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Abstract
We systematically compared two coding approaches to generate training datasets for machine learning (ML): (i) a holistic
approach based on learning progression levels and (ii) a dichotomous, analytic approach of multiple concepts in student
reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for undergraduate
physiology, each targeting five levels of a developing flux learning progression in an ion context. Human-coded datasets were
used to train two ML models: (i) an 8-classification algorithm ensemble implemented in the Constructed Response Classifier
(CRC), and (ii) a single classification algorithm implemented in LightSide Researcher’s Workbench. Human coding agreement
on approximately 700 student responses per item was high for both approaches with Cohen’s kappas ranging from 0.75 to 0.87
on holistic scoring and from 0.78 to 0.89 on analytic composite scoring. ML model performance varied across items and rubric
type. For two items, training sets from both coding approaches produced similarly accurate ML models, with differences in
Cohen’s kappa between machine and human scores of 0.002 and 0.041. For the other items, ML models trained with analytic
coded responses and used for a composite score, achieved better performance as compared to using holistic scores for training,
with increases in Cohen’s kappa of 0.043 and 0.117. These items used amore complex scenario involvingmovement of two ions.
It may be that analytic coding is beneficial to unpacking this additional complexity.

Keywords Automated analysis . Machine learning . Learning progressions . Holistic rubrics . Analytic rubrics . Constructed
response

Machine learning (ML) has potential for influencing educa-
tion and has been increasingly applied specifically to science
assessments (Kotsiantis 2012). Specifically, one promising

aspect of ML is the potential for assessing more complex
constructs that are difficult to capture with more traditional
assessments (Zhai et al. 2020). However, little research has
examined how certain approaches for, or technical features of,
ML influence the success of assessing more complex
constructs.

This study addresses the challenges of applying ML in a
complex, science context to advance automated scoringmodel
performance and automaticity of constructed response (CR)
assessments aligned to a learning progression (LP). In previ-
ous studies, our research group focused on dichotomous ana-
lytic coding approaches of conceptual components within a
student’s response to capture the breadth of ideas in student
writing. LPs, however, are holistic in nature and require an
overall characterization of a response often containing several
conceptual components. This study examines the ML and
rubric scoring approaches best suited to score CR assessment
items aligned to a LP in order to inform future research efforts.
Specifically, we applied both an analytic and holistic coding
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scheme to the same set of undergraduate written CR to deter-
mine whether complex constructs could be represented via
both approaches. Further, we used these responses as training
sets to compare ML models developed with these distinct
coding approaches.

Background

Machine Learning of Constructed Response
Assessments

Developing and employing CR assessments in a classroom
context can provide information to help instructors to make
educational decisions for student learning. This is in part be-
cause CR assessment items, which require students to answer
a question in their own words, allow for a more in-depth
analysis of students’ content understanding, and elicit stu-
dents’ higher order thinking (Allen and Tanner 2006;
Jönsson and Svingby 2007; Montgomery 2002). A common
assessment format used in large enrollment, introductory
Science, Education, Engineering, and Mathematics (STEM)
higher education courses is multiple-choice (fixed response)
(Nicol 2007). Multiple-choice questions are fast, simple, and
easy to evaluate; however, these assessments inform the in-
structor very little about the heterogeneity of students’ think-
ing. More complex scientific practices such as argumentation,
explanation, and integration of core ideas may be difficult to
measure in a multiple-choice assessment (Allen and Tanner
2006; Nehm et al. 2012). However, CR answers can be diffi-
cult to evaluate, interpret, and return feedback in a timely
manner for both instructors and students (Gerard et al.
2019). Over the last few decades, many studies have reported
on the utility of ML in education and assessments as a way of
quickly and accurately evaluating written text (Zhai et al.
2020).

Machine learning is described by Mitchell (1997) as a
“computer program that improves its performance at some
task through experience” (p. 2). “Experience” in this context
refers to information (e.g., labels in a data set, outcomes of
previous trials) available to the machine. ML “programs” are
usually computational methods and algorithms, as opposed to
programmed “if-then” statements in traditional computer pro-
gramming. ML has been used in various text-based applica-
tions, including natural language processing and text analysis
with expert-coded data to predict classifications for new data,
or more specifically to predict scores of student CR. Scoring
in this context does not mean assigning points to a response,
but classifying text responses into groups (e.g., responses
which include scientific ideas about photosynthesis). Recent
work on automated scoring of student responses has focused
on supervised ML approaches, or processes using responses
along with human codes to develop a predictive scoring

model, rather than unsupervised ML, which does not use hu-
man codes as input variables, but rather attempts to identify
patterns in the responses (Kotsiantis 2007). ML approaches
typically include two phases: training and testing.

Typically, in supervised ML, human-labeled data are used
to “train” the machine in order to generate a scoring model
based on a set of attributes extracted from the data. Once the
scoring model is established, it is “tested” by comparing the
consistency of human labels and the machine labels on subsets
of the same (or new) data (Jordan and Mitchell 2015). This is
also the primary measure used to validate the ML scoring
model: how closely the machine-predicted scores match
human-assigned scores (Williamson et al. 2012).

Developing a scoring model for one assessment question
using a training set of data requires an iterative process includ-
ing development, use, and refinement of an expert validated
scoring rubric and expert scores (or codes) (Nehm et al. 2010).
Then, using the predictive models, instructors can submit data
collected from a developed CR item and generate quick for-
mative results of their students’ thinking about the targeted
construct. Thus, these models applied to new data sets can
be used to characterize student thinking or ability to inform
instruction and learning in the classroom.

Various automated scoring tools and approaches have been
developed for evaluation of student CR in science, over a
range of grade levels and topics (Liu et al. 2016; Mitchell
et al. 2002; Mayfield and Penstein-Rose 2010; Nehm and
Haertig 2012; Sieke et al. 2019; Sripathi et al. 2019). For
example, automated scoring systems have been applied to
conceptual assessments aligned with key disciplinary ideas
in undergraduate biology (Nehm et al. 2012; Sieke et al.
2019). These scoring systems identify important conceptual
components in student responses, which then can be used to
classify responses. Other efforts have applied automated scor-
ing systems to assess scientific practices in middle school
science, such as argumentation (Mao et al. 2018; Haudek
et al. 2019). These efforts identified key components of the
practice of argumentation (e.g., claim) via automated scoring.
Such scores were then used as feedback to individual students
to help in revising their arguments (Lee et al. 2019), thereby
demonstrating the potential of automated scoring systems.
Finally, recent efforts have attempted to create automated
scoring systems that align with cognitive models of learning,
such as LPs (Anderson et al. 2018). These cognitive models
represent a complex construct for automated scoring, in that
they attempt to classify student responses into levels based on
the sophistication of the response. For example, Anderson
et al. (2018) and Thomas et al. (2019) used automated scoring
to evaluate student responses on a LP for carbon transforming
processes.

Although these works successfully applied ML to complex
constructs like LPs, there are remaining challenges to unravel
in order to facilitate broader application of ML techniques to
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complex assessment constructs outside the immediate context
of the study. For example, some challenges that occur during
development of ML models for complex constructs include
lexical diversity of student language, synonyms and abbrevi-
ations, infrequent or incorrect ideas, and overlapping quali-
fiers in rubric descriptions (Jescovitch et al. 2019a; Liu et al.
2014, 2016). These challenges are largely dependent on var-
iables such as the content being assessed, the complexity of
the coding rubric applied, and the sample of collected data;
therefore, not all challenges while developing particular
models can be anticipated.

Challenges in Applying Coding Approaches to
Machine Learning

Some previous work in automated scoring has focused on
conceptual (or analytic) scoring of student responses (Liu
et al. 2014; Moharreri et al. 2014; Sieke et al. 2019). These
studies have employed coding schemes to identify the pres-
ence or absence of specific ideas within students’ text re-
sponses. Additionally, we noticed that analytic rubrics reduce
coding complexity for humans, which may expedite MLmod-
el development and improve overall performance (Jescovitch
et al. 2019a, 2019b). Analytic rubrics are defined in this ex-
periment as using multiple bins to capture conceptual compo-
nents, which are not mutually exclusive and are dichotomous-
ly scored (0, 1), where 1 indicates the presence of the given
concept. Each analytic rubric bin is designed to represent a
single concept and each response must be scored for each
analytic rubric bin. Multiple concepts can be present within
the same response, and therefore, the response could be scored
as 1 in multiple analytic rubric bins. Some studies have found
that analytic rubrics are more reliable in that they check key
content components of reasoning and provide specific feed-
back to students (Jönsson and Svingby 2007; Jescovitch et al.
2019b; Yune et al. 2018).

Other previous work has used multi-leveled coding schemes
to try to characterize the quality of complete student responses
(Liu et al. 2016; Mao et al. 2018; Wiley et al. 2017). Such
holistic coding schemes may be developed based on “correct-
ness” of an explanation; however, not all such schemes may be
closely tied to an underlying framework. Such frameworks are
much-needed tools for organizing and executing specific biolo-
gy education research agendas to uncover student thinking and
guide instruction (Nehm2019). One such possible framework to
examine student performance is a LP. A LP describes “succes-
sively more sophisticated ways of reasoning within a content
domain” for students (Smith et al. 2006, p. 1). Therefore, LPs
may represent a unique application of a holistic coding ap-
proach, in that LPs are cognitive models of student learning
and are structured to be an ordered classification of the develop-
ment of student reasoning (Wilson 2009). Accordingly, rubrics
aligned to LPs do not just identify a general measure of quality

or completeness of a response but, instead, they identify specific
developmental levels of reasoning within a content domain
(Smith et al. 2006). Thus, LPs represent a more complex con-
struct than just providing a correct explanation in a given sce-
nario (Zhai et al. n.d.; Gotwals et al. 2012). Accordingly, there
are challenges to be addressed when using automated scoring of
LP associated assessments. One such challenge is whether the
sophistication of reasoning in higher LP levels can be accurately
and reliably identified by ML scoring models. This is particu-
larly true in the case of undergraduate science, in which reason-
ing about phenomena can entail connecting many content
pieces. Another challenge to be investigated is a key question
in the current study: can the complex reasoning in discrete LPs
levels be “unpacked” from holistic rubrics and identified by a
series of analytic, conceptual bins?

Holistic scoring rubrics are generally used with construct
maps in LPs to assign a single score to a student response
based on the type of reasoning used (Wilson 2009). Holistic
rubrics are defined in this experiment as being polytomous
with each scoring-level being mutually exclusive to the others
and which captures a unique and often complex set of re-
sponse characteristics. Capturing complex content interac-
tions is claimed to be easier with holistic rubrics than analytic
rubrics (Tomas et al. 2019). Holistic rubrics provide a com-
prehensive evaluation of a response and are thought of as easy
to use (Jescovitch et al. 2019b; Yune et al. 2018).

A key consideration in the application of either type of
rubric is inter-rater reliability (IRR), or how closely scores
assigned by multiple raters to a single response agree.
Comparisons of studies employing holistic or analytic rubrics
approaches to human coding are summarized by Tomas et al.
(2019) and Brookhart (2018), and find there is little evidence
to support one approach as universally “better” than the other
for human coding. This is an important consideration for de-
veloping MLmodels, as the reliability of human coding in the
training dataset is a key requirement for achieving high
performing scoring models (Liu et al. 2016).

Since there are different approaches to human coding of
student responses, it is no surprise that successful ML classi-
fication models have been developed using either approach.
Previous ML studies have developed models for short,
content-rich responses, using holistic rubrics and multi-level
automated scoring models (Anderson et al. 2018; Prevost
et al. 2016; Thomas et al. 2019). However, other studies have
used analytic rubrics, focused on key conceptual ideas in a
domain, to optimize model performances (Haudek et al.
2012; Moharreri et al. 2014; Sieke et al. 2019). Even though
both types of coding approaches have been successfully
employed to train ML models, little work has been done to
directly compare these approaches for generating ML models
for the same construct.

A recent review has shown that there is a wide variety of
ML algorithms employed in automated scoring of text
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responses (Zhai et al. 2020). Further, the study points out that
technical features of ML are often not reported. One such
technical feature of supervised ML is the general type(s) of
classification algorithm(s), which can be either binary or
multiclass (Bishop 2006). Although there are technical ways
to allow different types of algorithms to function using either
binary or multiclass labels (Hastie et al. 2009), some studies
have looked at the accuracy of the different classification ap-
proaches using the same set of data (Balyan et al. 2018).
However, there has been no work to see if one of these ap-
proaches has advantages for the training set used by ML
models, in the context of science CR assessment. Often, stud-
ies have produced training sets for ML that utilize the human-
assigned score consistent with the assessment rubric type.
This leaves an open question of whether ML algorithms can
be developed to identify the same underlying, complex con-
struct using a coding approach that is different from what was
employed by humans in traditional qualitative work. If so, are
there any advantages to one coding approach over another for
ML model development?

In a key study, Liu et al. (2014) deconstructed a holistic
scoring rubric into a series of conceptual (analytic) rubrics for
middle school science, which were then used to generate a
human-coded data set. These scores for the conceptual rubrics
were subsequently recombined into a holistic score. When
comparing human-computer agreement, they found moderate
to high Cohen’s kappa over several items. However, the results
provided were only at the level of the holistic, not conceptual,
codes which makes understanding the limitations of these ap-
proaches difficult. This represents a remaining challenge in
applying ML in CR assessments: to examine the potential ben-
efits of different coding approaches and whether reliability of
training set data from both these approaches remain high.

Research Questions

We systematically compared two coding approaches to gen-
erate training datasets for ML: (i) a holistic approach based on
LP levels and (ii) a dichotomous, analytic approach of multi-
ple concepts, or bins, of student reasoning. Specifically, we
investigated developing ML models to evaluate student re-
sponses to our LP assessments in an undergraduate STEM
context. Our three questions for this research study are to
determine:

1. What human-human IRR trends can be achieved using
analytic and holistic rubrics?

2. To what extent can we achieve agreement between holis-
tic and composite analytic classifications of student rea-
soning at a large scale?

3. Which coding approach, analytic or holistic, better sup-
ports development of an accurate ML scoring model?

Study Context: Principle-Based Reasoning Using
Learning Progressions as a Complex Construct

Scientific principles represent “rules” or constraints that me-
diate how multiple phenomena occur, such as matter and en-
ergy being conserved during chemical reactions, and are a
hallmark of expert scientific thinking (AAAS 2011; NRC
2012). Consequently, principle-based reasoning supports in-
tellectual coherence across a diversity of physiology concepts
by focusing students’ attention on the deep features and rela-
tionships of systems that have broad explanatory power
(Goldstone and Day 2012). When students attend to these
deep features and relationships, they begin to connect multiple
phenomena that may appear superficially distinct but are fun-
damentally related (Mohan et al. 2009; Chi and VanLehn
2012; Modell 2000). For example, the principle of flux is
ubiquitous across all physiological systems (Modell 2000;
Michael and McFarland 2011). Flux is the rate of movement
of a substance (ions, air, water, glucose, etc.), that is directly
proportional to the magnitude of gradient and inversely pro-
portional to the magnitude of resistance (F = G/R). Flux is
captured in the equations for Ohm’s Law, Fick’s Law of
Diffusion and Poiseuille’s Law.

We have begun development of a flux LP that posits stu-
dents’ principle-based reasoning develops in stages. Our prelim-
inary qualitative analysis of student interviews and written ex-
planatory answers in this domain suggest students first focus on
surface features and irrelevant relationships (i.e., level 1). Then,
they begin to identify some deep features of flux (e.g., for ion
flux concentration gradients, membrane potential, resistance)
and how they relate in a principled way (levels 2 and 3). At
the highest levels (levels 4 and 5), students consistently identify
deep features and how those features relate in principle-based
ways to frame their reasoning about phenomena. From this
work, we see that students’ first challenge in tackling physiology
problems is learning to differentiate between surface features
that are specific to a particular scenario (e.g., comparing irrele-
vant traits among species) with the deep features relevant to the
problem (e.g., comparing pressure gradients among species;
Schwartz and Martin 2004; Doherty et al. 2019; Scott et al.
2019). Once students differentiate surface and deep features
(the transition between Levels 1 and 2), their next set of strug-
gles focus on accounting for all the meaningful ways the deep
features interact (transitions between levels 3, 4 and 5). In flux
problems, this entails accounting for multiple, potentially oppos-
ing gradients (e.g., concentration and electrical gradients, osmot-
ic and pressure gradients) and various forms of resistance (e.g.,
diffusion distance, number of channels on amembrane) depend-
ing on the nature of the problem. Occasionally, holistic rubrics
seem additive in nature (e.g., level 5 represents two ideas from
level 4 used together correctly); however, this is not an essential
feature of the LP only that reasoning at a specific level requires
attending to multiple features.
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Methods

Constructed Response Items

As part of a larger project, we developed a set of assessment
items aligned to a developing flux LP. The set of items
targeted the key principle of flux in various physiological
concepts (e.g., diffusion and bulk flow) and contexts (e.g.,
cardiovascular and respiratory systems). The set of items
was designed to elicit student reasoning across all 5 proposed
LP levels. For this study, we evaluated four CR assessment

items (Fig. 1), each targeting five levels of the flux LP in an
ion context. We enacted several criteria for the selection of the
four items for the study: (1) all items shared the context under
investigation (using flux to explain movement of ions into or
out of cells due to concentration and/or electrical gradients);
(2) we selected two items with a simpler context (movement
of one ion; Nernst potential (NP1) and action potential peak
(APP1)); the other two items had a more difficult context
(movement of two ions; glutamate receptor (GR2) and resting
membrane potential (RMP2)); (3) the cellular contexts were
either generic or familiar to students in undergraduate

Fig. 1 Flux constructed response assessment items: action potential peak (APP1), Nernst potential (NP1), glutamate receptor (GR2), and resting
membrane potential (RMP2)
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physiology courses; and (4) the items had to elicit a wide
range of student reasoning across all five levels of the devel-
oping LP. Each of these items was administered to undergrad-
uate students as online homework or bonus assessments in
physiology courses from several institutions in the USA. In
order to get a variety of student responses, we collected re-
sponses at two public, research intensive universities and two
public, community colleges. A total of ten different courses
administered the items, ranging from introductory to advanced
levels. For one item, NP1, some responses were also collected
as part of another study for which we did not collect informa-
tion about institution type or course. From the collected re-
sponses, we randomly selected 700 responses to each item in
order to have an equal set of responses for rubric development,
coding, and computer model development. This study was
determined to be exempt by the Michigan State University
Institutional Review Board because student data collected
was part of normal educational testing methods and all re-
sponses used in this study were de-identified. Each item was
analyzed with the workflow outlined in Fig. 2 and described in
detail below. RMP2 will be used as the main example for the
rest of the paper to illustrate various patterns in student think-
ing and challenges to the holistic and analytic rubric develop-
ment process.

Rubric Development

Holistic rubrics for each item were already developed as part
of the refinement procedure for the ion flux LP and aligned to

the LP framework (e.g., RMP2 holistic rubric is shown in
Table 1). Each item’s holistic rubric was also deconstructed
into a series of analytic bins. Because holistic rubrics for the
flux LP are not necessarily additive, but also depend on a
students’ conceptual change in thinking, each item’s holistic
rubric underwent a deconstruction process to illustrate discrete
patterns of reasoning.We followed the deconstruction process
outlined in Jescovitch et al. (2019b). In summary, analytic
coding rubrics were developed by careful parsing of the ho-
listic rubric definitions into smaller, conceptual “pieces” by
two experts in automated scoring and/or physiology. Each
analytic bin was intended to capture a single, key concept in
student responses that was relevant to the item context.
Experts also proposed Boolean logic operators to recombine,
or reconstruct, the analytic bins back into a single composite
score, matching the student reasoning captured by the holistic
rubric aligned with the flux LP. An example of RMP2 decon-
struction with the alignment between holistic and analytic
codes is illustrated in Table 2. For example, a student response
that was coded in both analytic bins “It will become more
positive than -70 mV” and “Electrical gradient is stronger than
concentration gradient” would be assigned the composite
score of level 5, since these concepts aligned with reasoning
classified in the indicator 5.2 in the holistic rubric.

Thus, two rubrics per item (one holistic and one analytic)were
developed for a total of eight rubrics. NP1 was the exception to
this process, as this item already had a developed analytic rubric
from previous work. Once the analytic rubrics were agreed upon
by two experts, the rubrics were moved to human coding.

Fig. 2 Workflow of rubric
experiment: student responses to
a flux constructed response
assessment item were used
to develop a holistic rubric, the
holistic rubric was deconstructed
into an analytic rubric and
realigned to holistic rubric, both
rubrics trained machine learning
models, and then analytic codes
were reconstructed into
composite analytic codes for
model comparisons
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Human Coding

Student responses were coded by two independent, expert
coders using both holistic and analytic rubrics, after training
on the rubrics. Briefly, coders were trained with a set of 100
responses for calibration. We used Cohen’s kappa (κ) as a
measure of IRR (Cohen 1960) and set a threshold of κ ≥ 0.8
for calibration between human-human (HH) coders, as this
represents strong agreement between scorers (McHugh
2012). If κ < 0.8 for any analytic bin or holistic rubric, discus-
sion occurred to achieve consensus and refine rubrics. This
training process of independent coding and discussion contin-
ued using additional subsets of 50 responses until κ ≥ 0.8. In a
few cases, where κ < 0.8 after multiple training rounds, we
used 0.6 as a threshold. If a bin did not meet a κ ≥ 0.6, then
this bin was consensus-scored and noted as difficult to code.
Frequently, these rubric bins did not have enough positive
cases for coders to readily identify those concepts in agree-
ment. Between rounds of coding, we revised the rubrics as
possible to clarify coding criteria; however, since the rubrics
were aligned to the developing LP, any revisions still needed
to align with the underlying framework. Once calibrated,
coders would move to full, independent coding until a total
of 700 responses were coded. A third coder, involved in rubric
development, was used to reconcile any responses with dis-
crepant scores in the full coded data set. These final scores
were used for the ML training set.

To reduce potential coder bias (Bierema et al. 2020), coders
scored a subset of collected student responses (n = 700 per
rubric; two rubrics per item) by alternating full coding be-
tween holistic and analytic rubrics, and by items (ESM 1).
Responses for the same item were also randomized to appear
in different order between rubrics.

Machine Learning Model Development

Once consensus coding was completed, the data were used
to supervise training of ML models. Because previous re-
search shows success in both holistic and analytic coding
with different ML algorithms (Prevost et al. 2016; Thomas
et al. 2019), we used the human coded data to train two ML
models: (i) an 8-classification algorithm ensemble imple-
mented in R, or the Constructed Response Classifier
(CRC) (Jurka et al. 2012; Sieke et al. 2019), and (ii) a single
classification algorithm implemented in LightSide
Researcher’s Workbench (Carnegie Mellon University’s
Language Technologies Institute; http://ankara.lti.cs.cmu.
edu/side/). We choose these two ML platforms to test
because they both rely on open-source code and thereby
are potentially usable or adaptable for any researcher.
Secondly, both these platforms have been successfully used
to develop ML models to classify undergraduate CR in
biology domains previously (see Sieke et al. 2019;

Moharreri et al. 2014). During analysis for one item
(APP1), we noticed duplication of some responses in the
coded dataset and removed these responses to keep only
unique student responses (n = 669) for model training.

CRC treats the task of assigning scores to student writing
as a ML text classification problem (Aggarwal and Zhai
2012). Each individual student response is treated as a doc-
ument and the bins in the scoring rubric are treated as clas-
ses. Text features of each document are extracted as n-
grams and used as input variables in classification algo-
rithms. Expert-assigned codes (i.e., labels) to each response
are used as the target variable to train the classification
algorithms. CRC then generates predictions on whether
each given document is a member of each class. The eight
algorithms used include support vector machines (Hearst
et al. 1998), supervised latent dirichlet allocation (Blei
and McAuliffe 2007), logitboost (Friedman et al. 2000),
classification trees (Breiman et al. 1984), bagging classifi-
cation trees (Hothorn and Lausen 2005), random forests
(Breiman 2001), penalized generalized linear models
(Friedman et al. 2010), and maximum entropy models
(Kazama and Tsujii 2005). Algorithms vote independently
on the categorization, or code, but those individual votes
are combined to make a final categorization prediction. The
predictions are combined using a stacking scheme that in-
cludes categorization designation based on highest aggre-
gate voting, votes weighted by prediction probability, and
votes weighted on algorithm performance. Thus, the pre-
dictions of the set of individual algorithms are then com-
bined to produce a single class membership prediction for
each student response and rubric bin (Large et al. 2019).

LightSide Researcher’s Workbench was used to extract
feature information at the holistic LP sub-level. The following
individual algorithms were used in an initial round of testing:
logistic regression: L2 regularization (ridge regression), L2
logistic regularization (dual), and decision tree modeling.
One best performing algorithm from the initial testing was
used for round iteration and modeling improvement. Both
CRC and LightSide ML models used a 10-fold cross valida-
tion process for model validation (Sieke et al. 2019).

We calculated model performance metrics between human
and computer predicted codes within the training set and used
κ as a primary metric for evaluation. If κ ≥ 0.8 for human-
computer (HC) agreement, the ML model was determined as
“matured” and no additional steps were taken. If HC κ < 0.8,
then we explored issues in model performance to improve the
model. We continued revisions until the model had either
achieved κ ≥ 0.8 or we completed five rounds of model revi-
sion. The number of rounds of revisions were dictated based
on exploratory findings.

The most common activities in model revision included,
but were not limited to using software for feature selection in
models, applying different preprocessing rules to the training
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set (e.g., synonyms), using different ensembling methods,
finding patterns in discrepancies, scoring additional data (by
initial coders) to append to the training set, creating dummy
responses, and using software tools to identify important lin-
guistic features in responses.

Comparison of Holistic and Analytic Approaches

Both holistic and composite analytic scores are reported using
5-level LP designations. Because analytic codes are binary,
these codes had to be combined using the validated Boolean

Table 1 RMP2 holistic rubric indicators and exemplars across 5 learning progression levels

Learning
progression
level

Indicator Exemplars

5 1. Explain that membrane potential will reflect EK, which is now
− 29/more positive/in between EK and ENa, BECAUSE there are
more K channels [than Na] OR RMP is between EK and ENa

2. Explain that the concentration driving force out for K is reduced
and the electrical driving force in for K+ is unchanged (at first) so
the net driving force for K+ is into the cell causing the membrane
potential will be more positive or closer to new EK.

5.1) It will bemore positive than − 70 mV. / Because there are many
more K+ channels, they have a larger influence in setting the
membrane potential, which in a normal neuron is close to
− 70 mV because of its proximity to the K+ equilibrium potential
of − 91 mV. Under the new circumstances, the K+ equilibrium
potential is − 29 mV; thus, resting potential will be more positive
than − 70 mV.

5.2) As the [Na+] is not changed, Na+ would not cause any change
in membrane potential. An increased [K+] on the outside means a
slightly decreased concentration drive for K+ to move to the
outside, and as the electric drive of K+ does not change, it makes
sense for the neuron to be slightly more positive.

4 1. Explain that membrane potential will reflect EK, which is now
− 29/more positive/less negative/in between EK and ENa OR
Explain a weaker electrical gradient will be created due to a
weaker concentration gradient as the cell goes to equilibrium (use
definition of equilibrium potential)

4.1) It will be more positive than − 70 mV. / EK+ for the cell on the
right is − 29 mV, which is more positive than − 70 mV (RMP),
so the new RMP will be more positive than − 70.

3 1. Use Ek or the definition of equilibrium potential but make
mistakes in reasoning, not Ek calculation mistakes (e.g., EK is
more positive causing K to move into the cell and make
membrane potential more negative, EK is positive making the
membrane potential positive)

2. Explain that the membrane potential will become more positive
because the lower concentration gradient reduces the driving
force out on K OR the rate of K flowing out (without discussion
of electrical gradient or EK)

3.1) It will be more positive than − 70 mV. / Less K+ will need to
exit the cell to reach equilibrium. When you calculate the equi-
librium for K+ using the nernst equation, Ek+ calculates to be
positive. Since the ENa+ is also positive, the resting potential of
the cell will be more positive.

3.2) It will be more positive than − 70 mV. / With a higher con-
centration of potassium on the outside of the cell, there is less
driving force for potassium to leave, hence a weaker gradient.
With less potassium leaving, this will result in a more positive
membrane potential since potassium has a positive charge.

2 1. Explain that the higher external K+ concentration will result in
K+ moving into the cell, making the membrane potential more
positive

2. Explain that outside the cell is more positive which directly
impacts the charge difference across the membrane so membrane
potential must be more negative/positive

3. Attempt to relate ion movement with membrane potential but
make mistakes:

i) K+ will flow in so the MP becomes more negative
ii) K+ and Na+ have equal flow so no MP change
iii) Still a concentration gradient so K+ leaves and MP becomes

more negative
4. Explain the RMP will stay the same because still concentration

gradients acting on K+ and Na+ in a similar way as before so no
MP change OR the number of channels has not changed

2.1) It will be more positive than − 70 mV. / A higher concentration
of K+ outside the cell will lead to more ions entering the cell so
the membrane potential will increase.

2.2) It will be more negative than − 70 mV. / Since there is a higher
concentration of K+ outside of the cell the electric potential dif-
ference is greater causing a more negative resting membrane
potential.

2.3) It will be more negative than − 70 mV. / The concentration
gradient will cause K+ ions to leave the neuron and since K+ is
positive, the neuron will have less positive ions and become more
negative.

2.4) It will stay the same at − 70 mV. / The RMP is regulated by the
proportion of open K+ channels to open Na+ channels. Since the
number of channels did not change, the RMP should stay the
same.

1 1. Explain that RMP will stay the same because it is a set point OR
that ions will move to achieve equilibrium OR make a general or
irrelevant statement about the system or describe an irrelevant
(e.g., cell “wants”) OR incorrect (K+ moves from low to high
gradient) process.

1.1) It will stay the same at − 70 mV. / I do not you can change the
resting membrane potential, I think it is constant in every system.

1.1) It will stay the same at − 70 mV. / If the outside of the cell is
more positive, then the K+ ions will diffuse in order to create an
electric equilibrium and nothing will change

Each rubric had 5 levels, each level representing a major pattern of student reasoning. Each learning progression level was further divided into sublevels
called indicators. Indicators represented common ways students reasoned in a particular level. Coders could use indicators to help during coding,
although all results reported here are at the higher 5-level classification. Exemplars are actual student responses coded for each indicator
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logic into the 5-level LP designations, which we refer to as the
composite analytic score, in order to compare holistic scores
generated via holistic and analytic coding. To check alignment
of the two different coding rubrics for each item, the HH
holistic codes and HH composite analytic codes for each re-
sponse were compared for validation and Cohen’s kappa was
calculated. If the overall alignment showed κ < 0.8, discrep-
ancies between human-assigned codes in the two approaches
were evaluated for human mis-scores, acceptable changes to
Boolean logic in the composite score or definitions for either
rubric in order to achieve κ ≥ 0.8. To evaluate our research
questions 1 and 3, we examined IRR among coders (both HH
and HC IRR) on both analytic and holistic rubrics. We then
examined HH and HC agreement and trends per item and
across items. For our research question 2, we report on
Boolean logic, validation, the number of discrepancies during
HH analytic and HH holistic alignments, an explanation of
those discrepancies, and the amount of time during each phase
of coding and rounds of deconstruction.

Results

Human coding agreement and ML model performance results
varied across items and rubric type. We report on human cod-
ing, holistic and composite analytic alignment, and ML per-
formance and then summarize our findings. All results are
reported as a 5-level LP code unless otherwise noted.

Human-Human Inter-rater Reliability

Our first research question was to determine what HH IRR
trends can be achieved using analytic and holistic rubrics. All
items elicited acceptable HH IRRs, as measured by Cohen’s
kappa (κ), but these trends varied across assessment items and
rubric approach (Table 3). Higher IRR between human coders
was achieved using the holistic rubric than for the correspond-
ing composite analytic code for APP1 and GR2. However,
higher HH IRR was achieved using an analytic approach to
calculate a composite holistic value for NP1 and RMP2. The
distribution of responses in each LP level for RMP2, as deter-
mined by human-human codes, is supplied in ESM 2.

Our second research question was to determine if student
reasoning identified in holistic rubrics could be reliably iden-
tified and computed from analytic rubrics with high agreement
at a large scale across contexts. We extended our previous
research methods (Jescovitch et al. 2019b) to monitor agree-
ment between holistic and composite analytic codes using
Cohen’s kappa to four CR items. We achieved near-perfect
agreement between codes assigned in both approaches for all
four items, after rubric and/or Boolean logic revision (see last
column of Table 3). During revision, we often found that one
or two analytic bins had to be broadened to focus more on a

concept than a “keyword” (also see below). These results
allowed us to conclude that human codes assigned to the
ML training set were reliable and that both approaches were
aligned to the construct under investigation, or LP framework.

Analytic Human-Human Inter-rater Reliability
Unpacked

To continue our investigation into research question 2, we
wanted to investigate if coders achieved similar levels of
IRR for all concepts. Therefore, we evaluated each item’s
analytic rubrics in terms of number of analytic bins, mean
and individual bins’ HH Cohen’s kappa (with standard error),
and the number of positive cases (n) that humans agreed are
present in that bin when humans coded independently
(Table 4). The number of analytic bins necessary to capture
the reasoning in the four items ranged from 8 to 16 bins.
Unsurprisingly, the items that were in a context of 2 ions
moving required more analytic bins than the items focused
on 1 ion moving.

Mean κ for HH IRR of each item’s bins was generally
strong, with APP1 being slightly below our target threshold.
However, the range of κ varied greatly across the bins within
an item. Each item had at least one analytic bin that did not
meet our target of κ ≥ 0.8.

One of the issues we encountered with analytic coding was
coders adopting too narrow a definition for a given analytic
bin; this was rarely observed in holistic coding. For example,
in RMP2, bin 5, coders achieved very good agreement κ =
0.77 with 131 positive cases (i.e., ~ 19% of the data set).
However, during revision and alignment of rubrics, it became
apparent the scorers had coded for the exact bin concept “K+
moves because of a concentration gradient” but not the con-
cept of “higher external K+ concentration will result in K+
moving into the cell,” which was also included in the holistic
rubric and coding. Thus, coders were narrowing in on the
specific language rather than identifying the underlying
concept.

Human-Computer Inter-rater Reliability

Having established the reliability of the human codes assigned
by both holistic and analytic approaches in our training set, we
used these data to develop ML models to investigate our third
research question. We found minimal difference between the
two ML approaches (LightSide and CRC) we employed
across the four items (Table 5).

Overall, we were able to generate ML models using CRC
with acceptable levels of performance using either holistic or
composite analytic approaches (Table 6). Kappas for models
trained with holistic coded data (HC IRR) range from 0.603 to
0.696 and κ for composite analytic models (HC IRR) range
from 0.649 to 0.737. All models achieved greater than 70%
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accuracy, with the best performing model over 80% accurate.
Each item’s HC IRR matrices for both approaches are provid-
ed in ESM 3.

Examining the confusion matrices shows the CRC model
performance was less accurate on levels with fewer number of
responses, for example, level 5 on APP1 and NP1 (panels A
and B; ESM 3). For all 4 items, model accuracy was slightly
lower for one of the higher levels (4 or 5) in the LP, suggesting
that more complex reasoning in these levels may be more
difficult for ML to detect in our training set.We note for levels
that had lower accuracy due to one of the issues above that
models using the composite analytic scores were generally
slightly better at predicting responses at these levels than
models trained using the holistic scores (e.g., level 4, panel
C; ESM 3).

Similarly, we were able to use LightSide to produce ML
models with mostly acceptable model performance. Kappas
for models trained with holistic coded data (HC IRR) range
from 0.586 to 0.693 and κ for composite analytic models (HC
IRR) range from 0.664 to 0.685. All models achieved greater
than 69% accuracy. We note that two of the LightSide devel-
oped models did not perform quite as well as CRC using the
composite analytic scores. Further, one holistic model with
LightSide had a Cohen’s kappa < 0.6, although this item,
GR2, had the lowest performing models regardless of coding
or ML approach. This suggests that the student reasoning
elicited by this item is difficult to capture by ML techniques.
To simplify the rest of the results, we will focus on reporting
outcomes from using CRC for building ML models.

To examine whether a given coding approach led to better
performing ML models, we examined performance for each
approach on each of four items. There was substantial im-
provement in analytic composite scores for GR2 and RMP2
compared to the holistic models for these items using CRC
(Table 6). Models for NP1 had only very slight differences in
κ and accuracy between approaches; while models for APP1
showed some small gain in performance using the analytic
composite score, i t is within one standard error.
Interestingly, GR2 had better agreement between human
coders (HH IRR; Table 3) holistically, but the HC IRR shows
better agreement via the composite analytic model approach
(Table 6). RMP2 has substantially better agreement for HH
and HC analytic rubrics as compared to holistic codes.
Overall, HH IRR across items was higher than the HC IRR
for the same items, regardless of coding approach. This is
typical for supervised ML approaches as the accuracy of the
HH IRR sets an upper limit for the ML based on those data.

To further investigate the performances of the ML models,
we leveraged the ordinal nature of the LP levels to calculate
quadratic weighted kappas (QWK), which is one way to ac-
count for the distance between levels of mis-scores (Fleiss and
Cohen 1973). The QWKs were calculated for HC agreement
on each item and coding approach using CRC; these metrics
were greater than their unweighted κ counterparts.
Williamson et al. (2012) suggested a minimum threshold for
QWK of 0.7 for evaluating automated scoring performance.
All four of the models built using analytic composite scores
exceeded this threshold, while two of the models using

Table 3 Human-human inter-
rater reliability (κ ± standard er-
ror) across the 5-level flux learn-
ing progression

Item Holistic Composite analytic Human holistic-human composite analytic

APP1 0.872 ± 0.015 0.844 ± 0.016 0.964 ± 0.008

NP1 0.812 ± 0.018 0.892 ± 0.014 0.862 ± 0.016

GR2 0.847 ± 0.016 0.780 ± 0.018 0.910 ± 0.013

RMP2 0.758 ± 0.019 0.880 ± 0.014 0.817 ± 0.017

Table 4 Analytic human-human inter-rater reliability (κ) and positive cases (n) of a response by analytic bin

Item Number of
analytic bins

Analytic bin
mean ± SD

Analytic bins

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

APP1
(n = 700)

8 0.763 ± 0.196 κ 0.50 0.48 0.97 0.86 0.65 0.94 0.79 0.92

n 25 82 151 334 60 223 24 88

NP1
(n = 700)

9 0.883 ± 0.092 κ 0.70 0.87 0.92 0.77 0.92 0.91 0.95 0.94 0.98

n 9 38 82 157 37 511 169 388 98

GR2
(n = 700)

13 0.857 ± 0.099 κ 0.59 0.83 0.81 0.86 0.88 0.80 0.80 0.91 0.88 0.90 0.95 0.95 0.97

n 25 346 159 59 77 203 111 96 62 146 118 354 226

RMP2
(n = 700)

16 0.856 ± 0.085 κ 0.75 0.71 0.75 0.86 0.77 0.80 0.88 0.86 0.80 0.87 0.89 0.96 0.94 0.95 0.97 0.96

n 4 7 35 4 131 79 213 98 6 35 32 309 180 30 106 537
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holistic scores exceeded this target. The two models that do
not meet this target are for items in the more complex scenario
of two ion species moving. We also calculated the QWK for
HH IRRs for each item for each coding method (ESM 4). The
degradation of means between QWK for HH and HC holistic
scores ranged from − 0.120 to − 0.197 with an average of −
0.145 while the degradation between QWK for HH and HC
for the composite analytic scores ranged from − 0.088 to −
0.164 with an average of − 0.118. Although the degradation
for a number of models was above the suggested threshold
(Williamson et al. 2012), we note that the HH IRR as mea-
sured by QWKs for both codingmethods were extremely high
(0.818–0.920). Therefore, the observed degradation may be
due to robust human agreement during scoring as opposed to
poor model performance, as nearly all models met the mini-
mum QWK threshold. The most interesting finding is that
while NP1 was the only item to have a larger degradation
(− 0.164) for composite analytic than holistic, the QWK for
the final HC model performed slightly better as the composite
analytic than the holistic counterpart.

Analytic Human-Computer Inter-rater Reliability
Unpacked

To continue our investigation into research question 3, we
unpacked the analytic rubrics to determine if critical compo-
nents of student reasoning were being predicted accurately by
the ML models. We examined each item’s individual analytic
bins by calculating mean HC κ (with standard error) across all
bins, HC κ for each individual bin, number of positive cases (n)

that the computer predicted correctly, and precision (percentage
of true predicted positives out of all predicted positive) of cases
in that bin (Table 7). Higher precision values indicate that the
model is good at detecting only true positive cases without
identifying false positive cases. Overall, analytic mean κs were
lower and more variable than composite analytic κ (range
0.574–0.726). However, these average measures include bins
that the model was completely unable to predict, or κ = 0. For
example, RMP2 had four bins with κ = 0, and if these were
removed, the mean would increase from 0.574 to 0.766.

Models for analytic bins trained with low frequency posi-
tive cases but with less lexical diversity, or fewer unique
words used, performed better than models trained with higher
frequency positive cases but exhibiting very diverse language.
Tomas et al. (2019) identified CR assessments as divergent, or
exhibiting rich lexical diversity, in that criteria can be met by a
broad range of words and phrases within student individual
responses. For example, in RMP2, bin 11, or “there are more
K+ channels (than Na+ channels),” predicted 21 positive
cases (human identified 32 positive cases) with a HC κ =
0.79. However, bin 6, or “increased concentration/amount/
positives outside the cell changes the charge difference,” pre-
dicted 89 positive cases (humans identified 79 positive cases)
but only achieved a HC κ = 0.52. Thus, even though bin 6 had
more positive examples, this bin also had more lexical diver-
sity than bin 11 because of the increased ways that students
can write about that concept. Specifically, students in bin 11
reasoned fairly consistently with “more K+ channels”
appearing in their response. For example, a student wrote,
“Plugging it into the nernst equation with the new outside
K+ concentration, the Ek is -29. And since there are many
more K+ channels open, the RMP will be more closer to Ek,
so RMP should be more positive.”

However, student responses classified in bin 6 varied greatly
in language, using terms such as “amount,” “concentration,” or
“positives” as these words would indicate the same conceptual
idea in this context (i.e., more of a positively charged ion). For
example, one student wrote, “the resting membrane potential
will become more negative, because the charges on the outside
of the cell are now more positive than the charges in the inside
of the cell.” While another student wrote, “If the extracellular
K+ concentration increases, then the concentration gradient of
K+ across the membrane decreases, so there is less of a

Table 5 Mean human-computer
inter-rater reliability and standard
errors, represented by holistic
learning progression levels 1–5
matrices, compared by ML tool

Holistic (Cohen’s kappa) Composite analytic (Cohen’s kappa)

Item CRC LightSide CRC LightSide

APP1 0.696 ± 0.022 0.693 ± 0.019 0.737 ± 0.021 0.685 ± 0.022

NP1 0.656 ± 0.023 0.681 ± 0.022 0.658 ± 0.023 0.664 ± 0.022

GR2 0.606 ± 0.023 0.586 ± 0.023 0.649 ± 0.023 0.667 ± 0.021

RMP2 0.603 ± 0.023 0.614 ± 0.023 0.720 ± 0.020 0.669 ± 0.021

Table 6 Human-computer inter-rater reliability (κ ± standard error)
using CRC across the 5-level flux learning progression

Holistic Composite analytic

Item Cohen’s kappa Accuracy (%) Cohen’s kappa Accuracy (%)

APP1 0.696 ± 0.022 77.7 0.737 ± 0.021 80.7

NP1 0.656 ± 0.023 75.4 0.658 ± 0.023 75.3

GR2 0.606 ± 0.023 70.6 0.649 ± 0.023 74.3

RMP2 0.603 ± 0.023 70.3 0.720 ± 0.020 78.4
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difference between the charges on both sides. A smaller differ-
ence in charges means a more positive resting membrane po-
tential.” Thus, both these responses were classified into bin 6,
but used very different text in their responses.

Not all models for analytic bins showed similar trends in
performance. For example, some bins had poor precision with
corresponding poor κ (e.g., bin 2 in NP1; Table 7). A few bins
showed acceptable κ, but still exhibited poor precision (e.g.,
bin 10 in RMP2), which may lead to specific types of errors in
computer prediction for composite scores dependent on that
bin. A good number of bins that show these poor model per-
formances are due to low frequency of responses in these bins.
One concern of using an analytic composite score is that bins
with poor performance may be critical in calculating the com-
posite or LP holistic score. For example, in RMP2, to be a
level 5, a student must reason with ideas captured in either bin
14 or 11 in addition to bin 13. Even though we can meet the
threshold HC κ > 0.79 for these bins individually, humans
agreed that only 4% and 3% of responses included bin 14 or
11 reasoning, respectively. Although these concepts occur
infrequently in student responses, they are critical to determin-
ing the holistic level 5 code.

On the contrary, there are also analytic bins that are not as
critical to overall model performance. Except for NP1, at least
1 analytic bin in each item has a HC κ < 0.2 (Table 7). Bin 3 in
RMP2 had 35 positive cases by human coding, but this bin
captured students who reasoned with “mistakes.” Thus, the
different ways students made mistakes added a range of lexi-
cal diversity that the ML model could not accurately identify.
Responses that included mistakes should have been at a lower
level of the LP, but since the MLmodel could not identify this
concept, it generally over-predicted the composite score for
these responses.

Composite analytic κ (Table 6) may be higher than analytic
mean κ values (Table 7) because individual bin predictions
are reconstructed using Boolean logic to determine LP level
rather than a mean average of all bins. Specifically, not all bins
with κ = 0 have the same importance in distinguishing be-
tween levels and from item to item as discussed above.
Because RMP2 has high performing models for bins that hold
greater weight in determining higher LP levels (bins 11–15),
the composite analytic κ (0.720) is substantially greater than
the item’s HC holistic κ (0.603).

Finally, we also looked at another important variable when
considering coding approaches: time. We tracked the time
required by humans for deconstruction, calibration coding,
and full coding (ESM 5). Given that the holistic rubric was
already developed and validated, the deconstruction process
required approximately 7–9 additional hours per expert per
item. Holistic coding required 5.5–8.5 h per expert. Analytic
coding required approximately 7.5–13 h per expert to code the
entire dataset. Analytic coding required from 4 to 18 more
minutes per 50 responses than holistic human coding. It is
interesting to note that increased number of analytic rubric
bins and complexity of the rubric and/or item led to an in-
crease in the amount of time to code independent from the
rubric approach.

Summary

Many factors influence an accurate computer predictive scor-
ing model. Specifically, HH IRR’s are generally higher than
HC IRR, which may indicate that human coders can more
easily identify complex and/or naive reasoning and may set
a maximum agreement level for computer predictions (since

Table 7 Analytic human-computer inter-rater reliability (κ), positive cases (n), and precision of positive cases (%) in responses using CRC by analytic
bin

Item Number of
analytic bins

Analytic bin
mean ± SD

Analytic bins

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

APP1
(n = 669)

8 0.649 ± 0.317 κ 0 0.44 0.54 0.70 0.81 0.86 0.88 0.97

n 0 200 129 313 67 196 32 93

% 0 36.0 76.0 86.6 76.1 94.4 81.3 94.6

NP1
(n = 700)

9 0.717 ± 0.086 κ 0.58 0.65 0.65 0.67 0.68 0.77 0.80 0.81 0.83

n 8 74 44 116 68 530 148 378 79

% 62.5 51.4 97.7 86.2 54.4 92.5 90.5 92.6 94.9

GR2
(n = 700)

13 0.726 ± 0.289 κ 0.07 0.14 0.71 0.75 0.76 0.78 0.80 0.83 0.84 0.85 0.95 0.97 0.99

n 1 3 115 53 78 188 118 78 44 124 114 363 227

% 100 100 83.5 88.7 88.5 87.8 93.2 91.0 95.5 96.0 97.4 97.2 99.1

RMP2
(n = 700)

16 0.574 ± 0.379 κ 0 0 0 0 0.33 0.52 0.70 0.73 0.77 0.79 0.79 0.80 0.89 0.93 0.97 0.99

n 0 0 0 0 378 89 190 154 32 54 21 289 167 30 108 536

% 0 0 0 0 34.9 83.2 84.2 63.6 81.3 68.5 100.0 90.3 95.2 93.3 96.3 99.8
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models were trained using human consensus scores). Either
coding approach, holistic or a series of analytic bins, can
achieve acceptable levels of agreement by both human coders
and ML models. As well, both ML platforms were able to
achieve good performance on items, with only a single
LightSide model failing to achieve a HC κ of at least 0.6.
Model performance is also influenced by the deconstruction
of holistic rubrics to analytic, the Boolean logic used to recon-
struct the composite score and item context.

Discussion and Conclusions

We investigated the use ofMLmodels to automate the scoring
of CR assessments designed to elicit complex reasoning
aligned to a physiology LP for undergraduate students. We
compared analytic and holistic coding approaches on ML
model performance for short, content-rich responses.

For our first research question, comparing human-human
(HH) IRR on analytic and holistic rubrics, we found that either
holistic or analytic coding approaches can be used to obtain
high HH agreement (> 0.75 Cohen’s kappa). We were able to
achieve high HH agreement using either holistic or analytic
coding through careful coder calibration and rubric
deconstruction/reconstruction processes (Jescovitch et al.
2019b; Liu et al. 2014). However, there was a range of vari-
ability of HH IRR across the many analytic bins, both within a
given item and across items. We found that low HH agree-
ment in analytic rubrics was common in bins with low fre-
quency of positive occurrences (< 5%) or that targeted ideas
that exhibited high lexical diversity. These situations may
make it more difficult for coders to properly calibrate using
examples during the coder training phase, and therefore more
likely to deviate from one another during independent coding.
We suggest that if a bin is < 5% of the total training set, then
researchers should accept that, even though it is an interesting
concept that can be identified using human coding, the bin
will most likely not be predicted accurately by ML models
and thus have limited utility in automated scoring systems.
Alternatively, if the bin is considered essential for the purpose
of the assessment, a very large training set may need to be
assembled to overcome this problem.

For our second research question about whether student
reasoning identified in holistic rubrics can be reliably quanti-
fied by analytic rubrics, our findings suggest that either holis-
tic or analytic coding approaches can be used to make suffi-
cient ML models for complex CR science assessments. We
were able to achieve good agreement between assigned scores
to student responses using holistic and analytic type rubrics,
with Cohen’s kappa ranging from 0.817 to 0.964, which is
considered near-perfect agreement. This suggests that com-
plex reasoning in holistic levels of a LP can be identified by
a series of analytic rubrics and furthers our ability to consider

various coding methods for short content-based responses
(Brew and Leacock 2013). Because we independently applied
both holistic and analytic coding to the same set of responses,
we were able to compare the performance of the resulting ML
models, as well as identify the benefits and limitations of these
approaches. We found that for some items there was little
difference in the performance of the ML models created with
these different approaches. For two items, the ML models
trained with analytic coded responses and used to generate a
composite score achieved slightly better performance. Both of
these items used the slightly more complex item scenario of
the movement of two ion species. It may be that analytic
coding is beneficial to unpacking this additional complexity.
This is aligned with previous work that showed differential
model performance over seven open-ended science items,
with the poor performing model being associated with the
least-constrained (i.e., most open-ended) item (Butcher and
Jordan 2010).

Finally, for our third research question, which coding ap-
proach better supports ML scoring models, our ML models
trained using analytic composite scores performed similar to,
or better, than holistic ML models of the same item. We also
found that unpacking of analytic bins can help determine if the
item elicits critical components of the holistic rubric and if the
item elicits all 5 levels of the LP. This is similar to a finding
reported by Tomas et al. (2019) that having humans apply
both holistic and analytic codes helped define some of the
criteria underlying the holistic scoring.We found that we were
able to achieve good performing models with both ML plat-
forms tested, although there is some evidence that CRC per-
formed better than LightSide on some items using analytic
composite scores, this was not true for all items or true for
using holistic scores. This is likely due to the ensembling
method employed by CRC, as ensembling has been shown
to reduce error in ML predictions (Ali and Pazzani 1996). We
also found that the CRC predicted composite analytic scores
were slightly more accurate than holistic scores for some in-
frequent and higher LP levels. We also modified our criteria
for ML model evaluation over the course of this study. A
threshold of κ ≥ 0.8 indicates almost perfect agreement
(Landis and Koch 1977; McHugh 2012). This threshold was
easier to achieve in our binary, analytic rubrics than our 5-
level, holistic rubric. In practice, we adopted a threshold of
κ ≥ 0.7 for HC IRR due to the compounding of errors of mul-
tiple analytic bins being combined within 5 levels. We also
monitored model performance with QWKs, which use differ-
ent weights for the degree of disagreements. We used a target
threshold value of 0.7 for QWK (Williamson et al. 2012),
which we were able to achieve on all 4 composite analytic
models and 2 holistic models. Although degradation measures
for most models were higher than the suggested cutoff, this
may be due in part to very high levels of HH agreement during
coding. Additionally, the models built using composite
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analytic scores tended to show less degradation than the ho-
listic models.

This work helps address the challenges of using ML in
science assessment. We have attempted to advance the appli-
cation of ML to evaluate CR of a complex construct (Zhai
2019): principle-based reasoning in the content-rich domain
of undergraduate physiology. The responses collected in this
project are rich in science content, symbols, and relationships
among components (e.g., differential movement of two ions),
which can be challenges to developing accurate ML models
using limited training sets, as is often the case in science as-
sessments. Therefore, correct classification relies on our un-
derlying conceptual framework to guide the ML identification
of specific ideas and connections that we were interested in
finding (Nehm 2019). The ML analytic approach was able to
identify the most important and frequent ideas, as has been
found before (Sieke et al. 2019; Moharreri et al. 2014). We
have extended this effort to combine these analytic codes into
a single composite code which aligns to a holistic code.
Previous efforts have found this process challenging (Liu
et al. 2014), some of which we have addressed by carefully
monitoring the deconstruction and reconstruction process to
make sure the composite score aligns with the holistic inter-
pretation of the response.

Additionally, we have attempted to apply ML to a com-
plex construct of a LP (Zhai 2019). LPs represent a model
of cognitive development and may have various and com-
plex underlying construct structures (Wilson 2009).
Additionally, the complexity of undergraduate reasoning
itself increases over the LP, so the complexity of student
responses is greater at higher levels. This can pose chal-
lenges for ML scoring since holistic levels are ordinal, not
interval (i.e., small changes in a response may indicate
significant advance in reasoning), and some of the lan-
guage used to reason at different levels may be quite sim-
ilar. Therefore, the defining feature(s) which separate(s)
levels may be difficult for ML algorithms to identify.
Additionally, the greater number of possible levels may
deflate overall performance measures. We found that the
analytic components predicted by ML could be combined
into a composite score that matches the holistic code and
provide the same, or slightly increased, accuracy over ho-
listic classification ML models. This is despite the fact that
some individual ML analytic bins performed quite poorly.
Thus, even a complex construct may be deconstructed into
finer-grained ideas in order to identify critical response
features; then use these features to improve overall model
performance. We think this may be useful for future efforts
to develop ML models for future LP aligned assessments
or other complex constructs. However, this increase in
model accuracy was not uniformly achieved across all
items and took significant effort and time to achieve, main-
ly in rubric design and additional coding time.

Harsch and Martin (2013) and Tomas et al. (2019) argue
that holistic and analytic approaches can be combined to offer
productive outcomes for both research and practice. One pos-
sible extension of this is to investigate the combination of both
holistic and analytic coding to generate one improved ML
model. For example, for other items in our broader project
that only target up to level 3 in the LP, we were able to suc-
cessfully develop ML models using holistic codes. The addi-
tive nature of the more complex levels (4 and 5) in the items
under study here may be improved by holistically predicting
levels 1–3, then subsequently predicting analytic concepts that
determine levels 4 and 5.

One advantage of using ML for automated scoring systems
in place of programmed scoring systems is that researchers do
not need to perform any additional text parsing or keyword
identification for the ML procedure. The text from student
responses is automatically parsed into n-grams in our study,
then used as features (input variables) in the ML algorithms to
predict expert codes (i.e., holistic or analytic codes). This is
similar to previous approaches and findings in this area (Liu
et al. 2016; Nehm et al. 2012). The effort exerted by humans is
in the coding of the data set via rubrics to make the training
data. For our study, since we began with a holistic coding
rubric aligned to the levels of the LP, we spent additional time
developing and applying the set of analytic coding rubrics.
Because the analytic bins are meant to identify conceptual
pieces relevant to the specific item and levels, we developed
a procedure to guide the process of creating these rubrics
(Doherty et al. 2019; Haudek et al. 2019; Jescovitch et al.
2019a, 2019b; Scott et al. 2019; Sripathi et al. 2019).
Therefore, the analytic coding rubrics in our study were
unique to each item, although other reports have found such
conceptual rubrics may hold across items in similar contexts
(Moharreri et al. 2014; Weston et al. 2015). We suggest that
researchers starting new projects in automated scoring care-
fully consider choosing a coding approach that meets the pur-
pose of the assessment, the intended use of the results and
possible development iterations of the assessment, since our
results suggest ML models can be built to classify responses
with similar accuracy to either type of rubric.

There are a few limitations to our approach for this study.
HH holistic and HH composite analytic codes were not
initially aligned, or representative of each other, for three of
the four items. We suggest that complete Boolean logic
validation should be included during deconstruction/rubric
development rather than during or after full coding of re-
sponses. Tomas et al. (2019) also suggest reducing irrelevant
coding criteria when converting holistic criteria to analytic.
Similarly, Liu et al. (2014) and we (Jescovitch et al. 2019b)
have reported that during analytic rubric development for ML,
often more bins are created initially than are necessary to
identify the construct of interest. The interaction of using the
holistic rubric to first deconstruct to an analytic rubric would
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be beneficial to intended outcomes if the holistic rubric was
also revised to reflect frequency or concept importance. Our
broader project has a goal of developing a LP for flux reason-
ing in undergraduate physiology. Thus, we caution against
generalizing our findings too far from the study context, al-
though we are hopeful some of these approaches and over-
arching lessons can inform our rubrics as we evaluate con-
structs across various contexts.

Our findings can inform rubric development, coding, and
ML approaches best suited to score short, content-rich CR
assessments. This work is significant in that it advances our
ability to use computer-automated scoring models to assess
complex constructs, such as student reasoning in rich science
contexts aligned with a LP. We have explored another way
researchers may pursue automated scoring of more complex
science constructs, by creating composite scores of smaller
analytical components. Implementing such a scoring system
at scale, however, requires a scoring system which can com-
pute and represent such composite scores, while retaining the
ability to provide outputs and/or feedback at multiple score
levels to the intended user.

The methods explored here could help improve large-scale
ML assessment and rubric development targeted at
uncovering complex scientific reasoning. An important con-
sideration in any assessment design is the potential use and
interpretation of the resulting scores (Pellegrino et al. 2016).
In this study, we have shown it is possible to develop ML
models to predict dichotomous analytic scores as well as ho-
listic scores for the same underlying construct. This represents
an opportunity for assessment designers to consider scoring
rubrics for both automated scoring and potential instructor use
during item development and thus address the pedagogical
and validity perspectives of ML-based assessments simulta-
neously (Zhai et al. 2020). From a practitioner view, it may be
advantageous to have student responses automatically scored
in one way (e.g., student reasoning pattern) over another (e.g.,
key disciplinary concepts) for specific situations. Finally, a
key promise of any automated scoring system is the ability
to assess large numbers of students at scale. Developing these
automated scoring tools for content-rich responses provides a
mechanism to evaluate student reasoning in science across
courses and institutions and leads to many interesting research
questions about reasoning across disciplines.
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