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Abstract
Computing has become essential in modern-day problem-solving, making computational literacy necessary for practicing 
scientists and engineers. However, K–12 science education has not reflected this computational shift. Integrating computa-
tional thinking (CT) into core science courses is an avenue that can build computational literacies in all students. Integrating 
CT and science involves using computational tools and methods (including programming) to understand scientific phenomena 
and solve science-based problems. Integrating CT and science is gaining traction, but widespread implementation is still quite 
limited. Several barriers have limited the integration and implementation of CT in K–12 science education. Most teachers 
lack experience with computer science, computing, programming, and CT and therefore are ill-prepared to integrate CT into 
science courses, leading to low self-efficacy and low confidence in integrating CT. This theoretical paper introduces a novel 
instructional approach for integrating disciplinary science education with CT using unplugged (computer-free) activities. 
We have grounded our approach in common computational thinking in STEM frameworks but translate this work into an 
accessible pedagogical strategy. We begin with an overview and critique of current approaches that integrate CT and science. 
Next, we introduce the Computational Thinking through Algorithmic Explanations (CT-AE) instructional approach. We then 
explain how CT-AE is informed by constructionist writing-to-learn science theory. Based on a pilot implementation with 
student learning outcomes, we discuss connections to existing literature and future directions.
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This theoretical paper introduces a novel instructional 
approach for integrating disciplinary science education with 
computational thinking (CT) using unplugged (computer-
free) activities. We have grounded our approach in common 
computational thinking in STEM frameworks (e.g., Weintrop  
et  al., 2016), but translate this work into an accessible 
pedagogical strategy. We begin with an overview and critique 
of current approaches that integrate CT and science. Next, we 
introduce the Computational Thinking through Algorithmic 
Explanations (CT-AE) instructional approach. We then 

explain how CT-AE is informed by constructionist writing-
to-learn science theory. Based on a pilot implementation 
with student learning outcomes, we discuss connections to 
existing literature and future directions.

CT and Science Integration

Computing has become essential in modern-day problem-
solving, making computational literacy necessary for prac-
ticing scientists and engineers (diSessa, 2001). For example, 
the rapid development of COVID-19 vaccines was possible 
due to computational models that read the virus genetic code 
and predicted specific parts of the virus that would be best 
targets for immune response (Arnold, 2020). These targets 
were then used to create and test vaccines, a step that would 
have taken years without computational immunology. Simi-
larly, computation has led to innovations in other STEM 
disciplines, such as the first image of a black hole (Event 
Horizon Telescope Collaboration, 2019) and the detection 
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of gravitational waves (Abbott et al., 2016). However, K–12 
science education has not reflected this computational shift. 
To address this, calls from around the world to integrate 
computing in compulsory schooling have emerged (Bocconi 
et al., 2016; Heintz et al., 2016). While some educational 
systems have begun offering computer science courses, 
these courses are rarely required, resulting in a small num-
ber of students building computational literacy (Bocconi 
et al., 2016; Heintz et al., 2016). Conversely, integrating 
CT into core science courses is an avenue that can build 
computational literacies in all students (Grover & Pea, 2013; 
Wilkerson-Jerde et al., 2015; Wing, 2006). Broadly, CT “is 
the thought processes involved in formulating problems 
and their solutions so that the solutions are represented in a 
form that can be effectively carried out by an information-
processing agent” (Wing, 2011, p. 1). Integrating CT and 
science involves using computational tools and methods 
(including programming) to understand scientific phenom-
ena and solve science-based problems. Integrating CT and 
science is gaining traction, but widespread implementation 
is still quite limited.

In the USA, CT is included in the Next Generation Sci-
ence Standards (NGSS) (NGSS Lead States, 2013), which 
have been adopted in varying forms in 44 states. The NGSS 
includes “using mathematics and computational thinking,” 
as one of eight science and engineering practices that charac-
terize scientific inquiry and promote learning about science 
and how science is conducted (National Research Coun-
cil, 2012). NGSS standards and appendices aim to provide 
teachers with information about science practices; however, 
CT is not well defined and NGSS provides little guidance 
on how to achieve this integration and how to meaningfully 
scaffold its progression across grade bands. The standards 
provide performance expectations that describe what stu-
dents should be able to do, and performance expectations 
containing CT are underrepresented compared to the other 
practices. Although the practice progressions in Appen-
dix F of the NGSS include data analysis with digital tools 
and algorithms in middle school, there are no performance 
expectations that engage students in CT practices, making 
it unlikely that CT will be addressed in middle schools or 
elementary schools. Moreover, because CT is combined with 
mathematics, most of the associated performance expecta-
tions are connected only to mathematics. While NGSS-
aligned teaching and learning has been widely implemented 
with other practices, CT integration has lagged.

To refine the application of computational tools and 
methods for science classrooms, Weintrop et al. (2016) 
defined CT in science and mathematics with a taxonomy of 
practices. This taxonomy is highly cited in the CT and sci-
ence integration literature. The taxonomy presents science 
and mathematics specific CT practices that students should 
be familiar with by the end of their K–12 education. Taxa 

include data practices, modeling and simulation practices, 
computational problem-solving practices, and systems think-
ing practices. While these practices do align with science 
and mathematics learning, they focus on creating and using 
computational tools, resulting in computer- and program-
ming-heavy implementations. For example, the modeling 
and simulation practices prescribe use of computational 
models to understand a concept and find and test solutions, 
and assessing, designing, and constructing computational 
models. This conceptual framing is a key step in supporting 
CT and science integration; however, translating the taxon-
omy practices into classroom instruction remains challeng-
ing because it requires computers and prior CT or computer 
science experience.

Several barriers have limited the integration and imple-
mentation of CT in K–12 science education. Most teachers  
lack experience with computer science, computing, pro-
gramming, and CT and therefore are ill-prepared to inte-
grate CT into science courses (Aljowaed & Alebaikan, 2018;  
Sands et al., 2018; Yadav et al., 2011, 2014; Wu et al., 2018).  
This inexperience leads to low self-efficacy and low confi-
dence among teachers for integrating CT (Aljowaed et al., 
2018; Rich et al., 2020). Many teachers believe CT is the 
use of programming and computing, which leads to discom-
fort with its integration into their science content (Peel et al., 
2020; Yadav et al., 2014). A recent survey of 123 K–12 sci-
ence teachers (Kite & Park, 2020) showed only 24% of the 
surveyed teachers had accurate conceptions of CT as concep-
tualized by Fraillon (2018). Teachers reported the following 
barriers to integrating CT and science: I don’t understand  
CT (35.34%), My students aren’t academically prepared 
for CT-infused lessons (15.26%), I don’t understand how 
CT aligns with my content (14.46%), I don’t have access 
to the necessary technology (11.65%), I don’t have room in 
my curriculum (10.84%), I’m not comfortable with technol-
ogy (5.62%), and Lack of administration support (2.81%). 
These reported barriers indicate that teachers need support 
and resources for CT and science integration that help them 
understand CT, align with their students’ preparation, aligns 
with their content and existing curriculum, and does not 
require technology.

The CT integration approach presented in this paper is 
one possible way to help teachers reduce these barriers. We 
argue the unplugged approach not only eliminates technol-
ogy and teachers’ technological discomfort, but also pro-
vides an entry point for student learning and engagement 
in CT that may better align with students’ academic prepa-
ration. We also argue that implementing the unplugged 
approach is easier for teachers when compared to program-
ming and technology CT activities because teachers do not 
have to learn programming or a new technology. Rather, 
teachers can learn about CT imbedded in their content and 
curricula. As with any innovation for teaching, adopting the 
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approach advocated in this paper will require that teachers 
consider new ideas and integrate new practices within their 
repertoires which will require some additional training and 
access to resources. However, this approach helps to meet 
many science teachers where they are and presents substan-
tially fewer barriers for the integration of CT in their classes.

Most emerging CT integration efforts, including the Weintrop  
et al. (2016) taxonomy, involve the use of computers (Hsu 
et al., 2018; Lockwood & Mooney, 2017). Disparities in 
access to computers among schools with different resources 
hinder the implementation of CT lessons and units. Gaps  
in access to computers and computing resources are still 
widespread in school systems across the US, and while many 
schools have computer labs or laptop carts, most science  
classrooms are still not outfitted with computers for all stu-
dents (Hohlfeld et al., 2017). To reduce the technological 
barrier to CT integration, more approaches should support 
CT engagement without the use of computers.

There is a clear need for instructional approaches and 
examples that integrate CT and science (Li et al., 2020). 
These approaches and examples need to address barriers to 
CT integration. This paper draws on conceptual and theoreti-
cal frameworks to present an instructional approach to inte-
grate unplugged, or computer free, CT and science. We take 
the position that unplugged CT can lessen barriers to CT 
integration and is an easier and more accessible entry point 
for teachers and students who are intimidated by comput-
ing. Moreover, we argue unplugged CT can support science 
learning in new ways. This paper will introduce the instruc-
tional approach and results of an early implementation.

CT‑AE

We propose Computational Thinking through Algorithmic 
Explanations (CT-AE) as an instructional approach that 
engages students in sense-making about science processes 
through the creation of unplugged algorithmic explana-
tions. Teachers can use CT-AE in their classrooms to syn-
ergistically engage students in science and CT as students 
use CT to make sense of and learn complex scientific pro-
cesses. Central to CT-AE is student creation of hand-written 

algorithms, or sequences of steps, that explain a scientific 
process as they investigate and learn about the process. For 
example, students can make sense of protein synthesis by 
creating algorithms that explain transcription, translation, 
and protein folding processes. CT-AE utilizes algorithm 
creation as an explanation of a scientific phenomenon, thus 
shifting CT from technology-dependent applications to sci-
ence learning and sense-making applications. We argue the 
combination of sense-making about science through CT 
makes the integration of CT into science classrooms more 
approachable to teachers.

CT-AE foregrounds two dimensions of CT: algorithm 
concepts and CT practices. This approach allows students 
to learn how to use algorithm concepts and employ CT prac-
tices. Algorithm concepts (Table 1) include branching (i.e., 
if/then/else conditional statements), iteration (i.e., loops 
and repeating steps), methods (i.e., encapsulated sequence 
of steps), and variables (i.e., values that can change). These 
concepts are commonly referenced in CT literature (Peel 
et al., 2015; Peel & Friedrichsen, 2018; Brennan & Resnick, 
2012; Grover et al., 2019; Lye & Koh, 2014). CT practices 
are actions, or things students do during algorithm creation 
and other computational activities, whereas concepts are rep-
resented as written aspects of an algorithm. Figure 1 presents 
an example algorithmic explanation of protein translation.

CT practices are sequencing steps, abstracting infor-
mation, generalizing, recognizing patterns, decomposing 
processes, and evaluating algorithms (Table 2). When stu-
dents create algorithmic explanations, they are engaging 
in CT practices by using algorithm concepts, so correctly 
using algorithm concepts indicates students can engage 
in CT practices. For example, using a branching state-
ment (algorithm concept) involves sequencing events and 
steps (CT practice) based on a specific condition: if the 
condition is true, then something happens, else some-
thing different happens. Using iteration (concept) requires 
evaluating (practice) a sequence of steps, recognizing pat-
terns (practice), and identifying where an algorithm can 
be simplified with a loop (concept). Writing a method 
(concept) to be used in many algorithms requires students 
to decompose (practice) the science process, generalize 
(practice) the steps for use across contexts, and abstract 

Table 1   CT-AE algorithm concepts

Algorithm concept Example

Branching—choosing a path, If/Then/Else conditional statements If organism has the favorable trait, then it is more likely to survive
Iteration—repeating a sequence of steps until a condition is met Repeat the process of natural selection for every new selection pressure
Method—an encapsulated sequence of steps used in multiple processes The process of reproduction is a method that can be called in several 

biological processes
Variable—a value that can change The selection pressure is a variable, and its value is set to the specific 

pressure being explained (e.g., drought, hunting, antibiotics)
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(practice) important information. Using variables (con-
cept) in an algorithm requires students to evaluate (prac-
tice) their algorithm and identify where variables can be 
used to make their algorithm more efficient, or to general-
ize (practice) their algorithm for use in multiple contexts.

The CT literature typically positions the following as 
CT practices: abstraction, generalization, decomposition, 
algorithmic thinking, and debugging (Angeli, et al., 2016; 
Bocconi et al., 2016; Caeli & Yadav, 2020; Csizmadia & 
Boulton, 2017; Csizmadia et al., 2015; Kalelioglu et al., 
2016). We position algorithmic thinking as a higher lever-
age practice than the others listed here because it requires 
students to engage in other CT practices: abstraction, 
generalization, decomposition, evaluation, sequencing, 
and pattern recognition. Using algorithmic design as the 
overarching practice allows students to engage with both 
dimensions of CT-AE at once (Fig. 2). While algorithms 
are typically defined as “a method to solve a problem that 
consists of exactly defined instructions” (Futschek, 2006), 
CT-AE shifts the purpose of algorithms and defines algo-
rithms as explanations of science processes.

In presenting the CT-AE approach, we are not argu-
ing that algorithm creation is the only CT students should 
engage in. Rather, CT-AE provides an approach that focuses 
on one aspect of CT, algorithm practices, as a starting point 
for meaningful integration of CT into science learning 
opportunities. The approach is an easier introduction to CT 
for many science teachers and students, particularly those 
with limited experience and/or access to technology. Fur-
thermore, the approach can provide a foundation for subse-
quent engagement in other CT practices that require tech-
nology such as programming, computational modeling, and 
computational data practices. Framing scientific explana-
tions with algorithm structure and CT practices will require 
new classroom practices and instruction, but we argue this 
approach leverages existing logic and reframes it explicitly 
as computational. For example, people commonly use “if” 
statements in everyday language to make decisions, but 
when students write an algorithmic explanation with if/
then/else statements, the colloquial phrase is reframed as 
computational logic that provides structure (branching) to 
the explanation. We also recognize the approach is best 

Fig. 1   Example of a translation algorithmic explanation

Table 2   CT-AE practices

CT practices Example of connections to algorithm concepts

Sequencing events and steps Process of writing an algorithm; writing a branching statement to sequence events based on a condition
Abstracting information Simplifying information with an iteration or method
Generalizing steps Using variables to make an algorithm useful in multiple contexts
Recognizing patterns Identifying methods that are present in multiple algorithms; identifying similar concepts between algorithms 

that can be assigned as variables; identifying repeating steps where an iteration can be used
Decomposing complex processes Breaking the process into steps of an algorithm and methods that can be written
Evaluating algorithms—efficiency,  

correctness, testing, debugging
Identifying when an iteration, branch, method, or variable can be used to simplify the algorithm or make the 

algorithm clearer and more correct
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Fig. 2   CT-AE instructional approach
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suited for scientific processes and may not be as effective for 
explaining scientific structures, mechanisms, or other states.

Conceptual and Theoretical Framing

Several resources informed development of CT-AE as an 
instructional approach. The following sections describe a 
CT conceptual framework and the theoretical foundations 
that frame CT-AE.

CT Conceptual Framework

A revised version of the CT in science and mathematics 
taxonomy (Weintrop et al., 2016) has been released, and it 
encompasses a wider range of CT in science and mathemat-
ics practices (Peel et al., 2021a). The newer taxonomy is 
divided into six categories of CT in science and mathemat-
ics practices. This revised taxonomy includes new practice 
categories of algorithms, programming, and computational 
visualization in addition to computational modeling and 
simulation, computational data, and computational problem-
solving. CT-AE translates this conceptual CT framework 
into an actionable instructional framework that can be used 
in classrooms without computer access by focusing on algo-
rithm practices as a subset of CT in science and mathematics 
practices. Focusing on one category of CT practices allows 
CT-AE to translate the CT in science and mathematics tax-
onomy into classroom practice, providing an innovative 
approach to CT integration. There are five algorithm sub-
practices in the new taxonomy: (1) using an algorithm to 
solve a problem or understand a phenomenon, (2) selecting 
an appropriate algorithm to solve a problem, (3) assessing 
algorithms, (4) modifying an algorithm to better address 
a problem, and (5) designing and constructing algorithms 
(Peel et al., 2021a).

The CT-AE instructional approach engages students in 
designing and constructing algorithms (#5) as they create 
hand-written algorithmic explanations of science processes. 
Once created, algorithmic explanations can be leveraged to 
engage students in other algorithm practices. Students can 
iteratively revise their algorithms as they engage in class-
room investigations, which allows them to assess (#3) and 
modify algorithms (#4). As students gain more evidence, 
they can assess their algorithms for accuracy and clarity, 
which leads to modifying the algorithm to better explain the 
science process. Similarly, as students become more familiar 
with algorithm concepts, they can assess their algorithms in 
terms of correct and efficient use of algorithm concepts and 
how algorithm concepts can be better used to explain the 
science process. The algorithmic explanations can then be 
utilized to solve problems related to the science process or 
to explain the process in new contexts.

We argue the unplugged creation of algorithms can also 
enhance programming and modeling practices described in 
the revised taxonomy (Peel et al., 2021a). Programming is 
included as one of the practices, and engaging students in 
unplugged CT can support algorithm logic and creation, 
which is essential to programming. If students do not under-
stand the function and importance of algorithm concepts, 
such as loops, variables, conditionals, and procedures, they 
will struggle to program correctly and efficiently. We argue 
that supporting these competencies in students’ common 
language will help them apply algorithm logic and creation 
across programming languages and in their everyday lives. 
Programming practices can then be applied to modify and 
create computational artifacts, which connects to each of the 
remaining taxonomy practices.

CT-AE aligns with computational modeling and simulation 
practices described in the revised taxonomy, specifically 
designing and constructing computational models. Modeling  
is central to scientific inquiry through mental modeling 
and conceptual modeling which provide explanatory and  
predictive power for understanding science phenomena 
and testing hypotheses (National Research Council, 2012). 
Modeling has representational and epistemic affordances, 
which can be leveraged to engage students in sense-making 
about science phenomena (National Research Council, 2012; 
Wilensky & Reisman, 2006). Computational modeling has 
supported science learning and CT learning (Arastoopour 
Irgens et al., 2020; Aslan et al., 2020; Buckley et al., 2004; 
Klopfer, 2003; Schwarz et al., 2007; White & Frederiksen, 
1998; Wilkerson-Jerde e t al., 2015). In addition to using 
models, the modification and creation of scientific models 
support deeper learning of the science phenomenon (Sengupta 
et  al., 2013; Wilensky & Reisman, 2006). However, the 
creation of computational models can be complex and time 
consuming, and many teachers are uncomfortable with and 
unprepared to integrate computational model creation.

We propose that CT-AE can bridge conceptual models 
and computational models by providing an intermediate 
representational and epistemological step between hand-
drawn model explanations and computational models. 
Hand-written algorithmic explanations provide an oppor-
tunity to translate drawn images and mental representations 
into written sequenced steps. The algorithm concepts pro-
vide a structure for writing by supporting the recognition 
of patterns, cause and effect relationships, and sequencing 
of events. Once students and teachers are comfortable with 
unplugged CT, they can use these competencies to scaf-
fold programming and creating computational models in 
varying languages and environments. It is difficult to create 
computational models, even within modeling environments 
designed to support novice programmers, such as NetLogo 
(Wilensky, 1999, 2001). In addition to programming issues 
(e.g., Spohrer, 1989), science phenomena are often complex. 
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For example, to create a computational model of natural 
selection, students must reason about and represent other 
ecological phenomena, such as reproduction, connections 
between multiple organisms and their environment, aging, 
and death (Wilensky & Resnick, 1999). Students often strug-
gle to understand the phenomena leading to challenges in 
attempts to represent them computationally (Forrester, 1994; 
Wilensky, 2001).

For example, students’ challenges with creating and test-
ing computational models have been categorized into four 
categories: domain knowledge challenges, modeling and 
simulation challenges, agent-based thinking challenges, 
and programming challenges (Basu et al., 2016). Students 
struggled with missing and incorrect science conceptions 
about the phenomenon they were modeling. Challenges with 
modeling and simulation included the following: “(1) chal-
lenges in identifying relevant entities and their interactions; 
(2) challenges in choosing correct preconditions; (3) sys-
tematicity challenges; (4) challenges with specifying model 
parameters and component behaviors; and (5) model veri-
fication challenges” (Basu et al., 2016, p19). Students also 
showed issues with agent-based modeling, such as strug-
gling with how to represent individual behaviors and con-
necting individual actions to aggregate trends and behaviors. 
Programming challenges included:

(1) challenges in understanding the semantics of 
domain-specific primitives; (2) challenges in using 
computational primitives like variables, conditionals, 
nesting, and loops to build programs (i.e., behaviors); 
(3) procedurality challenges; (4) modularity chal-
lenges; (5) code reuse challenges; and (6) debugging 
challenges. (Basu et al., 2016, p20)

Without explicitly considering components, interactions, 
sequences, and algorithmic logic, students may struggle to 
create computational models. Thus, engaging in algorithmic 
explanations may help students succeed in computational 
model creation. To scaffold computational modeling prac-
tices with algorithmic explanations, students can begin by 
using a computational model to explore a science process. 
Students then can write an algorithmic explanation of the 
model with the following question: what rules do the indi-
viduals follow as the model runs? Next students can look at 
the model’s code and identify algorithm concepts, such as 
methods and branching. This connection builds on students’ 
understandings of algorithm concepts to help them read and 
understand the model’s code. Reading and understanding 
code can then be expanded into programming and model 
creation. Students can modify pieces of code and see how it 
impacts the model. Students can write new pieces of code 
(e.g., add a variable or branching statement). Modifying 
computational models allows students to better represent the 
science process and their understandings of that process. 

This transition and expansion of CT practices aided by 
algorithmic explanations shift students from consumers of 
computational models to creators of computational models.

For example, if students are learning about predator and 
prey relationships, they can use the “Wolf Sheep Predation” 
NetLogo computational model (Wilensky, 1997). Through 
using the model, students can see how population trends 
are affected by the amount of sheep, wolves, and grass over 
time. Students can write algorithmic explanations (what 
steps the organisms follow when the model runs) for each of 
the organisms in the model: sheep, wolves, and grass. Then 
students can look at the model code and identify algorithm 
concepts, like branching: if a sheep and a wolf are on the 
same square, then the wolf eats the sheep. Students can then 
try changing aspects of the model, like how much the sheep 
and wolves move with every step. They could add code so 
that the wolves move towards a sheep if they see one, rather 
than moving randomly. This is just one example of how 
algorithmic explanations can connect to and scaffold com-
putational modeling practices. We argue the prior knowledge 
of algorithm concepts provides a structure that makes the 
code more readable and understandable to students and can 
scaffold code modification and creation of new code.

Theoretical Foundations

While many have suggested benefits to incorporating 
unplugged CT approaches, little work has been done to 
ground these approaches in learning theories (Huang & 
Looi, 2021). This section will describe the theoretical basis 
for CT-AE: writing-to-learn as a form of constructionism.

Constructionism, like constructivism, involves building 
knowledge through experiences. Students do not absorb 
information told to them but are active constructors of their 
own knowledge as “they make tentative interpretations 
of experiences and go on to elaborate and test those 
predictions” (Perkins, 1991, p. 20). Constructionism adds the 
idea that learning happens best when students create public 
products “that can be shown, discussed, examined, probed, 
and admired” (Papert, 1993, p. 142). As such, learning 
experiences should be designed to engage students in the 
construction of meaning through the creation of artifacts that 
are publicly shareable. Students learn through constructing 
an artifact and from interpreting an artifact (Papert, 1980). 
The co-occurrence and cycling of interpretation and 
representation result in the co-construction of knowledge 
and an artifact. While constructionism has guided many 
computational and programming learning experiences 
(e.g., Harel & Papert, 1990; Kahn, 1999; Papert, 1980; 
Wilensky & Reisman, 2006), pencil-and-paper constructions 
utilize the same learning approach (Papert & Harel, 1991). 
CT-AE follows this logic as students create algorithmic 
explanations, thus engaging in learning-by-making.
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CT-AE focuses the constructionist idea of learning-by-
making by employing writing as the medium for making. 
More specifically, CT-AE leverages algorithm creation 
as a genre of writing. The writing-to-learn science theory 
suggests that science knowledge and understanding is con-
structed through the process of writing (Yore et al., 2003). 
Students use inquiry experiences to collect evidence that 
is used to construct explanations and understandings about 
the science phenomenon. Consistent with constructionist 
theory, language does not only describe “what the scientist 
does but it actually helps determine it. The relationship of 
the scientific paradigm and its language is a reciprocal one: 
language shapes the paradigm, and the paradigm shapes 
the language.” (Locke, 1992, p. 33). Writing-to-learn not 
only supports learning about the science, but it also sup-
ports learning of writing, itself, allowing students to make 
sense of science and to effectively communicate it (Yore 
et al., 2003).

We argue that creating algorithmic explanations is a genre 
of writing and thinking, and it connects to several of the 
writing-to-learn genres. Gallagher et al. (1993) argue that 
writing-to-learn approaches should include several genres 
of writing, including narrative, descriptive, explanation, 
instruction, and argumentation. Algorithmic writing clearly 
connects to the explanation and instruction genres.

Explanation involves sequencing events in cause–
effect relationships. Instruction involves ordering a 
sequence of procedures to specify directions, such as 
a manual, experiment or recipe, and can effectively 
utilize a series of steps in which the sequence is estab-
lished by tested science and safety. (Yore et al., 2003, 
p 700)

Students engage in sequential and cause-effect reasoning 
through writing algorithmic explanations. Unplugged algo-
rithm creation as a form of writing not only allows students 
to find meaning and effectively communicate with other 
people (a publicly shareable artifact), but also supports the 
development of foundational algorithm skills that can be 
applied to computational tools and systems. Just as writing is 
central to learning and engaging in science, CT has become 
central to scientific inquiry. As such, combining writing-to-
learn approaches with algorithmic explanations can support 
constructionist learning of essential science practices and 
ideas.

A key component of constructionism is allowing students 
to make products with varying approaches that match their 
way of thinking and constructing (Papert & Harel, 1991). 
Students are limited with the ideas they can employ within 
programming environments because these environments 
require specific and correct syntax and prior experience with 
the language and coding environment. Conversely, CT-AE 
leverages everyday language to allow students freedom to 

construct in a common medium (i.e., words) using logic 
based in computer science that provides meaningful struc-
ture to their construction. It is important to consider the 
affordances and limitations of the construction medium. If 
creating and sharing a public artifact are key to construc-
tionism, some media impact the shareability of the product. 
For example, if students are creating a computer program, 
they can only share it with others who know the program-
ming language. Using an unplugged approach with everyday 
language alleviates these issues and results in a product that 
can be publicly shared with everyone.

CT‑AE in Practice

The purpose of this manuscript is to elaborate, describe, and 
justify the CT-AE framework and approach. In the following 
section, we cite evidence collected across two studies that 
support the use of the CT-AE approach. Here, we provide an 
example of CT-AE in use through a sample unit that incor-
porated multiple algorithm creation activities to support stu-
dents’ learning about the process of natural selection (Peel 
et al., 2021b). To begin the unit, students’ prior knowledge was 
assessed with an initial algorithm creation task where students 
were prompted to write the steps of natural selection without 
any instruction. Next, students were introduced to algorithm 
concepts and practices by explaining a familiar, everyday 
process––getting ready in the morning (Peel & Friedrichsen, 
2018). They wrote process steps and discussed them with 
peers. The teacher then led a discussion of algorithm concepts.

Next, students applied algorithm concepts and practices to  
make sense of natural selection. Students did a lab investi-
gation of the development of antibiotic resistance in bacte-
ria (Williams et al., 2018) and used their results as evidence 
to explain natural selection with an algorithm. Students also 
investigated horn size change in a big horned sheep population 
(Adapted from Chinn & Duncan, 2014) and flowering time 
change in a field mustard population. After each investigation, 
students created algorithmic explanations of the process using 
their class exploration as evidence to support their explanations 
(a sample student algorithm is presented in Fig. 3).

To help students see similarities of the natural selection 
process between the three contexts, students were tasked 
with creating generalized algorithmic explanations of natural 
selection (Fig. 4). Students examined their bacteria, sheep, 
and mustard algorithms for similarities and used variables 
and methods to replace similarities between contexts to cre-
ate generalized algorithms that could be used to explain 
most natural selection scenarios. This process of using 
algorithmic explanations of natural selection across contexts 
engaged students in CT practices and algorithm concepts 
while helping them understand the intricacies of the natural 
selection process. See Peel et al. (2021b) for full unit details 
and materials.
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CT‑AE Results

The natural selection implementation described in the pre-
vious section has been successfully implemented in several 
secondary biology classrooms (Peel et al., 2019a, b, 2021b). 
Empirical investigations of student learning outcomes from 
this implementation indicate the CT-AE approach supported 
the development of natural selection understandings and CT 
competencies. Student learning outcomes from these pub-
lished studies are summarized in the following sections to 
provide evidence that supports the CT-AE approach.

Science Learning

The unit described above was implemented and data were 
collected from 113 10th grade biology students (Peel 
et al., 2019b). Results from this study indicate the CT-AE 
approach supported student learning of natural selection. 
Science learning was measured via students’ hand-written 

algorithmic explanations of natural selection (e.g., Fig. 4). 
Students’ pre- and post-unit algorithmic explanations were 
analyzed for correct usage of seven natural selection fac-
tors: mutation, favorable trait, initial variation, selective 
pressure, differential survival, reproduction, and population 
shift. Algorithms were evaluated for the correct sequence of 
steps, specifically analyzing if the algorithms contained all 
steps and if the steps were in the correct order. Natural selec-
tion misconceptions were identified and categorized in both  
pre- and post-unit algorithms.

Each natural selection factor was used significantly 
more in post-unit algorithmic explanations compared to 
pre-unit algorithmic explanations. The mean natural selec-
tion sequencing score significantly increased from pre- to 
post-unit algorithmic explanations with a large effect size. 
Needs-based misconceptions (populations change because  
they need to survive) and individual change misconcep-
tions (individual organisms change their traits) signifi-
cantly decreased with a large effect size after the unit.  
Relationships between natural selection factors and algo-
rithm concepts in students’ post-unit algorithms showed 
the synergies between algorithmic explanations and natu-
ral selection. Students used branching to explain differ-
ential survival; iteration to show reproduction repetition  
and repetition of the whole natural selection process; and 
variables to generalize selection pressure, favorable trait, 
population, mutation, and organism. These results indicate 
the CT-AE approach used to integrate unplugged CT and 
natural selection supported student content learning.

CT Learning

Another empirical investigation from the same implementa-
tion has shown CT learning increases after the CT-AE unit  

Fig. 3   Example antibiotic resist-
ance algorithmic explanations

Fig. 4   Example natural selection algorithmic explanation
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(Peel et al., 2019a). This work is an analysis of the six natural  
selection algorithmic explanations created before, during, 
and after the unit. Algorithm concepts (branching, itera-
tion, method, and variable) were analyzed for explicit use 
or implicit use (i.e., algorithm concept was labeled or not 
labeled) and single use or multiple use (i.e., one use of the 
algorithm concept, vs more than one use of the algorithm 
concept). A comparison of pre- to post-unit algorithmic 
explanations showed a significant increase in each algorithm 
concept with large or moderate effect sizes. This indicates 
the CT-AE approach supported the development of CT skills 
because students could use more algorithm concepts in their 
algorithmic explanations after the unit.

When comparing algorithm concept usage in post-unit 
algorithms, variables were used the most, followed by 
branching and iteration, and methods were used the least. 
This suggests students may have struggled to incorporate 
methods more than other algorithm concepts. To examine 
trends in the development of students’ conceptions of algo-
rithm concepts over the course of the unit, each algorithm 
concept was analyzed within the six algorithms created 
during the unit. Each algorithm concept usage increased 
from pre-unit algorithms (algorithm 1) to algorithm 2, and 
from algorithm 2 to algorithm 5. Scores remained high in 
students’ post-unit algorithms (algorithm 6). The steady 
increase of algorithm concept usage throughout the unit 
indicates students gradually developed CT competencies. 
After the CT-AE natural selection unit, students came to 
understand CT as a tool used to explain and understand sci-
ence processes. Students were also able to suggest other bio-
logical and everyday processes in which algorithmic expla-
nations could be used. These results indicate the CT-AE 
approach supported student development of CT competen-
cies and understandings through the creation of unplugged 
algorithmic explanations of natural selection.

Discussion

In an extensive review of unplugged CT literature, Huang 
and Looi (2021) call for rigorous empirical investigations of  
the benefits of unplugged CT approaches. Specifically, they  
propose questions for future research. We believe the CT-AE 
instructional approach can directly address these questions.

1.	 What theories effectively describe how unplugged 
approaches foster learning CT?

2.	 How do unplugged approaches that separate CT from 
coding influence how we define, teach, and measure CT?

3.	 How do we assess CT in unplugged activities without 
using code representations?

4.	 How are unplugged activities facilitated, especially in 
K–12 classrooms?

5.	 How do we integrate unplugged activities into existing 
school subjects? (Huang & Looi, 2021, p. 17)

The unplugged instructional approach described in this 
paper is grounded in theory to support student learning of  
CT and science content (#1, #5). The approach decouples  
CT and programming and provides new avenues for explor-
ing CT integration and assessment (#2). This paper describes  
a curricular example of the unplugged approach with student  
work, which can inform the approach’s facilitation in the 
classroom and the assessment of CT with this approach (#3,  
#4, #5).

Potential Outcomes

We propose that the integration of CT-AE in science classes 
has several benefits for students and teachers (Table 3). The 
following sections describe CT-AE’s potential outcomes 
with support from existing literature.

Science Content Knowledge  
and Computational Literacy Increases

The process of creating unplugged algorithmic explanations 
supports the simultaneous development of science ideas and 
algorithmic logic and practices. Our pilot implementation 
has shown increases in natural selection conceptions and  
CT understanding (Peel et al., 2019a, b, 2021b). While posi-
tive science (Mensan et al., 2020) and CT learning outcomes 
(Brackmann et al., 2017; Delal & Oner, 2020; Looi et al., 
2018; Rodriguez et al., 2017; Tsarava et al., 2019) have been 
achieved with unplugged approaches, CT-AE supports syn-
ergistic science and CT learning, which has the potential to 
contribute to the development of a STEM workforce with 
computing competencies.

Table 3   CT-AE potential outcomes

Intervention Potential direct outcomes Potential downstream outcomes

• CT concepts and practices taught through 
unplugged algorithmic explanations of  
science processes

• CT-AE implemented in core science courses

• Science content knowledge increases
• Computational literacy increases
• All students learn computer science concepts
• Scaffolds other CT practices
• Implementation barrier decreases

• Better programmers
• More people interested in computing and 

computing-related classes and careers
• STEM workforce with computing competencies
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Broadening Computational Participation

The implementation of CT-AE in core science classes also 
broadens computational literacy education to include all stu-
dents since only a small percentage of students elect to enroll 
in computer science courses (Nager & Atkinson, 2016). 
CT-AE is designed to leverage unplugged learning in science 
contexts, which can be beneficial for student engagement 
and interest in learning with CT, especially for student pop-
ulations that have been historically marginalized. Women 
struggle with confidence regarding computers (Beyer et al., 
2003; Bock et al., 2013) and find computer science envi-
ronments “chilly,” which makes them feel like they do not 
belong (Master et al., 2016; Walton et al., 2015). Hispanic 
and Black students are also underrepresented populations in 
computer science and cite lack of experience with comput-
ing and viewing computers as difficult to use and understand 
as reasons for not pursuing computer science (Bock et al., 
2013; Buzzetto-More et al., 2010).

In addition to engaging more students in computing 
through its integration with science, we argue the unplugged 
approach provides an easier and less intimidating entry point 
to CT because it leverages students’ everyday language and 
makes explicit connections between intuitive thinking and 
algorithm concepts. Once the foundation is set, these ideas 
can provide an on-ramp to plugged-in CT. Understanding 
algorithmic logic before plugging in should help students 
feel more comfortable, confident, and prepared to program. 
Increased comfort, interest, and engagement in CT lessons 
may facilitate long term interest in STEMC careers.

Other studies have shown unplugged and programming-
free approaches support the development of interest and 
active engagement in CT in young women and students from 
minorities that are typically underrepresented in STEM and 
computing careers. Brady et al. (2017) showed that partici-
patory simulations, or unplugged simulations, where stu-
dents act out phenomena following computational rules, 
supports young women’s interest and engagement in CT. 
Sabitzer and Pasterk (2014) used an unplugged approach 
to incorporate CT into science where students showed 
increased interest in computer science and knowledge about 
informatics. Del Olmo-Muñoz et al. (2020) unplugged vs 
plugged comparison study found that girls and boys learned 
CT equally well. However, unplugged lessons led to higher 
motivation in girls when compared to plugged approaches.

Scaffolds Other CT Practices: Computational 
Modeling and Programming

Unplugged approaches can scaffold plugged approaches 
and other CT practices described in the CT in science 
and mathematics taxonomy: computational modeling, 

programming, computational visualizations, computational 
data, and computational problem-solving practices (Peel 
et al., 2021; Weintrop et al., 2016). We argue that learn-
ing unplugged approaches first helps students understand 
CT in deeper ways, which should allow students to apply 
CT more successfully in other contexts, including program-
ming. Caeli and Yadav (2020) argue that understanding 
algorithms and algorithm design is key to the computational 
problem-solving approach, and programming languages can 
hinder understanding algorithms and algorithm design due 
to complex syntax. To address this challenge, they suggest 
that “in order for learners to conceptually understand com-
puter science ideas and practices, we need to add or even 
begin with unplugged approaches” (Caeli & Yadav, 2020, 
p. 31). CT-AE can build computational modeling practices 
(Peel et al., 2021) by scaffolding block-based and text-based 
programming, which can both be used to modify and cre-
ate computational models. Thus, CT-AE supports multiple 
computational modeling practices: using, modifying, and 
creating computational models (Peel et al., 2021). Algorith-
mic explanations can be important steps between concep-
tual models and computational models because they provide 
essential scaffolding that connects common language and 
computational language.

The CT-AE instructional approach aligns with other 
unplugged literature showing that unplugged CT lessons 
can support programming skills and learning (Grover et al., 
2019; Hermans & Aivaloglou, 2017). While these articles 
used unplugged lessons that supported programming, they 
were not situated in science contexts. The clear next step for 
unplugged education is to reach a wider range of students, 
which can be done by incorporating unplugged CT into core 
science courses. However, disconnected and decontextual-
ized unplugged CT approaches will not integrate well into 
science courses because they need to be meaningfully inte-
grated with science content. In contrast to decontextualized 
unplugged CT approaches, CT-AE is anchored in science 
and leverages unplugged CT to support science learning.

Implementation Barrier Decreases

CT-AE has potential to help alleviate many of the barri-
ers to CT and science integration. Just as the programming 
threshold has been lowered through block-based program-
ming environments (Repenning et al., 2010), unplugged CT 
approaches can continue to lower the threshold and time 
commitment while still providing substantive learning expe-
riences. Additionally, leveraging algorithms as a medium for 
constructionist learning shifts CT from problem-solving to 
sense-making, thus refocusing CT integration on synergistic 
science and CT learning.
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Future Work

Empirical investigations of the pilot CT-AE unit show prom-
ising and productive student learning outcomes related to 
science content and CT skills. Future analysis will include 
investigations of student discourse and interactions during 
the generalized natural selection lesson. Data indicated the 
natural selection lesson supported student learning of natural 
selection and algorithm concepts. As such, understanding 
how this lesson engaged students in sense-making may shed 
light on how the CT-AE approach impacts students’ under-
standings. Next steps for the CT-AE approach are to inte-
grate unplugged CT with more science processes to broaden 
implementation and test the approach’s effectiveness in other 
science disciplines taught in K–12 schools. The natural 
selection process has key connections to algorithm concepts, 
which may have facilitated the integration. For example, dif-
ferential survival is often explained through branching (CT 
concept) as follows: if the organism has the favorable trait, 
then they are more likely to survive. Other processes with 
CT synergies need to be identified and investigated. Another 
avenue for integration that needs to be explored is CT-AE 
integrations and applications in middle school and elemen-
tary school settings. While the creation of full algorithmic 
explanations may be too complex for young learners, aspects 
of CT-AE can be leveraged to support science learning and 
CT development. For example, branching can be introduced 
and used to make sense of cause and effect relationships 
in ecosystems, or iteration can be used to support learning 
about life cycles, the water cycle, or the carbon cycle. Future 
work with CT-AE can be done to expand the approach to 
wider grade ranges in order to support systemic development 
of CT competencies.

To foster CT integration, the CT-AE approach needs to 
be introduced to teachers. Teachers are key actuators of cur-
ricular change, and it will be important to engage them in 
designing and implementing CT-AE curricula. Investiga-
tions of teacher practice, comfort, confidence, self-efficacy, 
and professional development related to CT-AE will be 
important for understanding the effectiveness of the CT-AE 
approach in broader contexts. We propose the unplugged 
approach helps teachers implement CT integration, but this 
needs to be empirically investigated in varying contexts.

We have argued that unplugged CT approaches support 
student learning in several ways. First, it helps students make 
sense of science content. Second, it supports the develop-
ment of fundamental CT skills. The above sections show 
evidence of both learning outcomes. However, the next 
key step in CT integration in science is to connect these 
fundamental CT skills to computing. It will be important 
for students to build on these skills to engage in authen-
tic scientific inquiry CT practices. The connection between 

unplugged and plugged approaches has not been empirically 
investigated or substantiated (Huang & Looi, 2021). Stud-
ies referenced above show that unplugged lessons support 
programming knowledge and student engagement. However, 
these studies do not take place in integrated science learn-
ing environments. Future research needs to focus on how 
unplugged approaches, such as CT-AE, support and scaffold 
engagement in computational scientific inquiry.
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