, and a vacuum tube with screw 
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and feather). The students posed hypotheses on the outcome 
of the experiments (e.g., which of the two masses of dif-
ferent weight will hit the floor first. In the second phase, 
the teacher provided the definition of free fall and students 
devised experiments to investigate what type of movement 
free fall is. This video-recorded teaching situation was 
chosen because it presents preservice physics teachers a 
complex and authentic teaching situation where many dif-
ferent noticing-relevant general and subject-specific issues 
could be identified. Teachers could describe mere surface-
level, general issues such as that the students were noisy 
at several occasions, or more deep-level, subject-specific 
issues such as that several students raised concerns with 
the experimental setup (e.g., missing control of variables) 
or conceptual difficulties (e.g., whether an ever-accelerating 
object reaches the speed of light). Following the classifica-
tion rubric for noticing research in science education by 
Chan et al. (2021), our approach was meant to characterize 
teacher noticing (purpose) as assessed through observa-
tion of other teachers’ teaching (teaching context), where 
the observing teachers could not control what happened 
(role of teacher) and the noticing-relevant events were pre-
determined (what to notice) and selected by the researchers 
(selection of probes) with open-ended prompts (nature of 
prompt) and divergent answers without correct answer (type 
of teacher responses).

The video is about 17 minutes long. The preservice phys-
ics teachers were allowed to watch the video only once, 
without rewinding the recording, in order to simulate in-the-
moment pressures of decision-making (Chan et al., 2021). 
It was an authentic lesson that was recorded in a German 
grade 9 high school physics classroom as part of a post-
university physics teacher preparation program. In Germany, 
after the university-based teacher training teacher trainees 
are required to pass a one- to two-year program, run by fed-
eral states, that will approve if they are finally allowed to 
teach in public schools. Using a recorded lesson from this 
post-university teacher preparation program presents a les-
son that is proximal to what the preservice teachers will 
do in their future careers. Overall, N=75 preservice physics 

teachers participated in the study who produced 86 written 
descriptions (sometimes preservice teachers produced two 
texts, pre and post to a seminar). The teachers varied in their 
teaching experience and came from three different universi-
ties throughout Germany (see Table 1). Preservice teachers 
spent approximately one hour on the entire questionnaire of 
the online video-vignette. The text production took approxi-
mately 20 minutes (independently of another 17 minutes 
video observation and another 20 minutes answering further 
questions). Preservice physics teachers were instructed to 
first describe what happened in the teaching situation. After-
wards, they should evaluate the situation, devise alternative 
modes of action, and formulate consequences for their own 
teaching.

Given that preservice physics teachers either described, 
evaluated, and reasoned about the observed teaching situa-
tion, the sentences that count as descriptions were extracted 
through an ML-based classifier. The ML-based classifier 
automatically retrieved descriptive sentences based on a 
classification algorithm that was described elsewhere (Wulff 
et al., 2022). This classifier annotated each sentence with 
one of the following labels: “circumstances”, “descrip-
tion”, “evaluation”, “alternatives”, and “consequences.” 
Using sentences as the segmentation units was found to be 
a reasonable strategy in similar contexts of writing analyt-
ics (Ullmann, 2019). The descriptive sentences were fur-
ther filtered to a length greater than four words to remove 
headlines and similar non-informative sentences. 98% of 
sentences of the original descriptive sentences remained 
(1537 sentences in total). The preservice teachers wrote 
on average 16.0 (SD = 7.9, min: 4, max: 59) words in a 
descriptive sentence. In descriptive sentences, the preservice 
teachers wrote in various ways about the events in the lesson 
as outlined in Table 2. A randomly drawn sentence from a 
preservice physics teacher reads as follows: “The observa-
tions [from the students] and differences [to the hypotheses] 
were collected and summarized by the teacher as free fall-
ing movement is independent of the mass.” This sentence 
and all words and sentences in the following were translated 
from German to English by the authors who are familiar 

Table 1  Sample description

Experience Term Place Seminar type N M (age) Md SD prop female

Bachelor Winter 2020/21 University C Physics edu. seminar 5 22.6 23.0 2.5 0.40
Bachelor/Master Summer 2020 University A Physics edu. seminar 31 24.7 23.0 3.7 0.13
Master Summer 2020 University B Teaching internsh. (Master) 7 24.0 24.0 2.4 0.14
Master Winter 2019/20 University B Teaching internsh. (Master) 13 25.1 23.0 3.9 0.23
Master Summer 2021 University B Teaching internsh. (Master) 7 25.3 23.0 6.4 0.29
Master Winter 2020/21 University B Teaching internsh. (Master) 12 25.8 25.0 6.6 0.50
Master Winter 2020/21 University B Teaching internsh. (Master) 8 26.4 25.0 7.5 0.62
Bachelor Winter 2020/21 University B Teaching internsh. (Bachelor) 3 26.3 27.0 3.1 0.33
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with English language, in particular specialized vocabulary 
in physics. Some intricacies emerged with the translations. 
For example, German language has many specific abbre-
viations in educational contexts, e.g., “SuS” (“Schülerin-
nen und Schüler”) for female and male students or “LK” 
(“Lehrkraft”) as an inclusive word for teacher that have no 
equivalent in English. We tried to highlight those issues 
when they occur. Furthermore, German language is well 
known for its compound nouns that can become very long 
(e.g., “Fallröhrendemonstrationsexperiment”, which can be 
translated to “demonstration experiment with drop tube”). 
In German, compound nouns may count as one word in the 
vocabulary, whereas in English many different words would 

be added. Consequently, the German vocabulary in terms of 
distinct words is larger compared to the English vocabulary.1

Clustering Sentences of the Written Descriptions

ML methods that extract patterns in unstructured data such 
as the constructed responses are categorized as unsupervised 

Table 2  Sequencing of the lesson

Sequence Description Teaching Goal

S1 Introduction: Teacher reminds students of a problem from the last 
lesson where they compared a race between hare and hedgehog - 
Teacher: “Today we are going to observe a different race, between 
a feather and a screw.”

Motivation for the topic, focus on the movement of free falling 
objects

S2 Teacher shows both objects and asks which lands on the floor first 
if the teacher drops them; students hypothesize: 1. screw because 
of gravitational pull, 2. feather has higher air resistance; Teacher 
conducts the experiment (feather sticks to his hand at first)

Demonstration that feather falls slower compared to screw

S3 Teacher: How can we change the experiment to determine influencing 
factors on free falling movement?; Students offer: wider screw (in 
order to raise air resistance), thicker feather (to make it comparable 
in mass to screw)

Transition to experiment with two equally shaped objects that 
differed in their masses

S4 Teacher drops a 100g and 50g mass object; given similar 
movements, teacher concludes that the mass has no influence; 
Student suggests to probe the experiment in vacuum, which the 
teachers takes as a “perfect” transition to the next step

Demonstrate that movement was independent of mass of objects; 
collection of students’ hypotheses

S5 Teacher shows vacuum tube with feather and mass inside; 
Teacher asks for hypotheses about result; One student first 
suggests that both arrive at the same time, and then refines 
his answer to hypothesize that the heavier object arrives first, 
another student suggests that both arrive at the same time 
because the air resistance is removed

Demonstrate dependence of free falling movement on air 
resistance

S6 Teacher opens valve in vacuum tube to let air flow into it and 
repeats the experiment. Initially the feather sticks to the glass. 
Afterwards, the objects move at different rates.

Demonstrate that initial results (dependence of movement on air 
resistance) can be replicated with the vacuum tube

S7 Teacher summarizes the experimental findings; he asks what 
influences the falling movement of the objects. The students 
reply air resistance; teacher asks what does not influence the 
movement and the students reply the weight.

Conclusions, summary

S8 Teacher introduces movement without air resistance and 
downward as free fall; Student asks why a jump by a parachute 
jumper is called a free fall: because it is without a parachute in 
the initial phase or because there is no air resistance? Teacher 
postpones the question until later

Defines free fall as movement without air resistance

S9 Teacher asks students to devise a new experiment that can test 
the type of this movement; Student suggests to measure time 
at certain waymakers in space; Another student suggests to 
measure distance at certain time measurement points; Further 
student asserts objects would reach speed of light without 
bottom and without air resistance, in accelerated movement; 
Discussion which experimental setup is more practical

Devise new experiment to check the type of free falling movement 
(i.e., constantly accelerated movement)

1 Researchers who would like to adopt the presented clustering 
approach with English language data would have to implement the 
English language model which is readily available (see description of 
technical implementation in the supplement).
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ML. Unsupervised ML typically include some form of 
dimensionality reduction and clustering oftentimes with the 
purpose to make high-dimensional data human-interpretable. 
Clustering approaches that were not based on pretrained lan-
guage models enabled science education scholars to identify 
emergent topics in conferences or students’ writing (Odden 
et al., 2020; Sherin, 2013), however, they also oftentimes 
require involved preprocessing of the data (Angelov, 2020; 
Odden et al., 2020; Zehner et al., 2016). Most often, research-
ers needed to remove frequent words (stopwords), lower-case 
all words (which might be disadvantageous in German where 
upper-case letters can differentiate word senses), or trans-
form words into their base form to reduce vocabulary size 
(Odden et al., 2020; Rosenberg & Krist, 2020). Furthermore, 
researchers noted the difficulty in determining the number of 
clusters that should be extracted in these approaches (Sherin, 
2013) and these approaches oftentimes assume that word 
order in the sentences is irrelevant (bag-of-words assump-
tion). Finally, these approaches are ignorant of ambiguous 
word senses. No prior information on the words is incorpo-
rated in these approaches such that the word “bank” in the 
phrases “river bank” and “bank robbery” might be treated as 
the same word even though the meaning differs substantially. 
Recently, however, advances in NLP and ML research pro-
vided pretrained language models that provide contextualized 
embeddings for language data that help to cope with some of 
the aforementioned challenges. These contextualized embed-
dings potentially enable researchers to model constructed 
responses in a more language-sensitive way that is able to 
preserve word ordering and word sense disambiguation as 
features.

Pretrained language models can generate contextualized 
embeddings for language input that enhances modeling 
of the language data (Mikolov et al., 2013; Sherin, 2013; 
Taher Pilehvar & Camacho-Collados, 2020). Essentially, 
words are mapped to a position in high-dimensional vec-
tor space, called a distributed representation in the form 
of embeddings (Taher Pilehvar & Camacho-Collados, 
2020). Vector space models thus encode word similarity 
and efficiently represent words. Given the claim that one 
understands a word by the company it keeps (Jurafsky & 
Martin, 2014), word embeddings can be learned through 
ML approaches, where model weights are optimized with 
the goal that a word embedding for a given word predicts 
the context words (Mikolov et al., 2013). More advanced 
approaches utilize pretrained language models that result 
in embeddings that also account for the context (contex-
tualized embeddings) and the position in a segment that 
a word occurs in (Taher Pilehvar & Camacho-Collados, 
2020). Pretrained language models are typically trained on 
large unstructured datasets (e.g., the Internet, Wikipedia). 
Training tasks involve prediction of context words (Devlin 
et al., 2018). For practical purposes the vocabulary is often 

restricted to some 30,000 tokens, where unknown words 
can be built from the 30,000 tokens. Linguists have esti-
mated that 30,000 words are sufficient to understand many 
general English texts well (Mitchell, 2020). If a sentence is 
input into a pretrained language model, typically embed-
dings for each word in the sentence (given the position and 
context words) is the output. To generate a contextualized 
embedding for a sentence, the word embeddings can be 
pooled.

As an illustrative example for sentence embeddings based 
on pretrained language models, the following physics-related 
and general sentences should be considered (some noise data 
points were added which will be motivated later on): ’Earth 
exerts a force’, ’The force acts on’, ’The force on earth’, ’We 
force her’, ’They force him’, ’How to force him’, ’Grass is 
green’, ’The sunset can be red’, ’Green is grass’ (called Seg-
ment 1 to 9 respectively). Force in the first three sentences 
relates to the physics meaning (given as a noun). In the fol-
lowing three “force” is included as a verb that encapsulates 
a certain kind of rather aggressive behavior. The final three 
sentences are included as sentences that are entirely different 
in meaning. “Force” in the former sentences has a different 
word sense compared to the sentences 4 to 6 and should be 
distinguished in a clustering approach. In Fig. 1(a) a two-
dimensional representation of the sentence embeddings 
gleaned from a pretrained language model is depicted. As 
can be seen from the separation of datapoints in space, pre-
trained language model’s word embeddings can in fact dis-
entangle the senses to a certain degree. To further inspect the 
embedding space, a clustering approach can now determine 
which sentences are likely related to each other (Angelov, 
2020).

Extracting clusters from contextualized embeddings 
can be done with Hierarchical density-based spatial clus-
tering of applications with noise (HDBSCAN) (Campello 
et al., 2013). HDBSCAN is a way to calculate the number 
of dense volumes (i.e., clusters) in the embedding space. 
Density-based clustering methods consider the probability 
density of a collection of data points (Kriegel et al., 2011). 
In Fig. 1(b) the probability density distribution for the data 
points in Fig. 1(a) is depicted. To extract clusters, an imagi-
nary water level can be introduced into the probability space. 
The water level represents a threshold for cluster extraction. 
Emerging islands, i.e., regions above the water level, repre-
sent clusters. If water level rises, less probability mass lies 
above the water level, and thus fewer clusters are extracted. 
A suitable water level has to be chosen in order to extract an 
appropriate amount of clusters.

To perform the actual clustering the nearest neighbors 
for each data point will be determined and the closest dis-
tance between nearest neighbors will be highlighted as edges 
in a graph, i.e., the minimal spanning tree (see Fig. 1(c)). 
A threshold parameter (i.e., the minimal distance) is then 
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varied where edges that surpass the threshold are removed 
from the graph. Finally, the minimal spanning tree is mapped 
into a condensed tree representation (see Fig. 1(d)). The con-
densed tree depicts the number of data points in a cluster 
(width of the branches) with varying densities ( � ). A way 
to extract clusters from the condensed tree is by defining 
a minimal cluster size and examining the stability of the 
branches over different density values (moving up and down 
in Fig. 1(d)). It is desirable to have clusters that persist over 
varying density-levels. The stability of a cluster basically 
relates to the regions of maximum area in the condensed 

tree Kriegel et al. (2011), Campello et al. (2013). The algo-
rithm thus determines a number of clusters by examining 
properties of the clusters. From the illustrative example, 
the resulting clusters based on this clustering approach 
(HDBSCAN combined with pretrained language models) 
are depicted as blue, orange, and green ovoids in Fig. 1(d). 
The red-shaped ovoid cluster could be considered as noise, 
given the instability over density values in Fig. 1(d). If the 
sentence embedding points in Fig. 1(a) were to be colored, 
the closely aligned sentences would in fact be colored with 
the same colors, respectively.

Fig. 1  a  Two-dimensional representation of the example segments 
and noise. b  Surface plot of probability density of the data points. 
c Minimal spanning tree with data points as nodes (colors indicate the 

mutual reachability distance). d Dendrogram of clusters for varying 
density values (colored circles indicate clusters)
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Analysis Procedures

Interpretability of Clusters (RQ1a) In order to evaluate if the 
pretrained language model-based clustering approach2 out-
puts represent interpretable clusters, the most representative 
words for each cluster were considered, and a definition was 
derived. Visual inspection of the two-dimensional embed-
ding space and the condensed tree representation helped to 
determine similarities and differences of the clusters. If the 
five most representative words could be mapped to distinct 
sections in the observed teaching situation (see Table 2) 
and were coherent, then we considered this as evidence of 
a meaningful cluster, because clusters were anticipated to 
attend to localizable events (e.g., experiments) or actions 
(e.g., devising hypotheses). We also assessed to what extent 
the clusters related to physics ideas that were implicitly or 
explicitly relevant in the observed teaching situation, and 
what ideas or events were not clustered.

Specificity of Clusters (RQ1b) Then it was evaluated to what 
extent physics-savvy human raters could use the extracted clus-
ters to manually annotate the video-recorded teaching situa-
tion. If human raters struggled to annotate a certain cluster in 
the video recording, this would provide evidence of unspecific 
focus of a cluster. To annotate the teaching situation on the 
basis of the extracted clusters, three independent raters with 
physics background (one postdoc, two PhD students) who 
were familiar with the observed teaching situation annotated 
the entire video sequence based on 10 second intervals. All the 
information they received were the five most representative 
words for the respective clusters (coding 1) with no further 
instruction. In a second iteration (coding 2), the human raters 
discussed and agreed on some coding rules, e.g., that the entire 
process of an experiment should be annotated if relevant words 
of a cluster occurred only at the beginning. To evaluate the 
reliability of this annotation, we first examined a graphical rep-
resentation of the annotations over time to evaluate interrater 
agreement. We considered each cluster separately. To evalu-
ate interrater agreement, Krippendorff’s � for each cluster was 
calculated because Krippendorff’s � is more appropriate than 
Cohen’s � for three raters. A Krippendorff’s � value of 1 refers 
to perfect reliability and a value of 0 to absence of reliability. 
Values between .667 and .800 are usually considered to allow 
researchers to draw tentative conclusions, i.e., consider the 
agreements as non-random (Krippendorff, 2004).

Robustness of Clusters (RQ1c) To analyze robustness of clus-
ters, the clustering approach was applied to smaller subsets of 
the dataset. To test if small sample sizes are enough, subsets 

of N=43 randomly chosen pre-service teachers and N = 8 ran-
domly chosen pre-service teachers were considered. The extent 
to which similar clusters emerge was examined. If meaningful 
clusters could be identified in these subsets, then we considered 
the algorithm robust with sample size variations which could 
be beneficial for science education researchers who oftentimes 
only have small samples at their disposal. Furthermore, we 
compared the outputs of the pretrained language model-based 
clustering algorithms with a clustering approach that was not 
based on pretrained language models, but was successfully 
applied in a science education research context before. We 
therefore adopted the topic modeling approach outlined by 
Sherin (2013). He devised an accessible approach for extract-
ing clusters in interview transcripts. He started by segmenting 
texts into chunks of 100 words (with overlap). Afterwards, a 
normalized term-document matrix was formed. To circumvent 
the problem of similar topics (low levels of variability in the 
data), deviation vectors were calculated. Based on the deviation 
vectors, hierarchical agglomerative clustering yielded a distri-
bution of topics, depending on the number of topics. Finally, the 
ten most representative words were found as the highest ranking 
words in the centroid vectors for the respective topics. With 
parameter values adapted to our research context, we extracted 
clusters from our descriptions based on this approach. Based on 
the comparison from the ten most representative words for each 
topic, we evaluate to what extent both clustering approaches 
yield similar topics. This would yield evidence that the pre-
trained language model-based approach could also be success-
fully employed in science education research contexts.

Advanced Textual Analytics Based on the Clusters (RQ2) The 
applicability of the pretrained language model-based cluster-
ing for analytics of the constructed responses was evaluated 
through exploratory analysis of the textual organization of 
the constructed responses. Based on episodic memory the-
ory it can be expected that the preservice teachers provide a 
chronologically ordered text organization. Hence, the tem-
poral progression of the clusters within the teachers’ written 
descriptions was analyzed. To depict the temporal progression 
of the clusters within the written descriptions, the sentences 
were mapped to their relative position in reference to the other 
descriptive sentences for each teacher (see similar analysis in: 
Sherin, 2013). Mapping the sentences to their relative posi-
tion was supposed to produce certain peaks where clusters 
are most prevalent in the descriptions. For example, it could 
be expected that mentioning the introduction with hedgehog 
and hare or the teacher experiments precedes other clusters 
such as the discussion of the type of movement, because these 
descriptions appeared first in the observed teaching situation 
and teachers are expected to describe the teaching situation 
chronologically. Distinctiveness in temporal progression 
would indicate that the extracted clusters in fact captured dif-
ferent aspects of the teaching situation. To further analyze 

2 Please find details on the technical implementation in the supple-
ment.
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textual organization, we employed a network-analytical 
approach to calculate the centrality of different clusters and a 
vector-field approach where the movements through cluster 
space can be characterized. In both approaches we will evalu-
ate to what extent the respective empirical distributions, i.e., 
the directed network of clusters and the vector-field repre-
sentation, are better captured by random processes or more 
deterministic processes. If teacher’s written descriptions can 
be characterized by more deterministic processes, we can con-
clude that the presented clustering approach can yield insights 
into textual organization.

Findings

Validity of the Clustering Approach (RQ1)

Interpretability of the Extracted Clusters (RQ1a)

To evaluate the interpretability of the extracted clusters, con-
textualized embeddings of the preservice physics teachers’ 

descriptive sentences were generated with the pretrained 
language models and clusters were extracted with the HDB-
SCAN algorithm. This approach yielded a number of 14 
clusters and a noise cluster (cluster -1). The absolute sizes 
(# of sentences in a cluster) are depicted in Table 3. We 
also provided a definition of the clusters based on the most 
representative words for each cluster, and we determined 
how many sentences per written description on average were 
categorized into each cluster (see Table 3). The largest share 
of sentences was coded as -1.3 The graphical representation 
of the embedding space with clusters highlighted in colors 
can be seen in Fig. 2. The embedding space can be funda-
mentally separated into two overarching groups (indicated 

Table 3  Number, share (i.e., number of segments) and top five words of the extracted topics. M, Md are mean and median number of sentences 
for a cluster in a written description, respectively. SD is the standard deviation; range is minimum and maximum number of sentences

Topic Share Top five words Definition M Md SD range

-1 760 students, student, experiment, teacher (formal), 
teacher (informal)

- 8.7 7.0 6.5 1 - 34

0 38 floor, piece of mass, simultaneous, pieces of mass, 
students

Pieces of mass dropped on floor and touch floor 
simultaneously.

1.5 1.0 0.9 1 - 5

1 56 pieces of mass, masses, same, shape, fall Pieces of mass have the same shape. 1.1 1.0 0.4 1 - 2
2 246 feather, screw, tube, vacuum, air Experiment in vacuum tube with feather and screw, 

without air.
3.4 3.0 2.4 1 - 13

3 10 respond, feedback, again, summarize, guides Teacher summarizes answers, responds and gives 
feedback.

1.7 1.5 0.8 1 - 3

4 42 students, raise arms, raised arms, respond, same Students raise their arms and respond to the teachers’ 
questions

1.8 1.0 1.9 1 - 8

5 11 summarize, main hypotheses, main theses, claims, 
hypotheses

Teacher summarizes the main hypotheses/theses/
claims.

1.2 1.0 0.7 1 - 3

6 56 claims, hypotheses, validate, students, asks Students validate their claims/hypotheses through 
experiments.

1.4 1.0 1.0 1 - 6

7 25 summarize, claims, guides, teacher (formal), teacher 
(informal)

Teacher summarizes the claims of the students. 1.4 1.0 0.6 1 - 3

8 49 type of movement, what kind, teacher (informal), 
asks, type

Teacher asks what type of movement it is. 1.6 1.0 0.9 1 - 4

9 54 measure, movement, distance, steady motion, 
certain

Students propose to measure distance at certain 
times and respond steady motion.

1.8 1.5 1.0 1 - 5

10 19 screw, weight force, air resistance, higher, different Students say screw has a higher weight force, and 
feather higher air resistance.

1.3 1.0 0.8 1 - 4

11 64 air resistance, mass, influence, speed of fall, dependent Air resistance has influence on speed of fall, also 
dependent on mass.

1.6 1.0 0.7 1 - 3

12 79 free, fall, folder, definition, topic Teacher writes the definition of free fall, students 
copy it in their folders.

1.6 1.0 1.2 1 - 8

13 28 hedgehog, lesson, lesson, hare, last Teacher reminds students of last lesson with race 
between hedgehog and hare.

1.5 1.0 0.9 1 - 4

3 This means that these sentences were not close enough to any of 
the cluster centroids. Column three of Table 3 indicates that very gen-
eral words fall into this cluster, such as “SuS” (which is the unisex 
abbreviation for “students” in German) or “lehrer” (engl.: “teacher”). 
Seemingly, this cluster encapsulated descriptive sentences that were 
too general or that might belong to multiple clusters such that they 
average out.
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by the black line): (1) clusters that relate to physics-related 
events or topics that occurred during the teaching situation 
and (2) clusters that encapsulate general actions, and spe-
cific, non-subject-related events. In group 1, cluster 2 the-
matizes the central experiment of the lesson where a feather 
and screw are observed falling in a vacuum tube. Cluster 
2 had the second largest share of sentences in the descrip-
tions (see Table 1). Relatedly, cluster 10 likely represents 
the students’ hypotheses that the screw has a higher weight, 
whereas the feather has a high air resistance. Clusters 0 and 
1 represent the other experiment, in which two mass pieces 
(equal shape, different mass) are dropped simultaneously to 
deduce that free fall is independent of mass. Clusters 8 and 
9 refer to the teacher’s question about which type of move-
ment a free fall is and how this type of movement can be 
experimentally determined.

On the other hand, in group 2, clusters 6 and 7 represent 
teachers’ and students’ actions of summarizing and pos-
ing hypotheses/claims respectively. Given the similarity of 
clusters 6 and 7, they were also close in embedding space. 
Cluster 6 was related to posing hypotheses by the students, 
whereas cluster 5 was related to the process of summing 
up the hypotheses by the teacher. In fact, this was a recur-
rent thread in the lesson: the teacher asked the students to 
hypothesize about the results in advance of an experiment 
which is why the cluster was coded at several points. Cluster 
3 also refers to the teachers’ responding to students’ answers. 
Cluster 4 represents the students’ action of raising arms and 

responding to the teachers’ questions. Cluster 13 captured 
the beginning of the lesson where the teacher reminds the 
students of the former lesson regarding the race between 
hedgehog and hare. Finally, cluster 12 referred to the instruc-
tion by the teacher that the students may copy the definition 
of free fall into their folders.

In sum, the clusters encapsulate both short and rather 
specific events in the teaching situation (e.g., writing the 
definition of free fall in the folder) and more abstract ideas 
such as summarizing hypotheses which occurred more than 
once in the scene. They also include more general clusters 
(summarizing students’ hypotheses, e.g., cluster 5) and 
more physics-related contents (characterization of the type 
of movement, e.g., clusters 8 and 9). Preservice physics 
teachers wrote on average 3.4 sentences on cluster 2, which 
comprised the largest share (after the noise cluster), followed 
by cluster 1 and 11 with 1.8 sentences on average. Thus, 
physics-specific clusters were more extensively included in 
the written descriptions. However, the overall low average 
counts of one sentence for a cluster could indicate that often-
times the preservice teachers only briefly elaborated on an 
event. It is also noteworthy that some important events in the 
teaching situations are not captured in a cluster. During the 
lesson the students asked for example: “Why is it called free 
fall for a parachute jumper?”, “Would an infinitely accelerat-
ing mass surpass the speed of light?”, or “Would two plates, 
one made of cardboard the other made of metal, actually 
arrive on the floor at the same time?”

Fig. 2  Two-dimensional representation of clusters. A point represents the projection of a sentence embedding into the two dimensions. Colors 
represent belonging to a cluster. Gray points represent “noise”, i.e., not belonging to any cluster. Larger points indicate cluster centroids
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Specificity of the Extracted Cluster (RQ1b)

To examine to what extent the extracted clusters map to dis-
cernible events and topics in the teaching situation, human 
raters used the clusters as represented through the most 
informative words to annotate the video recording of the 
teaching situation (RQ3). Figure 5 depicts all codings from 
three independent annotators separated by cluster over time. 
To estimate human interrater agreement, we calculated the 
Krippendorff � values for the clusters. After the first round 
of rating the video-recorded teaching situation (coding 1), 
the Krippendorff � ’s indicate that some clusters (e.g., 0, 1, 
2, 8, 12, and 13) could be identified with good reliability 
given only the five most representative words and no anno-
tator training. Cluster 12 related to the introduction of the 
definition of free fall by the teacher. This, apparently, was a 
localizable event in the teaching situation. Cluster 0 related 
to the experiment with two masses (similar reasoning for 
cluster 1). The teacher used two masses only once as an 
experiment, hence, this formed a recognizable event for the 
human raters. Cluster 13 related to the very beginning of 
the lesson. The words “hedgehog” and “hare” are unique for 
this event. The human annotators reached poor reliability on 
clusters with more general words (e.g., 3, 7, and 11). The 
words “respond”, “feedback”, “summarize”, and “teacher” 
could be applied to many different events in the teaching 
situation. They represent high-inferential categories, because 
the teacher and students did not specifically say that they 
“responded” or “summarized” ideas.

After coding 1, the three annotators made their coding 
rules more explicit and discussed them. On this basis, the 
video-recording of the teaching situation was annotated 
again by all three annotators (coding 2). Some improvements 

could be seen after the discussion. Most notably, clusters 1, 
2, 4, and 9 substantially improved in interrater agreement 
(see Table 4). Cluster 9 made the most substantial improve-
ment. This cluster related to the measurement and determi-
nation of the type of movement. The raters agreed to include 
all student suggestions at the ending of the teaching situation 
because this represented a coherent phase, which caused the 
improvements in agreement. However, other clusters (3, 6, 
7, 10, 11) seemed to remain too vague to be annotated based 
on the five most representative words.

Robustness of the Extracted Cluster (RQ1c)

To evaluate the robustness of the extracted clusters, we 
probed to what extent the clustering algorithm would still 
yield interpretable and comparable clusters for smaller sam-
ple sizes. The baseline for comparison formed the extracted 
clusters based on the entire dataset (see Fig. 2). As sample 
sizes in noticing research in science education are typically 
smaller, subsets of N=43 and N=8 were drawn. The entire 
clustering approach was performed for these subsets of the 
data. The resulting cluster embeddings and condensed trees 
can be seen in Fig. 4. We particularly mapped the extracted 
clusters based on the top five words to the baseline clus-
ters as extracted with the entire dataset. It is noteworthy 
that the spatial outline and the actual extracted clusters can 
be mapped well onto each other. This is even possible for 
a sample size of only N=8 teachers. The two overarching 
groups (general and physics-specific) could be identified 
for the subsamples as well. Based on the condensed trees, 
some similarities in cluster evolution over different density 
values can be inferred as well. For example, clusters 8 and 
9 seem related in all condensed trees as they evolve from a 

Table 4  Values for interrater agreement as measured through Krippendorff’s � for each cluster
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common branch. Both clusters comprise sentences on type 
of movement which are physics-specific. Interestingly, in 
Fig. 3, also clusters 10 and 11 fall on the same branch as 8 
and 9. This might be attributed to the fact that in clusters 10 
and 11 the influence of air resistance on free fall is consid-
ered which is closely related to movement as well. While 
clusters 0 and 1 are linked in Fig. 3 (both include the vacuum 
tube experiment), this link does not exist in Fig. 4. For these 
clusters, probably the five most representative words are not 
informative enough to allow for clear distinction. Clusters 
4, 5, and 6 relate to the students’ and teachers’ actions of 
posing hypotheses (see Fig. 3). While they neatly evolve 
from one parent branch in Fig. 3, only one of the respective 
clusters was present in the smaller samples. However, they 
also separate early (at low densities) from the other clusters 
(see Fig. 4).

Further evidence for robustness of the presented clus-
tering approach based on pretrained language models can 
be gleaned by comparison with a formerly successfully 
employed clustering approach in science education research 
that was not based on pretrained language models. To imple-
ment a clustering approach based on hierarchical agglom-
erative clustering, a similar protocol as outlined in Sherin 
(2013) was followed. However, we did not segment our 
texts into 100-word chunks, but rather into the sentences 
that were used as smallest segments. We considered this use-
ful, because we expected the grain size of our clusters (i.e., 
discernable events in the teaching situation) to be smaller 
compared to the grain-size of the clusters in Sherin (2013), 
i.e., explanations. Our overall vocabulary was 2,786 unique 
words in German language. 232 stopwords were removed. 

This enabled us to calculate deviation vectors and apply 
clustering. A number of 14 clusters were found to be reason-
able for our data (see Supplementary Material for detailed 
Table).

Table 5 depicts the resulting clusters with the most rep-
resentative words for each cluster vis-á-vis the clusters from 
the pretrained language model-based clustering approach. 
Most of the resulting clusters can be mapped to the clus-
ters that were extracted based on the pretrained language 
model-based clustering approach. Cluster 0S4 thematizes 
students’ formulating hypotheses and summarization by the 
teacher. This relates to clusters 3, 5, and 7. Clusters 1S and 
2S relate to the vacuum tube experiment, where cluster 1S 
focusses on the execution and cluster 2S on the observation 
and results. This maps to cluster 2. Cluster 3S relates to the 
dependency of air resistance and fall velocity, and possibly 
relates to clusters 10 and 11. Cluster 4S is not entirely clear, 
and cluster 5S deals with the teacher repeating the experi-
ment, which has no apparent equivalent cluster. Cluster 6S 
focusses on students’ raising their arms and responding, 
which could be mapped to cluster 4. Cluster 7S relates to 
the writing down of the definition of free fall, which can be 
linked to cluster 12. Cluster 8S likely mixes the response 
of one female student and the remark of another male stu-
dent, to what extent the speed of light would be reached 
by a falling object. No apparent link can be made to the 
pretrained language model-based clusters. Cluster 9S relates 

Fig. 3  Condensed tree represen-
tation of the extracted clusters

4 For comparison purposes all clusters which were extracted from the 
approach by Sherin (2013) were appended with an ‘S’, e.g., cluster 
0S.
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to the experiment with two masses that would most likely 
map to clusters 0 and 1. Cluster 10S addresses the transi-
tion from introduction of the experiments with no apparent 
corresponding cluster. Cluster 11S, again, deals with the 
experiment with two masses and links to clusters 0 and 1. 
Cluster 12S addresses a students’ answer to the question 
about what kind of movement the free fall is. The closest 
resemblance is with cluster 8. Finally, cluster 13S addresses 
the vacuum tube experiment, in particular the repetition of 

the same. No apparent equivalent exists in the pretrained 
language model-based clustering approach. Finally, we cal-
culated the proportion of sentences in each cluster from the 
approach by Sherin (2013) that were classified as noise in 
the pretrained language model-based clustering approach. 
The respective proportions for each cluster were: 0.46 (0S), 
0.28 (1S), 0.45 (2S), 0.40 (3S), 0.60 (4S), 0.60 (5S), 0.48 
(6S), 0.38 (7S), 0.62 (8S), 0.35 (9S), 0.61 (10S), 0.32 (11S), 
0.34 (12S), and 0.09 (13S). Clusters 4S, 5S, 8S, and 10S 

Fig. 4  Scatter plots and condensed trees for cluster evaluation of smaller samples (N = 8 and N = 43 teachers)
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had a particularly large shares of noise-clustered sentences. 
Interestingly, these clusters could not be easily mapped to 
the clusters from the pretrained language model-based clus-
tering approach (however, cluster 13S with a particularly 
low proportion could also not be assigned). They also con-
sistently included generic words (e.g., teacher or students), 
which were attributed with the noise cluster in the pre-
trained language model-based clustering approach Fig. 5.

Exploring Textual Organization with the Extracted 
Clusters (RQ2)

To evaluate to what extent the extracted clusters provide 
quantifiable information on the textual organization of 
the written descriptions, we first plot the occurrence of 
clusters throughout the written descriptions, examine 
the non-random organization of the clusters, and exam-
ine properties of the cluster embeddings. Occurrence of 
clusters throughout the written descriptions is depicted in 
Fig. 6. The vertical bars indicate the textual position for 
the respective maximum occurrence of a certain cluster. 
The textual positions of the maxima are equally distributed 
throughout the written descriptions, so that all parts of the 
written descriptions are attributed with a cluster. Further-
more, the cluster occur at expected positions, given the 
events in the teaching situation. For example, cluster 13 
addressed the beginning of the lesson and it occurred most 
frequently at the very beginning of the written descriptions 

(see Fig.  6). In the observed teaching situation, three 
experiments were carried out one after the other: Free 
fall of a screw and a spring (cluster 10), free fall of two 
masses of the same size but different weights (cluster 1) 
and, finally, free fall in a vacuum tube (cluster 2). Clus-
ter 10 appeared at the beginning of the texts. Cluster 1, 
in contrast, appeared somewhat later, which maps to the 
temporal sequence of events in the observed teaching situ-
ation, since both experiments that were referenced in these 
clusters were carried out shortly after each other in the 
first half of the video. Cluster 2 was addressed frequently 
and extensively throughout the descriptions. In fact, clus-
ter 2 relates to the most noteworthy experiment (vacuum 
tube) in the entire teaching situation, which might explain 
the preponderance in the written descriptions.

A problem (cluster 0) occurred in the second experi-
ment (cluster 1). The shapes of the curves for cluster 0 and 
1 match well (as it is also evident in Fig. 3). Before the first 
experiment, the teacher summarized the “main hypotheses”; 
the corresponding cluster 5 for this event also occurred 
chronologically at the beginning. The other actions, i.e., 
the formulation and discussion of hypotheses (clusters 6 
and 7), the reaction to pupils’ answers (cluster 3) and the 
pupils’ answers (cluster 4) occurred throughout the teaching 
situation, which is reflected in the considerably high fre-
quency throughout the first half of the written descriptions in 
Fig. 6. Cluster 11 related to the discussion of the connection 
between air resistance, mass and fall velocity. This was also 

Table 5  Comparison of clusters extracted from the pretrained language model-based clustering approach and the clustering approach that was 
adopted from Sherin (2013), and the respective mapping
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related to the experiments seen (observations were described 
and interpreted; hypotheses regarding the connection were 
posed and tested). The temporal progression was appropri-
ate, less at the beginning, more towards the middle of the 
texts. Cluster 12 addressed summarizing the findings of the 
three experiments. It occurred quite often at the beginning of 
the descriptions, which does not correspond to the chrono-
logical sequence of events. The reason for this could be that 
some preservice physics teachers began the descriptions 
with what the goal/result of the sequence was. Otherwise, 
cluster 12 had its second peak before clusters 8 and 9, which 
again fits the temporal sequencing of events in the teaching 
situation. At the end of the sequence, the teacher asked what 
kind of movement the free fall is. The corresponding clus-
ters were the question itself (cluster 8) and the discussion 
about it (cluster 9). They occurred most often in the middle 
of the texts, which corresponded to the end of the written 
descriptions. The noise cluster (cluster -1) occurred almost 
equally distributed throughout the written descriptions. The 
respective counts for each relative position were: 57 (0.0), 71 
(0.1), 91 (0.2), 73 (0.3), 79 (0.4), 71 (0.5), 66 (0.6), 68 (0.7), 
88 (0.8), 76 (0.9), 20 (1.0). This provides evidence that no 
particular position in the written descriptions was prone to 
include more noise sentences compared to other positions. 
The lower counts at the beginning and end positions resulted 
from the calculation of the relative position index.

To analyze the sequential interdependence of the clusters, 
directed network graphs were generated based on the incom-
ing and outgoing connections for each cluster (see Fig. 7). A 

connection between clusters was established when one clus-
ter occurred in the preceding or receding sentence of another 
cluster’s sentence. Edges (i.e., the interconnections between 
two clusters) in the networks were weighted by the cluster 
sizes to highlight connections that appeared often irrespec-
tive of the cluster size. The edges with the largest values for 
the connections were labeled with the respective values (see 
the small numbers on the edges in Fig. 7(a)). The empirical 
network graph highlights that certain clusters are central in 
the network (see Fig. 7(a)). The greatest importance in the 
network had clusters -1, 2, 4, 6, and 11. In particular, cluster 
2 represents the vacuum tube experiment, and cluster 4 the 
general cluster that students raise their arms and respond. 
Hence, both physics-specific and general clusters were highly 
interconnected in the physics teachers’ written descriptions.

By analyzing interconnections between two nodes, it 
appears that clusters -1, 2, 9, 3, and 10 were self-referenced 
particularly often. Except for clusters -1 and 3, these clus-
ters related to physics-specific events such as the vacuum 
tube experiment, the type of movement, and the weight and 
air resistance. Moreover, clusters 8 and 9, clusters 0 and 
1, and 1 and 6 are interconnected particularly often. The 
former two connections directly attribute to the close con-
nection of these clusters in meaning. The connection of clus-
ter 1 (experiment with two masses) and cluster 6 (students’ 
hypotheses) can be explained by the fact that the teacher 
linked this experiment with posing hypotheses.

Finally, movements of the preservice physics teachers 
through embedding space by means of addressing specific 

Fig. 5  Codings of video sequence (coding 2) with identified clusters based for three independent raters
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clusters in their texts should be analyzed with streamline 
plots (see Fig. 7(b)-(d)). Streamline plots are vector field 
representations. We define a connecting vector between two 
sentences that belong to any of the clusters as a “velocity” 
vector, indicating the movement through cluster embedding 
space. The resulting vector field is represented in Fig. 7 (b). 
A tendency to “move” through cluster embedding space in 
center direction can be verified, because the streamlines 
direct toward the center. By comparing Fig. 7(b) with (c), 
which represents a vector field where every velocity magni-
tude and direction were chosen at random, it is evident that 
Fig. 7(b) does not represent a random vector field. When 
positional information is added generate the velocity vector 
direction (see Fig. 7(d)), the resulting vector field resem-
bles the empirical vector field. The entropies5 for compar-
ing velocities in plots (b) with (c), and (b) with (d) in x- 
and y-direction, respectively, were .45 and .28, and .03 and 
.10. This indicates that the vector field in Fig. 7(d) better 
approximates the empirical vector field. Thus, the preservice 
physics teachers do not randomly walk through the cluster 
embedding space, but rather deliberately compose their texts 

by attending to the different clusters that were extracted with 
the pretrained language model-based clustering approach.

Discussion

Attention to learning-relevant classroom events and students’ 
thinking is an important skill for teachers to implement a 
student-centered pedagogy (van Es & Sherin, 2002b; Chan 
et al., 2021; Levin et al., 2009). However, assessment of 
teachers’ attention to classroom events is complex, because 
either the uncertainty of teaching situations is oftentimes 
related to the inherent complexity of ongoing processes, 
and describing one’s attention processes is intricately tied 
to teaching knowledge and other filters (Chan et al., 2021). 
Constructed response formats have been argued to facilitate 
more authentic assessment of attention processes, and com-
puter-based analytical tools such as ML methods have been 
found to provide promising means to further our understand-
ing and assessment of complex constructs such as attending 
to classroom events (Lamb et al., 2021; Zhai et al., 2020). In 
this paper we sought to examine potentials and challenges of 
a pretrained language model-based clustering approach for 
the purpose of extracting patterns, i.e., clusters, in preser-
vice physics teachers’ written descriptions of an observed 

Fig. 6  Progression of extracted clusters relative to other descriptive 
sentences in the documents. Top: absolute count of occurrence for a 
cluster at a given document position. Bottom: relative frequency for a 

cluster at a given document position. Vertical lines indicate the over-
all peaks in occurrence for each cluster

5 Note that higher entropies indicate higher mismatch of two distri-
butions.
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teaching situation. We examined the validity of the extracted 
clusters (RQ1) and explored novel ways in which the clusters 
enable textual analytics that allow to examine quantitative 
hypotheses on textual organization (RQ2).

To assess the validity of the extracted clusters, the inter-
pretability (RQ1a), the specificity (RQ1b), and the robust-
ness (RQ1c) of the extracted clusters from the pretrained 
language model-based clustering approach were evaluated. 
The clustering approach identified a number of 14 clusters 
that can be grouped into physics-specific and more gen-
eral clusters. With regard to the contents of the clusters, 
all clusters could be related to distinct events in the teach-
ing situation. The clusters encapsulated short, concrete 
events (recapitulating the last lesson), and more abstract 
ideas (summarizing hypotheses). We found that more spe-
cific, event-related clusters could be reliably coded by the 
raters. However, the more general clusters (related to pos-
ing and summarizing hypotheses) that were applicable to 
several parts of the teaching situation yielded lower reli-
ability scores, and are thus more inferential. The extracted 
clusters were also robust to variation in sample size and 
clustering method. A sample size of only N=8 preservice 
physics teachers’ written descriptions yielded a similar dis-
tribution of clusters. This likely resulted from grounding the 
clustering with embeddings from the pretrained language 
model. A further indication of robustness resulted from the 

comparison with a previously employed clustering approach 
in science education research (Sherin, 2013). We found that 
many of the extracted clusters from the pretrained language 
model-based clustering approach mapped to the clusters that 
resulted from the application of the clustering approach by 
Sherin (2013).

Given that the clusters were well interpretable and could 
be mapped to the teaching situation, we conclude that the 
algorithm identified meaningful and distinguishable clusters 
in the preservice teachers’ descriptions. The variety of dif-
ferent foci and abstractness in the extracted clusters is well 
represented within the different foci of noticing that were 
summarized by Talanquer et al. (2015). Moreover, the dif-
ferentiation of more general clusters and physics-specific 
clusters resonates with the well-established construct of 
teachers’ knowledge, in particular the notions of general ped-
agogical knowledge and content knowledge (Shulman, 1986; 
Carlson et al., 2019). The pedagogical content knowledge as 
an “amalgam of content and pedagogy” (Hume, 2009) might 
be conceptualized as the relevant knowledge to connect the 
clusters and discuss pedagogical implications of the physics-
specific, and more general clusters. The pretrained language 
model provides the relevant structures to classify sentences 
along this dimension. The contextualized embeddings from 
the pretrained language model facilitate science education 
researchers means to extract robust clusters in their datasets. 

Fig. 7  Directed network graphs of clusters and streamline plots of 
cluster embeddings: a Empirical directed network based on the actual 
connections between clusters present in the written descriptions; 

b  Streamline plot of actual connections between clusters; c  Stream-
line plot with randomly distributed directions; d  Streamline plot 
where directions are sampled from pool of existing connections.
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Furthermore, the pretrained language model-based cluster-
ing approach integrates the data preprocessing into the mod-
eling and introduces a novel criterion for cluster extraction 
(stability of clusters over density variation) that provides 
the human analyst another important measure of appropriate 
cluster selection.

The findings in the context of RQ1 also indicate that the 
preservice physics teachers included very general clusters 
and a comparably large amount of noise clustered sentences. 
This observation might relate to the finding that novice teach-
ers tend to include broad and general statements in their 
observations, merely as placeholders (Mena-Marcos et al., 
2013). Mena-Marcos et al. (2013) found that more knowl-
edgeable teachers also include more precise statements in 
their reflections. Furthermore, the preservice physics teachers 
tended to include only few sentences on each cluster. This 
indicates that, on average, not much space is spent to describe 
an event in detail. This might relate to the finding that novice 
mathematics and science teachers in particular struggle to 
attend to the specific contents of what was said (Sherin & 
Han, 2004; Levin et al., 2009; Roth et al., 2011). Rather than 
describing the concrete hypotheses that the students uttered, 
many teachers might abstract from the specific contents and 
simply note that the students posed hypotheses. Yet, develop-
ing noticing skills would require the preservice physics teach-
ers to detail the concrete ideas of the students and teacher in 
order to make an informed evaluation on the substance of 
the classroom interactions (Levin et al., 2009). However, the 
unspecific contents might relate to our instructional approach. 
For example, it should be tested if pre-service teachers can 
attend to specific events if they can watch the video multiple 
times and take notes for themselves.

In the context of RQ2 we evaluated to what extent the 
extracted clusters could be used to assess the textual organi-
zation of the written descriptions. The absolute and rela-
tive frequency of sentences in certain clusters with regard 
to their relative position in the written descriptions were 
analyzed through visual means. We found that the maxi-
mum counts for the clusters well matched their expected 
positions in the teaching situation. This suggests that the 
preservice physics teachers, on average, compose their writ-
ten descriptions according to the chronological occurrence 
of the events in the teaching situation. This finding resonates 
with episodic memory theory which suggests that free recall 
of events occurs in temporal order (Conway, 2009; Kahana 
et al., 2008). Further evaluation of textual organization of 
clusters by means of network graphs enabled us to document 
that certain clusters are cued together more closely as would 
be expected by chance and cluster size. This means that 
clusters that were semantically or chronologically related 
were linked by the preservice physics teachers more often. 
This relates to the contiguity effect, namely that neighbor-
ing items (here: events in a teaching situation) are recalled 

successively (Kahana et al., 2008). Furthermore, streamplot 
analyses revealed that the preservice physics teachers’ move-
ment through cluster embedding space was non-random and 
dependent on the position in this space. On a local scale, the 
position in cluster space thus determines the propensity with 
which the preservice physics teachers’ move in a certain 
direction in this space. Analysis of textual organization can 
extend assessment of analytical chunks as outlined by van 
Es and Sherin (2002). van Es and Sherin (2002) differentiate 
expertise in noticing in a trajectory where experts include 
more interconnections among their evidences (here: clusters 
and interconnections between them in the descriptions). The 
extracted clusters alongside with the network representation 
directly would yield a quantification of noted events and thus 
provide a tool to diagnose expertise levels in noticing.

Limitations

Even though the utilization of a pretrained language model 
allowed us to integrate data preprocessing into the ML-based 
modeling, there are assumptions on the pretrained language 
models that have to be critically examined. For example, 
the resulting contextualized embeddings are determined by 
the choice of the pretrained language model and cannot be 
easily adjusted. Problems with the pretrained embeddings 
have also been reported. Given that they are trained on the 
Internet, certain biases related to gender or ethnicity are 
present in the embeddings (Caliskan et al., 2017; Bhardwaj 
et al., 2020). As such, it has to be critically examined to 
what extent these biases might be propagated into educa-
tional assessments which can be disadvantageous.

Another feature of the pretrained language model-based 
clustering approach was the algorithm-derived extraction 
of the number of clusters present in the data. Even though 
the means to extract the clusters based on the stability over 
density variation might be an additional tool for research-
ers to use in order to determine a viable number of clusters, 
there are still many hyperparameters that can be tuned which 
yield different numbers of clusters. Given the scope of this 
paper, we did not systematically vary the hyperparameters to 
find a final number of clusters. We rather sought to establish 
that the proposed number of clusters was well interpretable 
in reference to the observed teaching situation. However, 
the large proportion of noise datapoints also indicates that a 
large share of the data is not accounted for in the clustering.

With regard to the contents of the clusters, it was notice-
able that the clustering approach did not capture some rel-
evant students’ questions from the observed teaching situ-
ation into a distinct cluster even though some pre-service 
teachers included them in their descriptions. Attending to 
these student questions in the teaching situation required 
physics knowledge. One student asked whether the different 
movement of feather and screw (the feather was zig-zagging 
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whereas the screw moved straight to the ground) could 
explain the differences in falling time. This is a relevant 
question that hints at the missing control of variables in the 
experiment. Some preservice physics teachers included this 
question in their descriptions, however, no separate cluster 
appeared to capture it. This is a consequence of the insta-
bility and scarcity of this observation as represented in the 
preservice physics teachers’ written descriptions. Omitting 
contents from the clusters is in fact a goal for unsupervised 
ML approaches that seek to reduce a complex dataset (Jordan 
& Mitchell, 2015). For the purpose of assessing skills related 
to attention to classroom events, adjustments in the clustering 
procedure should be made to allow more clusters to occur, 
because the identification of this student question demon-
strates close attention to student thinking and an understand-
ing of the problematic aspects of the teaching situation and 
would be considered to correspond to high levels of noticing 
skills.

Conclusions

Many domains such as physics embraced ML methods 
to extract information from unstructured data, e.g., to sift 
through collider data (unfeasible for humans) to detect outli-
ers (i.e., noise-clustered datapoints) with even the same clus-
tering approach that has been applied in this study (Arpaia 
et al., 2021). Given the novel potentials to extract informa-
tion from unstructured data and the increasing availability 
of this data, science education researchers should critically 
examine potentials and challenges of these novel ML-based 
methods in their research contexts as well. This study could 
show that a pretrained language model-based clustering 
approach could be used as an assessment tool to analytically 
induce what teachers attended to in an observed teaching sit-
uation and evaluate the potentials of ML for analyzing open-
ended responses. We suggest that the applied pretrained lan-
guage model-based clustering approach can be enhanced by 
further fine-tuning the pretrained language model weights to 
science-specific language. This will enable more involved 
language analytics such as analogical reasoning or syno-
nym detection (Mikolov et al., 2013). It has been shown 
that pretrained language models capture some knowledge 
about quantities (e.g., the magnitude of weight of a proto-
typical dog), or some knowledge graphs about entities (e.g., 
“Bob Dylan is a songwriter”) (Wang et al., 2020; Zhang 
et al., 2020). In fact, representing natural language into vec-
tor spaces can enable novel research approaches to answer 
research questions in science education research (Sherin, 
2013). Once the pretrained language models are trained and 
publicly available, advanced analytics of written descriptions 
will be enabled. The presented clustering approach could be 
applied as a recommender tool to automatically feedback to 

the teachers which events and contents they addressed and 
which they missed to pay attention to.

The pretrained language models enabled an informed 
contextualized representation through embeddings of the 
language data. Representation of language data through 
embeddings will also enable researchers to map language 
to other modalities such as graphical/visual data or math-
ematical expressions (see: Krstovski & Blei, 2018). Multiple 
representations and translating between different representa-
tions has been considered a constitutive feature for scientific 
literacy (Brookes & Etkina, 2009). However, it will be neces-
sary to develop theoretically grounded ontologies and epis-
temologies of what preservice science teachers can observe 
and how they reason about it (Brookes & Etkina, 2009). Once 
pretrained language models are developed and ontologies and 
epistemologies can guide analyses, the presented clustering 
approach in conjunction with these models can help to make 
analyses more comparable, scalable, and robust.

With the help of the clustering approach in this study 
quantitative hypotheses on text composition could be 
explored. For example, we suspect that preservice physics 
teachers include general and specific language statements in 
their written descriptions, are scarce to describe a particular 
cluster, and compose their texts in chronological order of 
the appearance of the events. Writing a sentence that can 
be classified into a specific cluster, to a certain extent, pre-
disposes the teachers to move through the cluster embed-
ding space in certain directions, and noticing certain events 
predisposes them to also include temporally related events. 
These hypotheses need to be more systematically tested, 
because they can enhance assessment of noticing-related 
cognitive mechanisms such as careful observation and atten-
tion to classroom events. We even wonder to what extent 
mapping the teachers’ trajectories through the embedding 
space can be captured by more physics-involved concepts 
such as movement through a potential where equations of 
motion and conservation laws determine the teachers’ writ-
ing. We are not aware that these hypotheses have been tested. 
ML-based methods will enable these analyses.

In line with the argument put forth by Singer (2019), 
we encourage science education researchers to adopt more 
observational studies that are grounded in data science,  
assessment and measurement (Singer, 2019). Insights 
in physics today also come from simulation studies and 
observational (non-manipulable) experiments. The recent 
Nobel price of 2021 on complex systems’ behavior or 
insights in astrophysics are testimony to this. We believe 
that science education researchers can gain novel insights 
on studied phenomena through ML-based, computational 
approaches such as the one presented in this study where 
an unstructured body of textual data is analyzed. Zhai et al.  
(2020) and Lamb et al. (2021) argued that ML-based com-
putational models can capture the complexity of cognitive 
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processes and “revolutionize” science assessment. We con-
cur with these arguments and emphasize the necessity to 
develop an understanding in the science education research 
community for unsupervised ML approaches and pretrained 
language models in particular, given the preponderance of 
observational data that is available in educational contexts. 
Unsupervised ML methods have thus great potentials to 
bridge the gap between quantitative and qualitative methods 
in science education. Pretrained language models, more par-
ticularly, capture human-like semantics as measured through 
implicit association tests and thus represent cognitive struc-
tures of humans (Caliskan et al., 2017). Hence, pretrained 
language models arguably are most promising candidates to 
model language-based processes. Given that, in our case, the 
ML-based approach scaled seamlessly (neither human anno-
tations nor preprocessing of the textual data was necessary 
to extract clusters) and is publicly available to researchers, it 
would be desirable to increase efforts to share data and mod-
els in order to make the most use of the available resources.
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