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Abstract
We consider the persistence probability of a certain fractional Gaussian process MH that
appears in the Mandelbrot-van Ness representation of fractional Brownian motion. This
process is self-similar and smooth. We show that the persistence exponent of MH exists, is
positive and continuous in the Hurst parameter H . Further, the asymptotic behaviour of the
persistence exponent for H ↓ 0 and H ↑ 1, respectively, is studied. Finally, for H → 1/2, the
suitably renormalized process converges to a non-trivial limit with non-vanishing persistence
exponent, contrary to the fact that M1/2 vanishes.

Keywords Anomalous diffusion · Fractional Brownian motion · Fractionally integrated
Brownian motion · Gaussian process · One-sided exit problem · Persistence ·
Riemann-Liouville process · Stationary process · Zero crossing

1 Introduction andMain Results

This paper is concerned with the persistence exponent of a certain class of anomalous diffu-
sion processes. Anomalous diffusion processes are an important tool in modelling physical
systems [1–3]. The persistence probability of a real-valued process (Xt )t≥0 is given by

P

[
sup

t∈[0,T ]
Xt < 1

]

For self-similar processes, one expects the behaviour of this quantity to be of order
T−θ(X)+o(1), when T → ∞, for some θ(X) ∈ (0,∞). If this is the case we say that
the persistence exponent of X exists and equals θ(X). We refer to [4] for an overview on
the relevance of this question to physical systems and to [5] for a survey of the mathematics
literature.
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In this work, we deal with anomalous diffusion processes, also called fractional processes,
and this means we have to start by recalling what is presumably the most important fractional
process, namely fractional Brownian motion (FBM): This is a continuous, centred Gaussian
process (BH

t )t≥0 with covariance

E[BH
t BH

s ] = 1

2
(t2H + s2H − |t − s|2H ), t, s ≥ 0,

where H ∈ (0, 1) is the so-called Hurst parameter. For H = 1
2 , FBM is just usual Brownian

motion, while for H �= 1
2 the process has stationary but non-independent increments.

The process of interest in this paper stems from the Mandelbrot-van Ness integral represen-
tation of fractional Brownian motion given by

σH BH
t =

∫ t

0
(t − s)H− 1

2 dBs +
∫ 0

−∞

(
(t − s)H− 1

2 − (−s)H− 1
2

)
dBs, (1)

where (Bs)s∈R in the stochastic integral is a usual (two-sided) Brownian motion. The deriva-
tion of the normalisation constant

σH := �(H + 1
2 )√

2H sin(πH)�(2H)

can be found e.g. in Theorem 1.3.1 of [6]. The two processes appearing in theMandelbrot-van
Ness representation

RH
t :=

∫ t

0
(t − s)H− 1

2 dBs and MH
t :=

∫ 0

−∞
((t − s)H− 1

2 − (−s)H− 1
2 )dBs

are independent. We stress that RH can be defined for all parameters H > 0, while MH only
makes sense for H ∈ (0, 1). We also note that for H = 1

2 , R
1/2 = B1/2 is a usual Brownian

motion, while M1/2 vanishes.
Further, let us mention that BH , RH , and MH are H -self-similar, respectively. It is simple
to show that BH and RH have continuous versions, in fact even γ -Hölder continuous for
any γ < H < 1, while these processes are not H -Hölder continuous. Contrary, MH turns
out to be a smooth (i.e. infinitely differentiable) process. Therefore, MH is a self-similar, but
smooth process, which makes it an interesting object in modelling physical systems.
The persistence exponent of BH was obtained by Molchan [7] (for subsequent refinements
see [8–10]) to the end that

θ(BH ) = 1 − H .

The persistence exponent of fractionally integrated Brownian motion RH (also called
Riemann-Liouville process) was the subject of the recent study [11]. There, it was shown
that the function H 
→ θ(RH ) is continuous and tends to infinity when H ↓ 0. Further, the
limiting behaviour when H → ∞ is investigated in the papers [12, 13].
We will thus turn our attention to the less studied process MH for H ∈ (0, 1

2 ) ∪ ( 12 , 1) and
ask for the existence of the persistence exponent

θ(MH ) := lim
T→∞ − 1

log T
logP

[
sup

t∈[0,T ]
MH

t < 1

]
, (2)

its positivity and continuity properties as well as its asymptotic behaviour for H ↓ 0, H ↑ 1,
and H → 1

2 , respectively. Apart from trying to understand the persistence behaviour of the
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fractional process MH , the goal is to shed light on the relation of the persistence exponents
of BH (studied in [7] and subsequent papers), RH (studied in [11–13]), and MH .
The process MH has not been well studied outside the Mandelbrot-van Ness representation,
but we believe that it could and should play a more prominent role both in physical modelling
as well as in theoretical investigations. The process has a number of nice features that make
it a good tool in modelling: It is Gaussian, it is self-similar, it is a smooth process. It is a
one-parameter family that allows to adjust it to e.g. the long-range dependence observed in
given data.
The following two theorems on existence, continuity, and asymptotic behaviour of θ(MH )

are the main objective of this work.

Theorem 1.1 The limit in Eq. (2) exists in (0,∞) for any H ∈ (0, 1
2 ) ∪ ( 12 , 1). It has the

following asymptotic behaviour:

(a) limH↓0 θ(MH )
H = 1

(b) limH↑1 θ(MH )
1−H = 1.

As a side remark, we note that the persistence exponent of the process MH exhibits the
same limiting behaviour at 0 and 1 as that of the integrated fractional Brownian motion, cf.
Theorem 1 in [11], also see [14–17]. This seems very natural for H close to 1, where FBM
degenerates into a straight line with random slope. As for the behaviour for H → 0, we have
no explanation for the coinciding asymptotic behaviour at this point.
The next theorem deals with the situation at H = 1

2 . It shows that the persistence exponent,
as a function of H , can be continuously extended to (0, 1), i.e. including the point H = 1

2 .
At H = 1

2 , the value of the continuous extension turns out to be positive, which is surprising
given that M1/2 vanishes. There is a non-trivial limit process M∗,1/2, whose persistence
exponent corresponds to the value of the continuous extension of H 
→ θ(MH ) at H = 1

2 .

Theorem 1.2 The mapping H 
→ θ(MH ) is continuous on (0, 1
2 ) ∪ ( 12 , 1) and continuously

extendable to the whole interval (0, 1) with strictly positive limit at H = 1
2 . The persistence

exponent of the following process is the value of the continuous extension of H 
→ θ(MH )

at H = 1
2 :

M∗,1/2
t :=

∫ ∞

0
log

(
1 + t

s

)
dBs . (3)

The process M∗, 12 can again serve as a very interesting tool in modelling: It is Gaussian,
it is 1

2 -self-similar (just as Brownian motion), and it is smooth (infinitely differentiable). It
exhibits long-range dependence in contrast to standard Brownian motion. It can be compared
to weird Brownian motion [18] and the processes studied in [19].
The proofs of our results are similar in methodology to [11]. The first step is to transfer the
problem to the stationary setup via time-changing the process: Define the stationary Gaussian
process (GSP):

(LMH )τ := 1√
VMH

1

e−Hτ MH
eτ , τ ∈ R.

It is called the Lamperti transform ofMH . Note that one has to exclude the trivial case H = 1
2

here, as then VM
1
2
1 = 0. We note that since MH is a centred, continuous, H -self-similar

Gaussian process, its Lamperti transformLMH is a centred, continuousGSP of unit variance.
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The first goal is to prove that

θ(MH ) = lim
T→∞ − 1

T
logP

[
sup

τ∈[0,T ]
(LMH )τ < 0

]
, (4)

where the right hand side is also called the persistence exponent of the GSP LMH . This will
be achieved in Lemma 2.5 below using Theorem 1 in [20]. We can then work in the setup of
GSPs and focus on the correlation function of LMH .
In order to prove the subsequent main results we will rely on a continuity lemma for the
persistence exponent ofGSPs developed in [21–23] and summarised in Lemma 1 in [11]. This
continuity lemma relates the convergenceof the correlation functionsof a sequenceof centred,
continuous GSPs to the convergence of their persistence exponents, subject to checking some
technical conditions. The continuity of the function H 
→ θ(MH ) on (0, 1

2 )∪ ( 12 , 1) follows
directly from the continuity lemma after checking its conditions. The asymptotic behaviour
for H ↓ 0, H ↑ 1, and H → 1/2, respectively, is obtained by rescaling the correlation
function of LMH appropriately.
Let us outline the structure of this paper. In Sect. 2, we are going to set up some preliminary
material and prove the existence of the limit in Eq. (2) and the relation Eq. (4). The proof for
the continuity in (0, 1

2 ) ∪ ( 12 , 1) is given in Sect. 3. Afterwards, the proofs for the asymptotic
behaviour for H ↓ 0 and H ↑ 1 are given in Sect. 4. Finally, the situation for H → 1

2 is the
subject of Sect. 5.

2 Preliminaries

2.1 The Continuity Lemma

At the heart of our analysis lies Lemma 1(a) from [11] (developed in [21–23]), which allows
for a connection between convergence of correlation functions of GSPs and convergence of
persistence exponents. For the reader’s convenience the mentioned lemma is restated here.

Lemma 2.1 For k ∈ N, let (Zk
τ )τ≥0 be a centred GSP with correlation function Ak : R+

0 →
[0, 1] and Ak(0) = 1. Suppose that the sequence of functions (Ak)k∈N converges pointwise
for k → ∞ to a correlation function A : R+

0 → [0, 1] corresponding to a GSP (Zτ )τ≥0. If
Zk and Z have continuous sample paths and the conditions

lim
L→∞ lim sup

k→∞

∞∑
τ=L

Ak

(τ

�

)
= 0, for every � ∈ N, (5)

lim sup
ε↓0

|log(ε)|η sup
k∈N,τ∈[0,ε]

(1 − Ak(τ )) < ∞ for some η > 1, (6)

lim sup
τ→∞

log A(τ )

log τ
< −1 (7)

are fulfilled, then

lim
k,T→∞

1

T
logP

[
Zk

τ < 0,∀τ ∈ [0, T ]
]

= lim
T→∞

1

T
logP [Zτ < 0,∀τ ∈ [0, T ]] .
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2.2 The Correlation Function ofLMH

The goal of this subsection is to give some convenient representations of the correlation
function of the GSP LMH . For t ∈ R and H ∈ (0, 1

2 ) ∪ ( 12 , 1) define the functions

kHt (s) := (t + s)H− 1
2 − sH− 1

2 , s ≥ 0,

and note that a distributionally equivalent version of
(
MH

t

)
t≥0 is given by

MH
t =

∫ ∞

0
kHt (s)dBs, t ≥ 0.

Wenote for future reference that for any t ≥ 0 and H ∈ (0, 1
2 ) the function k

H
t is non-positive,

while it is non-negative for H ∈ ( 12 , 1).
Further, we not only look at the Lamperti transform of MH , but also consider the Lamperti
transforms of BH and RH :

(LBH )τ := e−Hτ BH
eτ , τ ∈ R,

(LRH )τ := √
2He−Hτ RH

eτ , τ ∈ R,

(LMH )τ = (
σ 2
H − 1

2H

)− 1
2 e−Hτ MH

eτ , τ ∈ R,

where the normalisation is such that V[(LBH )τ ] = V[(LRH )τ ] = V[(LMH )τ ] = 1 for
all τ ∈ R (and we used Eq. (1) and the independence of RH and MH to obtain the correct
normalisation for MH by calculating that 0 < V[MH

1 ] = σ 2
H − 1

2H ). The corresponding
correlation functions are given by

cH (τ ) := E[(LBH )τ (LBH )0] = cosh(Hτ) − 1
2

(
2 sinh( τ

2 )
)2H

,

rH (τ ) := E[(LRH )τ (LRH )0] = 4H

1 + 2H
e− τ

2 2F1
(
1, 1

2 − H , 3
2 + H , e−τ

)
,

with the standard notation for the Gaussian hypergeometric function 2F1 (and we used the
integral representation of 2F1 and the fact that 2F1(a, b, c, z) = 2F1(b, a, c, z)). The corre-
lation function of LMH can be derived using Eq. (1), the independence of RH and MH , and
the fact that BH , RH andMH are centred processes. This gives the following representations.

Lemma 2.2 We have

gH (τ ) := E[(LMH )τ (LMH )0] = (σ 2
H − 1

2H )−1(σ 2
HcH (τ ) − 1

2H rH (τ )). (8)

Alternatively, we have

gH (τ ) = (σ 2
H − 1

2H )−1
∫ ∞

0
K H
0 (s)K H

τ (s)ds (9)

as well as the relation

σ 2
H − 1

2H =
∫ ∞

0
K H
0 (s)2ds, (10)

where

K H
τ (s) := e−Hτ

(
(eτ + s)H− 1

2 − sH− 1
2

)
, s ≥ 0.
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Again we note for future reference that, similarly to the function kHt , for any τ ≥ 0 and
H ∈ (0, 1

2 ) the function K H
τ is non-positive, while it is non-negative for H ∈ ( 12 , 1). Then,

by positivity of the integrands in both cases Eqs. (9) and (10) we also obtain positivity of gH .

2.3 Connecting the Persistence Exponents

The purpose of this subsection is to show that the respective persistence exponents of the
process MH and its Lamperti transform LMH exist and are identical for any H ∈ (0, 1

2 ) ∪
( 12 , 1), i.e. Eq. (4) holds, so that we can focus our attention on the exponents of the latter
process.
We need the following corollary which is a consequence of Theorem 1 in [20].

Corollary 2.3 Let (Xt )t≥0 be a centred, continuous, H-self-similar Gaussian process with
positive covariance function satisfying, for some c > 0

E
[|Xt − Xt ′ |2

] ≤ c|t − t ′|2H , t, t ′ ∈ [0, 1]. (11)

Let (HX , ‖·‖X ) be the associated Reproducing kernel Hilbert space (RKHS). If there exists
φ ∈ HX such that for all t ≥ 1 also φ(t) ≥ 1 holds, then the persistence exponents of X and
the Lamperti transform of X both exist and coincide, i.e.

θ(X) := lim
T→∞

1

log T
logP

[
sup

t∈[0,T ]
Xt < 1

]
= lim

T→∞
1

T
logP

[
sup

τ∈[0,T ]
e−τH Xeτ < 0

]
.

Proof. We use the following special case of Theorem 1 in [20]: U0 = [0, 1], S0 = {0},
� = [0, 1], and Molchan’s φT is our T -independent function φ. Further ψ(T ) = log T ,
while σT is a sufficiently large constant.
Let us verify the conditions (a), (b), (c) in [20]: (a) is precisely our assumption that φ(t) ≥ 1,
for all t ≥ 1, and the fact that the RKHS norm of φ is constant in T and thus in o(ψ(T )).
Condition (b) is straightforward to check. Only condition (c) is non-trivial. Here, the first
step is to note that sup{(E [

X2
s

]
)1/2 : s ∈ [0, 1]} is a constant. Further, the function δT (h) =

δ(h) = sup{(E|Xt − Xt ′ |2)1/2 : t, t ′ ∈ [0, 1], |t − t ′| ≤ h} satisfies δ(h) ≤ chH , by
assumptionEq. (11). This shows that | ∫ 1

0 δ(h)d
√
log 1/h| < ∞, yielding (c) for a sufficiently

large constant σT . The theorem then implies (using continuity of paths in the second step):

lim
T→∞

1

log T
logP

[
sup

t∈[0,T ]
Xt < 1

]
= lim

T→∞
1

log T
logP

[∀t ∈ (1, T ] : Xt �= 0, X |{1,T } < 0
]

= lim
T→∞

1

log T
logP

[
sup

t∈[1,T ]
Xt < 0

]

= lim
T→∞

1

T
logP

[
sup

τ∈[0,T ]
e−Hτ Xeτ < 0

]
.

In order to apply the last lemma to MH , we have to check that Eq. (11) is satisfied.

Lemma 2.4 The process MH satisfies Eq. (11).

Proof. Let t ′ < t and observe that

E

[
|MH

t − MH
t ′ |2

]
=

∫ ∞

0

(
(t + s)H− 1

2 − (t ′ + s)H− 1
2

)2

ds
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=
∫ ∞

t ′

(
(t − t ′ + s)H− 1

2 − sH− 1
2

)2

ds

≤ (t − t ′)2H−1
∫ ∞

0

⎛
⎝(

1 + s

t − t ′

)H− 1
2 −

(
s

t − t ′

)H− 1
2

⎞
⎠

2

ds

= (t − t ′)2H
∫ ∞

0

(
(1 + s)H− 1

2 − sH− 1
2

)2

ds

= cH (t − t ′)2H .

We can now apply Corollary 2.3 to our process MH .

Lemma 2.5 Fix H ∈ (0, 1
2 ) ∪ ( 12 , 1). The persistence exponent of M

H exists and satisfies

θ(MH ) := lim
T→∞ − 1

log T
logP

[
sup

t∈[0,T ]
MH

t < 1

]
= lim

T→∞ − 1

T
logP

[
sup

τ∈[0,T ]
(LMH )τ < 0

]
,

i.e. Eq. (4) holds.

Proof In this proof the conditions of Corollary 2.3 will be verified in order to show the claim
for X = MH . Clearly, the process is continuous and H -self-similar and satisfies (11), by
Lemma 2.4. It is only left to show that for any H ∈ (0, 1

2 ) ∪ ( 12 , 1) there exists a function
φ ∈ HMH with φ(t) ≥ 1 for any t ≥ 1. A function φ in the RKHS can be parametrized by
an auxiliary function fH ∈ L2(R+, du) such that

φ(t) =
∫ ∞

0
kHt (u) fH (u)du.

In the case H ∈ (0, 1
2 ), a suitable auxiliary function fH is given by

fH (u) := (σ 2
H − 1

2H )−1kH1 (u),

which is square integrable since the process MH is of finite variance. For t ≥ 1 we can
conclude

φ(t) = (σH − 1
2H )−1

∫ ∞

0

(
sH− 1

2 − (t + s)H− 1
2

) (
sH− 1

2 − (1 + s)H− 1
2

)
ds

≥ (σH − 1
2H )−1

∫ ∞

0

(
sH− 1

2 − (1 + s)H− 1
2

)2

ds

= gH (0) = 1. (12)

Turning to H ∈ ( 12 , 1), we need to change the auxiliary function fH to

fH (u) :=
⎧⎨
⎩(σ 2

H − 1
2H )−1(2H − 1)uH− 3

2 , for u >
σ 2
H− 1

2H
2

0, otherwise.

This is again a valid auxiliary function since again fH ∈ L2(R+, du) holds. Then we can
estimate for all s > 0 and t ≥ 1

0 ≤ (t + s)H− 1
2 − sH− 1

2

t
= H − 1

2

t

∫ t

0
(u + s)H− 3

2 du ≤ (H − 1
2 )s

H− 3
2 .

123



37 Page 8 of 22 F. Aurzada, P. Mittenbühler

This implies for CH := σ 2
H − 1

2H the chain of inequalities

φ(t) = C−1
H

∫ ∞
CH
2

(
(t + s)H− 1

2 − sH− 1
2

)
(2H − 1)sH− 3

2 ds

≥ 2C−1
H t−1

∫ ∞
CH
2

(
(t + s)H− 1

2 − sH− 1
2

)2

ds

= 2C−1
H t2H−2

∫ ∞
CH
2

((
1 + s

t

)H− 1
2 −

( s
t

)H− 1
2

)2

ds

= 2C−1
H t2H−1

∫ ∞
CH
2t

(
(1 + s)H− 1

2 − sH− 1
2

)2

ds

≥ 2C−1
H t2H−1

(∫ ∞

0

(
(1 + s)H− 1

2 − sH− 1
2

)2

ds − CH

2t

)

= 2t2H−1 − t2H−2

t≥1≥ 1,

where we used in the second to last estimate that (1 + s)H− 1
2 − sH− 1

2 ≤ 1. The proof is
completed by applying Corollary 2.3.

3 Continuity of H �→ �(MH)

3.1 Estimates for H �= 1
2

In this section, we summarise some estimates on the correlation function gH that will be used
in the following sections. For improved readability we introduce the function

σ̃ 2(H) := 2Hσ 2
H = �(H + 1

2 )
2

sin(πH)�(2H)
, H ∈ (0, 1

2 ) ∪ ( 12 , 1), (13)

which turns Eq. (8) into

gH (τ ) = (σ̃ 2(H) − 1)−1(σ̃ 2(H)cH (τ ) − rH (τ )). (14)

Note that for any H ∈ (0, 1
2 )∪( 12 , 1) this can be simplified, first by applying Euler’s reflection

�(z)�(1− z) = π
sin(π z) , z /∈ Z, and then the Legendre duplication formula �(z)�(z + 1

2 ) =
21−2z√π�(2z), z > 0, to see that

σ̃ 2(H) = π
− 1
2 21−2H�(H + 1

2 )�(1 − H). (15)

The next lemma will be used to show continuity of θ(MH ) for all H ∈ (0, 1
2 ) ∪ ( 12 , 1).

Lemma 3.1 The function σ̃ 2 as defined in Eq. (13) is strictly convex, attains its minimum in
H = 1

2 for the value σ̃ 2( 12 ) = 1 and exhibits the asymptotic behaviour

lim
H↑1 σ̃ 2(H) = ∞, lim

H↓0 σ̃ 2(H) = 2.

More precisely, σ̃ 2(H) ∼ (4(1 − H))−1 for H ↑ 1.
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Proof We get σ̃ 2( 12 ) = 1 by a simple evaluation of the function using �( 12 ) = √
π . From

the representation of σ̃ 2(H) in Eq. (15), we get limH↓0 σ̃ 2(H) = 2. Similarly, from Eq. (15)
we obtain that for H ↑ 1

σ̃ 2(H) ∼ π− 1
2 2−1�

(
3

2

)
�(2 − H)

1 − H
∼ π− 1

2 2−2�

(
1

2

)
�(1)

1 − H
= 1

4(1 − H)
.

Let us finally show strict convexity. In order to achive thiswe show that the derivative vanishes
only at H = 1

2 . Taking the logarithm of the expression Eq. (15), we get

log σ̃ 2(H) = − 1
2 log(π) + log(2)(1 − 2H) + log(�(H + 1

2 )) + log(�(1 − H)),

which is strictly convex by the Gamma function being strictly logarithmic convex. Investi-
gating the logarithmic derivative yields

∂H log σ̃ 2(H) = �′(H + 1
2 )

�(H + 1
2 )

− �′(1 − H)

�(1 − H)
− 2 log 2.

We evaluate this for H = 1
2 using the table in chapter 44 : 7 of the book [24] which lists

the values of the so-called Digamma function � defined by �(z) := �′(z)
�(z) . With Euler’s

constant γ , one finds the following values: �(1) = −γ and �( 12 ) = −γ − 2 log 2. Thus the
logarithmic derivative vanishes at H = 1

2 and since σ̃ 2( 12 ) > 0 holds, we can deduce

0 = ∂H log σ̃ 2(H)
∣∣
H= 1

2
= ∂H σ̃ 2(H)

σ̃ 2(H)

∣∣∣∣
H= 1

2

,

implying ∂H σ̃ 2(H)
∣∣
H= 1

2
= 0.

We also need an estimate for cH , which is provided in the next lemma.

Lemma 3.2 For H ∈ (0, 1
2 ) ∪ ( 12 , 1) and τ ≥ 0 the following inequality holds:

cH (τ ) ≤ 1
2e

−τH + e−τ(1−H).

Proof. We first see from the definition of cH that

2cH (τ ) = e−τH + eτH −
(
e

τ
2 − e− τ

2
)2H = e−τH + eτH

(
1 − (1 − e−τ )2H

)
.

For H > 1
2 , we use Bernoulli’s inequality (1− e−τ )2H ≥ 1− 2He−τ , while for H < 1

2 and
any x ∈ [0, 1] we have x2H ≥ x so that

1 − (1 − e−τ )2H ≤
{
1 − (1 − e−τ ) ≤ 2e−τ for H ∈ (0, 1

2 ),

1 − (1 − 2He−τ ) ≤ 2e−τ for H ∈ ( 12 , 1).

Then we get by reassembling

2cH (τ ) = e−τH + eτH
(
1 − (1 − e−τ )2H

)
≤ e−τH + 2e−τ(1−H).

Combining Lemmas 3.1 and 3.2 we obtain the following lemma, that will be used to show
the technical condition Eq. (5) as well as strict positivity of the persistence exponent in the
statement of Theorem 1.1.

Lemma 3.3 Fix H0 ∈ [0, 1
2 ) ∪ ( 12 , 1]. There exist �H0 ∈ (0, 1) and δH0 > 0 such that
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a) for any τ ≥ 0 and H ∈ (H0 − δH0 , H0 + δH0) ∩ ((0, 1
2 ) ∪ ( 12 , 1)):

gH (τ ) ≤ 4
�H0

e−τH(1−H);

b) for any function κ : (0, 1
2 ) ∪ ( 12 , 1) → R

+, τ ≥ 0, and L ∈ N:

lim sup
H→H0

∞∑
τ=L

gH

(
τ

κ(H)

)
≤ lim sup

H→H0

4κ(H)

�H0H(1 − H)
e
− (L−1)H(1−H)

κ(H) .

Proof. By Lemma 3.1 we can choose for each H0 ∈ [0, 1
2 )∪ ( 12 , 1] a δH0 > 0 such that there

exists 0 < �H0 < 1 with σ̃ 2(H) ≥ �H0 + 1 for any H ∈ (H0 − δH0 , H0 + δH0) ∩ ((0, 1
2 ) ∪

( 12 , 1)). Using this together with Lemma 3.2 and Eq. (14), we get

gH (τ ) ≤ σ̃ 2(H)

σ̃ 2(H) − 1
cH (τ ) ≤ 2

�H0

(
e−τH + e−τ(1−H)

)
≤ 4

�H0
e−τH(1−H).

From this we get

lim sup
H→H0

∞∑
τ=L

gH
(

τ
κ(H)

)
≤ lim sup

H→H0

∞∑
τ=L

4
�H0

e
− τH(1−H)

κ(H)

≤ lim sup
H→H0

4
�H0

∫ ∞

L−1
e
− τH(1−H)

κ(H) dτ

= lim sup
H→H0

4κ(H)
�H0 H(1−H)

e
− (L−1)H(1−H)

κ(H) .

The next lemma is used to show the technical condition Eq. (6).

Lemma 3.4 For H ∈ (0, 1
2 ) ∪ ( 12 , 1) and τ ≥ 0 the following inequality holds:

gH (τ ) ≥ e−τH . (16)

Proof. We first notice that for H ∈ (0, 1) and any u ≥ 0 the function

R
+
0 → R

+
0 , x 
→

∣∣∣∣uH− 1
2 − (x + u)

H− 1
2

∣∣∣∣ =
∣∣∣∣H − 1

2

∣∣∣∣ ·
∫ x

0
(z + u)H− 3

2 dz

is increasing and since the product K H
τ K H

0 is always positive we can estimate

K H
0 (u)K H

τ (u) =
∣∣∣K H

0 (u)

∣∣∣ e−τH
∣∣∣∣uH− 1

2 − (eτ + u)
H− 1

2

∣∣∣∣ ≥ e−τH K H
0 (u)2.

This implies for any τ ≥ 0

gH (τ ) =
(∫ ∞

0
K H
0 (u)2du

)−1 ∫ ∞

0
K H
0 (u)K H

τ (u)du ≥ e−τH .
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3.2 Continuity of�(MH) and Strict Positivity for H �= 1
2

Proof of strict positivity of θ(MH ) By Lemma 3.3 (a) we know that∫ ∞

0
gH (τ )dτ < ∞

for any H ∈ (0, 1
2 ) ∪ ( 12 , 1) and therefore, by Lemma 3.2 in [23], the persistence exponent

corresponding to the correlation function gH is strictly positive.

Proof of Theorem 1.2, part 1 of 3 We prove continuity of the function H 
→ θ(MH ) on
(0, 1

2 ) ∪ ( 12 , 1).
The goal is to apply Lemma 2.1 to the sequence of correlation functions AH (τ ) := gH (τ ) for
H → H0, where A∞(τ ) := gH0(τ ). Since the correlation functions gH (τ ) are continuous
in H for each point τ , we only have to verify the technical conditions of Lemma 2.1.
For any H0 ∈ (0, 1

2 ) ∪ ( 12 , 1) by Lemma 3.3 there exist �H0 > 0 and 0 < δH0 < min
(H0, 1 − H0) such that for any �, L ∈ N we get

sup
H∈(H0−δH0 ,H0+δH0 )

∞∑
τ=L

gH ( τ
�
) ≤ sup

H∈(H0−δH0 ,H0+δH0 )

4�
�H0 H(1−H)

e− (L−1)H(1−H)
� ,

which converges to zero for L → ∞, showing Eq. (5). Further, by Lemma 3.4,

log(ε)2 sup
H∈(H0−δH0 ,H0+δH0 ),τ∈[0,ε]

(1 − gH (τ )) ≤ log(ε)2
(
1 − e−ε(δH0+H0)

)

≤ (δH0 + H0) log(ε)
2ε, (17)

which converges to 0 for ε → 0 thus showing condition Eq. (6) for η = 2. To verify condition
Eq. (7) we use Lemma 3.3(a) to see that for τ > 1

log gH0(τ )

log τ
≤

log
(

4
�H0

)
log τ

− τH0(1 − H0)

log τ
,

which converges to −∞ for τ → ∞. Thus, the claim follows from Lemma 2.1.

4 Asymptotics of �(MH)

4.1 Asymptotics for H ↓ 0

The goal of this section is to prove Theorem 1.1(a). We start with a technical lemma.

Lemma 4.1 For H ∈ (0, 1
2 ) and τ > 0 the following inequality holds:

1 ≤ 2F1
(
1, 1

2 − H , 3
2 + H , e−τ

) ≤ �(H + 3
2 )

�( 32 − H)�(2H + 1)
(1 − e−τ )−1.

Proof. The first inequality follows from the series representation of the hypergeometric func-
tion, as all terms in the series are non-negative (because H < 1

2 ). For the second inequality
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we use the integral representation of the hypergeometric function (see e.g. equation 60:3:3
in [24]) and estimate

2F1
(
1, 1

2 − H , 3
2 + H , e−τ

) = �(H + 3
2 )

�( 12 − H)�(2H + 1)

∫ 1

0
t−H− 1

2 (1 − t)2H (1 − e−τ t)−1dt

≤ �(H + 3
2 )

�( 12 − H)�(2H + 1)

∫ 1

0
t−H− 1

2 (1 − e−τ )−1dt

= �(H + 3
2 )

�( 32 − H)�(2H + 1)
(1 − e−τ )−1.

We have collected all the necessary material to give the proof of Theorem 1.1(a).

Proof of Theorem 1.1(a) Our goal is to apply Lemma 2.1. Here we look at the sequence of
correlation functions AH (τ ) := gH ( τ

H ) for H ↓ 0. We are going to show that AH (τ ) →
A∞(τ ) := e−τ pointwise and that the technical conditions of Lemma 2.1 are satisfied. This
yields that the persistence exponents of the GSPs corresponding to AH converge to the
persistence exponent of the Ornstein-Uhlenbeck process, which equals 1 (as can be obtained
by direct computation, cf. [25], or by using the fact that the Ornstein-Uhlenbeck process is the
Lamperti transform of Brownian motion). Since gH is the correlation function of LMH , AH

is the correlation function of ((LMH )τ/H ) so that the persistence exponent corresponding to
AH equals θ(MH )/H , as the following computation shows:

lim
T→∞

1

T
logP

[
sup

τ∈[0,T ]
(LMH )τ/H

]

= lim
T→∞

1/H

T /H
logP

[
sup

τ∈[0,T /H ]
(LMH )τ

]
= θ(MH )/H . (18)

Let us therefore finish the proof with the verification of the application of Lemma 2.1:
Step 1: Pointwise convergence. By Lemma 4.1, for H ↓ 0,

1 ≤ 2F1
(
1, 1

2 − H , 3
2 + H , e− τ

H
)

≤ �(H + 3
2 )

�( 32 − H)�(2H + 1)
(1 − e− τ

H )−1 → 1,

from which we deduce that

rH ( τ
H ) = 4H

1+2H e− τ
2H 2F1

(
1, 1

2 − H , 3
2 + H , e− τ

H
)

→ 0.

Further, it is immediate that for H ↓ 0 one has 2cH ( τ
H ) → e−τ , which in combination with

the result σ̃ 2(H) → 2 for H ↓ 0 in Lemma 3.1 yields

gH ( τ
H ) = (σ̃ 2(H) − 1)−1(σ̃ 2(H)cH ( τ

H ) − rH ( τ
H )) → e−τ .

Step 2:Verification of the technical conditions of Lemma 2.1. First, condition Eq. (7) is easily
verified with A∞(τ ) = e−τ . By Lemma 3.3(b) we get for the choice κ(H) := �H for any
� ∈ N

lim sup
H↓0

∞∑
τ=L

gH ( τ
�H ) ≤ lim sup

H↓0
4�

�0(1 − H)
e− (L−1)(1−H)

� = 4�

�0
e− (L−1)

� ,

which converges to 0 for L → ∞, showing Eq. (5). Lastly, analagously to Eq. (17) above,
we can show Eq. (6) using Lemma 3.4.
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4.2 Asymptotics for H ↑ 1

Similarly to the last section, the goal of this section is to prove Theorem 1.1(b). Again, we
start with a technical lemma.

Lemma 4.2 There exists a δ > 0 such that for any H ∈ (1 − δ, 1) we have

1

4

H − 1
2

1 − H
≥ σ 2

H − 1

2H
. (19)

Proof Using Eq. (15), we can see that Eq. (19) is equivalent to

(H − 1)2 − 1

2
(H − 1) + 1

2
− 22(1−H)

√
π

�(2 − H)�

(
H + 1

2

)
≥ 0.

We claim that even

−1

2
(H − 1) + 1

2
− 22(1−H)

√
π

�(2 − H)�

(
H + 1

2

)
≥ 0

for H close to 1. We use the Taylor expansions:

22(1−H) = e(1−H)2 log(2) = 1 + (1 − H)2 log(2) + O((1 − H)2),

�(2 − H) = �(1) − �′(1)(H − 1) + O((1 − H)2)

= 1 + �′(1)(1 − H) + O((1 − H)2),

�

(
H + 1

2

)
= �

(
3

2

)
+ �′

(
3

2

)
(H − 1) + O((1 − H)2)

=
√

π

2
− �′

(
3

2

)
(1 − H) + O((1 − H)2).

Inserting this gives

−1

2
(H − 1) + 1

2
− 22(1−H)

√
π

�(2 − H)�

(
H + 1

2

)

= 1

2
(1 − H) + 1

2

− 1√
π

[
1 + (1 − H)2 log(2)

] [
1 + �′(1)(1 − H)

] [√
π

2
− �′

(
3

2

)
(1 − H)

]
+ O((1 − H)2)

= 1

2
(1 − H) + 1

2
− 1√

π

(√
π

2
− (1 − H)

(
�′

(
3

2

)
−

√
π

2
�′(1) −

√
π

2
2 log 2

))
+O((1 − H)2)

= (1 − H)

(
1

2
+ 1√

π
�′

(
3

2

)
− 1

2
�′(1) − log 2

)
+ O((1 − H)2)

= (1 − H)

(
3

2
− 2 log 2

)
+ O((1 − H)2). (20)

Here we used the tables of chapters 43:7 and 44:7 of [24] to calculate

�′
(
3

2

)
= �

(
3

2

)
�

(
3

2

)

=
√

π

2
(2 − γ − 2 log 2), �′(1) = �(1)�(1) = −γ.
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Since 3
2 − 2 log 2 > 0, the term in Eq. (20) has to be positive for H close to 1.

The following estimate gives a lower bound for gH (τ ), which is used to show convergence.

Lemma 4.3 There exists a δ > 0 such that for any H ∈ (1 − δ, 1) and τ ≥ 0

gH (τ ) ≥ e−τ(1−H).

Proof Let δ > 0 be the same as in Lemma 4.2 and fix H ∈ (1 − δ, 1).
Step 1:We start by showing that for any b ≥ 1∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − (1 + u)

H− 1
2

)
du ≥

(
b2H−1 − 1

) ∫ ∞

0
K H
0 (u)2du. (21)

The left hand side of Eq. (21) equals

(H − 1
2 )

∫ ∞

0
K H
0 (u)

∫ b

1
(x + u)

H− 3
2 dxdu

= (H − 1
2 )

∫ ∞

0

∫ b

1
K H
0 (u)(x + u)

H− 3
2 dxdu.

We further see the inequality (using H ≥ 1
2 ):

K H
0 (u) = (1 + u)

H− 1
2 − uH− 1

2 = (H − 1
2 )

∫ 1

0
(z + u)H− 3

2 dz

≥ (H − 1
2 )(1 + u)

H− 3
2 ≥ (H − 1

2 )(x + u)
H− 3

2 , (22)

for any x ≥ 1. By combining the two results, we obtain∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − (1 + u)

H− 1
2

)
du ≥ (H − 1

2 )
2
∫ ∞

0

∫ b

1
(x + u)2H−3dxdu.

The order of integration can then be exchanged by Tonelli’s Theorem and∫ b

1

∫ ∞

0
(x + u)2H−3dudx = 1

2 − 2H

∫ b

1
x2H−2dx = b2H−1 − 1

(2 − 2H)(2H − 1)
.

This yields the inequality∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − (1 + u)

H− 1
2

)
du ≥ (H − 1

2 )
2 b2H−1 − 1

(2 − 2H)(2H − 1)

= (b2H−1 − 1)
1

4

H − 1
2

1 − H

≥ (b2H−1 − 1)(σ 2
H − 1

2H )

=
(
b2H−1 − 1

) ∫ ∞

0
K H
0 (u)2du,

where we applied the estimate of Lemma 4.2 in the third step.
Step 2:We show that for any b ≥ 1

b1−2H
∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − uH− 1

2

)
du ≥

∫ ∞

0
K H
0 (u)2du. (23)
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Indeed, using Eq. (21) we obtain

b1−2H
∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − uH− 1

2

)
du

= b1−2H
∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − (1 + u)

H− 1
2 + (1 + u)

H− 1
2 − uH− 1

2

)
du

= b1−2H
(∫ ∞

0
K H
0 (u)

(
(b + u)

H− 1
2 − (1 + u)

H− 1
2

)
du +

∫ ∞

0
K H
0 (u)2du

)

≥ b1−2H
(

(b2H−1 − 1)
∫ ∞

0
K H
0 (u)2du +

∫ ∞

0
K H
0 (u)2du

)

=
∫ ∞

0
K H
0 (u)2du.

Step 3:We plug in the choice b = eτ into Eq. (23) and obtain:

gH (τ ) =
(∫ ∞

0
K H
0 (u)2du

)−1

e−τH
∫ ∞

0
K H
0 (u)

(
(eτ + u)

H− 1
2 − uH− 1

2

)
du

=
(∫ ∞

0
K H
0 (u)2du

)−1

e−τ(1−H)eτ(1−2H)

∫ ∞

0
K H
0 (u)

(
(eτ + u)

H− 1
2 − uH− 1

2

)
du

≥ e−τ(1−H).

We have collected all the necessary material to give the proof of Theorem 1.1(b).

Proof of Theorem 1.1(b) Our goal is to apply Lemma 2.1. This timewe look at the sequence of

correlation functions AH (τ ) := gH
(

τ
1−H

)
for H ↑ 1. We are going to show that AH (τ ) →

A∞(τ ) := e−τ pointwise and that the technical conditions of Lemma 2.1 are satisfied. This
yields that the sequence of persistence exponents of the GSPs corresponding to AH , which
are given by θ(MH )/(1− H) (the proof of which is analogous to Eq. (18)), converge to the
persistence exponent of the Ornstein-Uhlenbeck process, which equals 1.
Step 1: Pointwise convergence.We use Lemma 4.3 (for H close to 1), the fact that rH (τ ) ≥ 0,
and Lemma 3.2 to see that

e−τ ≤ gH

(
τ

1 − H

)
≤ σ̃ 2

H

σ̃ 2
H − 1

cH

(
τ

1 − H

)
≤ σ̃ 2

H

σ̃ 2
H − 1

(
1
2e

− τ
1−H + e−τ

)
.

Letting H ↑ 1 and recalling Lemma 3.1 to see that
σ̃ 2
H

σ̃ 2
H−1

→ 1, we obtain that indeed

gH
(

τ
1−H

)
→ e−τ .

Step 2: Verification of the technical conditions of Lemma 2.1. By Lemma 3.3(b) there exists
a �1 > 0 such that for the choice of κ(H) = �(1 − H) for arbitrary � ∈ N we get

lim sup
H↑1

∞∑
τ=L

gH ( τ
�(1−H)

) ≤ lim sup
H↑1

2�

�1H
e− (L−1)H

� = 2�

�1
e− L−1

� ,

which converges to zero for L → ∞, showing Eq. (5). Using Lemma 4.3, Eq. (6) is straight-
forward. Condition Eq. (7) is easily verified as A∞(τ ) = e−τ .
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5 Proofs for the Case H → 1/2

5.1 Pointwise Limit of the Correlation Functions

The goal of this subsection is to obtain the pointwise limit of the correlation function of
LMH , i.e. of gH defined in Lemma 2.2, when H → 1

2 .

Lemma 5.1 For any τ ≥ 0 we have:

lim
H→ 1

2

gH (τ ) = 3

π2 e− τ
2

∫ ∞

0
log(1 + 1

u ) log(1 + eτ

u )du =: g∗, 12
(τ ).

We postpone the proof of this lemma and start with a technical result concerning properties

of the functions K H
τ (u) = e−τH

(
(eτ + u)

H− 1
2 − uH− 1

2

)
. These functions appear in the

representation of gH , cf. Eq. (8), and we shall employ l’Hôspital’s rule in the course of the
proof of Lemma 5.1 which will require some technical preparation.
As a simplification of the proof of the next lemma, we note that for any τ ≥ 0, H ∈
(0, 1

2 ) ∪ ( 12 , 1) and u ∈ R
+ we have

K H
τ (u) = e− τ

2 K H
0

( u

eτ

)
. (24)

Lemma 5.2 Fix τ ≥ 0 and H ∈ ( 14 ,
1
2 ) ∪ ( 12 ,

3
4 ). There exists fτ ∈ L1(R+, du) such that:

(a) For any k ∈ {0, 1, 2} and u > 0 the derivatives ∂kH K H
τ (u) exist and for k = 1 exhibit the

limiting behaviour

lim
H→ 1

2

∂H K H
τ (u) = e− τ

2 log

(
1 + eτ

u

)
.

(b) A representative of fτ can be chosen to fulfill the inequality

|∂kH (K H
τ K H

0 )(u)| ≤ fτ (u) for almost every u ≥ 0.

(c) For any � ∈ N there exists an L ∈ N with

∞∑
τ=L

∫ ∞

0
fτ/�(u)du < ∞. (25)

Proof. Part (a). Given Eq. (24) we can focus on τ = 0. Observe that

∂H K H
0 (u) = log(1 + u)(1 + u)

H− 1
2 − log(u)uH− 1

2

= log(1 + u−1)(1 + u)
H− 1

2 + log(u)K H
0 (u)

∂2H K H
0 (u) = log(1 + u)2(1 + u)

H− 1
2 − log(u)2uH− 1

2

= log(1 + u−1) log(u(1 + u))(1 + u)
H− 1

2 + log(u)2K H
0 (u). (26)

From Eqs. (26) and (24), part (a) follows directly.
Part (b). We divide this into the cases u ∈ (0, 1] and u ∈ (1,∞).
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The case u ∈ (0, 1]: We start by estimating (1 + u)
H− 1

2 ≤ 2 and since H ∈ ( 14 ,
3
4 ),

|K H
0 (u)| ≤ (1 + u)

H− 1
2 + uH− 1

2 ≤ 3u− 1
4 . (27)

Using Eq. (27) and the same arguments of its deduction again, it can be seen by applying the
estimate log

(
1 + u−1

) ≤ log
( 2
u

) ≤ 1 + |log(u)| that

|∂H K H
0 (u)| ≤ log(1 + u−1)(1 + u)

H− 1
2 + |log(u)K H

0 (u)|
≤ 2(1 + |log(u)|) + 3|log(u)|u− 1

4

≤ 5(1+| log(u)|)2u− 1
4 . (28)

Similarly, we deduce

|∂2H K H
0 (u)| ≤ log(1 + u−1)|log(u(1 + u))|(1 + u)

H− 1
2 + log(u)2|K H

0 (u)|
≤ 2(1 + |log(u)|)2 + 3 log(u)2u− 1

4

≤ 5(1 + |log(u)|)2u− 1
4 . (29)

The case u ∈ (1,∞): Observe that (using H ∈ ( 14 ,
3
4 ))

|K H
0 (u)| =

∣∣∣∣
∫ 1

0

(
H − 1

2

)
(z + u)H− 3

2 dz

∣∣∣∣ ≤ |H − 1
2 | · uH− 3

2 ≤ 2u− 3
4 . (30)

For the first derivative we see by the inequalities

(1 + u)
H− 1

2 ≤ (1 + u)
1
4 ≤ 2u

1
4 (31)

and log(1 + u−1) ≤ u−1 that with Eq. (30) we can make the estimation

|∂H K H
0 (u)| ≤ log(1 + u−1)(1 + u)

H− 1
2 + |log(u)K H

0 (u)|
≤ 2u

1
4 log(1 + u−1) + 2|log(u)|u− 3

4

≤ 2(1 + log(u))u− 3
4 . (32)

Finishing with the estimate on the second derivative, by Eqs. (30, 31) and

log(u(1 + u)) ≤ log(2u2) ≤ 2(1 + log(u)),

we get (using again log(1 + u−1) ≤ u−1):

|∂2H K H
0 (u)| ≤ log(1 + u−1) log(u(1 + u))(1 + u)

H− 1
2 + |log(u)2K H

0 (u)|
≤ 4(1 + log(u))u− 3

4 + 2 log(u)2u− 3
4

≤ 6(1 + log u)2u− 3
4 . (33)

Putting Eqs. (27, 28, 29) for u ∈ (0, 1] and Eqs. (30, 32, 33) for u ∈ (1,∞) shows that

sup
k∈{0,1,2}

|∂kH K H
0 (u)|

≤ 23(1 + |log(u)|)2
(
1(0,1](u)u− 1

4 + 1(1,∞)(u)u− 3
4

)
=: f (u).
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By Eq. (24), we can extend this estimate to

|∂kH (K H
τ K H

0 )(u)| ≤ 2k f (u)e− τ
2 f

( u

eτ

)
,

which holds for k ∈ {0, 1, 2}. By further estimating the expression on the right hand side, we
arrive at the following estimate:

2k f (u)e− τ
2 f

( u

eτ

)
≤ 28(1 + τ + |log(u)|)4

(
1(0,1](u)u− 1

2 e− τ
4 + 1(1,eτ ](u)u−1e− τ

4 + 1(eτ ,∞)(u)u− 3
2 e

τ
4

)
=: fτ (u).

This function is clearly u-integrable for any τ ≥ 0.
Proof of (c).We first want to change from the summation depending on � and L to an integral
estimate that is independent of the latter. To achieve this we use the fact that for any � ∈ N

we can find an L ∈ N such that the function (L − 1,∞) → R
+
0 , τ 
→ f τ

�
(u) is monotone

for any u ≥ 0. Therefore by Tonelli’s Theorem,

∞∑
τ=L

∫ ∞

0
f τ

�
(u)du ≤

∫ ∞

0

∫ ∞

L−1
f τ

�
(u)dτdu

≤ �

∫ ∞

0

∫ ∞

0
fτ (u)dudτ.

Integrating the three different u-ranges in the definition of fτ , one ends up with the following
expressions, respectively, which are each clearly τ integrable:

4∑
k=0

(
4

k

)
e− τ

4 (1 + τ)k
∫ 1

0
|log(u)|4−ku− 1

2 du,

4∑
k=0

(
4

k

)
e− τ

4 (1 + τ)k
∫ eτ

1
|log(u)|4−ku−1du,

4∑
k=0

(
4

k

)
e

τ
4 (1 + τ)k

∫ ∞

eτ

|log(u)|4−ku− 3
2 du.

Prepared with these technical facts, we can now determine the limit of the correlation func-
tions gH when H → 1

2 .

Proof of Lemma 5.1 As the function H 
→ K H
τ (u) is continuous on ( 14 ,

3
4 ) for any τ ≥ 0 and

any u > 0, we have

lim
H→ 1

2

K H
τ (u) = 0. (34)

By Lemma 5.2(b) and dominated convergence this implies that for any τ ≥ 0

lim
H→ 1

2

∫ ∞

0
K H
0 (u)K H

τ (u)du = 0.
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This allows us to apply the l’Hôspital rule on the representation Eqs.(9) and (10) as follows

lim
H→ 1

2

gH (τ ) = lim
H→ 1

2

(∫ ∞

0
K H
0 (u)2 du

)−1 ∫ ∞

0
K H
0 (u)K H

τ (u)du

= lim
H→ 1

2

(
∂H

∫ ∞

0
K H
0 (u)2 du

)−1

∂H

∫ ∞

0
K H
0 (u)K H

τ (u)du. (35)

Since ∂H (K H
0 (u)K H

τ (u)) has an integrablemajorant (cf. Lemma 5.2(b), we can exchange the
order of differentiation, integration as well as the limit in H by the dominated convergence
theorem. By applying Eq. (34) in the last step we see that

lim
H→ 1

2

∂H

∫ ∞

0
K H
0 (u)K H

τ (u)du =
∫ ∞

0
lim
H→ 1

2

∂H (K H
0 (u)K H

τ (u))du

=
∫ ∞

0
lim
H→ 1

2

∂H K H
0 (u)K H

τ (u) + K H
0 (u)∂H K H

τ (u)du

= 0.

We thus need to apply l’Hôspital’s rule again, which yields in continuation of Eq. (35):

lim
H→ 1

2

gH (τ ) = lim
H→ 1

2

(
∂2H

∫ ∞

0
K H
0 (u)2 du

)−1

∂2H

∫ ∞

0
K H
0 (u)K H

τ (u)du.

Analogously to the arguments above, we obtain using part a) that

lim
H→ 1

2

∂2H

∫ ∞

0
K H
0 (u)K H

τ (u)du =
∫ ∞

0
lim
H→ 1

2

∂2H (K H
0 (u)K H

τ (u))du

=
∫ ∞

0
lim
H→ 1

2

2∑
k=0

(
2

k

)
∂kH K H

0 (u)∂2−k
H K H

τ (u)du

= 2
∫ ∞

0
lim
H→ 1

2

∂H K H
0 (u)∂H K H

τ (u)du

= 2e− τ
2

∫ ∞

0
log

(
1 + 1

u

)
log

(
1 + eτ

u

)
du.

For the latter integral at τ = 0 it is known that∫ ∞

0
log(1 + 1

u )2du = π2

3
,

which gives the normalization constant as well as the fact that the integral is finite and thus
finishes the proof of the lemma.

5.2 Extending the Continuity of H �→ �(MH) to H = 1
2

Since we have seen that the function mapping H ∈ (0, 1
2 ) ∪ ( 12 , 1) for any τ ≥ 0 to gH (τ )

can be continuously extended to H = 1
2 , we can utilise this in combination with Lemma 2.1

similarly to the previous sections to showexistence of a continuous extensionofH 
→ θ(MH )
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to H = 1
2 . In preparation of showing the technical conditions of Lemma 2.1, we state the

following lemma.

Lemma 5.3 There exists C > 0 such that for any τ > 0

g∗,
1
2
(τ ) ≤ Ce− τ

6 .

Proof. We first note that for any δ ∈ [0, 1) and n ≥ 1 the following integral is finite∫ ∞

0
log(1 + 1

u )δ+ndu < ∞.

Then we can apply Young’s inequality a · b ≤ p−1a p + q−1bq with p = 3/2 and q = 3 to
see

π2

3
g∗, 12

(τ ) =
∫ ∞

0
e− τ

9 log(1 + 1
u ) · e− 7

9
τ
2 log(1 + eτ

u )du

≤ 2

3
e− τ

6

∫ ∞

0
log

(
1 + 1

u

) 3
2

du + 1

3
e− 7

6 τ

∫ ∞

0
log

(
1 + eτ

u

)3

du

≤ e− τ
6

(∫ ∞

0
log

(
1 + 1

u

) 3
2

du +
∫ ∞

0
log

(
1 + 1

v

)3

dv

)
.

Proof of Theorem 1.2, part 2 of 3 The goal is to use Lemma 2.1, where we consider AH (τ ) :=
gH (τ ), let H → 1

2 , and have A∞(τ ) = g∗, 12
(τ ). The pointwise convergence follows from

the definition of g∗, 12
in Lemma 5.1. It thus remains to verify the technical conditions of

Lemma 2.1.
We start with condition Eq. (5). Analogous to the proof of Lemma 5.1 we use part c) of
Lemma 5.2 to legitimise the multiple exchanges in the order of limits and integration in the
next computation: In particular using l’Hôspital’s rule, we obtain

lim
H→ 1

2

∞∑
τ=L

gH ( τ
�
) = lim

H→ 1
2

(∫ ∞

0
K H
0 (u)2 du

)−1 ∞∑
τ=L

∫ ∞

0
K H
0 (u)K H

τ
�

(u)du

= lim
H→ 1

2

(
∂2H

∫ ∞

0
K H
0 (u)2 du

)−1

∂2H

∞∑
τ=L

∫ ∞

0
K H
0 (u)K H

τ
�

(u)du

=
⎛
⎝∫ ∞

0
lim
H→ 1

2

∂2H K H
0 (u)2 du

⎞
⎠

−1 ∞∑
τ=L

∫ ∞

0
lim
H→ 1

2

∂2H K H
0 (u)K H

τ
�

(u)du

=
∞∑

τ=L

g∗, 12
( τ

�
).

We then go on to use Lemma 5.3 to see that for any � ∈ N

0 ≤ lim
L→∞ lim

H→ 1
2

∞∑
τ=L

gH ( τ
�
) = lim

L→∞

∞∑
τ=L

g∗,
1
2
( τ

�
) ≤ lim

L→∞

∞∑
τ=L

Ce− τ
6 = 0,

so that we have verified Eq. (5). Condition Eq. (6) is easily verified, as Lemma 3.4 implies
that for any H ∈ (0, 1) and any τ ≥ 0 also gH (τ ) ≥ e−τ , which gives immediately Eq.
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(6). Finally, Lemma 5.3 implies that the estimate g∗,
1
2
(τ ) ≤ Ce− τ

6 holds. This immediately

gives condition Eq. (7).

Lemma 5.4 The correlation function of the GSP

(LM∗, 12 )τ := 1√
VM∗,1/2

1

e−τ/2M
∗, 12
eτ ,

with M∗, 12 defined in Eq. (3), is g∗, 12
. The persistence exponents ofLM∗, 12 and M∗, 12 coincide.

More precisely,

θ(M∗, 12 ) := lim
T→∞

1

log T
logP

[
sup

t∈[0,T ]
M

∗, 12
t ≤ 1

]
= lim

T→∞
1

T
logP

[
sup

t∈[0,T ]
(LM∗, 12 )τ ≤ 0

]
.

Proof This follows from Corollary 2.3 once we have checked its conditions. Firstly, we

note that M∗, 12 is a continuous, 1
2 -self-similar, Gaussian process. Secondly, M∗, 12 satisfies

Eq. (11), as can be seen by exactly the same computations that one finds in the proof of

Lemma 2.4. Thirdly, one has to check that there is a function φ in the RKHS of M∗, 12 with
φ(t) ≥ 1 for all t ≥ 1. Such a function is given by

φ(t) :=
(∫ ∞

0
log

(
1 + 1

u

)2

du

)−1 ∫ ∞

0
log

(
1 + t

u

)
log

(
1 + 1

u

)
du,

and φ(t) ≥ 1 for all t ≥ 1 can be checked by the exact same steps as in Eq. (12).

We can now prove that that the persistence exponent LM∗, 12 (which is the same as the one

of M∗, 12 according to the last lemma) does not vanish. Therefore, the (continuous extension
of the) function H 
→ θ(MH ) does not vanish at H = 1

2 . This is somehow surprising as the
initial process MH does vanish at H = 1

2 .

Proof of Theorem 1.2, part 3 of 3 We prove strict positivity of the persistence exponent

θ(M∗, 12 ) = lim
H→ 1

2
θ(MH ), the latter equality holding according to the second part of

the proof. By Lemma 5.3 we know that
∫ ∞
0 g∗,

1
2
(τ )dτ < ∞ and therefore, by Lemma 3.2

in [23], the persistence exponent corresponding to the correlation function g∗, 12
is strictly

positive.
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