
https://doi.org/10.1007/s10956-022-09965-0

Algorithmic Explanations: an Unplugged Instructional Approach
to Integrate Science and Computational Thinking

Amanda Peel1  · Troy D. Sadler2 · Patricia Friedrichsen3

Accepted: 25 April 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Computing has become essential in modern-day problem-solving, making computational literacy necessary for practicing
scientists and engineers. However, K–12 science education has not reflected this computational shift. Integrating computa-
tional thinking (CT) into core science courses is an avenue that can build computational literacies in all students. Integrating
CT and science involves using computational tools and methods (including programming) to understand scientific phenomena
and solve science-based problems. Integrating CT and science is gaining traction, but widespread implementation is still quite
limited. Several barriers have limited the integration and implementation of CT in K–12 science education. Most teachers
lack experience with computer science, computing, programming, and CT and therefore are ill-prepared to integrate CT into
science courses, leading to low self-efficacy and low confidence in integrating CT. This theoretical paper introduces a novel
instructional approach for integrating disciplinary science education with CT using unplugged (computer-free) activities.
We have grounded our approach in common computational thinking in STEM frameworks but translate this work into an
accessible pedagogical strategy. We begin with an overview and critique of current approaches that integrate CT and science.
Next, we introduce the Computational Thinking through Algorithmic Explanations (CT-AE) instructional approach. We then
explain how CT-AE is informed by constructionist writing-to-learn science theory. Based on a pilot implementation with
student learning outcomes, we discuss connections to existing literature and future directions.

Keywords  Computational thinking · Science education · Unplugged · Instructional approach

This theoretical paper introduces a novel instructional
approach for integrating disciplinary science education with
computational thinking (CT) using unplugged (computer-
free) activities. We have grounded our approach in common
computational thinking in STEM frameworks (e.g., Weintrop
et al., 2016), but translate this work into an accessible
pedagogical strategy. We begin with an overview and critique
of current approaches that integrate CT and science. Next, we
introduce the Computational Thinking through Algorithmic
Explanations (CT-AE) instructional approach. We then

explain how CT-AE is informed by constructionist writing-
to-learn science theory. Based on a pilot implementation
with student learning outcomes, we discuss connections to
existing literature and future directions.

CT and Science Integration

Computing has become essential in modern-day problem-
solving, making computational literacy necessary for prac-
ticing scientists and engineers (diSessa, 2001). For example,
the rapid development of COVID-19 vaccines was possible
due to computational models that read the virus genetic code
and predicted specific parts of the virus that would be best
targets for immune response (Arnold, 2020). These targets
were then used to create and test vaccines, a step that would
have taken years without computational immunology. Simi-
larly, computation has led to innovations in other STEM
disciplines, such as the first image of a black hole (Event
Horizon Telescope Collaboration, 2019) and the detection

 *	 Amanda Peel
	 amanda.peel@northwestern.edu

1	 Learning Sciences Department, Northwestern University,
Evanston, IL, USA

2	 Culture, Curriculum and Teacher Education Department,
University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA

3	 Learning, Teaching, and Curriculum Department, University
of Missouri, Columbia, MO, USA

/ Published online: 5 May 2022

Journal of Science Education and Technology (2022) 31:428–441

1 3

http://orcid.org/0000-0002-2704-3911
http://crossmark.crossref.org/dialog/?doi=10.1007/s10956-022-09965-0&domain=pdf

of gravitational waves (Abbott et al., 2016). However, K–12
science education has not reflected this computational shift.
To address this, calls from around the world to integrate
computing in compulsory schooling have emerged (Bocconi
et al., 2016; Heintz et al., 2016). While some educational
systems have begun offering computer science courses,
these courses are rarely required, resulting in a small num-
ber of students building computational literacy (Bocconi
et al., 2016; Heintz et al., 2016). Conversely, integrating
CT into core science courses is an avenue that can build
computational literacies in all students (Grover & Pea, 2013;
Wilkerson-Jerde et al., 2015; Wing, 2006). Broadly, CT “is
the thought processes involved in formulating problems
and their solutions so that the solutions are represented in a
form that can be effectively carried out by an information-
processing agent” (Wing, 2011, p. 1). Integrating CT and
science involves using computational tools and methods
(including programming) to understand scientific phenom-
ena and solve science-based problems. Integrating CT and
science is gaining traction, but widespread implementation
is still quite limited.

In the USA, CT is included in the Next Generation Sci-
ence Standards (NGSS) (NGSS Lead States, 2013), which
have been adopted in varying forms in 44 states. The NGSS
includes “using mathematics and computational thinking,”
as one of eight science and engineering practices that charac-
terize scientific inquiry and promote learning about science
and how science is conducted (National Research Coun-
cil, 2012). NGSS standards and appendices aim to provide
teachers with information about science practices; however,
CT is not well defined and NGSS provides little guidance
on how to achieve this integration and how to meaningfully
scaffold its progression across grade bands. The standards
provide performance expectations that describe what stu-
dents should be able to do, and performance expectations
containing CT are underrepresented compared to the other
practices. Although the practice progressions in Appen-
dix F of the NGSS include data analysis with digital tools
and algorithms in middle school, there are no performance
expectations that engage students in CT practices, making
it unlikely that CT will be addressed in middle schools or
elementary schools. Moreover, because CT is combined with
mathematics, most of the associated performance expecta-
tions are connected only to mathematics. While NGSS-
aligned teaching and learning has been widely implemented
with other practices, CT integration has lagged.

To refine the application of computational tools and
methods for science classrooms, Weintrop et al. (2016)
defined CT in science and mathematics with a taxonomy of
practices. This taxonomy is highly cited in the CT and sci-
ence integration literature. The taxonomy presents science
and mathematics specific CT practices that students should
be familiar with by the end of their K–12 education. Taxa

include data practices, modeling and simulation practices,
computational problem-solving practices, and systems think-
ing practices. While these practices do align with science
and mathematics learning, they focus on creating and using
computational tools, resulting in computer- and program-
ming-heavy implementations. For example, the modeling
and simulation practices prescribe use of computational
models to understand a concept and find and test solutions,
and assessing, designing, and constructing computational
models. This conceptual framing is a key step in supporting
CT and science integration; however, translating the taxon-
omy practices into classroom instruction remains challeng-
ing because it requires computers and prior CT or computer
science experience.

Several barriers have limited the integration and imple-
mentation of CT in K–12 science education. Most teachers
lack experience with computer science, computing, pro-
gramming, and CT and therefore are ill-prepared to inte-
grate CT into science courses (Aljowaed & Alebaikan, 2018;
Sands et al., 2018; Yadav et al., 2011, 2014; Wu et al., 2018).
This inexperience leads to low self-efficacy and low confi-
dence among teachers for integrating CT (Aljowaed et al.,
2018; Rich et al., 2020). Many teachers believe CT is the
use of programming and computing, which leads to discom-
fort with its integration into their science content (Peel et al.,
2020; Yadav et al., 2014). A recent survey of 123 K–12 sci-
ence teachers (Kite & Park, 2020) showed only 24% of the
surveyed teachers had accurate conceptions of CT as concep-
tualized by Fraillon (2018). Teachers reported the following
barriers to integrating CT and science: I don’t understand
CT (35.34%), My students aren’t academically prepared
for CT-infused lessons (15.26%), I don’t understand how
CT aligns with my content (14.46%), I don’t have access
to the necessary technology (11.65%), I don’t have room in
my curriculum (10.84%), I’m not comfortable with technol-
ogy (5.62%), and Lack of administration support (2.81%).
These reported barriers indicate that teachers need support
and resources for CT and science integration that help them
understand CT, align with their students’ preparation, aligns
with their content and existing curriculum, and does not
require technology.

The CT integration approach presented in this paper is
one possible way to help teachers reduce these barriers. We
argue the unplugged approach not only eliminates technol-
ogy and teachers’ technological discomfort, but also pro-
vides an entry point for student learning and engagement
in CT that may better align with students’ academic prepa-
ration. We also argue that implementing the unplugged
approach is easier for teachers when compared to program-
ming and technology CT activities because teachers do not
have to learn programming or a new technology. Rather,
teachers can learn about CT imbedded in their content and
curricula. As with any innovation for teaching, adopting the

429Journal of Science Education and Technology (2022) 31:428–441

1 3

approach advocated in this paper will require that teachers
consider new ideas and integrate new practices within their
repertoires which will require some additional training and
access to resources. However, this approach helps to meet
many science teachers where they are and presents substan-
tially fewer barriers for the integration of CT in their classes.

Most emerging CT integration efforts, including the Weintrop
et al. (2016) taxonomy, involve the use of computers (Hsu
et al., 2018; Lockwood & Mooney, 2017). Disparities in
access to computers among schools with different resources
hinder the implementation of CT lessons and units. Gaps
in access to computers and computing resources are still
widespread in school systems across the US, and while many
schools have computer labs or laptop carts, most science
classrooms are still not outfitted with computers for all stu-
dents (Hohlfeld et al., 2017). To reduce the technological
barrier to CT integration, more approaches should support
CT engagement without the use of computers.

There is a clear need for instructional approaches and
examples that integrate CT and science (Li et al., 2020).
These approaches and examples need to address barriers to
CT integration. This paper draws on conceptual and theoreti-
cal frameworks to present an instructional approach to inte-
grate unplugged, or computer free, CT and science. We take
the position that unplugged CT can lessen barriers to CT
integration and is an easier and more accessible entry point
for teachers and students who are intimidated by comput-
ing. Moreover, we argue unplugged CT can support science
learning in new ways. This paper will introduce the instruc-
tional approach and results of an early implementation.

CT‑AE

We propose Computational Thinking through Algorithmic
Explanations (CT-AE) as an instructional approach that
engages students in sense-making about science processes
through the creation of unplugged algorithmic explana-
tions. Teachers can use CT-AE in their classrooms to syn-
ergistically engage students in science and CT as students
use CT to make sense of and learn complex scientific pro-
cesses. Central to CT-AE is student creation of hand-written

algorithms, or sequences of steps, that explain a scientific
process as they investigate and learn about the process. For
example, students can make sense of protein synthesis by
creating algorithms that explain transcription, translation,
and protein folding processes. CT-AE utilizes algorithm
creation as an explanation of a scientific phenomenon, thus
shifting CT from technology-dependent applications to sci-
ence learning and sense-making applications. We argue the
combination of sense-making about science through CT
makes the integration of CT into science classrooms more
approachable to teachers.

CT-AE foregrounds two dimensions of CT: algorithm
concepts and CT practices. This approach allows students
to learn how to use algorithm concepts and employ CT prac-
tices. Algorithm concepts (Table 1) include branching (i.e.,
if/then/else conditional statements), iteration (i.e., loops
and repeating steps), methods (i.e., encapsulated sequence
of steps), and variables (i.e., values that can change). These
concepts are commonly referenced in CT literature (Peel
et al., 2015; Peel & Friedrichsen, 2018; Brennan & Resnick,
2012; Grover et al., 2019; Lye & Koh, 2014). CT practices
are actions, or things students do during algorithm creation
and other computational activities, whereas concepts are rep-
resented as written aspects of an algorithm. Figure 1 presents
an example algorithmic explanation of protein translation.

CT practices are sequencing steps, abstracting infor-
mation, generalizing, recognizing patterns, decomposing
processes, and evaluating algorithms (Table 2). When stu-
dents create algorithmic explanations, they are engaging
in CT practices by using algorithm concepts, so correctly
using algorithm concepts indicates students can engage
in CT practices. For example, using a branching state-
ment (algorithm concept) involves sequencing events and
steps (CT practice) based on a specific condition: if the
condition is true, then something happens, else some-
thing different happens. Using iteration (concept) requires
evaluating (practice) a sequence of steps, recognizing pat-
terns (practice), and identifying where an algorithm can
be simplified with a loop (concept). Writing a method
(concept) to be used in many algorithms requires students
to decompose (practice) the science process, generalize
(practice) the steps for use across contexts, and abstract

Table 1   CT-AE algorithm concepts

Algorithm concept Example

Branching—choosing a path, If/Then/Else conditional statements If organism has the favorable trait, then it is more likely to survive
Iteration—repeating a sequence of steps until a condition is met Repeat the process of natural selection for every new selection pressure
Method—an encapsulated sequence of steps used in multiple processes The process of reproduction is a method that can be called in several

biological processes
Variable—a value that can change The selection pressure is a variable, and its value is set to the specific

pressure being explained (e.g., drought, hunting, antibiotics)

430 Journal of Science Education and Technology (2022) 31:428–441

1 3

(practice) important information. Using variables (con-
cept) in an algorithm requires students to evaluate (prac-
tice) their algorithm and identify where variables can be
used to make their algorithm more efficient, or to general-
ize (practice) their algorithm for use in multiple contexts.

The CT literature typically positions the following as
CT practices: abstraction, generalization, decomposition,
algorithmic thinking, and debugging (Angeli, et al., 2016;
Bocconi et al., 2016; Caeli & Yadav, 2020; Csizmadia &
Boulton, 2017; Csizmadia et al., 2015; Kalelioglu et al.,
2016). We position algorithmic thinking as a higher lever-
age practice than the others listed here because it requires
students to engage in other CT practices: abstraction,
generalization, decomposition, evaluation, sequencing,
and pattern recognition. Using algorithmic design as the
overarching practice allows students to engage with both
dimensions of CT-AE at once (Fig. 2). While algorithms
are typically defined as “a method to solve a problem that
consists of exactly defined instructions” (Futschek, 2006),
CT-AE shifts the purpose of algorithms and defines algo-
rithms as explanations of science processes.

In presenting the CT-AE approach, we are not argu-
ing that algorithm creation is the only CT students should
engage in. Rather, CT-AE provides an approach that focuses
on one aspect of CT, algorithm practices, as a starting point
for meaningful integration of CT into science learning
opportunities. The approach is an easier introduction to CT
for many science teachers and students, particularly those
with limited experience and/or access to technology. Fur-
thermore, the approach can provide a foundation for subse-
quent engagement in other CT practices that require tech-
nology such as programming, computational modeling, and
computational data practices. Framing scientific explana-
tions with algorithm structure and CT practices will require
new classroom practices and instruction, but we argue this
approach leverages existing logic and reframes it explicitly
as computational. For example, people commonly use “if”
statements in everyday language to make decisions, but
when students write an algorithmic explanation with if/
then/else statements, the colloquial phrase is reframed as
computational logic that provides structure (branching) to
the explanation. We also recognize the approach is best

Fig. 1   Example of a translation algorithmic explanation

Table 2   CT-AE practices

CT practices Example of connections to algorithm concepts

Sequencing events and steps Process of writing an algorithm; writing a branching statement to sequence events based on a condition
Abstracting information Simplifying information with an iteration or method
Generalizing steps Using variables to make an algorithm useful in multiple contexts
Recognizing patterns Identifying methods that are present in multiple algorithms; identifying similar concepts between algorithms

that can be assigned as variables; identifying repeating steps where an iteration can be used
Decomposing complex processes Breaking the process into steps of an algorithm and methods that can be written
Evaluating algorithms—efficiency,

correctness, testing, debugging
Identifying when an iteration, branch, method, or variable can be used to simplify the algorithm or make the

algorithm clearer and more correct

Students create

unplugged

algorithms to

explain a

scientific process

Use of

algorithm

concepts

Engagement in

CT practices

Sense-making

about the scientific

process

Resulting in

T
h

ro
u

g
h

T
h

ro
u

g
h

T
h

ro
u
g
h

Fig. 2   CT-AE instructional approach

431Journal of Science Education and Technology (2022) 31:428–441

1 3

suited for scientific processes and may not be as effective for
explaining scientific structures, mechanisms, or other states.

Conceptual and Theoretical Framing

Several resources informed development of CT-AE as an
instructional approach. The following sections describe a
CT conceptual framework and the theoretical foundations
that frame CT-AE.

CT Conceptual Framework

A revised version of the CT in science and mathematics
taxonomy (Weintrop et al., 2016) has been released, and it
encompasses a wider range of CT in science and mathemat-
ics practices (Peel et al., 2021a). The newer taxonomy is
divided into six categories of CT in science and mathemat-
ics practices. This revised taxonomy includes new practice
categories of algorithms, programming, and computational
visualization in addition to computational modeling and
simulation, computational data, and computational problem-
solving. CT-AE translates this conceptual CT framework
into an actionable instructional framework that can be used
in classrooms without computer access by focusing on algo-
rithm practices as a subset of CT in science and mathematics
practices. Focusing on one category of CT practices allows
CT-AE to translate the CT in science and mathematics tax-
onomy into classroom practice, providing an innovative
approach to CT integration. There are five algorithm sub-
practices in the new taxonomy: (1) using an algorithm to
solve a problem or understand a phenomenon, (2) selecting
an appropriate algorithm to solve a problem, (3) assessing
algorithms, (4) modifying an algorithm to better address
a problem, and (5) designing and constructing algorithms
(Peel et al., 2021a).

The CT-AE instructional approach engages students in
designing and constructing algorithms (#5) as they create
hand-written algorithmic explanations of science processes.
Once created, algorithmic explanations can be leveraged to
engage students in other algorithm practices. Students can
iteratively revise their algorithms as they engage in class-
room investigations, which allows them to assess (#3) and
modify algorithms (#4). As students gain more evidence,
they can assess their algorithms for accuracy and clarity,
which leads to modifying the algorithm to better explain the
science process. Similarly, as students become more familiar
with algorithm concepts, they can assess their algorithms in
terms of correct and efficient use of algorithm concepts and
how algorithm concepts can be better used to explain the
science process. The algorithmic explanations can then be
utilized to solve problems related to the science process or
to explain the process in new contexts.

We argue the unplugged creation of algorithms can also
enhance programming and modeling practices described in
the revised taxonomy (Peel et al., 2021a). Programming is
included as one of the practices, and engaging students in
unplugged CT can support algorithm logic and creation,
which is essential to programming. If students do not under-
stand the function and importance of algorithm concepts,
such as loops, variables, conditionals, and procedures, they
will struggle to program correctly and efficiently. We argue
that supporting these competencies in students’ common
language will help them apply algorithm logic and creation
across programming languages and in their everyday lives.
Programming practices can then be applied to modify and
create computational artifacts, which connects to each of the
remaining taxonomy practices.

CT-AE aligns with computational modeling and simulation
practices described in the revised taxonomy, specifically
designing and constructing computational models. Modeling
is central to scientific inquiry through mental modeling
and conceptual modeling which provide explanatory and
predictive power for understanding science phenomena
and testing hypotheses (National Research Council, 2012).
Modeling has representational and epistemic affordances,
which can be leveraged to engage students in sense-making
about science phenomena (National Research Council, 2012;
Wilensky & Reisman, 2006). Computational modeling has
supported science learning and CT learning (Arastoopour
Irgens et al., 2020; Aslan et al., 2020; Buckley et al., 2004;
Klopfer, 2003; Schwarz et al., 2007; White & Frederiksen,
1998; Wilkerson-Jerde e t al., 2015). In addition to using
models, the modification and creation of scientific models
support deeper learning of the science phenomenon (Sengupta
et al., 2013; Wilensky & Reisman, 2006). However, the
creation of computational models can be complex and time
consuming, and many teachers are uncomfortable with and
unprepared to integrate computational model creation.

We propose that CT-AE can bridge conceptual models
and computational models by providing an intermediate
representational and epistemological step between hand-
drawn model explanations and computational models.
Hand-written algorithmic explanations provide an oppor-
tunity to translate drawn images and mental representations
into written sequenced steps. The algorithm concepts pro-
vide a structure for writing by supporting the recognition
of patterns, cause and effect relationships, and sequencing
of events. Once students and teachers are comfortable with
unplugged CT, they can use these competencies to scaf-
fold programming and creating computational models in
varying languages and environments. It is difficult to create
computational models, even within modeling environments
designed to support novice programmers, such as NetLogo
(Wilensky, 1999, 2001). In addition to programming issues
(e.g., Spohrer, 1989), science phenomena are often complex.

432 Journal of Science Education and Technology (2022) 31:428–441

1 3

For example, to create a computational model of natural
selection, students must reason about and represent other
ecological phenomena, such as reproduction, connections
between multiple organisms and their environment, aging,
and death (Wilensky & Resnick, 1999). Students often strug-
gle to understand the phenomena leading to challenges in
attempts to represent them computationally (Forrester, 1994;
Wilensky, 2001).

For example, students’ challenges with creating and test-
ing computational models have been categorized into four
categories: domain knowledge challenges, modeling and
simulation challenges, agent-based thinking challenges,
and programming challenges (Basu et al., 2016). Students
struggled with missing and incorrect science conceptions
about the phenomenon they were modeling. Challenges with
modeling and simulation included the following: “(1) chal-
lenges in identifying relevant entities and their interactions;
(2) challenges in choosing correct preconditions; (3) sys-
tematicity challenges; (4) challenges with specifying model
parameters and component behaviors; and (5) model veri-
fication challenges” (Basu et al., 2016, p19). Students also
showed issues with agent-based modeling, such as strug-
gling with how to represent individual behaviors and con-
necting individual actions to aggregate trends and behaviors.
Programming challenges included:

(1) challenges in understanding the semantics of
domain-specific primitives; (2) challenges in using
computational primitives like variables, conditionals,
nesting, and loops to build programs (i.e., behaviors);
(3) procedurality challenges; (4) modularity chal-
lenges; (5) code reuse challenges; and (6) debugging
challenges. (Basu et al., 2016, p20)

Without explicitly considering components, interactions,
sequences, and algorithmic logic, students may struggle to
create computational models. Thus, engaging in algorithmic
explanations may help students succeed in computational
model creation. To scaffold computational modeling prac-
tices with algorithmic explanations, students can begin by
using a computational model to explore a science process.
Students then can write an algorithmic explanation of the
model with the following question: what rules do the indi-
viduals follow as the model runs? Next students can look at
the model’s code and identify algorithm concepts, such as
methods and branching. This connection builds on students’
understandings of algorithm concepts to help them read and
understand the model’s code. Reading and understanding
code can then be expanded into programming and model
creation. Students can modify pieces of code and see how it
impacts the model. Students can write new pieces of code
(e.g., add a variable or branching statement). Modifying
computational models allows students to better represent the
science process and their understandings of that process.

This transition and expansion of CT practices aided by
algorithmic explanations shift students from consumers of
computational models to creators of computational models.

For example, if students are learning about predator and
prey relationships, they can use the “Wolf Sheep Predation”
NetLogo computational model (Wilensky, 1997). Through
using the model, students can see how population trends
are affected by the amount of sheep, wolves, and grass over
time. Students can write algorithmic explanations (what
steps the organisms follow when the model runs) for each of
the organisms in the model: sheep, wolves, and grass. Then
students can look at the model code and identify algorithm
concepts, like branching: if a sheep and a wolf are on the
same square, then the wolf eats the sheep. Students can then
try changing aspects of the model, like how much the sheep
and wolves move with every step. They could add code so
that the wolves move towards a sheep if they see one, rather
than moving randomly. This is just one example of how
algorithmic explanations can connect to and scaffold com-
putational modeling practices. We argue the prior knowledge
of algorithm concepts provides a structure that makes the
code more readable and understandable to students and can
scaffold code modification and creation of new code.

Theoretical Foundations

While many have suggested benefits to incorporating
unplugged CT approaches, little work has been done to
ground these approaches in learning theories (Huang &
Looi, 2021). This section will describe the theoretical basis
for CT-AE: writing-to-learn as a form of constructionism.

Constructionism, like constructivism, involves building
knowledge through experiences. Students do not absorb
information told to them but are active constructors of their
own knowledge as “they make tentative interpretations
of experiences and go on to elaborate and test those
predictions” (Perkins, 1991, p. 20). Constructionism adds the
idea that learning happens best when students create public
products “that can be shown, discussed, examined, probed,
and admired” (Papert, 1993, p. 142). As such, learning
experiences should be designed to engage students in the
construction of meaning through the creation of artifacts that
are publicly shareable. Students learn through constructing
an artifact and from interpreting an artifact (Papert, 1980).
The co-occurrence and cycling of interpretation and
representation result in the co-construction of knowledge
and an artifact. While constructionism has guided many
computational and programming learning experiences
(e.g., Harel & Papert, 1990; Kahn, 1999; Papert, 1980;
Wilensky & Reisman, 2006), pencil-and-paper constructions
utilize the same learning approach (Papert & Harel, 1991).
CT-AE follows this logic as students create algorithmic
explanations, thus engaging in learning-by-making.

433Journal of Science Education and Technology (2022) 31:428–441

1 3

CT-AE focuses the constructionist idea of learning-by-
making by employing writing as the medium for making.
More specifically, CT-AE leverages algorithm creation
as a genre of writing. The writing-to-learn science theory
suggests that science knowledge and understanding is con-
structed through the process of writing (Yore et al., 2003).
Students use inquiry experiences to collect evidence that
is used to construct explanations and understandings about
the science phenomenon. Consistent with constructionist
theory, language does not only describe “what the scientist
does but it actually helps determine it. The relationship of
the scientific paradigm and its language is a reciprocal one:
language shapes the paradigm, and the paradigm shapes
the language.” (Locke, 1992, p. 33). Writing-to-learn not
only supports learning about the science, but it also sup-
ports learning of writing, itself, allowing students to make
sense of science and to effectively communicate it (Yore
et al., 2003).

We argue that creating algorithmic explanations is a genre
of writing and thinking, and it connects to several of the
writing-to-learn genres. Gallagher et al. (1993) argue that
writing-to-learn approaches should include several genres
of writing, including narrative, descriptive, explanation,
instruction, and argumentation. Algorithmic writing clearly
connects to the explanation and instruction genres.

Explanation involves sequencing events in cause–
effect relationships. Instruction involves ordering a
sequence of procedures to specify directions, such as
a manual, experiment or recipe, and can effectively
utilize a series of steps in which the sequence is estab-
lished by tested science and safety. (Yore et al., 2003,
p 700)

Students engage in sequential and cause-effect reasoning
through writing algorithmic explanations. Unplugged algo-
rithm creation as a form of writing not only allows students
to find meaning and effectively communicate with other
people (a publicly shareable artifact), but also supports the
development of foundational algorithm skills that can be
applied to computational tools and systems. Just as writing is
central to learning and engaging in science, CT has become
central to scientific inquiry. As such, combining writing-to-
learn approaches with algorithmic explanations can support
constructionist learning of essential science practices and
ideas.

A key component of constructionism is allowing students
to make products with varying approaches that match their
way of thinking and constructing (Papert & Harel, 1991).
Students are limited with the ideas they can employ within
programming environments because these environments
require specific and correct syntax and prior experience with
the language and coding environment. Conversely, CT-AE
leverages everyday language to allow students freedom to

construct in a common medium (i.e., words) using logic
based in computer science that provides meaningful struc-
ture to their construction. It is important to consider the
affordances and limitations of the construction medium. If
creating and sharing a public artifact are key to construc-
tionism, some media impact the shareability of the product.
For example, if students are creating a computer program,
they can only share it with others who know the program-
ming language. Using an unplugged approach with everyday
language alleviates these issues and results in a product that
can be publicly shared with everyone.

CT‑AE in Practice

The purpose of this manuscript is to elaborate, describe, and
justify the CT-AE framework and approach. In the following
section, we cite evidence collected across two studies that
support the use of the CT-AE approach. Here, we provide an
example of CT-AE in use through a sample unit that incor-
porated multiple algorithm creation activities to support stu-
dents’ learning about the process of natural selection (Peel
et al., 2021b). To begin the unit, students’ prior knowledge was
assessed with an initial algorithm creation task where students
were prompted to write the steps of natural selection without
any instruction. Next, students were introduced to algorithm
concepts and practices by explaining a familiar, everyday
process––getting ready in the morning (Peel & Friedrichsen,
2018). They wrote process steps and discussed them with
peers. The teacher then led a discussion of algorithm concepts.

Next, students applied algorithm concepts and practices to
make sense of natural selection. Students did a lab investi-
gation of the development of antibiotic resistance in bacte-
ria (Williams et al., 2018) and used their results as evidence
to explain natural selection with an algorithm. Students also
investigated horn size change in a big horned sheep population
(Adapted from Chinn & Duncan, 2014) and flowering time
change in a field mustard population. After each investigation,
students created algorithmic explanations of the process using
their class exploration as evidence to support their explanations
(a sample student algorithm is presented in Fig. 3).

To help students see similarities of the natural selection
process between the three contexts, students were tasked
with creating generalized algorithmic explanations of natural
selection (Fig. 4). Students examined their bacteria, sheep,
and mustard algorithms for similarities and used variables
and methods to replace similarities between contexts to cre-
ate generalized algorithms that could be used to explain
most natural selection scenarios. This process of using
algorithmic explanations of natural selection across contexts
engaged students in CT practices and algorithm concepts
while helping them understand the intricacies of the natural
selection process. See Peel et al. (2021b) for full unit details
and materials.

434 Journal of Science Education and Technology (2022) 31:428–441

1 3

CT‑AE Results

The natural selection implementation described in the pre-
vious section has been successfully implemented in several
secondary biology classrooms (Peel et al., 2019a, b, 2021b).
Empirical investigations of student learning outcomes from
this implementation indicate the CT-AE approach supported
the development of natural selection understandings and CT
competencies. Student learning outcomes from these pub-
lished studies are summarized in the following sections to
provide evidence that supports the CT-AE approach.

Science Learning

The unit described above was implemented and data were
collected from 113 10th grade biology students (Peel
et al., 2019b). Results from this study indicate the CT-AE
approach supported student learning of natural selection.
Science learning was measured via students’ hand-written

algorithmic explanations of natural selection (e.g., Fig. 4).
Students’ pre- and post-unit algorithmic explanations were
analyzed for correct usage of seven natural selection fac-
tors: mutation, favorable trait, initial variation, selective
pressure, differential survival, reproduction, and population
shift. Algorithms were evaluated for the correct sequence of
steps, specifically analyzing if the algorithms contained all
steps and if the steps were in the correct order. Natural selec-
tion misconceptions were identified and categorized in both
pre- and post-unit algorithms.

Each natural selection factor was used significantly
more in post-unit algorithmic explanations compared to
pre-unit algorithmic explanations. The mean natural selec-
tion sequencing score significantly increased from pre- to
post-unit algorithmic explanations with a large effect size.
Needs-based misconceptions (populations change because
they need to survive) and individual change misconcep-
tions (individual organisms change their traits) signifi-
cantly decreased with a large effect size after the unit.
Relationships between natural selection factors and algo-
rithm concepts in students’ post-unit algorithms showed
the synergies between algorithmic explanations and natu-
ral selection. Students used branching to explain differ-
ential survival; iteration to show reproduction repetition
and repetition of the whole natural selection process; and
variables to generalize selection pressure, favorable trait,
population, mutation, and organism. These results indicate
the CT-AE approach used to integrate unplugged CT and
natural selection supported student content learning.

CT Learning

Another empirical investigation from the same implementa-
tion has shown CT learning increases after the CT-AE unit

Fig. 3   Example antibiotic resist-
ance algorithmic explanations

Fig. 4   Example natural selection algorithmic explanation

435Journal of Science Education and Technology (2022) 31:428–441

1 3

(Peel et al., 2019a). This work is an analysis of the six natural
selection algorithmic explanations created before, during,
and after the unit. Algorithm concepts (branching, itera-
tion, method, and variable) were analyzed for explicit use
or implicit use (i.e., algorithm concept was labeled or not
labeled) and single use or multiple use (i.e., one use of the
algorithm concept, vs more than one use of the algorithm
concept). A comparison of pre- to post-unit algorithmic
explanations showed a significant increase in each algorithm
concept with large or moderate effect sizes. This indicates
the CT-AE approach supported the development of CT skills
because students could use more algorithm concepts in their
algorithmic explanations after the unit.

When comparing algorithm concept usage in post-unit
algorithms, variables were used the most, followed by
branching and iteration, and methods were used the least.
This suggests students may have struggled to incorporate
methods more than other algorithm concepts. To examine
trends in the development of students’ conceptions of algo-
rithm concepts over the course of the unit, each algorithm
concept was analyzed within the six algorithms created
during the unit. Each algorithm concept usage increased
from pre-unit algorithms (algorithm 1) to algorithm 2, and
from algorithm 2 to algorithm 5. Scores remained high in
students’ post-unit algorithms (algorithm 6). The steady
increase of algorithm concept usage throughout the unit
indicates students gradually developed CT competencies.
After the CT-AE natural selection unit, students came to
understand CT as a tool used to explain and understand sci-
ence processes. Students were also able to suggest other bio-
logical and everyday processes in which algorithmic expla-
nations could be used. These results indicate the CT-AE
approach supported student development of CT competen-
cies and understandings through the creation of unplugged
algorithmic explanations of natural selection.

Discussion

In an extensive review of unplugged CT literature, Huang
and Looi (2021) call for rigorous empirical investigations of
the benefits of unplugged CT approaches. Specifically, they
propose questions for future research. We believe the CT-AE
instructional approach can directly address these questions.

1.	 What theories effectively describe how unplugged
approaches foster learning CT?

2.	 How do unplugged approaches that separate CT from
coding influence how we define, teach, and measure CT?

3.	 How do we assess CT in unplugged activities without
using code representations?

4.	 How are unplugged activities facilitated, especially in
K–12 classrooms?

5.	 How do we integrate unplugged activities into existing
school subjects? (Huang & Looi, 2021, p. 17)

The unplugged instructional approach described in this
paper is grounded in theory to support student learning of
CT and science content (#1, #5). The approach decouples
CT and programming and provides new avenues for explor-
ing CT integration and assessment (#2). This paper describes
a curricular example of the unplugged approach with student
work, which can inform the approach’s facilitation in the
classroom and the assessment of CT with this approach (#3,
#4, #5).

Potential Outcomes

We propose that the integration of CT-AE in science classes
has several benefits for students and teachers (Table 3). The
following sections describe CT-AE’s potential outcomes
with support from existing literature.

Science Content Knowledge
and Computational Literacy Increases

The process of creating unplugged algorithmic explanations
supports the simultaneous development of science ideas and
algorithmic logic and practices. Our pilot implementation
has shown increases in natural selection conceptions and
CT understanding (Peel et al., 2019a, b, 2021b). While posi-
tive science (Mensan et al., 2020) and CT learning outcomes
(Brackmann et al., 2017; Delal & Oner, 2020; Looi et al.,
2018; Rodriguez et al., 2017; Tsarava et al., 2019) have been
achieved with unplugged approaches, CT-AE supports syn-
ergistic science and CT learning, which has the potential to
contribute to the development of a STEM workforce with
computing competencies.

Table 3   CT-AE potential outcomes

Intervention Potential direct outcomes Potential downstream outcomes

• CT concepts and practices taught through
unplugged algorithmic explanations of
science processes

• CT-AE implemented in core science courses

• Science content knowledge increases
• Computational literacy increases
• All students learn computer science concepts
• Scaffolds other CT practices
• Implementation barrier decreases

• Better programmers
• More people interested in computing and

computing-related classes and careers
• STEM workforce with computing competencies

436 Journal of Science Education and Technology (2022) 31:428–441

1 3

Broadening Computational Participation

The implementation of CT-AE in core science classes also
broadens computational literacy education to include all stu-
dents since only a small percentage of students elect to enroll
in computer science courses (Nager & Atkinson, 2016).
CT-AE is designed to leverage unplugged learning in science
contexts, which can be beneficial for student engagement
and interest in learning with CT, especially for student pop-
ulations that have been historically marginalized. Women
struggle with confidence regarding computers (Beyer et al.,
2003; Bock et al., 2013) and find computer science envi-
ronments “chilly,” which makes them feel like they do not
belong (Master et al., 2016; Walton et al., 2015). Hispanic
and Black students are also underrepresented populations in
computer science and cite lack of experience with comput-
ing and viewing computers as difficult to use and understand
as reasons for not pursuing computer science (Bock et al.,
2013; Buzzetto-More et al., 2010).

In addition to engaging more students in computing
through its integration with science, we argue the unplugged
approach provides an easier and less intimidating entry point
to CT because it leverages students’ everyday language and
makes explicit connections between intuitive thinking and
algorithm concepts. Once the foundation is set, these ideas
can provide an on-ramp to plugged-in CT. Understanding
algorithmic logic before plugging in should help students
feel more comfortable, confident, and prepared to program.
Increased comfort, interest, and engagement in CT lessons
may facilitate long term interest in STEMC careers.

Other studies have shown unplugged and programming-
free approaches support the development of interest and
active engagement in CT in young women and students from
minorities that are typically underrepresented in STEM and
computing careers. Brady et al. (2017) showed that partici-
patory simulations, or unplugged simulations, where stu-
dents act out phenomena following computational rules,
supports young women’s interest and engagement in CT.
Sabitzer and Pasterk (2014) used an unplugged approach
to incorporate CT into science where students showed
increased interest in computer science and knowledge about
informatics. Del Olmo-Muñoz et al. (2020) unplugged vs
plugged comparison study found that girls and boys learned
CT equally well. However, unplugged lessons led to higher
motivation in girls when compared to plugged approaches.

Scaffolds Other CT Practices: Computational
Modeling and Programming

Unplugged approaches can scaffold plugged approaches
and other CT practices described in the CT in science
and mathematics taxonomy: computational modeling,

programming, computational visualizations, computational
data, and computational problem-solving practices (Peel
et al., 2021; Weintrop et al., 2016). We argue that learn-
ing unplugged approaches first helps students understand
CT in deeper ways, which should allow students to apply
CT more successfully in other contexts, including program-
ming. Caeli and Yadav (2020) argue that understanding
algorithms and algorithm design is key to the computational
problem-solving approach, and programming languages can
hinder understanding algorithms and algorithm design due
to complex syntax. To address this challenge, they suggest
that “in order for learners to conceptually understand com-
puter science ideas and practices, we need to add or even
begin with unplugged approaches” (Caeli & Yadav, 2020,
p. 31). CT-AE can build computational modeling practices
(Peel et al., 2021) by scaffolding block-based and text-based
programming, which can both be used to modify and cre-
ate computational models. Thus, CT-AE supports multiple
computational modeling practices: using, modifying, and
creating computational models (Peel et al., 2021). Algorith-
mic explanations can be important steps between concep-
tual models and computational models because they provide
essential scaffolding that connects common language and
computational language.

The CT-AE instructional approach aligns with other
unplugged literature showing that unplugged CT lessons
can support programming skills and learning (Grover et al.,
2019; Hermans & Aivaloglou, 2017). While these articles
used unplugged lessons that supported programming, they
were not situated in science contexts. The clear next step for
unplugged education is to reach a wider range of students,
which can be done by incorporating unplugged CT into core
science courses. However, disconnected and decontextual-
ized unplugged CT approaches will not integrate well into
science courses because they need to be meaningfully inte-
grated with science content. In contrast to decontextualized
unplugged CT approaches, CT-AE is anchored in science
and leverages unplugged CT to support science learning.

Implementation Barrier Decreases

CT-AE has potential to help alleviate many of the barri-
ers to CT and science integration. Just as the programming
threshold has been lowered through block-based program-
ming environments (Repenning et al., 2010), unplugged CT
approaches can continue to lower the threshold and time
commitment while still providing substantive learning expe-
riences. Additionally, leveraging algorithms as a medium for
constructionist learning shifts CT from problem-solving to
sense-making, thus refocusing CT integration on synergistic
science and CT learning.

437Journal of Science Education and Technology (2022) 31:428–441

1 3

Future Work

Empirical investigations of the pilot CT-AE unit show prom-
ising and productive student learning outcomes related to
science content and CT skills. Future analysis will include
investigations of student discourse and interactions during
the generalized natural selection lesson. Data indicated the
natural selection lesson supported student learning of natural
selection and algorithm concepts. As such, understanding
how this lesson engaged students in sense-making may shed
light on how the CT-AE approach impacts students’ under-
standings. Next steps for the CT-AE approach are to inte-
grate unplugged CT with more science processes to broaden
implementation and test the approach’s effectiveness in other
science disciplines taught in K–12 schools. The natural
selection process has key connections to algorithm concepts,
which may have facilitated the integration. For example, dif-
ferential survival is often explained through branching (CT
concept) as follows: if the organism has the favorable trait,
then they are more likely to survive. Other processes with
CT synergies need to be identified and investigated. Another
avenue for integration that needs to be explored is CT-AE
integrations and applications in middle school and elemen-
tary school settings. While the creation of full algorithmic
explanations may be too complex for young learners, aspects
of CT-AE can be leveraged to support science learning and
CT development. For example, branching can be introduced
and used to make sense of cause and effect relationships
in ecosystems, or iteration can be used to support learning
about life cycles, the water cycle, or the carbon cycle. Future
work with CT-AE can be done to expand the approach to
wider grade ranges in order to support systemic development
of CT competencies.

To foster CT integration, the CT-AE approach needs to
be introduced to teachers. Teachers are key actuators of cur-
ricular change, and it will be important to engage them in
designing and implementing CT-AE curricula. Investiga-
tions of teacher practice, comfort, confidence, self-efficacy,
and professional development related to CT-AE will be
important for understanding the effectiveness of the CT-AE
approach in broader contexts. We propose the unplugged
approach helps teachers implement CT integration, but this
needs to be empirically investigated in varying contexts.

We have argued that unplugged CT approaches support
student learning in several ways. First, it helps students make
sense of science content. Second, it supports the develop-
ment of fundamental CT skills. The above sections show
evidence of both learning outcomes. However, the next
key step in CT integration in science is to connect these
fundamental CT skills to computing. It will be important
for students to build on these skills to engage in authen-
tic scientific inquiry CT practices. The connection between

unplugged and plugged approaches has not been empirically
investigated or substantiated (Huang & Looi, 2021). Stud-
ies referenced above show that unplugged lessons support
programming knowledge and student engagement. However,
these studies do not take place in integrated science learn-
ing environments. Future research needs to focus on how
unplugged approaches, such as CT-AE, support and scaffold
engagement in computational scientific inquiry.

Acknowledgements  This work would not be possible without the con-
tributions and support of Kerri Graham, Dr. Andrew Kinslow, Kaitlin
EuDaly, Eric Hayes, and Dr. Michael Horn.

Declarations 

Ethics Approval and Consent to Participate  The work presented in
this paper received approval by the appropriate ethics committee for
research involving humans and informed consent for human partici-
pants was followed.

Conflict of Interest  The authors declare no competing interests.

References

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese,
F., Ackley, K., ... & Cavalieri, R. (2016). Observation of gravi-
tational waves from a binary black hole merger. Physical Review
Letters, 116(6), 061102.

Aljowaed, M., & Alebaikan, R. A. (2018). Training needs for computer
teachers to use and teach computational thinking skills. Interna-
tional Journal for Research in Education, 42(3), 237–284.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J.,
& Zagami, J. (2016). A K-6 computational thinking curriculum
framework: Implications for teacher knowledge. Journal of Edu-
cational Technology & Society, 19(3), 47.

Arastoopour Irgens, G., Dabholkar, S., Bain, C., Woods, P., Hall, K.,
Swanson, H., Honr, M., & Wilensky, U. (2020). Modeling and
measuring high school students’ computational thinking practices
in science. Journal of Science Education and Technology, 29(1),
137–161.

Arnold, C. (2020). How computational immunology changed the face
of COVID-19 vaccine development. Nature Medicine.

Aslan, U., LaGrassa, N., Horn, M., & Wilensky, U. (2020c). Putting the
taxonomy into practice: Investigating students’ learning of chem-
istry with integrated computational thinking activities. Paper pre-
sented at the American Education Research Association (AERA)
2020 Annual Meeting.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., &
Clark, D. (2016). Identifying middle school students’ challenges
in computational thinking-based science learning. Research and
Practice in Technology Enhanced Learning, 11(1), 1–35.

Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender
differences in computer science students. In Proceedings of the
34th SIGCSE technical symposium on Computer Science Educa-
tion (pp. 49–53).

Bock, S. J., Taylor, L. J., Phillips, Z. E., & Sun, W. (2013). Women and
minorities in computer science majors: Results on barriers from
interviews and a survey. Issues in Information Systems, 14(1),
143–152.

438 Journal of Science Education and Technology (2022) 31:428–441

1 3

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt,
K. (2016). Developing computational thinking in compulsory
education-Implications for policy and practice. Joint Research
Centre (Seville site), No. JRC104188.

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León,
J., Casali, A., & Barone, D. (2017, November). Development of
computational thinking skills through unplugged activities in pri-
mary school. In Proceedings of the 12th workshop on primary and
secondary computing education (pp. 65–72).

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilensky,
U. (2017). All roads lead to computing: Making, participatory
simulations, and social computing as pathways to computer sci-
ence. IEEE Transactions on Education, 60(99), 1–8.

Brennan, K., & Resnick, M. (2012). New frameworks for studying
and assessing the development of computational thinking. Paper
presented at the Proceedings of the 2012 annual meeting of the
American Educational Research Association, Vancouver, Canada.

Buckley, B. C., Gobert, J. D., Kindfield, A., Horwitz, P., Tinker, R.,
Gerlits, B., Wilensky, U., Dede, C., & Willett, J. (2004). Model-
based teaching and learning with BioLogica™: What do they
learn? How do they learn? How do we know? Journal of Science
Education and Technology, 13(1), 23–41.

Buzzetto-More, N. A., Ukoha, O., & Rustagi, N. (2010). Unlocking
the barriers to women and minorities in computer science and
information systems studies: Results from a multi-methodolical
study conducted at two minority serving institutions. Journal of
Information Technology Education: Research, 9(1), 115–131.

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to compu-
tational thinking: A historical perspective. TechTrends, 64(1),
29–36.

Chinn, C. & Duncan, R.G. (2014). Promoting Reasoning and con-
ceptual change in science (PRACCIS) curriculum: Evolution.
Retrieved from https://​sites.​google.​com/a/​gse.​rutge​rs.​edu/​pracc​is-
​promo​ting-​reaso​ning-​and-​conce​ptual-​change-​in-​scien​ce/​home

Csizmadia, A., & Boulton, H. (2017). Computational thinking–Back to the
future. Paper presented at the Conference Proceedings. The Future
of Education.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby,
C., & Woollard, J. (2015). Computational thinking-A guide for
teachers. Retrieved from Computing at School website: https://​
commu​nity.​compu​tinga​tscho​ol.​org.​uk/​resou​rces/​2324

Delal, H., & Oner, D. (2020). Developing middle school students’ com-
putational thinking skills using unplugged computing activities.
Informatics in Education, 19(1), 1–13.

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A.
(2020). Computational thinking through unplugged activities in
early years of primary education. Computers & Education, 150,
103832. https://​doi.​org/​10.​1016/j.​compe​du.​2020.​103832

DiSessa, A. A. (2001). Changing minds: Computers, learning, and
literacy. Mit Press.

Event Horizon Telescope Collaboration. (2019). First M87 event hori-
zon telescope results. I. The shadow of the supermassive black
hole. arXiv preprint arXiv:​1906.​11238

Forrester, J. W. (1994). System dynamics, systems thinking, and soft
OR. System Dynamics Review, 10(2–3), 245–256.

Fraillon, J., Schulz, W., Duckworth, D., & Ainley, J. (2018). ICILS
2018 Assessment Framework. Amsterdam: IEA. Manuskript in
Vorbereitung.

Futschek, G. (2006, November). Algorithmic thinking: The key for
understanding computer science. In International conference on
informatics in secondary schools-Evolution and perspectives (pp.
159–168). Springer, Berlin, Heidelberg.

Gallagher, M., Knapp, P., & Noble, G. (1993). Genre in practice. In
B. Cope & M. Kalatzis (Eds.), The power of literacy: A genre
approach to teaching writing (pp. 179–202). University of Pitts-
burgh Press.

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding:
Non-programming interactives to advance learning of introduc-
tory programming concepts in middle school. Computer Science
Education, 29(2–3), 106–135.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A
review of the state of the field. Educational Researcher, 42(1),
38–43.

Harel, I., & Papert, S. (1990). Software design as a learning environ-
ment. Interactive Learning Environments, 1(1), 1–32.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of models
for introducing computational thinking, computer science and
computing in K–12 education.

Hermans, F., & Aivaloglou, E. (2017, November). To scratch or not
to scratch? A controlled experiment comparing plugged first
and unplugged first programming lessons. In Proceedings of
the 12th workshop on primary and secondary computing edu-
cation (pp. 49–56).

Hohlfeld, T. N., Ritzhaupt, A. D., Dawson, K., & Wilson, M. L. (2017).
An examination of seven years of technology integration in Florida
schools: Through the lens of the levels of digital divide in Schools.
Computers & Education, 113, 135–161.

Hsu, T. -C., Chang, S. -C., & Hung, Y. -T. (2018). How to learn and
how to teach computational thinking: Suggestions based on a
review of the literature. Computers & Education, 126, 296–310.

Huang, W., & Looi, C. K. (2021). A critical review of literature on
“unplugged” pedagogies in K-12 computer science and com-
putational thinking education. Computer Science Education,
31(1), 83–111.

Kahn, K. (1999). From prolog to zelda to toontalk. Proceedings of
International Conference on Logic Programming

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for
computational thinking based on a systematic research review.
Baltic Journal of Modern Computing, 4(3), 583.

Kite, V., & Park, S. (2020). Secondary science teachers’ conceptu-
alizations of computational thinking and perceived barriers to
CT/content integration. Prepared for the 2020 annual meeting
of the National Association for Research in Science Teaching
and teacher education (NARST).

Klopfer, E. (2003). Technologies to support the creation of complex
systems models—Using StarLogo software with students. Bio
Systems, 71(1), 111–122.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L.
C., English, L. D., & Duschl, R. A. (2020). On computational
thinking and STEM education. Journal for STEM Education
Research. https://​doi.​org/​10.​1007/​s41979-​020-​00044-w

Locke, D. (1992). Science as writing. Yale University Press.
Lockwood, J., & Mooney, A. (2017). Computational thinking in edu-

cation: Where does it fit? A systematic literary review. arXiv
preprint arXiv:​1703.​07659

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L. (2018).
Analysis of linkages between an unplugged activity and the
development of computational thinking. Computer Science Edu-
cation, 28(3), 255–279.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning
of computational thinking through programming: What is next
for K-12? Computers in Human Behavior, 41, 51–61. https://​
doi.​org/​10.​1016/j.​chb.​2014.​09.​012

Master, A., Cheryan, S., & Meltzoff, A. N. (2016). Computing
whether she belongs: Stereotypes undermine girls’ interest and
sense of belonging in computer science. Journal of Educational
Psychology, 108(3), 424.

Mensan, T., Osman, K., & Majid, N. A. A. (2020). Development
and validation of unplugged activity of computational think-
ing in science module to integrate computational thinking in
primary science education. Science Education International,
31(2), 142–149.

439Journal of Science Education and Technology (2022) 31:428–441

1 3

https://sites.google.com/a/gse.rutgers.edu/praccis-promoting-reasoning-and-conceptual-change-in-science/home
https://sites.google.com/a/gse.rutgers.edu/praccis-promoting-reasoning-and-conceptual-change-in-science/home
https://community.computingatschool.org.uk/resources/2324
https://community.computingatschool.org.uk/resources/2324
https://doi.org/10.1016/j.compedu.2020.103832
http://arXiv.org/abs/1906.11238
https://doi.org/10.1007/s41979-020-00044-w
http://arXiv.org/abs/1703.07659
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012

Nager, A., & Atkinson, R. D. (2016). The case for improving U.S. com-
puter science education (SSRN Scholarly Paper No. ID 3066335).
Rochester, NY: Social Science Research Network. Retrieved from
https://​papers.​ssrn.​com/​abstr​act=​30663​35

National Research Council. (2012). A framework for K-12 science edu-
cation: Practices, crosscutting concepts, and core ideas. National
Academies Press.

NGSS Lead States (2013). Next generation science standards. For
states, by states. Washington, DC: The National Academies Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful
ideas.

Papert, S. (1993). The children’s machine: Rethinking school in the
age of the computer. BasicBooks, 10 East 53rd St., New York,
NY 10022–5299.

Papert, S., & Harel, I. (1991). Situating Constructionism Construction-
ism, 36(2), 1–11.

Peel, A., Dabholkar, S., Anton, G., Wu, S., Wilensky, U., & Horn, M.
(2020). A case study of teacher professional growth through co-
design and implementation of computationally enriched biology
units. In Gresalfi, M. and Horn, I. S. (Eds.), The Interdisciplinar-
ity of the Learning Sciences, 14th International Conference of
the Learning Sciences (ICLS) 2020, Volume 4 (pp. 1950-1957).
Nashville, Tennessee: International Society of the Learning Sci-
ences. https://​repos​itory.​isls.​org//​handle/​1/​6478

Peel, A., Dabholkar, S., Wu, S., Horn, M.S., Wilensky, U. (2021a).
An evolving definition of computational thinking in science and
mathematics classrooms. Proceedings of the 5th APSCE Interna-
tional Computational Thinking and STEM in Education Confer-
ence 2021, (pp. 119-122).

Peel, A., & Friedrichsen, P. (2018). Algorithms, abstractions, and itera-
tions: Teaching computational thinking using protein synthesis
translation. The American Biology Teacher, 80(1), 21-28.

Peel, A., Fulton, J., & Pontelli, E. (2015). DISSECT: An experiment
in infusing computational thinking in a sixth grade classroom.
Paper presented at the Frontiers in Education Conference (FIE),
2015. 32614 2015. IEEE.

Peel, A., Sadler, T. D., & Friedrichsen, P. J. (2019a). Learning Compu-
tational Thinking Through Unplugged Algorithmic Explanations
of Natural Selection. In Developing computational thinking com-
petencies and natural selection understanding through unplugged
algorithmic explanations. [Doctoral Dissertation, University of
Missouri].

Peel, A., Sadler, T. D., & Friedrichsen, P. J. (2019b). Learning Natural
Selection Through Computational Thinking: Unplugged Design
of Algorithmic Explanations. Journal of Research in Science
Teaching.

Peel, A., Sadler, T. D., & Friedrichsen, P. J. (2021b). Using unplugged
computational thinking to scaffold natural selection learning. The
American Biology Teacher, 83(2), 112-117.

Perkins, D. N. (1991). Technology meets constructivism: Do they make
a marriage? Educational Technology, 31(5), 18–23.

Repenning, A., Webb, D., & Ioannidou, A. (2010, March). Scalable
game design and the development of a checklist for getting com-
putational thinking into public schools. In Proceedings of the 41st
ACM technical symposium on Computer science education (pp.
265–269).

Rich, P. J., Larsen, R. A., & Mason, S. L. (2020). Measuring teacher
beliefs about coding and computational thinking. Journal of
Research on Technology in Education, 1–21.

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017, March).
Assessing computational thinking in CS unplugged activities. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 501–506).

Sabitzer, B., & Pasterk, S. (2014). Cool informatics: A new approach to
computer science and cross-curricular learning. Paper presented

at the Proceedings of the European Conference on Technology in
the Classroom 2014, Brighton, United Kingdom.

Sands, P., Yadav, A., & Good, J. (2018). Computational thinking in
K-12: In-service teacher perceptions of computational thinking.
In Computational Thinking in the STEM Disciplines (pp. 151–
164). Springer, Cham.

Schwarz, C. V., Meyer, J., & Sharma, A. (2007). Technology, peda-
gogy, and epistemology: Opportunities and challenges of using
computer modeling and simulation tools in elementary science
methods. Journal of Science Teacher Education, 18(2), 243–269.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D.
(2013). Integrating computational thinking with K-12 science
education using agent-based computation: A theoretical frame-
work. Education and Information Technologies, 18(2), 351–380.
https://​doi.​org/​10.​1007/​s10639-​012-​9240-x

Spohrer, J. C. (1989). Marcel: a generate-test-and-debug (gtd) impasse/
repair model of student programmers.

Tsarava, K., Leifheit, L., Ninaus, M., Román-González, M., Butz,
M. V., Golle, J., Trautwein, U., & Moeller, K. (2019, October).
Cognitive correlates of computational thinking: Evaluation of a
blended unplugged/plugged-in course. In Proceedings of the 14th
Workshop in Primary and Secondary Computing Education (pp.
1–9).

Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M.
P. (2015). Two brief interventions to mitigate a “chilly climate”
transform women’s experience, relationships, and achievement
in engineering. Journal of Educational Psychology, 107(2), 468.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking for
mathematics and science classrooms. Journal of Science Educa-
tion and Technology, 25(1), 127–147.

White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and meta-
cognition: Making science accessible to all students. Cognition
and Instruction, 16(1), 3–118.

Wilensky, U. (1997). NetLogo Wolf Sheep Predation model. http://​ccl.​
north​weste​rn.​edu/​netlo​go/​models/​WolfS​heepP​redat​ion. Center for
Connected Learning and Computer-Based Modeling, Northwest-
ern University, Evanston, IL.

Wilensky, U. (1999). NetLogo. Northwestern University, Evanston, IL:
Center for Connected Learning and Computer-Based Modeling.
http://​ccl.​north​weste​rn.​edu/​netlo​go/

Wilensky, U. (2001) Modeling nature’s emergent patterns with multi-
agent languages. Proceedings of EuroLogo 2001. Linz, Austria

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or
a firefly: Learning biology through constructing and testing com-
putational theories—an embodied modeling approach. Cognition
and Instruction, 24(2), 171–209.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic
systems perspective to making sense of the world. Journal of Sci-
ence Education and Technology, 8(1).

Wilkerson-Jerde, M., Wagh, A., & Wilensky, U. R. I. (2015). Balanc-
ing curricular and pedagogical needs in computational construc-
tion kits: Lessons from the DeltaTick Project. Science Education,
99(3), 465–499.

Williams, M. A., Friedrichsen, P. J., D. Sadler, T., & Brown, P. J.
(2018). Modeling the emergence of antibiotic resistance in bacte-
rial populations. The American Biology Teacher, 80(3), 214-220.

Wing, J. M. (2006). Computational thinking. Communications of the
ACM, 49(3), 33–35.

Wing, J. M. (2011). Computational thinking. In VL/HCC (p. 3).
Wu, L., Looi, C. -K., Liu, L., & How, M. -L. (2018). Understanding

and developing in-service teachers’ perceptions towards teaching
in computational thinking: Two studies. Proceedings of the 26th
International Conference on Computers in Education., Philip-
pines: Asia-Pacific Society for Computers in Education.

440 Journal of Science Education and Technology (2022) 31:428–441

1 3

https://papers.ssrn.com/abstract=3066335
https://repository.isls.org//handle/1/6478
https://doi.org/10.1007/s10639-012-9240-x
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://ccl.northwestern.edu/netlogo/

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher
education. ACM Transactions on Computing Education (TOCE),
14(1), 5.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011,
March). Introducing computational thinking in education courses.
In Proceedings of the 42nd ACM Technical Symposium on Com-
puter Science Education (pp. 465–470). ACM.

Yore, L., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy
component of science literacy: 25 years of language arts and sci-
ence research. International Journal of Science Education, 25(6),
689–725.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

441Journal of Science Education and Technology (2022) 31:428–441

1 3

	Algorithmic Explanations: an Unplugged Instructional Approach to Integrate Science and Computational Thinking
	Abstract
	CT and Science Integration
	CT-AE
	Conceptual and Theoretical Framing
	CT Conceptual Framework
	Theoretical Foundations

	CT-AE in Practice
	CT-AE Results
	Science Learning
	CT Learning

	Discussion
	Potential Outcomes
	Science Content Knowledge and Computational Literacy Increases
	Broadening Computational Participation
	Scaffolds Other CT Practices: Computational Modeling and Programming
	Implementation Barrier Decreases

	Future Work
	Acknowledgements
	References

