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Abstract
We consider a random field φ(r) in d dimensions which is largely concentrated around
small ‘hotspots’, with ‘weights’, wi . These weights may have a very broad distribution, such
that their mean does not exist, or is dominated by unusually large values, thus not being a
useful estimate. In such cases, the medianW of the total weightW in a region of size R is an
informative characterisation of the weights. We define the function F by lnW = F(ln R). If
F ′(x) > d , the distribution of hotspots is dominated by the largest weights. In the case where
F ′(x) − d approaches a constant positive value when R → ∞, the hotspots distribution has
a type of scale-invariance which is different from that of fractal sets, and which we term
ultradimensional. The form of the function F(x) is determined for a model of diffusion in a
random potential.

Keywords Hotspot · Scale-invariance · Fractal · Ultradimensional

1 Introduction

In many cases two-dimensional scalar fields are largely supported on small areas, ‘hotspots’.
Examples can include the distribution of human populations, which are concentrated in
urban settlements, the distribution of debris on the ocean, which can be concentrated in
regions where cool or saline water is subducted, and deposits of mineral ores, which can
be concentrated at the points where dissolved material is deposited from evaporating water.
Another example is images of star fields, where the stars appear as points. Subjectively,
images of the distribution of hotspots can appear to bear a familial resemblance. Despite the
fact that there are numerous examples of natural process which concentrate upon hotspots,
the phenomenon has not received much attention. This paper addresses the question of how
these distributions can be characterised, and whether they have scale-invariant features.
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The fields that we consider can be modelled by random processes. We consider random,
non-negative scalar fields in a two-dimensional space, denoted by φ(r), with statistics which
are homogeneous (translationally invariant) and isotropic (rotationally invariant). Extensions
to higher dimensions will be obvious.

In the cases where the field is highly concentrated in the vicinity of isolated points,
each point has a weight wi , which represents the integral of the field over a small region
surrounding that point. These weights have a probability density function p(w). We are
interested in examples where w has a very broad distribution, such that its mean value 〈w〉
might be undefined (〈X〉 denotes the expectation value of X throughout). Another possibility
is that 〈w〉 does exist, but that is dominated by large values which are unlikely to be observed
in a finite sample (examples of both of these cases will be considered below).

Nevertheless, we might wish to know how the total weight of the hotspots increases with
the size of the sample region, R. We assume that the hotspots are scattered homogeneously
with density ρ. Consider the set WR of approximately ρR2 values of wi for which ri lies
inside a square of side R. This set has the total weight

W =
∑

wi∈WR

wi . (1)

If the weights had a compact distribution, we would estimate the mean value ofW as 〈W 〉 =
ρR2〈w〉, but our interest lies in distributions for which 〈w〉 is infinite, or else larger than
any weights which are encountered in a typical realisation. A more promising approach is to
estimate the median value W . We anticipate that W will increase very rapidly as a function
of the scale length R. Accordingly, we use a logarithmic scale. We can characterise a given
hotspot distribution by means of a function F :

ln(W ) = F(ln R). (2)

In Sect. 2 we discuss a model for whichW has a power law dependence upon R, so F(x) is a
linear function. By analogy with the definition of fractals sets, we shall refer to the exponent
as a ‘dimension’. In the usual fractal system if the mass μ inside a ball of radius ε scales as
μ ∼ εD , then D is described as the fractal dimension of the set [1, 2]. Similarly, ifW ∼ RD ,
the exponent D can be thought of as a type of dimension of the set of hotspots. Even if F is
not a linear function we can define an effective dimension Deff at the length scale R as the
derivative

Deff = dF(ln R)

d(ln R)
. (3)

We shall argue that this effective dimension may be higher than the dimension of the
embedding space, unlike the fractal dimension. We describe this scale dependence as ultra-
dimensional.

We shall discuss two different models for hotspot distributions. In Sect. 2 we introduce and
analyse a model in which the PDF of w is a power-law with divergent mean, which is shown
to have an exact scale-invariance. In Sect. 3 we discuss a physical example of a hotspot
distribution, namely the probability density for a particle diffusing in a two-dimensional
gaussian random potential, V (x, y). The equilibrium probability density is proportional to
exp[−V (x, y)/D] where D is the diffusion coefficient. In the limit as D → 0, this density
is concentrated at “hotspots” which are minima of the potential function. We are able to
determine the function F(·) for both models. Section4 is a brief conclusion.
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2 Power-LawModel

2.1 Definition of the Model

We consider the following simple model. We take a uniform, independent random scatter of
points on the plane, ri , with density ρ. Each point is assigned a random weight wi , drawn
independently from a distributionwith probability density function (PDF) p(w). Theweights
wi represent the integral of φ(r) in the neighbourhood surrounding one of the points upon
which it is concentrated.

We introduce a power-law model, such that for large w, the PDF is p(w) ∼ w−γ . In the
calculations below we shall use the following specific distribution as an example:

p(w) =
{

(γ − 1)w−γ , w ≥ 1

0, w < 1
(4)

with 1 < γ < 2, so that the distribution is normalisable, but its mean is undefined. We shall
also need to consider the cumulative distribution: if P(w0) is the probability that w > w0,
then Eq. (4) implies that P(w) = w−(γ−1) for w > 1.

We argue that this is a foundational model for the distribution of hotspots. Because power-
laws arise naturally in many physical processes, we expect that our model will find many
physical realisations. In particular, if the process which generates the weights wi is scale
invariant, the PDF of w will be a power-law. Two examples of process for which the weight
has a power-law distribution are the Scheidegger model for the distribution of flow in rivers
[3, 4], and a recently developed model for fluxes in directed percolation [5, 6].

Figure 1 is an illustration of 12 different realisations of thismodel for hotspot distributions,
with γ = 5/3, plotted on four different lengthscales. We used the inverse transform sampling
method to generate the weights, wi . In order to generate these plots, we transformed to a
filtered and normalised set, W̃R , as follows. We scale the hotspot positions by dividing by R,
and plot ri/R inside a unit square. We eliminate the values of wi below a chosen threshold,
for example, those wi that are less than εW , where ε is a given small positive number. We
can also ‘normalise’ these sets by dividing every remaining wi by W . These normalised and
filtered sets are a natural representation of many types of point-set data. An example is a
geographical map showing settlements using symbols with the sizes relative to of the largest
settlements in the mapped region, where settlements below a certain size are not shown in
order to eliminate clutter. Another example is a photograph of the night sky with the exposure
adjusted so that the image saturation is normalised, and stars below a certain intensity are
not registered at all.

It will be argued that the statistics of these images has a scale-invariance property, in that it
is impossible to identify the scale factors of the panels. Non-trivial scale invariance is usually
associated with fractal [1, 2] (or more generally, multifractal [7, 8]) properties, which can
usually be characterised by saying that the set is, in some sense, self-similar under a change
of scale. The images in Fig. 1 are so diverse that would require a large number of realisations
to demonstrate that they are drawn from the same ensemble. We shall argue below that there
is a simple quantitative distinction between the scale invariance of Fig. 1 and that of fractal
sets.

If the derivative of the function F(x) defined by Eq. (2) approaches a constant as x → ∞,
this is indicative of the sets W̃R having scale-invariant properties, such that the statistics of
W̃R and W̃λR are indistinguishable, for a wide range of values of the positive number λ. This
idea can be expressed by saying that the realisations of W̃R are drawn froman ensemblewhich
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Fig. 1 Illustration of scale-independence of the ‘hotspots’ model. At the position of each hotspot there is a
filled circle with area proportional to its weight. The total area of the circles in each image is normalised to
be 1% of the total area of the image. The images use the probability distribution Eq. (4) with γ = 5/3, and
the scale factors are R = 10000, R = 2000, R = 400, R = 80, (with three cases of each scale factor).
The different images cannot be associated with the different values of R by any statistical test, reflecting the
scale-invariance property. The scale factors are: upper row, R = 10000 panels (a, b, c), second row, R = 2000
panels (d, e, f), third row, R = 400 panels (g, h, i), lower row, R = 80 panels (j, k, l)
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is independent of R, depending only upon γ . This self-similarity could be trivial, or it could
indicate that the hotspot distribution has fractal properties, or have a different explanation.
It will be argued that it is the latter possibility which is realised. For our simplified model it
will be shown (in Sect. 2.2 below) that, for points distributed randomly in d dimensions with
the weight distribution Eq. (4),

Deff = d

γ − 1
. (5)

Note that, because 2 > γ > 1, this effective dimension is higher than the dimension of the
embedding space. This indicates that the effective dimension Deff is fundamentally different
froma fractal dimension.Wedescribe this scale invariancewith Deff > d asultradimensional.

Adifferent approach to describing the hotspot distribution is to consider the relative sizes of
the largest values of wi in the set WR . The filtered and normalised sets can be characterised
by considering the relative sizes of the largest values of wi . To this end, we can sort the
weights, wi , into a decreasing sequence {−→w i }, and consider the proportion of the total mass
which is contained in the first k elements of this set

fk =
∑k

j=1
−→w j

∑Ñ
j=1

−→w j

, (6)

where Ñ is the number of elements in the filtered set. We can consider the average of fk over
different regions of the data, and in some cases we can also average over multiple realisations
of the distribution. For the model defined by Eq. (4), this leads to a family of functions of γ :

f̃k(γ ) = 〈 fk〉. (7)

We shall make a hypothesis that, for a general model, the set of values of fk at length scale
R is representative of the model Eq. (4), with an effective value of γ given by rearrangement
of Eq. (5):

γeff = 1 + d

F ′(ln R)
. (8)

2.2 Statistics of the Power-LawModel

Consider how the statistics of the total weight W depends upon R for the power-law model,
with weight distribution Eq. (4). The mean value of w is undefined, so calculating the expec-
tation value 〈W 〉 is not a good approach. Estimating the median ofW , which will be denoted
by W , appears to be more promising.

For each realisation, let ŵ be the largest of the N ∼ ρR2 samples of w in the square.
Because we expect that the sum W is dominated by the largest values of the wi , we might
hypothesise that W is approximated by ŵ, that is the median of W is approximated by the
median of the set of the largest wi values in each sample. Here it will be argued that this
multiplier W/ŵ is independent of both R and ε.

It is easy to calculate w∗ ≡ ŵ. The probability that none of the N independent values of
w exceeds ŵ is [1 − P(ŵ)]N , so that w∗ = ŵ satisfies [1 − P(w∗)]N = 1/2. This gives

w∗ =
(

N

ln 2

)1/(γ−1)

. (9)
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Next we estimate the number of points Ñ in the filtered set, and the value of W . The
number of values of wi in the range from w∗ ≡ ŵ (upper limit) to εw∗ (lower limit) is

Ñ ∼ N
∫ w∗

εw∗
dw p(w)

= N
[
w1−γ

]w∗
εw∗

∼ N (w∗)−(γ−1)ε−(γ−1)

∼ ln 2 ε−(γ−1)

(10)

so that the number of points Ñ in the filtered set is independent of R, although it does depend
upon ε (we have assumed that N is sufficiently large that εw∗ � 1).

The median of the sum W of a large number of values of wi is estimated by noting that
W = ŵ + W̃ , where ŵ is the largest of the wi , and W̃ is the sum excluding the largest of the
wi . The value of W̃ will be approximated by its mean value, which depends upon ŵ. Writing
ŵ = aw∗, and taking the leading order as N → ∞, ε → 0

〈W̃ 〉 ∼ (N − 1)
∫ ŵ

εw∗
dw wp(w)

∼ (N − 1)

[
γ − 1

2 − γ
w2−γ

]ŵ

εŵ

∼ γ − 1

2 − γ
(N − 1)ŵ2−γ

∼ (γ − 1) ln 2

2 − γ
a2−γ w∗.

(11)

This gives the following estimate for W , in terms of a = ŵ/w∗:

W ≈ w∗
[
a + a2−γ (γ − 1) ln 2

2 − γ

]
. (12)

The value of W depends upon a random quantity, a. The median value of W (a) is W =
W (a). And because we define w∗ = ŵ = w∗a, we have a = 1. This gives the following
estimate for W :

W ≈
(
1 + (γ − 1) ln 2

2 − γ

) (
N

ln 2

)1/(γ−1)

. (13)

This indicates thatW exceeds the median of the largest term by a factor which is indepen-
dent of both ε and N (and which is therefore therefore independent of R). The independence
ofW/w∗ upon R indicates that the filtered images are scale-invariant. The fact that this ratio
does not depend upon ε reflects the fact that the images are dominated by the largest values
of wi . Equation (13) implies that the number of wi , including the largest one, that make a
significant contribution to W is 1+ γ−1

2−γ
ln 2. When γ → 1, there is likely to be only one wi

that dominates the filtered image. This is in accord with the large jump principle, discussed
in [9].

The prediction for W , Eq. (13), was tested numerically. Figure2 shows the ratio of the
empirically determined values of w∗ and W to the theoretical estimates, Eqs. (9) and (13),
for N = 1000 with M = 104 realisations. This verifies Eq. (9), and shows that the N -
dependence ofW is the same as that of w∗. The values ofW used to create Fig. 2 span many
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Fig. 2 Plot of ratios of values of w∗ (median of the largest element) and W (median of sum of N samples)
obtained from simulation, divided by their theoretical estimates, Eqs. (9) and (13) respectively, as a function of
γ . The figure shows data for N = 1000, averaged over M = 104 iterations. The values of W used to generate
this figure span more that 58 decades

Fig. 3 Mean values of fraction of the sum W contained in its largest k elements (defined in Eq. (6)), as a
function of γ . The number of elements of the sum was N = 1000, and there were M = 104 realisations

decades: theoretical values of W (with N = 1000) range from 1.58 . . . × 1063 for γ = 1.05
to 2.99 . . .× 104 at γ = 1.95. Given this very wide range of values, Fig. 2 demonstrates that
Eq. (13) is a useful approximation.

Figure 3 shows the expectation value of the fraction fk of the contribution to W from
the largest k samples, as defined by Eq. (6) (again using N = 1000 elements in the sum,
and M = 104 realisations) as a function of γ . This verifies that, in a typical realisation,
most of the contribution to W comes from a small number of the largest wi . The fractional
contribution approaches unity, in accord with the large jump principle [9], as γ → 1.
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We remark that there is a further level of self-similarity in our power law model, which is
concerned with varying the exponent γ . Because Eq. (4) implies that y = (γ − 1) lnw has
a PDF proportional to exp(y), the ensembles for different values of γ are equivalent, if we
replace w by (γ − 1) lnw.

Our most general conclusion from this calculation follows from Eq. (13). When extended
to d dimensions, we infer that

W ∼ Rd/(γ−1) (14)

so that the apparent dimension Deff which characterises the scale-invariance is given by
Eq. (5). Note that Deff > d . We say that this scale-invariance is ultradimensional. It is clearly
distinguished from the self-similarity of fractal sets, where the dimension D satisfies D < d .

3 DiffusionModel

3.1 Defining theModel

Wenowconsider a physicallymotivated example of a distribution of hotspots: the equilibrium
probability density for diffusion in a random potential, V (x). Examples of such a process
include diffusion of excitons in a disordered semiconductor heterostructure, or diffusion of
atoms on a surface during annealing after epitaxial deposition: both of these processes are
described in [10]. Motion of a particle is determined by a stochastic differential equation:

δxi = −μ
∂V

∂xi
δt + √

2Dδηi (t), (15)

where μ is the mobility and δηi (t) are white noise signals, independent at each timestep,
satisfying 〈δηi 〉 = 0 and 〈δηiδη j 〉 = δi jδt . In the following we set μ = 1 throughout. When
V = const, the motion is simple diffusion with the diffusion coefficient D. The equilibrium
probability density function for the stochastic process Eq. (15) is

P(x) = 1

Z exp [−V (x)/D] , (16)

whereZ is the partition function. We shall assume that motion is confined to a finite but large
region (which we take to be a square with the side R).

When D is small, this density is very strongly concentrated in minima of the potential
V (x), and each localminimumofV is associatedwith aweightwwhich is the integral of P(x)
over a small region surrounding the minimum. Our aim will be to characterise the function
F , defined by Eq. (2), for this model. The mean value of the w does exist, but in the limit
as D → 0 it is dominated by very large, but very rare values, which are extremely unlikely
to be observed (see Eq. (19) below). Increasing R increases the number of w values that are
sampled, approximately ρR2, and this increases the probability of the sample including one
of those very large, rarely encountered values.We show that lnW can increase very rapidly as
a function of ln R, in accord with our definition of ultradimensional behaviour. This example
will exhibit an approximate, rather than exact, scale-invariance.

Consider the equilibrium measure when the potential V (x) is itself a smoothly varying
random function, with a Gaussian PDF, and statistics which are homogeneous and isotropic.
We shall assume that V (x, y) has the following statistical properties:

〈V 〉 = 0, 〈V 2〉 = 1, 〈V 2
x 〉 = 〈V 2

y 〉 = 1, (17)
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Fig. 4 Equilibrium probability density for diffusion in a two-dimensional random potential, as specified by
Eqs. (17) and (18) with a Gaussian correlation function, 〈V (x)V (x′)〉 = exp[−(x − x′)2/2], so that c = 1 in
Eq. (18). The presentation is the same as in Fig. 1: hotspots are represented by circles by the areas proportional
to their weights, with 1% of the image covered. Panel a: D = 0.25, R = 50. Panel b: D = 0.25, R = 25.
Panel c: D = 0.4, R = 50. Panel d: D = 0.4, R = 25

where Vx = ∂V /∂x , etc. These requirements can be satisfied by re-scaling the coordinates
and the potential. Also define c by writing

c = 〈V 2
xy〉. (18)

This parameter satisfies c ≥ 1/2, with the lower limit realised if the spectral function S(k)
of V (x) (the modulus squared of the Fourier transform of its autocorrelation) has a ring
spectrum, S(k) ∝ δ(k − k0). If the correlation function of V is a Gaussian, then c = 1.

In general, the value of Z depends upon the realisation of the potential V (x). The expec-
tation value of Z is finite, but grows extremely rapidly as D → 0:

〈Z〉 = R2
〈
exp

[
−V

D

]〉

= R2

√
2π

∫ ∞

−∞
dV exp

[
−V 2

2
− V

D

]
= exp

[
1

2D2

]
R2.

(19)

For most realisations of the potential, the value of Z is much smaller than 〈Z〉.
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When D is sufficiently small that the measure Eq. (16) is concentrated at the minima of
V (x), the weight of a hotspot is approximated by

w = 1

Z

∫
dx

∫
dy exp [−V (x, y)/D] ∼ 2πD

Z �−1/2 exp[−V ∗/D], (20)

where V ∗ is the height of the minimum, and � = VxxVyy − V 2
xy is the determinant of the

Hessian matrix at the minimum.
Figure 4 illustrates the distribution of the weights of the hotspots of this diffusion model,

using the same presentation as Fig. 1 (hotspots are represented by a filled circle with the area
proportional to its weight, Eq. (20), and the total area of circles is normalised to 1%). The sim-
ulations of Gaussian random fields were generated by smoothing a numerical representation
of white noise by discrete convolution with a smooth kernel, as described in [10]. Despite
the fact that this randomly generated landscape is statistically homogeneous, the hotspot
distributions are inhomogeneous on a lengthscale which is much greater than the correlation
length of the potential. This is a consequence of the fact that, when D is sufficiently small,
the measure is exquisitely sensitive to the depth of the deepest minima of the potential which
are encountered in the sample region. We used two different diffusion coefficients D and
lengthscales R. The distributions are qualitatively similar to those of the simplified model,
shown in Fig. 1.

When D is small, the weights of the hotspots have a very broad distribution. The expec-
tation value 〈w〉 is dominated by extremely rare events, which are unlikely to be realised,
and it is more useful to estimate the medianW of the total weight inside a region of area R2.
The growth ofW as a function of R is characterised by calculating the function F defined by
Eq. (2): lnW = F(ln R). It will be argued that, for this model, the large-jump principle [9] is
applicable, so that W is well approximated by the median of its largest contributor, denoted
by w∗.

We shall consider the following scenario. The potential V (x) is evaluated, and the weights
Eq. (20) calculated, in a region of sizeR. WhileR is assumed to be large, we assume thatD
is sufficiently small thatZ � 〈Z〉, so that the largest weight is ŵ ≈ 1. This implies that when
we estimate W (R), our estimate should satisfy W (R) ≈ 1. We assume that the density of
minima of V (x) is ρ. According to Eq. (20), a large value ofw is associated with a minimum
of the potential V , which has an approximate depth V ≈ −D[lnw + lnZ], and we find it
convenient to use a variable

Ṽ ≡ −D [lnw + lnZ] (21)

instead of w, because the distribution of weights has a narrow support when expressed in
terms of Ṽ . The largest values of w are observed very rarely, so we shall characterise the
density of hotspots with very large values of w as follows: the probability P(Ṽ0) that Ṽ is
less than Ṽ0 is written in the form

P(Ṽ ) = exp
[−J (Ṽ )

]
. (22)

In order to unambiguously normalise this distribution we regard any minimum of V (x) as
being a hotspot. The function J (V ) corresponds to a ‘rate function’ or ‘entropy function’
of large deviation theory [11]. We can then estimate the median of the smallest value of Ṽ ,
denoted by Ṽ ∗, by writing 1/2 = [1 − P(Ṽ ∗)]ρR2

, where ρ is the density of minima. This
yields:

J (Ṽ ∗) = 2 ln R + ln ρ − ln ln 2. (23)
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If the inverse function of J is K (that is K (J (V )) = V ), then the required relation between
w∗ = W and ln R is

lnW = − lnZ − 1

D K (2 ln R + ln ρ − ln ln 2) ≡ F(ln R). (24)

In order to use this expression to determine the function F(ln R) which appears in Eq. (2),
we must determine the large-deviation rate function J (V ) which was introduced in Eq. (22).

Note that, according to Eqs. (20) and (21),

Ṽ = V ∗ + D ln

( √
�

2πD

)
, (25)

so that, in the limit as D → 0, Ṽ → V , and it is sufficient for our purposes to determine the
PDF of the heights of minima of the function V (x, y). We can, therefore, use the cumulative
probability of the heights of local minima as the function P in Eq. (22).

Equations (8) and (24) imply that

γeff ∼ 1 − DJ ′(Ṽ ∗), (26)

so that γeff ∼ 1 when D → 0. This observation justifies the claim that Ŵ ∼ w∗.

3.2 Distribution ofWeights

We now turn to evaluating the distribution of heights of minima. The two-dimensional case
is quite technical, so we shall start by discussing the estimate of W (R) in one dimension.

Here we require the density of local minima, ρ, and the probability P(V ) that the height
of a local minimum is less than V . These are readily obtained using the approach developed
by Rice [12], following pioneering work by Kac [13]. The density of minima is

ρ =
∫ ∞

−∞
dV

∫ ∞

0
dV ′′ V ′′P(V , 0, V ′′), (27)

where P(V , V ′, V ′′) is the joint PDF of V and its first two derivatives, evaluated at the same
point. We consider the case where V (x) is Gaussian, with correlation function

〈V (x)V (x ′)〉 = exp[−(x − x ′)2/2]. (28)

We find the following non-zero statistics of the potential and its derivatives at a given point:
〈V 2〉 = 〈V ′2〉 = 1, 〈V ′′2〉 = 3, 〈VV ′′〉 = −1. Using the standard formula for multivariate
Gaussian distribution, we find

P(V , V ′, V ′′) = 1

4π3/2 exp

[
−1

4

(
3V 2 + 2VV ′′ + V ′′2)

]
exp(−V ′2/2), (29)

and hence the density of minima is

ρ =
√
3

2π
. (30)

The PDF of the heights of minima is

p(V ) = 1

ρ

∫ ∞

0
dV ′′ V ′′P(V , 0, V ′′)

= 1√
3π

exp(−3V 2/4) − 1

2
√
3
V exp(−V 2/2) erfc

(
V

2

) (31)
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and the cumulative probability for the minimum being at a level less that V is

P(V ) =
∫ V

−∞
dv p(v) = 1

2

[
1 + erf

(√
3V

2

)]
+ 1

2
√
3
exp(−V 2/2) erfc

(
V

2

)
(32)

which also allows us to obtain J (V ) = − ln[P(V )] explicitly. The asymptote for J (V ) as
V → −∞, and the corresponding asymptote for its inverse function K (J ) are:

J (V ) ∼ V 2

2
+ ln 3

2
, K (J ) ∼ √

2J − ln 3. (33)

The functions J (V ) and K (J ) for the one-dimensional model with Gaussian correlation
function (c = 1) are plotted in Fig. 5.

In the two-dimensional case the calculation of the distribution is more difficult, but the
result is already known: for the case where the correlation function is a Gaussian, the PDF
of the distribution of minima is [10] (see also erratum, [14]):

p(V ) =
√
3

2π

[√
π exp

(
−3

4
V 2

)
erfc

(
V

2

)
− V exp

(−V 2)

+
√

π

2
(V 2 − 1) exp

(
−V 2

2

)
erfc

(
V√
2

)]
(34)

and the density of minima in two dimensions is [10]

ρ = 1

2π
√
3
. (35)

The corresponding cumulative distribution cannot be expressed in terms of familiar special
functions, so we obtained P(V ) by numerical integration. The asymptote can, however, be
determined analytically:

J (V ) ∼ V 2

2
− ln

(
V 2 + 1

|V |
)

+ 1

2
ln

(
2π

3

)

K (J ) ∼
√

2J + ln

(
2J + 1√

2J

)
+ 1

2
ln

(
3

2π

)
.

(36)

Figure6 shows the corresponding function J (V ) and its inverse, compared with Eq. (36).
We investigated the statistics of hotspots for the model of diffusion in Gauss random

potential (with Gaussian correlation function), by evaluating the function F(x) defined by
Eq. (2), for different values of the diffusion coefficient D. Because we were able to perform
numerical simulations over awider range of R-values in the one-dimensional case, we present
results for both the one- and two-dimensional models.

The results for the one-dimensional case are summarised in Figs. 7 and 8. For each value
of D, we generated M = 20 realisations of the random potential V (x) on an interval of
length L = 100 × 218, by smoothing white noise using a Gaussian kernel. The partition
function Z was calculated for each realisation, and the local minima xi of the potential were
identified, together with the values of V (xi ) and V ′′(xi ). For each realisation, we divided the
interval into sub-intervals, halving the length each time, for 18 generations. At generation
k = 1,…,18, for each of the M × 2k−1 sub-intervals of length R = L/2k−1, we sum the
weights w to determine the total weight W of each sub-interval. We then determined the
median values, W , of these M × 2k−1 weights. In Fig. 7 we plot the resulting 18 values of
lnW as a function of ln R, for several different values of the diffusion coefficient D.
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Fig. 5 a The large deviation function for the distribution of minima, J (V ) (defined by Eq. (22)), for a one-
dimensional random potential with Gaussian correlation function, 〈V (x)V (x ′)〉 = exp[−(x − x ′)2/2]. The
large deviation rate function J (V ) derived from the cumulative distribution of minima P(V ), as defined by
Eq. (32), is shown as a solid line. Its asymptotic approximation, Eq. (33), is shown as a dashed line. b The
inverse function, K (J ): exact shown as solid line, asymptote Eq. (33) is dashed line

Because the values of R and D were chosen so that the largest weights wi were of order
unity, Eq. (24) simplifies to

lnW (R) = 1

D K (lnR + ln ρ − ln ln 2) − 1

D K (ln R + ln ρ − ln ln 2) , (37)

where ρ is the density of minima (Eq. (30) in one dimension, Eq. (35) in two dimensions).
Figure8 verifies this expression by showing a collapse of the data in Fig. 7 onto the inverse
function of the large-deviation entropy, K (x) in the one-dimensional case.
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Fig. 6 a The large deviation function for the distribution of minima, J (V ) (defined by Eq. (22)), for a two-
dimensional random potential with Gaussian correlation function, 〈V (x)V (x′)〉 = exp[−(x − x′)2/2]. The
large deviation rate function J (V ) derived from the cumulative distribution of minima P(V ), obtained by
numerical integration of Eq. (34), is shown as a solid line. Its asymptotic approximation, Eq. (36), is shown
as a dashed line. b The inverse function, K (J ): exact shown as solid line, asymptote Eq. (36) is dashed line

We generated M = 4 realisations of V (x, y) on a square of size R = 256, with toroidal
boundary conditions, by convoluting a discrete representation of white noise with a Gaussian
kernel. Figure9 displays plots of lnW as a function of ln R for the two-dimensional Gaussian
potential,with different values of the diffusion coefficientD, for R = 2, 4, . . . , 256. Figure10
illustrates the collapse of these data onto a plot of K (x), the inverse of the large-deviation
rate function J (x). The range of values of R is much smaller than that shown in Figs. 7 and 8,
because the two-dimensional simulations are more numerically demanding.
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Fig. 7 Numerical investigation of the function F(x) defined in Eq. (2) for the one-dimensional model with
Gaussian correlation function: lnW is evaluated as a function of ln R, for a range of different values of D

Fig. 8 The data in Fig. 7 collapse onto the function K (x) plotted in Fig. 5b, in accord with Eq. (37)

Our analysis, illustrated by the simulations plotted in Figs. 7 and 9, indicates that lnW can
increase very rapidly as a function of ln R, in accord with our definition of ultradimensional
behaviour.

4 Concluding Remarks

Imageswhich show thedistributionof ‘hotspots’,where afield has anunusually high intensity,
appear to have a family resemblance, which may not be strongly dependent upon the size of
the sample region.
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Fig. 9 Numerical investigation of the function F(x) defined in Eq. (2) for the two-dimensional model with
Gaussian correlation function: lnW is evaluated as a function of ln R, for a range of different values of D

Fig. 10 The data in Fig. 9 collapse onto the function K (x) plotted in Fig. 6b, in accord with Eq. (37). Note that
the assumptions behind asymptotics Eq. (37) break at ln R < 2.5, but the data still collapse even at smaller R

The distribution of weights of hotspots was characterised by considering the medianW of
the total weight in a region of size R, and defining a function F(x) bywriting lnW = F(ln R)

(Eq. (2)). The derivative of F is an effective dimension, Deff = F ′(ln R).
We investigated two models for hotspot distributions. Firstly, we considered a one-

parameter family of weight distributions, defined by Eq. (4), which were contrived to be
scale-invariant. The scale-invariance of these models is characterised by an effective dimen-
sion Deff = d/(γ − 1), where γ ∈ (1, 2) is the parameter in the definition of the model.
Because this dimension is greater than that of the embedding space, the scale invariance is
distinct from the self-similarity which characterises fractal sets. Examples of realisations of
this model are shown in Fig. 1. While it is a mathematical fact that the individual images are
drawn from the same ensemble, the realisations do look very different from each other.

123



Scale Dependence of Distributions... Page 17 of 18    60 

We also considered a physically motivated example, namely the equilibrium distribution
for diffusion in a randompotential. Here the realisations of the hotspot distribution, illustrated
in Fig. 4, are qualitatively similar to those of the simplified model. We were able to determine
the function F(x) for this model. Because it is not a linear function, this system does not
exhibit strict scale invariance.

We have discussed the distribution of the hotspot intensities in terms of an effective dimen-
sion, Deff . The distribution of passive scalars in compressible flows, and of inertial particles
in turbulent flows, is known to be highly inhomogeneous, and it has been characterised by
multifractal dimensions (see, for example, [15–18] respectively). In discussions of multi-
fractality of the distribution of passive scalars, the multifractal dimensions describe how the
moments of the mass μ inside a ball depend upon its radius ε: 〈μq 〉 ∼ ε(q−1)Dq , where Dq

is the Renyi dimension of index q . This approach represents amicroscopic analysis, because
the limiting process is ε → 0. Our analysis considers the median mass W of a region of
dimension R, in the limit as R → ∞, and it represents a macroscopic perspective on the
structure of the set, concentrating on the large-scale structure of high-density regions. We
remark the the large-scale distribution of low-density regions has also been shown to be
described by power-laws [19].
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