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Abstract
Macroscopic equations arising out of stochastic particle systems in detailed balance (called
dissipative systems or gradient flows) have a natural variational structure, which can be
derived from the large-deviation rate functional for the density of the particle system. While
large deviations can be studied in considerable generality, these variational structures are
often restricted to systems in detailed balance. Using insights from macroscopic fluctuation
theory, in this work we aim to generalise this variational connection beyond dissipative
systems by augmenting densities with fluxes, which encode non-dissipative effects. Ourmain
contribution is an abstract theory, which for a given flux-density cost and a quasipotential,
provides a decomposition into dissipative and non-dissipative components and a generalised
orthogonality relation between them. We then apply this abstract theory to various stochastic
particle systems—independent copies of jump processes, zero-range processes, chemical-
reaction networks in complex balance and lattice-gas models—without assuming detailed
balance. For macroscopic equations arising out of these particle systems, we derive new
variational formulations that generalise the classical gradient-flow formulation.

1 Introduction

When studying an evolution equation, it is often helpful to know if it has an associated
variational structure, in order to obtain physical insight and tools for mathematical analysis.
An important example of such a structure is a gradient flow or dissipative system; in this case
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the structure consists of an energy functional and a dissipation mechanism, and the evolution
equation is completely characterised by a corresponding minimisation problem involving
these two objects. From a thermodynamic point of view, such a variational structure is often
related to random fluctuations of an underlying microscopic particle system via a large-
deviation principle — examples include the Boltzmann–Gibbs–Helmholtz free energy and
the Onsager–Machlup theory.

It has recently become clear that macroscopic equations are always dissipative (called
gradient flows) if the underlying microscopic stochastic system is in detailed balance.1 The
energy functional and the dissipation mechanism for such macroscopic equations are then
uniquely derived by an appropriate decomposition of the large-deviation rate functional
associated to the microscopic systems [1–4]. These observations have provided a canonical
approach to constructing a variational structure for such macroscopic equations. In addition
to having a clear physical interpretation, these variational structures have been used to isolate
interesting features of the macroscopic equations and study singular-limit problems arising
therein.

So far, this approach has largely been limited to particle systems in detailed balance and
corresponding macroscopic dissipative systems. Since a large deviation study is possible far
beyond detailed balance, this leads to the following natural question.

Do the large deviations of the underlying particle systems provide a variational structure
beyond detailed balance?

While this is a hard question to answer in general, considerable progress has been made
in the case of some specific systems in two seemingly independent directions.

One direction that is tailored to allow for non-dissipative effects is the study of so-called
FIR inequalities, first introduced for the many-particle limit of Vlasov-type nonlinear dif-
fusions [5], independent particles on a graph [6] and chemical reactions [7, Sec. 5]. These
inequalities bound the free-energy difference and Fisher information by the large-deviation
rate functional, providing a useful tool to study singular-limit problems and to derive error
estimates [8, 9]. Strictly speaking, these inequalities are not variational structures in the
sense that they do not fully determine the macroscopic dynamics. However, in this paper
we will construct a variational structure which generalises these inequalities and completely
characterises the macroscopic dynamics.

Another direction of generalising dissipative systems is by usingMacroscopic Fluctuation
Theory (MFT) [10]. The main idea here is to consider, in addition to the usual density of
the particle system, the particle fluxes at the microscopic level, and to study the large devia-
tions of these fluxes. Consequently using time-reversal arguments, MFT explicitly captures
the dissipative and non-dissipative effects in the system. However, most MFT literature has
been devoted to diffusive scaling of particle systems and corresponding quadratic rate func-
tions. Such rate functions define a Hilbert space with a natural orthogonal decomposition
into dissipative and non-dissipative components. Recently non-quadratic rate functions and
connections to MFT have been explored in the case of independent particles on a graph [11]
and chemical reaction networks [7], but a general MFT for non-quadratic rate functions is
largely open.

Spurred on by these exciting new developments, we provide a partial but affirmative
answer to the question posed above. The basis of our analysis is an abstract action functional

1 In this paper we often use the terminology of dissipative systems interchangeably with gradient flows since
in non-equilibrium systems the gradient-flow part arises purely due to dissipative effects characterised by the
symmetric forces discussed below.
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(ρ, j) �→ ∫ T
0 L(ρ(t), j(t)) dt . This functional will correspond to the large deviations of

random particle systems, but this identification is not necessary for our analysis; in this sense
our approach is purely macroscopic. Inspired by FIR-inequalities and MFT, we set up an
abstract theory whose central outcome will be a series of decompositions of the integrand L
into distinct dissipative and non-dissipative components. These decompositions generalise:
(1) the connection between large deviations and dissipative systems from [3] to include non-
dissipative effects, (2) the known cases of FIR inequalities [6] to a general setting, and (3)
MFT to non-quadratic action functions.

Finally we apply this abstract theory to the density-flux large-deviation rate functional
for various stochastic particle systems without assuming detailed balance, and derive new
variational formulations for the corresponding macroscopic equations.

1.1 Summary of Results

Abstract results. Consider the macroscopic densities and fluxes [0, T ] � t �→ (ρ(t), j(t))
that are evolving according to a coupled system of evolution equations of the form

ρ̇(t) = − div j(t), (1.1a)

j(t) = j0(ρ(t)). (1.1b)

Here “div” will often denote the usual continuous or discrete divergence. In the abstract
content of this paper we replace div by a more general operator, but to keep the presentation
short and intuitive, we simply write div throughout this introduction. The j0 is a given
operator mapping densities to fluxes, and is called the zero-cost flux for the following reason.
In addition to the evolution (1.1) we are given an action functional

(ρ, j) �→
∫ T

0
L(ρ(t), j(t)) dt, (1.2)

where the non-negative cost function L has the crucial property that for any (ρ, j),

j = j0(ρ) ⇐⇒ L(ρ, j
) = 0,

and hence the action (1.2) is minimised by the trajectory (1.1b). Typically, the first equa-
tion (1.1a) is a continuity equation, the coupled equations (1.1) describe the macroscopic
dynamics arising from a microscopic stochastic particle system and (1.2) is the correspond-
ing large-deviation rate functional.

Although writing the flux explicitly in (1.1b) instead of directly studying ρ̇(t) =
− div j0(ρ(t))might seem superfluous at first sight, it is motivated by the fact that fluxes can
encode information on non-dissipative, for instance divergence-free, effects in the system.
Consequently, while studying densities is usually sufficient for dissipative systems [3, 12–
15] (see Sect. 1.2 below for more details), the inclusion of fluxes is better suited to describe
non-dissipative effects at the macroscopic level [10, 16].

Our abstract theory requires the existence of three objects: a sufficiently regular density-
flux cost functionL(ρ, j), an operator that will play the role of divergence and as such defines
the continuity equation (1.1a) and a non-negative quasipotential V associated to L. The basis
of our approach will be the decomposition

L(ρ, j) = �(ρ, j)+�∗(ρ, F(ρ))− 〈F(ρ), j〉, (1.3)

where F(ρ) := −d jL(ρ, 0) is called the driving force and � and its convex dual �∗ the
dissipation potentials, see Theorem 2.9 for details. This decomposition is standard in the
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literature [3, 11, 16] and corresponds to a (possibly nonlinear) force-flux response relation
j = dζ �

∗(ρ, F(ρ)) for the zero-cost dynamics; it includes gradient flows as a special case
as discussed in Sect. 1.2.1.

Borrowing ideas from MFT, we uniquely decompose this driving force into a symmetric
and antisymmetric part

F(ρ) = F sym(ρ)+ Fasym(ρ).

On a macroscopic level, these notions of (anti)symmetry (defined in Sect. 2.3) are consistent
with the time-reversal symmetry of Markov processes in the context of MFT and large
deviations. In particular, if the microscopic system is in detailed balance, then F(ρ) =
F sym(ρ) and the (macroscopic) dynamics is purely dissipative, i.e. described by a gradient
flow driven by a quasipotential V [3]. It turns out that even for systems that are not in detailed
balance, the symmetric force F sym always relates to such a V , which can be defined in terms
of the cost L (see Definition 2.6) and is a natural Lyapunov functional for the system. In
particular, the symmetric part F sym(ρ) is a conservative force driven by the quasipotential
(energy) V .

More generally, from a physical point of view, a purely dissipative system is thermo-
dynamically closed, so that the work done is related to the free energy or quasipotential
via

∫ T

0

〈
F sym(ρ(t)), j(t)

〉
dt = − 1

2
V(ρ(T ))+ 1

2
V(ρ(0)), (1.4)

or formulated locally in time for the power

〈
F sym(ρ(t)), j(t)

〉 = − 1

2

d

dt
V(ρ(t)). (1.5)

Thus for non-closed systems one can think of F sym(ρ) as an internally generated force and
the remainder, Fasym(ρ), as the force exerted by the system upon the environment. While

〈
Fasym(ρ(t)), j(t)

〉
and

〈
F(ρ(t)), j(t)

〉
(1.6)

can be understood as expressions of power or rates of work, in general there is no reason to
expect these to be exact differentials.

In our main result, Theorem 2.29, we relate the cost function L to the three powers from
(1.5) and (1.6). The crucial concept here will be the tilted cost LG(ρ, j); these are modified
versions of L where the driving force F(ρ) is replaced by a different covector field G(ρ),
see Definition 2.14. Consequently, the zero-cost flux of LG will be a modified dynamics,
different from (1.1b). We shall use these to derive the following three dempositions of L, for
any λ ∈ [0, 1]

L(ρ, j) = L(1−2λ)F (ρ, j)+Rλ
F (ρ)− 2λ〈F(ρ), j〉,

with Rλ
F (ρ) ≥ 0, (1.7a)

L(ρ, j) = LF−2λFsym (ρ, j)+Rλ
Fsym (ρ)− 2λ〈F sym(ρ), j〉,

with Rλ
Fsym (ρ) ≥ 0, (1.7b)

L(ρ, j) = LF−2λFasym (ρ, j)+Rλ
Fasym (ρ)− 2λ〈Fasym(ρ), j〉,

with Rλ
Fasym (ρ) ≥ 0. (1.7c)

The parameter λ can be used to switch between different forces. Of particular interest is the
case λ = 1

2 , where the decompositions (1.7b) and (1.7c) can be seen as two different ways to
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Fig. 1 Consider the setting of independent and irreducible Markov jump particles on a three-point state
space with generator Q := [[−3, 2, 1], [1,−3, 2], [2, 1,−3)]] and invariant measure π = ( 13 , 1

3 , 1
3 ). Phase

portrait for the (zero-cost) trajectories ρ(t) associated to a L(ρ(t), j(t)) = 0; b LFsym (ρ(t), j(t)) = 0; c
LFasym (ρ(t), j(t)) = 0. Here ρi is the mass at point i and we do not plot ρ3 since

∑
i ρi = 1. The zero-cost

trajectories for LFsym and LFasym follow a purely dissipative and Hamiltonian dynamics respectively

split L into purely dissipative and purely non-dissipative components. Indeed, the modified
cost LFsym is related to a purely dissipative system that can be formalised as a gradient
flow (see Sect. 1.2.1). By contrast, we interpret the zero-cost flux of LFasym as purely non-
dissipative. Although the variational structure and physical interpretation of LFasym remains
an open question (see discussion in Sect. 6), we show for certain examples that its zero-cost
behaviour corresponds to a purely Hamiltonian macroscopic evolution. This idea is clearly
illustrated by Fig. 1, where we plot the phase diagram for the zero-cost flux associated with
LF , LFsym and LFasym in the case of independent Markov jump particles on a three-point
state space. For details on this example see Sects. 2.6 and 4.

The middle terms in the right hand side of (1.7) are inspired by [6, Def. 1.5], [7, Sec. 5],
and are called generalised Fisher informations. For λ ∈ [0, 1] and covector fields G =
F, F sym, Fasym, they are defined as

Rλ
G(ρ) := −H(ρ,−2λG(ρ)

)
, (1.8)

where H is the convex dual of L. The terminology is motivated by the fact that (see Propo-
sition 2.18)

lim
λ→0

1

λ
Rλ

G(ρ) = 〈G(ρ), j0(ρ)〉,

which in the case G = F sym is the time derivative or dissipation rate of the quasipotential
along the zero-cost path, i.e. in the limit λ → 0, Rλ

Fsym coincides with the classical Fisher
information [6]. The non-negativity of the generalisedFisher informations in (1.7) is essential,
since it shows that the three powers in (1.5) and (1.6) are non-negative along the zero-cost
flux, thus generalising the second law of thermodynamics.
Scope. To highlight the minimal underlying structure required to obtain the decomposi-
tions (1.7), analysis will be carried out in a general abstract setting.

This implies that our results can be applied to a broad range of models: the cost function
L does not need to be associated to large deviations, (ρ, j) do not need to refer to actual
densities and fluxes, and we will replace the div-operator by a general operator φ with
minimal assumptions, see Definition 2.3. In theory, after properly setting up the spaces, the
only requirements of analysis will be the cost function L together with a continuity equation,
which need not necessarily be of divergence-type. However for specific applications, explicit
calculations are restricted to cost functions L for which the associated quasipotential V is
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known. For the purpose of this paper, we define the quasipotential in terms of a Hamilton-
Jacobi-Bellman equation (Definition 2.6), and solve it for a number of examples. For cost
functions that are derived from large deviations, this definition coincides with the large-
deviation rate functional of the invariant measure (see Theorem 3.7). However we reiterate
that the abstract definition is purely macroscopic and does not require connections to large
deviations.
Application. All three decompositions (1.7) are power balances, split into purely dissipative
and purely non-dissipative powers in a physically consistent way. From a mathematical per-
spective, this generalises ideas from dissipative systems to a larger class of systems which
include non-dissipative effects. For dissipative systems (Fasym(ρ) ≡ 0) these decompositions
coincide with the variational formulation of a gradient flow (see Sect. 1.2.1). However, our
abstract theory only requires a suitably convex costL and quasipotentialV for the decomposi-
tions (and therefore the corresponding variational ideas) to hold. Lyapunov functions, Fisher
informations and dissipation potentials are central ingredients in gradient-flow theory and
often difficult to discern in non-dissipative systems (for instance the laws of non-reversible
Markov processes). This work provides explicit formulae for these objects in terms of the
cost and the quasipotential.

For the zero-cost dynamics (1.1), our results imply that the three powers 〈F, j〉, 〈Fasym, j〉
and 〈Fasym, j〉 are always non-positive, and in particular thatV is a Lyapunov functional with
an explicit expression for its decay (rather than merely an upper bound).

By contrast, the decay (1.4) of the quasipotential V is bounded by a FIR inequality, which
connect the cost to the quasipotential and Fisher information. These inequalities are crucial
in studying singular limits in non-dissipative systems, for instance to prove compactness
of densities and fluxes in suitable topologies. However they are only available in a limited
setting. It turns out that since themodified cost functionsLG in (1.7) are non-negative, the FIR
inequalities naturally arise from these decompositions and therefore we provide a universal
recipe to arrive at such inequalities. In fact, the decompositions (1.7) explicitly characterise
the gap in the FIR inequalities. For more details see Sect. 1.2.3.

The aforementioned gap in the inequalities corresponds to the LG on the right-hand
side of (1.7). This new term exactly characterises the effects of non-dissipative effects in
the variational structure and the corresponding macroscopic evolution. This is especially
revealing for jump processes where we find that purely non-dissipative systems (F sym(ρ) ≡
0) correspond to Hamiltonian-type structures.

From a physical standpoint, the decompositions (1.7) can be interpreted as a novel com-
bination of gradient flows and Hamiltonian systems, in a similar spirit to GENERIC (see
Sect. 1.2.2). However, we stress that all of our examples – apart from the lattice gas model –
cannot be cast into the GENERIC framework. This work also provides a framework to study
physically relevant ‘open-boundary’ jump-process systems (see a recent application in [17]).

Finally these decompositions also have numerical implications since numerical schemes
inspired by gradient-flow structures of evolution equations have gained importance [18]
in recent years. Numerical schemes often add artificial non-reversibility to speed-up con-
vergence to equilibrium, but their analysis is tricky except in special situations [19]. The
decompositions (1.7) explicitly characterise the role of Fisher informations and antisymmet-
ric forces and a natural goal would be to optimise this force to speed up convergence.
Examples.Abovewe discussed the abstract framework and theory derived from it; this theory
is purely macroscopic in that we do not require any connection to particle systems and large
deviations. In the latter part of this paper we apply this abstract theory to several microscopic
particle systems.
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First, we focus on independent Markov jump particles on a finite graph as a guiding
example throughout this paper, and generalise the results of [11]. Second, we study zero-
range processes in a scaling which leads to an ordinary differential equation (ODE) in the
limit. Third, we study chemical reaction networks in complex balance [20] and generalise the
results in [7]. In all these three examples the macroscopic dynamics are ODEs and the large-
deviation principle yields an exponential rate functional. Finally, we focus on the setting of
particles that hop on a lattice in a diffusive limit, which leads to a drift-diffusion equation
as the macroscopic evolution. These particles can either be independent random walkers or
interact via exclusion. In this setting, the large-deviation principle yields a quadratic rate
functional, and we recover the classical MFT results [10].
Boundary issues and global-in-time decompositions.The decompositions (1.7) do not
involve time, and therefore when considering trajectories t �→ (ρ(t), j(t)), they should
be considered as local-in-time or instantaneous decompositions of L(ρ(t), j(t)) at time t .
Naively, one would simply integrate in time to obtain global decompositions of the rate func-
tional

∫ T
0 L(ρ(t), j(t)) dt for arbitrary trajectories (ρ, j). This argument is formal since,

strictly speaking, the decompositions (1.7) hold only for ρ, j for which the required terms
are defined. More precisely, it turns out that the forces F , F sym and Fasym are well-defined
only on a proper subset of the domain of definition for the modified cost functions LG

and generalised Fisher informations Rλ
G . This issue is often ignored in the MFT litera-

ture.
This issue becomes clear in the various examples we consider. For instance when deal-

ing with independent jump processes on a finite lattice X , the large-deviation cost is well
defined for any trajectory in the space of probability measures i.e., ρ(t) ∈ P(X ) (see Exam-
ple 2.1), whereas the symmetric force is only well-defined for trajectories in the space of
strictly positive probability measures, i.e., ρ(t) ∈ P+(X ) (see (2.29)). This difference in
the domains arises due to the logarithm present in the definition of the symmetric force.
Such issues are typically dealt with by first extending the domains of definition of the forces
involved by appropriately regularising them, second by proving the decompositions on these
extended domains, and finally passing to the limit in the regularisations (see for instance
the proof of [6, Thm. 1.6]). Although we expect that similar arguments can be applied
to (1.7) to arrive at global-in-time decompositions, in this first study we focus on local-in-
time results.

1.2 RelatedWork

As mentioned earlier, this work connects and generalises existing literature in various direc-
tions. Barring fairly recent works [7, 11, 21] which deal with particular examples, the
connections between MFT, dissipative systems and FIR inequalities have largely been unex-
plored in the literature. Not all of these works consider fluxes, and so we will also make use
of a ‘contracted’ cost function,

L̂(ρ, u) := inf{L(ρ, j) : u = − div j}, (1.9)

where the velocity u is a placeholder for ρ̇(t) and− div is the abstract operator thatmaps fluxes
to velocities as in (1.1a). This construction is consistent with the notion of contraction in large
deviations (see Example 2.1). Since L̂(ρ,− div j0(ρ)) = 0,we refer to u0(ρ) := − div j0(ρ)

as the zero-cost velocity.
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1.2.1 Dissipative/Gradient Systems

In the case of dissipative systems F = F sym and Fasym = 0, and choosing λ = 1
2 in the

decomposition (1.7b) leads to

L(ρ, j) = LFasym (ρ, j)|Fasym=0 +R
1
2
Fsym (ρ)− 〈F sym(ρ), j〉

= �(ρ, j)+�∗(ρ, F sym(ρ)
)− 〈F sym(ρ), j〉, (1.10)

which also corresponds to (1.3) with Fasym = 0. This decomposition of L is exactly the
characterisation of dissipative systems in the density-flux setting [16, 21]; see Sect. 2.6 for a
further elaboration.

Using (1.5), F sym = − 1
2∇dV (see Corollary 2.21 for definition) and applying the con-

traction (1.9), we switch to the density setting

L̂(ρ, u) = inf
{
�(ρ, j) : u = − div j

}+�∗(ρ, F sym(ρ)
)+ 〈 1

2dV(ρ), u
〉

=: �̂(ρ, u)+ �̂∗(ρ,− 1
2dV(ρ)

)+ 〈 1
2dV(ρ), u

〉
, (1.11)

where �̂ is the contraction of � and �̂, �̂∗ are convex duals of each other (see [21, Thm. 3]
for details).

The identity (1.11) is the standard decomposition of the density cost function that char-
acterises a dissipative system or generalised gradient flow in the following sense. For the
zero-cost velocity, the left-hand side satisfies L̂(ρ, u0(ρ)) = 0, and the right-hand side
of (1.11) is the Energy–Energy-Dissipation identity (EDI) [22–24], which is equivalent by
convex duality to

u0(ρ) = dξ �̂
∗ (ρ,− 1

2dV(ρ)
)
, (1.12)

where dξ is the derivative with respect to the second argument. In the special case when
�̂∗(ρ, ξ) = 1

2 〈K (ρ)ξ, ξ 〉 is a quadratic form with an inverse metric tensor K (ρ) of a man-
ifold, we arrive at the usual gradient-flow representation of the zero-cost velocity on that
manifold

u0(ρ) = − 1

2
K (ρ)dV(ρ) =: − 1

2
gradρ V(ρ).

This connection between generalised gradient flows and the symmetry F = F sym at the level
of densities has been explored more directly in [3], where it was shown that this symmetry
holds if L̂ corresponds to the large-deviation principle of aMarkovprocess in detailed balance.
The density-flux formulation (1.10) of a dissipative system with quadratic dissipation has
also been investigated extensively in the literature, see for instance [10, 16, 21]. Since we
derived this decomposition from (1.7a) and (1.7b), these two decompositions can be thought
of as the natural generalisations of the EDI to non-dissipative systems.

1.2.2 GENERIC

TheGENERIC framework is specifically designed as a coupling between dissipative and non-
dissipative effects in a thermodynamically consistentway [25–27].Althoughoriginallymeant
to describe evolution equations, recent work has also studied the following natural connection
between GENERIC and large deviations from a variational perspective (see (1.11)),

L̂(ρ, u) = �̂
(
ρ, u − J(ρ)dE(ρ)

)+ �̂∗ (ρ,− 1
2dV(ρ)

)+ 〈 1
2dV(ρ), u

〉
, (1.13)
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where the Poisson structure J and energy E define the Hamiltonian part of the dynamics, and
additional non-interaction conditions are required to ensure that the zero-cost velocity

u0(ρ) = dξ �̂
∗ (ρ,− 1

2dV(ρ)
)+ J(ρ)dE(ρ) (1.14)

dissipates V and conserves E .
Such a connection is discussed in [28] in the particular setting of weakly interacting

diffusions and more recently in the context of hypocoercivity [29]. More generally, the recent
paper [30] shows that (1.13) can only hold if the underlying microscopic system consists of
stochastic dynamics in detailed balance combined with a deterministic drift. The drift may be
replaced by stochastic fluctuations as long as they appear deterministic on the large-deviation
scale [21], but any larger scale fluctuations that are not in detailed balancewill break down the
GENERIC structure. Therefore, the class of large-deviation cost functions with a GENERIC
structure is rather limited.

By contrast, the decompositions (1.7) always hold as soon as the quasipotential V is
identified. The crucial difference is that our decompositions are based on a decomposition
of forces, i.e.

u0(ρ) = − div j0(ρ) = − div dζ �
∗(ρ, F sym(ρ)+ Fasym(ρ)

)
,

rather than a decomposition of fluxes or velocities as in GENERIC (1.14). Furthermore,
generalised orthogonality between F sym and Fasym (see Sect. 2.4) is a natural analogue of
the non-interaction conditions used in GENERIC.

1.2.3 FIR Inequalities

Using LF−2λFsym ≥ 0 and F sym = − 1
2∇dV (as above) in the decomposition (1.7b), we find

1
λ
L(ρ, j) ≥ 1

λ
Rλ

Fsym (ρ)+ 〈∇dV, j〉.
Since ∇ is the dual of − div, using the contraction principle (1.9) and the definition of the
Fisher information (1.8) it follows that (see Corollary 2.34 for details)

1
λ
L̂(ρ, u) ≥ − 1

λ
Ĥ(ρ, λdV(ρ))+ 〈dV(ρ), u〉, (1.15)

where Ĥ is the convex dual of L̂. This is a local-in-time version of the FIR inequality.
Assume that a smooth trajectory [0, T ] � t �→ ρ(t) satisfies (1.15) for every t . Substituting

u = ρ̇, formally applying the chain rule 〈dV(ρ), ρ̇〉 = d
dt V(ρ), and integrating in time

over [0, T ] we arrive at the F(“free energy”)-I(“rate functional”)-R(“Fisher information”)
inequality [6, Thm. 1.6]

1

λ

∫ T

0
L̂(ρ(t), ρ̇(t))dt + V(ρ(t)) ≥ V(ρ(T ))− 1

λ

∫ T

0
Ĥ(ρ(t), λdV(ρ(t))

)
dt . (1.16)

Therefore, the decomposition (1.7b) can be thought of as a generalisation of [6] in vari-
ous ways. First, (1.7b) holds fairly generally (in the abstract framework) and can be applied
to systems well beyond independent copies of Markov jump processes studied in [6]. Sec-
ond, (1.7b) exactly characterises the gap in the inequality (1.15) via LF−2λFsym which we
discarded in this discussion due to its non-negativity. And third, a different version of the
FIR inequality can also be derived from (1.7c).

It should be noted that the FIR inequalities have been used in the literature as a priori
estimates to study singular limits, and we expect that the decomposition (1.7b) and inequal-
ity (1.15) will serve the same purpose for a considerably larger class of systems. However,
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in this paper we limit ourselves to the local-in-time decompositions (1.7b) as opposed to the
global-in-time inequality (1.16) discussed in [6], since moving from local to global descrip-
tions is a nontrivial technical step outside the scope of this work.

1.2.4 MFT and (non-)Quadratic Cost Function

As stated earlier, most MFT literature is concerned with the diffusive scaling of underlying
stochastic particle systems which converge to diffusion-type macroscopic partial differential
equations and corresponds to quadratic cost functions of the form [10]

L(ρ, j) = 1

2
‖ j − j0(ρ)‖2ρ, for some Hilbert norm ‖ · ‖ρ.

Crucial arguments in MFT are based on the fact that the dissipative and the non-dissipative
effects are orthogonal in this Hilbert space, i.e.

〈F sym(ρ), Fasym(ρ)〉ρ ≡ 0.

However, even the simple example of independent particles on a finite graph (see Exam-
ple 2.1) yields a non-quadratic cost function L, and the aforementioned orthogonality
arguments break down. In [11] (for independent jump processes) and [7] (for chemical
reactions) these ideas are ported to the non-quadratic setting by introducing a generalised
notion of orthogonality, where the pairing is no longer bilinear, and rather satisfies a relation
of the form

θρ(F sym(ρ), Fasym(ρ)) ≡ 0. (1.17)

By contrast, the abstract theory that we develop is not necessarily based on such orthog-
onality relations, although we do borrow many notions such as time-reversed cost-functions
and forces from MFT. However we will show that within our framework, one can also con-
struct a generalised orthogonality pairing θρ (fully characterised by L) that satisfies (1.17),
and coincides with the bilinear pairings 〈·, ·〉ρ in case of quadratic cost functions and with
θρ(·, ·) from [7, 11] in the case of specific non-quadratic cost functions. This will be the
content of Sect. 2.4.

1.3 Summary of Notation and Outline of the Article

In Sect. 2 we present the abstract framework and theory. In Sect. 4 we analyse the zero-cost
velocity for the antisymmetric L-function in the setting of independent particles on a finite
graph. In Sect. 5 we apply the abstract theory to various stochastic particle systems and
conclude with discussion in Sect. 6. In Sect. 3 we connect (and thereby motivate) the abstract
ideas developed in Sect. 2 to large deviations.

2 Abstract Theory

In the introductionweworkedwith the large-deviation cost; we nowworkwith its abstraction,
the so-called the L-function2. In what follows we first introduce the L-function and other

2 Weuse the terminology “L-function” from [3,Def. 1.1] as opposed to ‘Lagrangian’ or ‘cost’, since in practice
L need not correspond to a large-deviation principle, and it often plays a different role as the Lagrangian in
mechanics.
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X Finite graph with strict ordering Ex. 2.1
X 2/2 Half the edges on a finite graph X (2.2)
s(·|·) Relative Boltzmann function (integrand/summand in relative entropy) (2.7)
Z,W, φ State-flux triple Def. 2.3
TZ , T ∗Z Tangent and cotangent bundle associated to Z
TρZ , T ∗ρ Z Tangent and cotangent space at ρ ∈ Z
L, H L-function and its convex dual Def. 2.5
L̂, Ĥ Contracted L-function and its convex dual (2.40)
V Quasipotential Def. 2.6
dF Gateaux derivative of a functional F
χT transpose or adjoint operator χT :M∗ → N ∗ for χ : N →M
Dom(A) domain of an operator A
F Driving force Def. 2.10
�∗, � Dissipation potential and its dual Def. 2.10
�̂∗, �̂ Contracted dissipation potential and its dual (2.42)
LG , HG Tilted L-function and its convex dual Def. 2.14
Domsymdiss(A) Subset of Dom(A) where the dissipation potential is symmetric (2.18)
Rλ

ζ Generalised Fisher information Def. 2.17
←−L ,

←−H Reversed L-function and its convex dual Def. 2.19
Fsym, Fasym Symmetric and antisymmetric force Cor. 2.21
M(X ), Ma(X ) Space of signed measures on X (with total mass a) (2.8)
P(X ) Space of probability measures on X
P+(X ) Space of strictly positive probability measures on a discrete state space X
∇, div Continuous gradient and divergence

(Throughout introduction: general operator div = dφρ )
∇, div Discrete gradient and divergence (2.4)
1x Indicator function associated to {x}

key ingredients of the abstract framework in Sect. 2.1. Using these objects we introduce
dissipation potentials, tilted L-functions and Fisher information in Sect. 2.2. Using time-
reversal-type arguments from MFT, in Sect. 2.3 we introduce time-reversed L-functions,
symmetric and antisymmetric forces, and in Sect. 2.4 we introduce a generalised notion of
orthogonality satisfied by these forces. Section 2.5 contains various decompositions of the L-
function and in Sect. 2.6 we study the symmetric and antisymmetric L-function. Throughout
this section we will use the guiding example of Independent Markovian Particles on a Finite
Graph (IPFG), which we now introduce.

Example 2.1 (IPFG) Let X be a finite graph with strict ordering, i.e., a complete order on
the nodes in which no two nodes are equal. Consider n independent Markovian particles
X1(t), . . . Xn(t) on X , with irreducible generator Q ∈ RX×X . The empirical measure (also
called discrete particle density), defined as ρ(n)(t) := n−1∑n

i=1 δXi (t), is a Markov process
on RX with generator

(Q̂(n) f )(ρ) = n
∑∑

(x,y)∈X×X
ρx Qxy

[
f (ρ − 1

n1x + 1
n1y)− f (ρ)

]
,

where 1x is the indicator function for x ∈ X . With a suitable initial condition, Varadarajan’s
Theorem implies that the random process ρ(n) converges in the many-particle limit n →∞
to the deterministic solution of the ODE

ρ̇(t) = QTρ(t). (2.1)
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In addition to the empirical measure, we will also track the number of jumps through each
edge, which characterises the flux over an edge. For reasons that will be clarified in Sect. 2.2,
it is important to consider net fluxes (over the usual one-sided fluxes), defined on half of the
edges (for this purpose we impose an arbitrary ordering < on the finite set X )

X 2/2 := {
(x, y) ∈ X × X : x < y

}
. (2.2)

More precisely, the so-called integrated net flux W (n)
xy (t) over the edge connecting x, y ∈

X , is defined as the difference between the number of jumps from x → y and in the
opposite direction from y → x in the time interval [0, t], all rescaled by 1

n . Then the pair

(ρ(n)(t),W (n)(t)) is again a Markov process, now in RX × RX 2/2 with the generator

(Q(n) f )(ρ,w) = n
∑∑

(x,y)∈X 2/2

ρx Qxy
[
f (ρ − 1

n1x + 1
n1y, w + 1

n1xy)− f (ρ,w)
]

+ ρy Qyx
[
f (ρ − 1

n1y + 1
n1x , w − 1

n1xy)− f (ρ,w)
]
.

This process converges as n →∞ to the solution of the macroscopic system
{

ẇxy(t) = ρx (t)Qxy − ρy(t)Qyx , (x, y) ∈ X 2/2,

ρ̇x (t) = − divx ẇ(t), x ∈ X ,
(2.3)

where the operator

divx j :=
∑

y∈X :y>x

jxy −
∑

y∈X :y<x

jyx , (2.4)

is the discrete divergence for net fluxes. Indeed the system (2.3) is of the form (1.1).
In the many-particle limit (n →∞), the random fluctuations around the mean behaviour

decay fast due to averaging effects. The unlikeliness to observe an atypical flux for large but
finite n is quantified by the large-deviation principle, formally written as

Prob
(
(ρ(n),W (n)) ≈ (ρ,w)

)
n→∞∼ e−nI0(ρ)−nJ (ρ,w),

J (ρ,w) :=
{∫ T

0 L(ρ(t), ẇ(t)
)
dt, ρ̇ = − div ẇ,

∞, otherwise,
(2.5)

where the L is given by [31, 32] (the flux j is a placeholder for ẇ)

L(ρ, j) := inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

[
s( j+xy | ρx Qxy)+ s( j+xy − jxy | ρy Qyx )

]
, (2.6)

which uses the Boltzmann function

s(a | b) :=

⎧
⎪⎨

⎪⎩

a log a
b − a + b, a, b > 0,

b, a = 0, b ≥ 0

∞, otherwise.

(2.7)

Here I0 is the large-deviation rate functional corresponding to the initial distribution of
ρ(n)(0). Indeed L(ρ, j) is non-negative and minimised by (2.3). Due to the contraction prin-
ciple [33, Thm. 4.2.1], the infimum is taken over all non-negative one-way fluxes ( j+xy)x<y

and ( j+yx − jyx )x>y .
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Applying the contraction principle, the empirical measure satisfies the following large-
deviation principle, where L̂ is related to L via (1.9),

Prob
(
ρ(n) ≈ ρ

)
n→∞∼ exp

[
− nI0(ρ(0))− n

∫ T

0
L̂(ρ(t), ρ̇(t)) dt

]
.

2.1 Abstract Framework

Although at first sight the general setup in this section may seem heavy, it appears naturally
in various specific systems. We illustrate this via our guiding example.

Example 2.2 (IPFG) There are two natural manifolds associated to the example of indepen-
dent particles on a finite graph X which we now introduce. Let

Ma(X ) := {ρ ∈ RX :∑x∈X ρx = a}, (2.8)

including vectors with negative coordinates. The states/densities ρ lie in the manifold Z :=
M1(X ). Due to the constraint on total mass, Z is a (|X | − 1)-dimensional hyperplane in
RX , with corresponding local tangent, cotangent spaces and Euclidean pairing between them
given by

TρZ = M0(X ),

T ∗ρ Z = R
X /span{(1, 1, . . . , 1)} = {{ξ + c(1, . . . , 1) : c ∈ R} : ξ ∈ R

X },
T ∗ρ Z〈ξ, u〉TρZ := ξ · u,

(2.9)

where a · b is the usual dot product in Euclidean spaces. Cotangents are defined modulo
the orthogonal space (M0(X ))⊥ = span{(1, 1, . . . , 1)}, and lead to 〈ξ + c(1, . . . , 1), u〉 =
ξ · u + c

∑
x∈X ux = ξ · u. The integrated net fluxes w simply lie in the Euclidean “flux

space” manifoldW := RX 2/2 (recall (2.2)) with local tangent and cotangent spaces TwW =
T ∗wW = RX 2/2, again paired together with the Euclidean inner product.

Between the two manifolds above we define the map φ : W → Z as

φ[w] := ρ0 − divw, with differential

dφw = − div and adjoint operator dφw
T = ∇,

where div is the discrete divergence from (2.4), ∇xy ξ := ξy − ξx and ρ0 ∈ Z is an arbitrary
but fixed reference measure. Hence the continuity equation can be abstractly written as
u = dφw j ∈ Tφ[w]Z for j ∈ TwW . It will be important that the operator φ is surjective. For
an arbitrary μ ∈ M1(X ), the difference μ− ρ0 ∈ M0(X ).

Note that the underlying dynamics (2.3) as well as any path withJ (ρ,w) < ∞ conserves
the total mass aswell as the non-negativity of ρ(t), so that the states will in fact be restricted to
the simplexP(X ) ⊂ M1(X ) ⊂ RX of probabilitymeasures onX (i.e., coordinate-wise non-
negative vectors in RX which sum to one). However, we always work with the full manifold
M1(X ) so that derivatives and the (co)tangent spaces are well defined without needing to
worry about boundaries, boundary points etc. Instead we set L(ρ, j) = ∞ whenever ρ lies
on (or outside of) the boundary ∂P(X ) and the flux j ∈ TρW pushes the state in the outward
direction. Indeed, the functional J (ρ,w) and cost L(ρ, j) from Example 2.1 are defined for
all ρ ∈ Z = RX , but for any path with J (ρ,w) < ∞, the densities are contained in P(X ).

For the above example dφw, dφT
w and the (co)tangent spaces TwW, T ∗wW do not depend

on w. In practice, dφw, dφT
w and TwW, T ∗wW might depend on w, but only through the
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corresponding state ρ = φ[w], as for example in a contuinity equation of the form v =
− div(ρ j). By a slight abuse of notation we shall therefore write dφρ, dφT

ρ and TρW, T ∗ρ W
for ρ ∈ Z. In particular, this allows us to write L : TW → R ∪ {∞}, so that L = L(ρ, j)
for (ρ, j) ∈ TW .

Inspired by these observations we now introduce the state-flux triple, L-function and the
quasipotential, which are the key ingredients in the abstract framework.

Definition 2.3 ([21, Sec. 4.1]) A triple (Z,W, φ) is called a state-flux triple if

(i) The state-space Z and the flux-space W are differentiable Banach manifolds, with
corresponding local tangent Banach spaces TρZ and TwW .

(ii) φ : W → Z is a surjective differentiable operator φ : W → Z.
(iii) TwW depends on w only through ρ = φ[w], so that by a slight abuse of notation we

can replace TwW by TρW and write TW := {(ρ, j) : ρ ∈ Z, j ∈ TρW}.
(iv) φ has a linear bounded differential that depends on w only through ρ = φ[w], so that

by a slight abuse of notation we write dφρ : TρW → TρZ.

The Banach structure should be seen as a reference norm only, that we use to define
Gateauxderivatives, theBanachdual spacesT ∗ρ W, T ∗ρ Z and theduality pairings T ∗ρ Z 〈·, ·〉TρZ ,
T ∗ρ W 〈·, ·〉TρW (where we omit the indices since it will be clear to which spaces the ele-
ments belong). Analogously we write T ∗W := {(ρ, ζ ) : ρ ∈ Z, ζ ∈ T ∗ρ W} and
T ∗Z := {(ρ, ξ) : ρ ∈ Z, ξ ∈ T ∗ρ Z}. The differential dφρ corresponds to a continuity
equation u = dφρ j , where dφρ is usually minus a divergence operator or some generali-
sation thereof. The assumption that dφ is bounded, ensures the existence of a well-defined
adjoint. In order to avoid confusion with convex duality, we will denote adjoint operators by
T, e.g. dφρ

T : T ∗ρ Z → T ∗ρ W .

Remark 2.4 Our state-flux triple is essentially identical to the framework of [34]; there Z
is called the ‘base manifold’, TW is called the ‘total manifold’, and the differential dφ :
TW → TZ is called the ‘anchor map’. ��
Definition 2.5 For any S ⊆ Z define

TSW := {(ρ, j) ∈ TW : ρ ∈ S} and
T ∗SW := {(ρ, ζ ) ∈ T ∗W : ρ ∈ S}. (2.10)

A mapping L : TSW → R ∪ {∞} is called an L-function on S, if for all ρ ∈ S:
(i) inf L(ρ, ·) = 0,
(ii) there exists a unique j0(ρ) ∈ TρW , called the zero-cost flow, which satisfies

L(ρ, j0(ρ)
) = 0,

(iii) L(ρ, ·) is convex and lower semicontinuous (with respect to the Banach norm on TρW).

While this definition allows for flexibility in the domain, throughout this paper we will
reserve the symbol L for L-functions on the full space S = Z. From Sect. 2.2 onwards we
will encounter functions LG that are only defined on proper subsets of Z (see Remark 2.8
below). The inclusion of∞ in the codomain of L is essential to encode forbidden fluxes as
discussed in Example 2.2.

By lower semicontinuity and convexity, L(ρ, ·) is its own convex bidual with respect to
the second variable [35, Prop. 3.56], i.e. there exists an H : T ∗SW → R ∪ {∞} such that

H(ρ, ζ ) := sup
j∈TρW

〈ζ, j〉 − L(ρ, j) and L(ρ, j) = sup
ζ∈T ∗ρ W

〈ζ, j〉 −H(ρ, ζ ). (2.11)
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It is easy to see that L is an L-function if and only if for any ρ ∈ Z, H(ρ, 0) = 0, H(ρ, ·)
is convex, lower semicontinuous, proper and bounded from below by an affine function.
Typically L(ρ, 0) < ∞, so that H(ρ, ·) is bounded from below.

We are now ready to introduce the following notion of the quasipotential.

Definition 2.6 A function V : Z → R∪ {∞} is called a quasipotential (corresponding to L)
if

(i) inf V = 0,
(ii) for any ρ ∈ Z where V is Gateaux differentiable, we have

H(ρ, dφρ
TdV(ρ)

) = 0. (2.12)

We stress that this notion of a quasipotential is only related to the convex dualH of some
abstract function L, where a priori no stochastic particle system is involved. Both nowhere
differentiable functions and the zero function are quasipotentials by definition, and our results
are true but mostly trivial in this setting. In all the examples we consider, (2.12) will have at
least one non-trivial solution and in fact this definition is consistent with the usual definition
from statistical physics when large deviations are involved (see Sect. 3.2). We envisage that
(2.12) should be understood in the sense of viscosity solutions, however it is not clear how
one can define a viscosity solution in the general setup of this section.

Example 2.7 (IPFG) In Example 2.1, the processes X1(t), X2(t), . . . are irreducible and X
is finite which ensures the existence of an invariant measure π ∈ P+(X ) (the space of
strictly positive probability measures). Consequently, the n-particle density ρ(n)(t) admits an
invariant measure (n) ∈ P(RX ), where

(n) = (⊗n
i=1 π

) ◦ η−1
n , ηn(x1, . . . , xn) := 1

n

n∑

i=1

δxi .

By Sanov’s theorem, the large-deviation rate functional corresponding to (n) is

V(ρ) :=
{∑

x∈X s(ρx | πx ), ρ ∈ P(X ),

∞, ρ /∈ P(X ),

where s(· | ·) is defined in (2.7), and hence V is indeed the quasipotential corresponding to
L in the classical large-deviation sense (see Theorem 3.7).

This can also be checked macroscopically by verifying (2.12), without invoking any
connection to large deviations of a microscopic particle system. To check this, we first
calculate the convex dual of the L-function (2.6):

H(ρ, ζ ) :=
∑∑

(x,y)∈X 2/2

[
ρx Qxy

(
eζxy − 1

)+ ρy Qyx
(
e−ζxy − 1

)]
.

Note thatwhileV(·)would be nowhere differentiable as a functional onRX , it is differentiable
at all ρ ∈ P+(X ) (which is a subset of the manifold M1(X ) introduced in Example 2.2)
since πx > 0 for every x ∈ X with Gateaux derivative

dV(ρ) = {
(log(ρx/πx )+ c)x∈X : c ∈ R

} ∈ T ∗ρ Z,

so that dφρdV(ρ) = ∇ dV(ρ) = (
log(ρy/πy) − log(ρx/πx )

)
x<y ∈ T ∗ρ W . In fact by the

chain rule, ∇ dV(ρ) can also be interpreted as the (classical) derivative of V(φ[w]) with
respect to w ∈ RX 2/2; this also explains why the constants c do not play a role after taking
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the discrete gradient. We then check that V is a quasipotential by concluding that at all points
of differentiability of V (i.e. for ρ ∈ P+(X )) using QTπ = 0 and

∑
y Qxy = 0 we find

H(ρ, dφρ
TdV(ρ)

) =
∑∑

(x,y)∈X 2/2

(
ρx Qxy

[
ρyπx

ρxπy
− 1

]
+ ρy Qyx

[
ρxπy

ρyπx
− 1

])

=
∑∑

x,y∈X
x �=y

ρy

πy

(
Qxyπx − Qyxπy

)

=
∑∑

x,y∈X
Qxyπx

(
ρy

πy
− ρx

πx

)

=
∑

y∈X
(QTπ)y

ρy

πy
= 0,

where the third and fourth equality follows by interchanging the indices in the second terms
of the summation.

Remark 2.8 Most of the analysis that follows will be carried out locally for fixed ρ. Therefore
the ρ-dependencies in L(ρ, j) and dφρ do not play a role in the calculations. We however
include the dependency for two reasons. First, for almost all practical applications,L and dφρ

will depend on ρ, either explicitly or implicitly through the domains of definition TρW, TρZ.
Second, even though writing the ρ-dependency is standard in the literature, so far practically
all literature on the topic completely ignores the problems at the boundaries, where V may
cease to be differentiable due to the appearance of log 0. Our paper is one of the first to make
completely precise claims in regards to domain of definitions for various objects involved
by very carefully identifying all points ρ for which our results hold; this also motivates the
definition of L-functions on subsets S. ��

2.2 Dissipation Potentials, Tilted L-Functions and Fisher Information

While the concept of a dissipation potential is standard [36–38], the connection to convex
analysis [3] and the application to flux spaces is more recent [11, 21, 31, 39, 40]. Classically,
a dissipation potential �(ρ, j) is convex, lower semicontinuous in the second variable, and
satisfies inf �(ρ, ·) = 0 = �(ρ, 0). To define the dissipation potential in our context, we
first present the following basic result on L, which was originally derived in the context of
gradient flows [3, Lem. 2.1 & Prop. 2.1], where the driving force is the derivative of a certain
free energy. As in the literature [7, 11, 31, 39–41], the setting with fluxes allows for more
general driving forces. We first focus on a driving force ˆζ ∈T ∗ρ W for a fixed ρ; and later
introduce it as a ρ-dependent force field F(ρ).

Theorem 2.9 ([3, Prop. 2.1(i)]) LetL be an L-function onZ and fix ρ ∈ Z. For any ˆζ ∈T ∗ρ W
and convex lower-semicontinuous �(ρ, ·) : TρW → R ∪ {∞} with convex dual �∗, the
following statements are equivalent

(i) inf �(ρ, ·) = 0 = �(ρ, 0), and for any j ∈ TρW
L(ρ, j) = �(ρ, j)+�∗(ρ, ζ̂ )− 〈ζ̂ , j〉. (2.13)

(ii) − ˆζ ∈ ∂L(ρ, 0) with

�∗(ρ, ζ ) = H(ρ, ζ − ζ̂ )−H(ρ,−ζ̂
)
. (2.14)

We would like to define the driving force as F(ρ) = ζ̂ and the dissipation potential
�(ρ, j) as above. However these exist uniquely only if the subdifferential ∂L(ρ, 0) consists
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of a singleton, i.e. L(ρ, ·) is Gateaux differentiable at 0, which motivates the following
definitions.

Definition 2.10 Let L be an L-function on Z. Define

Dom(F) := {
ρ ∈ Z : j �→ L(ρ, j) is Gateaux differentiable at j = 0

}
,

and recall the definition of the restricted (co)tangent spaces (2.10). The driving force F and
dissipation potentials (corresponding to L) are defined as

F(ρ) := −d jL(ρ, 0) ∈ T ∗ρ W for ρ ∈ Dom(F), (2.15)

�∗(ρ, ζ ) := H(ρ, ζ − F(ρ)
)−H(ρ,−F(ρ)

)
, for (ρ, ζ ) ∈ T ∗Dom(F)W,

�(ρ, j) := sup
ζ∈T ∗ρ W

〈ζ, j〉 −�∗(ρ, ζ ) for (ρ, j) ∈ TDom(F)W. (2.16)

Note that, �∗ as defined in (2.16) indeed satisfies inf �∗(ρ, ·) = 0 = �∗(ρ, 0), since−F is
a minimiser ofH(ρ, ·) by (2.15), and consequently inf �(ρ, ·) = 0 = �(ρ, 0) which makes
� a dissipation potential. Furthermore combining Theorem 2.9 with Definition 2.10, for any
(ρ, j) ∈ TDom(F)W we have the decomposition

L(ρ, j) = �(ρ, j)+�∗(ρ, F)− 〈F, j〉. (2.17)

In what follows we will make use of

Domsymdiss(F) :=
{
ρ ∈ Dom(F) : H(ρ, ζ + d jL(ρ, 0)

)

= H(ρ,−ζ + d jL(ρ, 0)
)
for all (ρ, ζ ) ∈ T ∗Dom(F)W

}
. (2.18)

The following lemmastates that the dissipationpotential is indeed symmetric inDomsymdiss(F).

Lemma 2.11 ([3, Prop. 2.1(ii)]) Let L be an L-function on Z. For ρ ∈ Domsymdiss(F) the
following statements are equivalent

(i) H(ρ, ζ − F(ρ)
) = H(ρ,−ζ − F(ρ)

)
for all ζ ∈ T ∗ρ W ,

(ii) L(ρ, j) = L(ρ,− j)− 2〈F(ρ), j〉 for all j ∈ TρW ,
(iii) �∗(ρ, ζ ) = �∗(ρ,−ζ ) for all ζ ∈ T ∗ρ W ,
(iv) �(ρ, j) = �(ρ,− j) for all j ∈ TρW .

Example 2.12 (IPFG) In practice the force (2.15) is more easily calculated via the equivalent
statement dζH(ρ,−F(ρ)) = 0. Since ξ = 1

2 log
d
c minimises ξ �→ c(eξ − 1)+ d(e−ξ − 1),

we find

Fxy(ρ) = 1

2
log

ρx Qxy

ρy Qyx
, Dom(F) = P+(X ).

This definition of the driving force has been introduced in [11, Sec. 2.2]. Using (2.16), the
dissipation potentials are given by

�∗(ρ, ζ ) =
∑∑

(x,y)∈X 2/2

2
√

ρx Qxyρy Qyx
(
cosh(ζxy)− 1

)
,

�(ρ, j) =
∑∑

(x,y)∈X 2/2

2
√

ρx Qxyρy Qyx

(

cosh∗
(

jxy
2
√

ρx Qxyρy Qyx

)

+ 1

)

. (2.19)
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These dissipation potentials are indeed symmetric (since cosh is even), and therefore
Domsymdiss(F) = Dom(F). Note that, while a priori � and �∗ are only defined for strictly
positive probability measures, they can easily be extended to the full space Z = P(X ). For
instance, the observation that lima→0 a cosh∗( xa ) = 0 if x = 0 and +∞ otherwise, offers
a trivial extension of � to Z, which also reflects the idea “vanishing jump rates guarantee
vanishing fluxes”.

We note that the Hamiltonian corresponding to one-way fluxes is given by

Hone-way(ρ, ζ ) :=
∑∑

x,y∈X×X
x �=y

ρx Qxy(e
ζxy − 1),

for which the corresponding driving force does not exist at all, i.e., Dom(Fone-way) = ∅ (also
see [31, Rem. 4.10]). Hence one can only construct a meaningful macroscopic fluctuation
theory for net fluxes. This further justifies the net-flux approach used in this paper, as opposed
to the one-way fluxes typically used for Markov jump processes.

Remark 2.13 In the IPFG example above and all the examples considered in Sect. 5,
Domsymdiss(F) = Dom(F), i.e., the dissipation potential is symmetric. However, in general
Domsymdiss(F) may be an (empty) subset of Dom(F) as the following construction shows.
Consider Z = W = R and φ = id. Let H(ρ, ζ ) = −ζ + eζ − 1, which corresponds to a
real-valued Markov process with generator (Q(n) f )(ρ,w) := −∂ρ f (ρ,w)− ∂w f (ρ,w)+
n( f (ρ+ 1

n , w+ 1
n )− f (ρ,w)). Then F ≡ 0 and clearlyH(ρ,−ζ−F(ρ)) �= H(ρ, ζ−F(ρ)),

which implies that Domsymdiss(F) = ∅. ��
So far we have dealt with L-functions on Z. Using (2.14), we now introduce L-functions

defined on subsets of Z. For a given L and an appropriate cotangent field G(ρ), using (2.14)
we can define a (G-tilted) L-function LG defined on a subset of Z. We call this a ‘tilted’ L-
function since its definition is motivated by tiltedMarkov processes (see Sect. 3.1). Although,
technically G is a cotangent field, in this paper we will often refer to it as a force field due to
physical considerations.

Definition 2.14 Let L be an L-function on Z. For any G : Dom(G) → T ∗Dom(G)W with
Dom(G) ⊆ Z, the tilted function HG : T ∗Dom(F)∩Dom(G)W → R ∪ {∞} is defined as

HG(ρ, ζ ) := H(ρ, ζ + G(ρ)− F(ρ)
)−H(ρ,G(ρ)− F(ρ)

)
, (2.20)

and LG : TDom(F)∩Dom(G)W → R ∪ {∞} denotes its convex dual in the second variable.

Lemma 2.15 Let L be an L-function on Z. The tilted function LG is an L-function on
Dom(F) ∩ Dom(G), and satisfies the decomposition

LG(ρ, j) = L(ρ, j)+H(ρ,G(ρ)− F(ρ)
)+ 〈F(ρ)− G(ρ), j〉

= �(ρ, j)+�∗(ρ,G(ρ)
)− 〈G(ρ), j〉. (2.21)

The two equalities follow by using convex duality and (2.13), (2.14) with ζ̂ = F . For
special choices of G(ρ) we obtain

LF (ρ, j) = L(ρ, j) and L0(ρ, j) = �(ρ, j). (2.22)

Example 2.16 (IPFG) For any force field G(ρ) ∈ RX 2/2 we have

LG(ρ, j) = inf
j+∈RX 2/2

∑∑

(x,y)∈X 2/2

s
(
j+xy |

√
ρx Qxyρy Qyxe

Gxy(ρ)
)
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+ s
(
j+xy − jxy |

√
ρx Qxyρy Qyxe

−Gxy(ρ)
)
,

HG(ρ, ζ ) =
∑∑

(x,y)∈X 2/2

√
ρx Qxyρy Qyx

[
eGxy(ρ)(eζxy − 1)+ e−Gxy(ρ)(e−ζxy − 1)

]
.

We now define the notion of generalised Fisher information which was introduced in
Sect. 1.1.

Definition 2.17 Let L be an L-function on Z. For any ρ ∈ Z, ζ ∈ T ∗ρ W , and λ ∈ [0, 1], the
generalised Fisher information is

Rλ
ζ (ρ) = −H(ρ,−2λζ ).

As discussed in Sect. 1.1, it is important to choose λ and ζ such that Rλ
ζ is non-negative,

as this guarantees that the corresponding powers are non-negative along the zero-cost flux.
The following result explores the set of force fields for which this is true (also see Fig. 2).

Proposition 2.18 Let L be an L-function on Z. For any ρ ∈ Z we have

(i) The set {ζ ∈ T ∗ρ W : R
1
2
ζ (ρ) ≥ 0} is convex and includes ζ = 0.

(ii) In particular, if ζ ∈ T ∗ρ W such that

R
1
2
ζ (ρ) ≥ 0, (2.23)

then for any λ ∈ [0, 1]
Rλ

1
2 ζ

(ρ) ≥ 0. (2.24)

(iii) For any ζ ∈ T ∗ρ W we have

lim
λ↓0

1
λ
Rλ

ζ (ρ) = 2〈ζ, j0(ρ)〉. (2.25)

where j0 is the zero-cost flux for L (see Definition 2.5).

Proof (i) Since L is an L-function, H(ρ, ·) is convex with H(ρ, 0) = 0 and the assertion
follows.

(ii) Using convexity, −Rλ
1
2 ζ

(ρ) = H(ρ,−λζ ) = H(ρ,−λζ + (1 − λ)0) ≤ λH(ρ,−ζ ) +
(1− λ)H(ρ, 0) ≤ 0.

(iii) By definition of L-functions, L(ρ, ·) has unique minimiser j0(ρ), which is equivalent to
∂H(ρ, 0) = { j0(ρ)} = {dζH(ρ, 0)}. The claim then follows from the definition of the
Gateaux derivative.

��

Note that [6, Thm. 1.7] is a special case of this result for the IPFG example. Following
[6], we callRλ the generalised Fisher information since it generalises the classical notion of
Fisher information as the dissipation rate of free energy along the solutions of the zero-cost
flux of the L-function. This property follows by using (2.25) with appropriate choices for ζ .

In the next section we construct ζ for whichR
1
2
ζ (ρ) = 0 and the above result can be applied.
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2.3 Reversed L-Function, Symmetric and Antisymmetric Forces

Inspired by the notion of time-reversibility inMFTwe now introduce the reversed L-function
which will then be used to define symmetric and antisymmetric forces. From now on we
assume that V is a quasipotential associated to L in the sense of Definition 2.6.

Definition 2.19 LetLbe anL-function onZ. For anyρ ∈ Z whereV isGateauxdifferentiable
and any j ∈ TρW , we define the reversed L-function as

←−L (ρ, j) := L(ρ,− j)+ 〈dφρ
TdV(ρ), j〉.

This notion of the reversedL-function ismotivated by the large-deviations of time-reversed
Markov processes (see Sect. 3.3 for details). Note that we use the name reversed L-function as
opposed to time-reversedL-function since there is no time variable in this abstract framework.

The following result states that
←−L is indeed an L-function, and discusses the driving force

and dissipation potential associated to it.

Proposition 2.20 Let L be an L-function on Z. For any ρ ∈ Z where V is Gateaux differen-
tiable we have

(i) The convex dual of
←−L(ρ, ·) is←−H(ρ, ζ ) = H(ρ, dφρ

TdV(ρ)− ζ
)
.

(ii) If ←−j 0(ρ) is the zero-cost flux in the sense that
←−L(ρ,

←−
j 0(ρ)

) = 0, then −←−j 0(ρ) ∈
∂H(ρ, dφρ

TdV(ρ)
)
, and it is unique ifH(ρ, ·) is Gateaux differentiable at dφρ

TdV(ρ).

Furthermore
←−L is an L-function on {ρ ∈ Z : V is Gateaux differentiable in ρ} and V is

a quasipotential corresponding to
←−L .

(iii) Additionally, if ρ ∈ Dom(F) (recall Definition 2.10), then the driving force and dissipa-
tion potentials corresponding to

←−L are given by
←−
F(ρ) = −F(ρ)− dφρ

TdV(ρ),
←−
�(ρ, j) = �(ρ,− j),

←−
�∗(ρ, ζ ) = �∗(ρ,−ζ ).

Proof (i) Follows by a straightforward calculation of the convex dual.
(ii) Using the Fermat’s rule 0 ∈ ∂

←−L(ρ,
←−
j 0(ρ)), and therefore ←−j 0(ρ) ∈ ∂

←−H(ρ, 0). Using
Definition 2.19 and since L is an L-function,

←−L is convex, lower semicontinuous and
using (2.12) satisfies inf

←−L (ρ, ·) = 0. Consequently
←−L is an L-function on Dom(F sym)

(see (2.26) below) and V is a quasipotential associated to
←−L .

(iii) Using (2.15) we find

−←−F(ρ) := d
←−L(ρ, 0) = −d jL(ρ, 0)+ dφρ

TdV(ρ) = F(ρ)+ dφρ
TdV(ρ)

and using (2.16) we find
←−
�∗(ρ, ζ ) := ←−H(ρ, ζ −←−

F(ρ)
)−←−H(ρ,−←−F(ρ)

)

= H(ρ, dφρ
TdV(ρ)+←−

F(ρ)− ζ
)−H(ρ, dφρ

TdV(ρ)+←−
F(ρ)

)

= H(ρ,−F(ρ)− ζ
)−H(ρ,−F(ρ)

) = �∗(ρ,−ζ ).

Consequently
←−
�(ρ, j) = �(ρ,− j).

��
Motivated by this result, we decompose the driving force F (recall (2.15)) into a symmetric

and antisymmetric part with respect to the reversal, i.e. F sym = 1
2 (F +←−

F ) and Fasym =
1
2 (F −←−

F ). The following result summarises these ideas.
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Corollary 2.21 Let L be an L-function on Z. Define

Dom(F sym) := {ρ ∈ Z : V is Gateaux differentiable at ρ}, and

Dom(Fasym) := Dom(F) ∩ Dom(F sym), (2.26)

and

F sym(ρ) := − 1
2dφρ

TdV(ρ) for ρ ∈ Dom(F sym),

Fasym(ρ) := F(ρ)+ 1
2dφρ

TdV(ρ) for ρ ∈ Dom(F sym). (2.27)

Then for any ρ ∈ Dom(Fasym),

F(ρ) = F sym(ρ)+ Fasym(ρ), and
←−
F (ρ) = F sym(ρ)− Fasym(ρ). (2.28)

Note that while we make use of the reversed L-function to construct the symmetric and
antisymmetric force, it does not explicitly appear in their definition. In the case of zero

antisymmetric force, i.e. Fasym(ρ) = 0, the driving forces satisfy F(ρ) =←−
F (ρ) = F sym(ρ),

which is the setting of dissipative systems (see Sect. 2.6).

Example 2.22 (IPFG) We have

←−H(ρ, ζ ) =
∑∑

(x,y)∈X 2/2

ρx
πy

πx
Qyx (e

ζxy − 1)+ ρy
πx

πy
Qxy(e

−ζxy − 1),

←−L(ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s

(

j+xy | ρx
πy

πx
Qyx

)

+ s

(

j+xy − jxy | ρy
πx

πy
Qxy

)

,

←−
Fxy(ρ) = 1

2
log

ρx
πy
πx

Qyx

ρy
πx
πy

Qxy
.

The expression πx
πy

Qxy is the generator matrix for a single time-reversed jump process [42,

Thm. 3.7.1]. Again, beware that a priori
←−H and

←−L are only defined on Z = Dom(F), but
can be continuously extended to P(X ) in a straightforward manner.

The symmetric and antisymmetric (with respect to the reversal) components of the driving
force are (also see [11])

F sym
xy (ρ) = 1

2
log

πyρx

πxρy
and

Fasym
xy (ρ) = 1

2
log

πx Qxy

πy Qyx
, (2.29)

with Dom(F) = Dom(F sym) = Dom(Fasym) = P+(X ). Note that for reversible Markov
chains, i.e., those satisfying detailed balance, Fasym = 0.

Recall the generalised Fisher informationRλ
ζ fromDefinition 2.17, and thatwe are looking

for forcefields thatmake this quantity non-negative. The following result shows thatR
1
2
ζ (ρ) =

0 for ζ = 2F(ρ), 2F sym(ρ), 2Fasym(ρ). Thiswill be crucial to derive the key decompositions
of L in Sect. 2.5.

In this result we make use of (analogous to (2.18)),

Domsymdiss(F
asym) :=

{
ρ ∈ Dom(Fasym) : H(ρ, ζ + d jL(ρ, 0)

)
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Fig. 2 Contour lines of a possible concave function ζ �→ R
1
2
ζ (ρ) for a fixed ρ, where the superlevel set {ζ ∈

T ∗ρ W : R
1
2
ζ (ρ) ≥ 0} is depicted in gray. By Definitions 2.10 and 2.17, F(ρ) is a maximiser for ζ �→ R

1
2
ζ (ρ),

and assuming ρ ∈ Domsymdiss(F
asym), Lemma 2.23 says that 2F(ρ), 2Fsym(ρ) and 2Fasym(ρ) all lie on

the 0-contour line. By the convexity of the superlevel set {R
1
2
ζ (ρ) ≥ 0} (see Proposition 2.18), any convex

combination ζ between 0 and 2F(ρ), 2Fsym(ρ) or 2Fasym(ρ), drawn by the three lines, yield non-negative

R
1
2
ζ (ρ) ≥ 0

= H(ρ,−ζ + d jL(ρ, 0)
)
, ∀ζ ∈ T ∗ρ W

}
. (2.30)

Note that Domsymdiss(Fasym) ⊆ Domsymdiss(F) since Dom(Fasym) ⊆ Dom F .

Lemma 2.23 Let L be an L-function on Z. We have

(i) ∀ρ ∈ Dom(F) : R
1
2
F (ρ) ≥ 0 and ∀ρ ∈ Domsymdiss(F) : R

1
2
2F (ρ) = 0,

(ii) ∀ρ ∈ Dom(F sym) : R
1
2
2Fsym (ρ) = 0,

(iii) ∀ρ ∈ Domsymdiss(Fasym) : R
1
2
2Fasym (ρ) = 0.

Proof (i) Since −F minimises H, it follows that H(ρ,−F) = inf H(ρ, ·) ≤ H(ρ, 0) =
− inf L(ρ, ·) = 0, and therefore R

1
2
F (ρ) = −H(ρ,−F) ≥ 0. If the dissipation

potential is symmetric, the choice ζ = −F(ρ) in Lemma 2.11(i) gives R
1
2
2F (ρ) =

H(ρ,−2F(ρ)
) = H(ρ, 0) = 0.

(ii) The claim follows since (2.12) holds for all ρ ∈ Dom(F sym).
(iii) With ζ =←−

F (ρ) = F sym(ρ)−Fasym(ρ) in Lemma2.11(i)wefindH(ρ,−2Fasym(ρ)
) =

H(ρ,−2F sym(ρ)
) = 0.

��
Figure 2 is a schematic diagram of force fields ζ for whichRλ

ζ is non-negative. Note that,
while there are various possibilities for such ζ ,we focus on ζ = 2F(ρ), 2F sym(ρ), 2Fasym(ρ)

since they correspond to the physically relevant powers defined in (1.5) and (1.6).

Remark 2.24 For all ρ ∈ Dom(Fasym), we can write the reversed function as a tilting in the
sense of (2.20)

←−H (ρ, ζ ) = H−←−F (ρ,−ζ ).

123



Variational Structures Beyond Gradient Flows… Page 23 of 60 18

Using (2.21), the corresponding reversed L-function then satisfies
←−L (ρ, j) = L−←−F (ρ,− j) = L(ρ,− j)+H(ρ, dφT

ρdV(ρ)
)− 〈dφT

ρdV(ρ), j〉
= �(ρ,− j)+�∗(ρ,−←−F )− 〈←−F , j〉,

where we have used F +←−
F = −dφρ

TdV(ρ). ��

2.4 Generalised Orthogonality

Before we continue with deriving the main decompositions (1.7) of the L-function, we elab-
orate further on the decomposition of the driving force F into the symmetric force F sym

and antisymmetric force Fasym, and investigate the natural question whether these forces
are orthogonal in some sense. It turns out that they are indeed orthogonal in a generalised
sense, and using this notion of orthogonality we can already derive decompositions (1.7) for
λ = 1

2 . As discussed in the introduction, in MFT the dissipation potentials are often squares
of appropriate Hilbert norms ‖ · ‖ρ , and in that setting one can write

�∗(ρ, ζ 1 + ζ 2) := 1
2‖ζ 1 + ζ 2‖2ρ = 1

2‖ζ 1‖2ρ + 〈ζ 1, ζ 2〉ρ + 1
2‖ζ 2‖2ρ

= �∗(ρ, ζ 1)+ 〈ζ 1, ζ 2〉ρ +�∗(ρ, ζ 2),

where 〈·, ·〉ρ is the inner product induced by the norm. Typically F sym and Fasym are orthog-
onal in the sense that 〈F sym, Fasym〉ρ = 0. We reiterate these ideas in Sect. 5.3 which deals
with the classical MFT setting of lattice gases. However this orthogonality relation is spe-
cific to the quadratic setting. A generalised notion of orthogonality was introduced in [11]
for non-quadratic dissipation potential (2.19) corresponding to independent Markov chains
which have cosh-type structure (see Example 2.12) and this principle was further generalised
to chemical reaction networks in [7] (see Sect. 5.2 for details). Based on these results, we now
provide a notion of generalised orthogonality which applies to arbitrary dissipation poten-
tials arising within the abstract framework of this section (and does not require any specific
structure).

Definition 2.25 For any ρ ∈ Dom(F) and ζ 2 ∈ T ∗ρ W , define the modified dissipation
potential �∗

ζ 2
: T ∗ρ W → R ∪ {∞} and the generalised orthogonality pairing θρ : T ∗ρ W ×

T ∗ρ W → R ∪ {∞} as
�∗

ζ 2
(ρ, ζ 1) := 1

2

[H(ρ, ζ 1 + ζ 2 − F(ρ)
)+H(ρ,−ζ 1 + ζ 2 − F(ρ)

)]−H(ρ, ζ 2 − F(ρ)
)
,

= 1
2

[
�∗(ρ, ζ 1 + ζ 2)+�∗(ρ,−ζ 1 + ζ 2)

]−�∗(ρ, ζ 2),

θρ(ζ 1, ζ 2) := 1
2

[H(ρ, ζ 1 + ζ 2 − F(ρ)
)−H(ρ,−ζ 1 + ζ 2 − F(ρ)

)]

= 1
2

[
�∗(ρ, ζ 1 + ζ 2)−�∗(ρ,−ζ 1 + ζ 2)

]
,

where we have used (2.16) to arrive at the equalities.

The following result collects the properties of �ζ 2 and θρ clarifying the notion of orthog-
onality in the abstract framework. Recall the definition of Domsymdiss(Fasym) from (2.30).

Proposition 2.26 Let L be an L-function on Z. For any ρ ∈ Dom(F), �∗
ζ 2

(ρ, ·) is convex,
lower semicontinuous and inf �∗

ζ 2
(ρ, ·) = 0 = �∗

ζ 2
(ρ, 0). Furthermore, for any ζ 1, ζ 2 ∈

T ∗ρ W , the dissipation potential �∗ admits the decomposition

�∗(ρ, ζ 1 + ζ 2) = �∗(ρ, ζ 1)+ θρ(ζ 2, ζ 1)+�∗
ζ 1

(ρ, ζ 2)
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= �∗(ρ, ζ 2)+ θρ(ζ 1, ζ 2)+�∗
ζ 2

(ρ, ζ 1).

Moreover the generalised orthogonality pairing satisfies

θρ

(
F sym(ρ), Fasym(ρ)

) = 0 for all ρ ∈ Dom(Fasym),

θρ

(
Fasym(ρ), F sym(ρ)

) = 0 for all ρ ∈ Domsymdiss(F
asym),

and therefore we have

�∗(ρ, F(ρ)
) = �∗(ρ, Fasym(ρ)

)+�∗
Fasym(ρ)

(
Fsym(ρ)

)
for all ρ ∈ Dom(Fasym),

�∗(ρ, F(ρ)
) = �∗(ρ, Fsym(ρ)

)+�∗
Fsym(ρ)

(
Fasym(ρ)

)
for all ρ ∈ Domsymdiss(F

asym).

(2.31)

Proof The convexity, lower semicontinuity of �∗
ζ 2

follows from the convexity, lower semi-

continuity of �∗ and �∗
ζ 2

(ρ, 0) = 0 follows from the definition. Using convexity of �∗ we
find

�∗
ζ 2

(ρ, ζ 1) ≥ �∗ (ρ, 1
2 (ζ

1 + ζ 2)+ 1
2 (−ζ 1 + ζ 2)

)−�∗(ρ, ζ 2) = 0,

and therefore inf �∗
ζ 2

(ρ, ·) = 0. The two decompositions follow immediately by adding�∗
ζ 2

and θρ . Using Lemma 2.23 we find

2θρ

(
F sym(ρ), Fasym(ρ)

) = H(ρ, F sym(ρ)+ Fasym(ρ)− F(ρ)
)

−H(ρ,−F sym(ρ)+ Fasym(ρ)− F(ρ)
)

= H(ρ, 0)−H(ρ − 2F sym(ρ)
) = 0,

2θρ

(
Fasym(ρ), F sym(ρ)

) = H(ρ, F sym(ρ)+ Fasym(ρ)− F(ρ)
)

−H(ρ, F sym(ρ)− Fasym(ρ)− F(ρ)
)

= H(ρ, 0)−H(ρ − 2Fasym(ρ)
) = 0.

where the second decomposition additionally requires that ρ ∈ Domsymdiss(Fasym). ��

From the general decomposition (2.17) and the generalised orthogonality result above,
we can already provide two distinct decompositions of L, as derived in [7, Cor. 4.3] for the
case of chemical reactions.

Corollary 2.27 Let L be an L-function on Z. Then for all (ρ, j) ∈ TDom(Fasym)W ,

L(ρ, j) = �(ρ, j)+�∗(ρ, Fasym(ρ)
)− 〈Fasym(ρ), j〉

+�∗
Fasym

(
ρ, F sym(ρ)

)− 〈F sym(ρ), j〉,
and for all (ρ, j) ∈ TDomsymdiss(Fasym)W ,

L(ρ, j) = �(ρ, j)+�∗(ρ, F sym(ρ)
)− 〈F sym(ρ), j〉

+�∗
Fsym

(
ρ, Fasym(ρ)

)− 〈Fasym(ρ), j〉.

In both decompositions,wemay interpret the first three terms as anL-functionwith amodified
force, the fourth term as a Fisher information, and the last term as a power (see Remark 2.32
for details).
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Example 2.28 (IPFG) Using Definition 2.25 we have (see also [11])

�∗
ζ 2

(ρ, ζ 1) = 2
∑∑

(x,y)∈X 2/2

√
ρx Qxyρy Qyx cosh(ζ

2
xy)
(
cosh(ζ 1

xy)− 1
)
,

θρ(ζ 1, ζ 2) = 2
∑∑

(x,y)∈X 2/2

√
ρx Qxyρy Qyx sinh(ζ

2
xy) sinh(ζ

1
xy).

2.5 Decomposing the L-Function

We now present decompositions of the L-function, which are the main results of the abstract
theory presented so far. Using G = F, F sym, Fasym in (2.21) and encoding convex combi-
nations via the parameter λ, we arrive at three distinct decompositions of L; this corresponds
to all the points on the three lines depicted in Fig. 2.

Theorem 2.29 Let L be an L-function on Z. It admits the following decompositions

(i) For any ρ ∈ Domsymdiss(F), j ∈ TρW and λ ∈ [0, 1],
L(ρ, j) = L(1−2λ)F (ρ, j)+Rλ

F (ρ)− 2λ〈F(ρ), j〉
with Rλ

F (ρ) ≥ 0. (2.32)

(ii) For any ρ ∈ Dom(Fasym), j ∈ TρW and λ ∈ [0, 1],
L(ρ, j) = LF−2λFsym (ρ, j)+Rλ

Fsym (ρ)− 2λ〈F sym(ρ), j〉
with Rλ

Fsym (ρ) ≥ 0. (2.33)

(iii) For any ρ ∈ Domsymdiss(Fasym), j ∈ TρW and λ ∈ [0, 1],
L(ρ, j) = LF−2λFasym (ρ, j)+Rλ

Fasym (ρ)− 2λ〈Fasym(ρ), j〉
with Rλ

Fasym (ρ) ≥ 0. (2.34)

Proof The decompositions follow directly from Lemma 2.15. The non-negativity of the
Fisher informations follows from Proposition 2.18 and Lemma 2.23. ��
Remark 2.30 Thedecomposition (2.32) holds forρ ∈ Domsymdiss(F). SincebyLemma2.23(i),

R
1
2
F (ρ) ≥ 0 for any ρ ∈ Dom(F), we also have the following decomposition for any

ρ ∈ Dom(F), j ∈ TρW and λ ∈ [0, 1
2 ]

L(ρ, j) = L(1−λ)F (ρ, j)+Rλ
F (ρ)− λ〈F(ρ), j〉 with Rλ

F (ρ) ≥ 0.

The non-negativity of Rλ
F (ρ) follows by repeating the proof of Proposition 2.18(ii) for

λ ∈ [0, 1
2 ]. ��

The following result exhibits the significance of the choices λ = 1
2 , 1, and that the decom-

positions for other values can be seen as generalisations.

Corollary 2.31 (λ = 1
2 , 1)With the choiceλ = 1

2 , the decompositions (2.32), (2.33)and (2.34)
respectively become

L(ρ, j) = L0(ρ, j)+R
1
2
F (ρ)− 〈F(ρ), j〉
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= �(ρ, j)+�∗(ρ, F(ρ)
)− 〈F(ρ), j〉, (2.35)

L(ρ, j) = LFasym (ρ, j)+R
1
2
Fsym (ρ)− 〈F sym(ρ), j〉, (2.36)

L(ρ, j) = LFsym (ρ, j)+R
1
2
Fasym (ρ)− 〈Fasym(ρ), j〉. (2.37)

With the choice λ = 1, the decompositions (2.32), (2.33) and (2.34) respectively become

L(ρ, j) = L−F (ρ, j)− 2〈F(ρ), j〉,
L(ρ, j) = L−←−F (ρ, j)− 2〈F sym(ρ), j〉 = ←−L (ρ,− j)− 2〈F sym(ρ), j〉,
L(ρ, j) = L←−

F
(ρ, j)− 2〈Fasym(ρ), j〉, (2.38)

where F,
←−
F satisfy the relations (2.28).

The second equality in (2.35) follows from (2.22) and (2.16) where we use H(ρ, 0) = 0
and the Fisher-information term vanishes by Lemma 2.23. A careful analysis of the zero-cost
flux for LFsym and LFasym will be presented in Sect. 2.6 and Sect. 4.

Remark 2.32 Using (2.17), we see that (2.36) and (2.37) are the same decompositions as
those in Corollary 2.27 which use generalised orthogonality, and that the two corresponding
Fisher informations are in fact modified dissipation potentials (as introduced in Sect. 2.4)

R
1
2
Fsym (ρ) = �∗

Fasym

(
ρ, F sym(ρ)

)
, R

1
2
Fasym (ρ) = �∗

Fsym

(
ρ, Fasym(ρ)

)
.

This also explains the non-negativity of these Fisher informations for λ = 1
2 . ��

Example 2.33 (IPFG) Decompositions (2.32), (2.33) and (2.34) hold with the tilted L-
functions

L(1−2λ)F (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s
(
j+xy | (ρx Qxy)

1−λ(ρy Qyx )
λ
)

+ s
(
j+xy − jxy | (ρy Qyx )

1−λ(ρx Qxy)
λ
)
,

LF−2λFsym (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s
(
j+xy | (ρx Qxy)

1−λ(ρy
πx
πy

Qxy)
λ
)

+ s
(
j+xy − jxy | (ρy Qyx )

1−λ(ρx
πy
πx

Qyx )
λ
)
,

LF−2λFasym (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s
(
j+xy | (ρx Qxy)

1−λ(ρx
πy
πx

Qyx )
λ
)

+ s
(
j+xy − jxy | (ρy Qyx )

1−λ(ρy
πx
πy

Qxy)
λ
)
,

and the corresponding Fisher informations

Rλ
F (ρ) = −H(ρ,−2λF(ρ)

) =
∑∑

x,y∈X
x �=y

ρx Qxy − (ρx Qxy)
1−λ(ρy Qyx )

λ,

Rλ
Fsym (ρ) = −H(ρ,−2λF sym(ρ)

) =
∑∑

x,y∈X
x �=y

ρx Qxy − (ρx Qxy)
1−λ

(
ρy

πx
πy

Qxy

)λ

,

Rλ
Fasym (ρ) = −H(ρ,−2λFasym(ρ)

) =
∑∑

x,y∈X
x �=y

ρx Qxy − (ρx Qxy)
1−λ

(
ρx

πy
πx

Qyx

)λ

.
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While non-negativity of these Fisher informations is guaranteed by construction, it can also be
proven directly by using (1−λ)a+λb ≥ a1−λbλ. For λ = 1

2 , all three Fisher informations are
of the form

∑∑
x �=y(

√·−√·)2; interpreting the difference as an abstract discrete gradient,
this is reminiscent of the usual Fisher information in continuous space 1

2

∫
(∇√ρ(x))2 dx .

These decompositions provide new variational characterisations for the IPFG example,
which coincidewith the classical gradient-flowstructure forMarkovchains satisfyingdetailed
balance (see Sect. 2.6) and lead to the FIR inequality as a special case (see Example 2.35
below). The decomposition (2.33) with λ = 1

2 was first discussed in [11, Cor. 4].
All three L-functions L(1−2λ)F , LF−2λFsym and LF−2λFasym are the large-deviation cost

functions for processes with altered jump rates. In particular, LFsym = LF−Fasym is the large-
deviation cost function corresponding to the jump process with jump rates for a particle to
jump from x to y given by

κ
sym
xy (ρ) := ρx

√

QxyQyx
πy

πx
= ρx

√
Qxy

←−
Q xy,

where we write ←−v xy := vyx
πy
πx

for the jump rate of a single time-reversed jump process
[42, Thm. 3.7.1]. The linearity in ρx reflects that the system consists of independent Markov

particles with generator
√
Qxy

←−
Q xy [31, 32].

Similarly, LFasym = LF−Fsym is the large-deviation cost function corresponding to a
system with jump rates for one particle to jump from x to y given by [43]

κ
asym
xy (ρ) := Qxy

√
ρxρy

πx

πy
= √

ρxρy

√
Qxy

←−
Q yx . (2.39)

We can interpret LFasym (ρ, j) as the flux large-deviation cost function corresponding to a
system of interacting particles with jump rates nκ

asym
xy (ρ) [44]. It should be noted that the

usual large-deviation proof techniques break down in this particular case due to the non-
uniqueness of solution to the limiting antisymmetric ODE (see Proposition 4.2).

The next corollary connects the decomposition (2.33) to an (abstract-)FIR inequality
(recall Sect. 1.2.3) only defined on the state-space Z and with no dependence on the flux-
spaceW . In order tomake this connectionwe introduce the contractedL-function L̂ : TρZ →
R ∪ {∞} defined as

L̂(ρ, u) := inf
j∈TρW: u=dφρ j

L(ρ, j). (2.40)

The definition of L̂ is inspired by the contraction principle in large-deviation theory, where
L̂ is the large-deviation rate functional only on the state space (recall Example 2.1). This
connection will be further clarified in Proposition 3.4.

Corollary 2.34 (FIR inequality) Let L be an L-function on Z. For any ρ ∈ Dom(Fasym),
u ∈ TρZ and λ ∈ [0, 1] we have

L̂(ρ, u) ≥ Rλ
Fsym (ρ)+ λ〈dV(ρ), u〉,

where L̂ (with convex dual Ĥ) is defined in (2.40) and Rλ
Fsym (ρ) = −Ĥ(ρ, λdV).

Proof Using convex duality and (2.40) it follows that Rλ
Fsym (ρ) = −H(ρ, λdφT

ρdV) =
−Ĥ(ρ, λdV). Using (2.33) and the definition of F sym (2.27) we find

L̂(ρ, u) = inf
j∈TρW: u=dφρ j

[LF−2λFsym (ρ, j)− 2λ〈F sym(ρ), j〉]+Rλ
Fsym (ρ)
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= inf
j∈TρW: u=dφρ j

[LF−2λFsym (ρ, j)
]+Rλ

Fsym (ρ)+ λ〈dV(ρ), u〉

≥ Rλ
Fsym (ρ)+ λ〈dV(ρ), u〉,

where the second equality follows since 〈dφT
ρη, j〉 = 〈η, dφρ j〉 and the inequality

follows since tilted L-functions are non-negative by definition (see Lemma 2.15 & Defi-
nition 2.5). ��

Example 2.35 (IPFG)We now comment on the connection with the FIR inequality in [6]. Let
ρ ∈ C1([0, T ];Dom(F sym)), where we have abused notation so that ρ is now a trajectory,
and recall that Dom(F sym) = P+(X ). Since ρ̇(t) ∈ Tρ(t)Z, using Corollary 2.34, for any
t ∈ [0, T ] and λ ∈ [0, 1] we have

L̂(ρ(t), ρ̇(t)) ≥ Rλ
Fsym (ρ(t))+ λ d

dt V(ρ(t)),

where we have used 〈dV(ρ(t)), ρ̇(t)〉 = d
dt V(ρ(t)). Integrating in time, which is allowed

since ρ is a sufficiently smooth curve, we find

1

λ

∫ T

0
L̂(ρ(t), ρ̇(t))dt + V(ρ(0)) ≥ 1

λ

∫ T

0
Rλ

Fsym (ρ(t))dt + V(ρ(T )).

This is exactly the FIR inequality in [6, Thm. 1.6], although this paper has two crucial gen-
eralisations. First, using approximation arguments, in [6] the class of admissible curves is
extended to ρ ∈ AC([0, T ];Z), i.e., absolutely continuous curves in Z = P(X ) instead
of P+(X ) discussed above (recall the discussion in Sect. 1.2.3). Second, in [6] the relative
entropy RelEnt(ρ(t)|μ(t)) with respect to any time-dependent solution μ of the correspond-
ing macroscopic dynamics (which is the forward Kolmogorov equation)

μ̇(t) = QTμ(t), (2.41)

is used as opposed to the quasipotential V(ρ) = RelEnt(ρ(t)|π), where π is the invariant
measure of (2.41). We believe that this generalisation from the invariant measure π to any
time dependent solutionμ(t) is a feature of the linear forwardKolmogorov equations (similar
results also hold for linear Fokker-Planck equations [45, Thm. 1.1], [8, Thm. 4.18] arising
from diffusion processes), and cannot be expected to hold in the setup of our paper where
we are interested in nonlinear macroscopic equations. This is also the case for nonlinear
diffusion processes [5, Thm. 2.3].

2.6 Symmetric and Antisymmetric L-Functions

In this section we focus on the two terms LFsym and LFasym in the decompositions (2.37) and
(2.36) respectively. Observe that L = LFsym if Fasym = 0, and therefore LFsym corresponds
to a system with a purely symmetric force. The relation between such systems with gradient
flows iswell known and follows from the theory in the previous sections, but for completeness
we will make this connection explicit here. Similarly, LFasym corresponds to a system with
a purely antisymmetric force; in the level of abstraction of our current paper such systems
are less understood. Motivated by our analysis in Sect. 4 and the examples in Sect. 5 we
conjecture below that these L-functions are related to Hamiltonian systems.

We first discuss the purely symmetric case. Note that when particle systems and large-
deviations are involved, LFsym is the large-deviation cost function of a microscopic system
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in detailed balance (see Corollary 3.11). In what follows we will make use of the contracted
dissipation potential �̂ : TρZ → R ∪ {∞} defined as

�̂(ρ, u) := inf
j∈TρW: u=dφρ j

�(ρ, j). (2.42)

Corollary 2.36 (EDI) Let L be an L-function on Z and ρ ∈ Dom(Fasym). For any j ∈ TρW
we have

LFsym (ρ, j) = �(ρ, j)+�∗ (ρ,− 1
2dφρ

TdV(ρ)
)
+ 1

2 〈dφρ
TdV(ρ), j〉, (2.43)

and for any u ∈ TρZ we have

ˆLFsym (ρ, u) = �̂(ρ, u)+ �̂∗ (ρ,− 1
2dV(ρ)

)+ 1
2 〈dV(ρ), u〉, (2.44)

where ˆLFsym , �̂ are defined in (2.40), (2.42) and �̂∗(ρ, ξ) = �∗(ρ, dφρ
Tξ) is the convex

dual of �̂. Additionally if ρ ∈ Domsymdiss(Fasym), then for any j ∈ TρW and u ∈ TρZ we
have the symmetry relations

LFsym (ρ, j)− LFsym (ρ,− j) = 〈dφT
ρdV(ρ), j〉, L̂(ρ, u)− L̂(ρ,−u) = 〈dV(ρ), u〉.

(2.45)

Proof Using Fasym = 0 we have F(ρ) = F sym(ρ), and the decomposition (2.43) then

follows from (2.36) since L0(ρ, j) = �(ρ, j) (see (2.22)), R
1
2
Fsym (ρ) = �∗(ρ, F sym(ρ))

and using the definition of F sym (2.27). The decomposition (2.44) follows by applying the
infimum in (2.40) to (2.43) and noting that by definition of convex duality �̂∗(ρ, ξ) =
�∗(ρ, dφTξ) for any ξ ∈ T ∗ρ Z. The first symmetry relation follows by Lemma 2.11(ii) and
the second symmetry relation following by taking the infimum of the first symmetry relation
on both sides. ��

Note that the decomposition (2.43) also follows from (2.37) by using (2.13), but for
ρ ∈ Domsymdiss(Fasym). Let us first comment on the contracted symmetric function ˆLFsym .
Clearly, its zero-cost velocity u0(ρ) satisfies the EDI

�̂
(
ρ, u0(ρ)

)+ �̂∗(ρ,− 1
2dV(ρ)

)+ 1
2 〈dV(ρ), u0(ρ)〉 = 0,

which is equivalent by convex duality to a generalised gradient flow (1.12). Summarising
Corollaries 3.11 and 2.36, if a microscopic system is in detailed balance, the large-deviation
cost function L = LFsym has a purely symmetric force, and hence induces a generalised
gradient flow.This connection between gradient flows and detailed balancewasfirst discussed
in this generality in [3]. For the IPFG example, the second symmetry relation in (2.45)
correspond to the classical gradient structure for finite-stateMarkov chains in detailed balance
[3, Sec. 4.1] and the decomposition (2.43) is the correspondingflux formulationof the gradient
structure for this example [31, Sec. 4.5]. Note that, strictly speaking (2.43) is not a gradient
flow in the density-flux space. However a careful rewriting allows us to seeLFsym as a gradient
flow, as summarised in the following remark.

Remark 2.37 WithLW
Fsym (w, j) := LFsym (φ[w], j), and applying the chain ruledwVW (w) =

dφφ[w]TdρV(φ[w]), we arrive at
LW
Fsym (w, j) = �W (w, j)+�W∗(

w,− 1
2dwVW (w)

)+ 1
2 〈dwVW (ρ), j〉. (2.46)

In this formulation LFsym is indeed a gradient flow in the density-flux space [21]. ��
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As far as we are aware, the purely antisymmetric cost LFasym has not been studied in
the literature, and we could not produce rigorous results for it in the abstract setting of this
section. However, as will be discussed in forthcoming sections, we are able to show that for
certain examples the zero-cost velocity associated to LFasym is non-dissipative, in the sense
that one can associate a non-trivial conserved energy and a skew-symmetric operator to it,
which motivates the following conjecture.

Conjecture 2.38 Let L be an L-function on Z and L̂Fasym be the contracted L-function cor-
responding to L̂Fasym , i.e.

L̂Fasym (ρ, u) := inf
j∈TρW: u=dφρ j

LFasym (ρ, j).

Then there exists an energy E : Z → R and a skew-symmetric operator J : ρ �→ (T ∗ρ Z →
TρZ) such that the zero-cost velocity of ˆLFasym can be written as

u0(ρ) = J(ρ)DE(ρ).

Clearly, the skew-symmetry of J(ρ) implies that the energy E(ρ(t)) will be conserved
along solutions of ρ̇(t) = J(ρ(t))DE(ρ(t)). In fact, for the IPFG and lattice gas examples, the
corresponding J even satisfies the Jacobi identity, so that the purely antisymmetric velocity
has a Hamiltonian structure (see Sections 4, 5.3 for details).

3 Formal ConnectionWith Large Deviations

In Sect. 2 we focussed on the purely macroscopic setting. In this section we motivate the
abstract structures introduced therein by connecting them toMarkov processes and their large
deviations. Although the results presented in this section are largely known in the literature
in specific settings, we include them here in a more general setting to provide rationale for
the abstract framework discussed in the last section. While these results are formal due to
the level of generality at which we work, they can be made rigorous case by case.

Throughout this section we assume a microscopic dynamics described by a sequence of
Markov processes (ρ(n)(t),W (n)(t)

)
defined on Z × W . Typically, ρ(n)(t) is the empirical

measure, concentration or density corresponding to O(n) particles, and W (n)(t) is the inte-
grated/cumulative particle flux (recall Example 2.1 and see Sect. 5 for further examples).
For now, we assume a fixed deterministic initial condition ρ(n)(0) for the empirical measure;
this will be relaxed later on. We always assume that the initial condition for the flux satisfies
W (n)(0) = 0 almost surely, since the particles have not moved yet at initial time. For any
t ≥ 0, the integrated flux W (n)(t) contains all information required to reconstruct the current
state of the system, i.e., almost surely

ρ(n)(t) = φ[W (n)(t)].
Equivalently, if the random paths allow for a notion of (measure-valued) time-integration,
we write

ρ̇(n)(dt) = dφρ(n)(t)Ẇ
(n)(dt).

We assume that the sequence (ρ(n)(t),W (n)(t)
)
satisfies a law of large numbers, whereby

the microscopic process
(
ρ(n)(t),W (n)(t)

)
converges to a macroscopic, deterministic trajec-

tory (ρ(t), w(t)), which satisfies an equation of the form (1.1), where at this stage we are only
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interested in the instantaneous flux j = ẇ. Consequently, the corresponding path probability
measures P(n) = law(ρ(n),W (n)) will concentrate on that path (ρ,w) as n →∞.

Finally we assume that the sequence (ρ(n)(t),W (n)(t)
)
satisfies a corresponding large-

deviation principle in Z ×W , which can be formally written as

P
(n)
(
(ρ(n),W (n)) ≈ (ρ,w)

) ∼ e−n
∫ T
0 L(ρ(t),ẇ(t)) dt . (3.1)

This large-deviation principle characterises the exponentially vanishing probability of paths
starting from the fixed deterministic initial conditions which do not converge to the macro-
scopic path (ρ,w). The function L is non-negative and its zero-cost flux corresponds to the
macroscopic path, since for that path P(n) ∼ 1.

In what follows, we first focus on the classical technique for proving the aforementioned
large-deviation statement, which motivates the tilted L-function introduced in Lemma 2.15.
Consequently we motivate the Definition 2.6 of the quasipotential via the large deviations of
invariant measures, and the Definition 2.19 of the reversed L-function using time-reversal.

3.1 Tilting, Contraction andMixture

Rigorous proofs of large-deviation principles forMarkovprocesses tend to be rather technical.
We nevertheless briefly review the classical proof technique, since it is closely related to the
macroscopic framework introduced in Sect. 2.2. For an example of this technique see [46,
Chap. 10].

Formal Theorem 3.1 LetQ(n) be the generator of theMarkov process (ρ(n)(t),W (n)(t)), define

H(n)(ρ,w, ζ ) := 1

n
e−n〈ζ,w〉Q(n)en〈ζ,w〉,

and let the limitH(ρ, ζ ) = limn→∞H(n)(ρ,w, ζ ) exist and be dependent on w only via the
relation ρ = φ[w]. Then the process (ρ(n),W (n)) satisfies the large-deviation principle (3.1)
with

L(ρ, j) := sup
ζ∈T ∗ρ W

〈ζ, j〉 −H(ρ, ζ ).

The assumption that H depends on w only via ρ = φ[w] will generally be justified if the
noise only depends on the state ρ of the system.

Main proof technique In order to derive the large deviations (3.1) for a given, atypical path
(ρ,w), one changes the probability measure P(n) to a tilted probability measure P

(n)

ζ . The
tilting is defined via a time-dependent force field ζ(t) to be chosen later, and the Radon-
Nikodym derivative is explicitly given by (see [47] for the generator of the tilted process and
related technical details)

dP(n)

ζ

dP(n)
(ρ̂, ŵ) = exp

[
n
∫ T

0

(
〈ζ(t), ˙̂w(dt)〉 −H(n)

(
ρ̂(t), ŵ(t), ζ(t)

))
dt
]
. (3.2)

One can then (formally) estimate, for a small ball Bε(ρ,w) around the given atypical path
(ρ,w),

− 1

n
logP(n)

(Bε(ρ,w)
) = − 1

n
log

∫

Bε(ρ,w)

dP(n)

dP(n)

ζ

(ρ̂, ŵ)P
(n)

ζ

(
d(ρ̂, ŵ)

)
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≈ 1

n
log

dP(n)

ζ

dP(n)
(ρ,w)− 1

n
logP(n)

ζ

(Bε(ρ,w)
)

(for small ε)

=
∫ T

0

(
〈ζ(t), ẇ(dt)〉 −H(n)

(
ρ(t), w(t), ζ(t)

))
dt

− 1

n
logP(n)

ζ

(Bε(ρ,w)
)
.

We choose ζ(t) to be optimum in sup
ζ̂
〈ζ̂ , ẇ(t)〉 − H(ρ(t), ζ̂ ). It turns out that with this

choice, the tilted probability P(n)

ζ will concentrate on the given path (ρ,w) and therefore the
final term in the right hand side vanishes (even for small ε), which results in

− 1

n
logP(n)

(Bε(ρ,w)
) n→∞≈

∫ T

0
sup
ζ

(
〈ζ, ẇ(dt)〉 −H(ρ(t), ζ

))
dt

=
∫ T

0
L(ρ(t), ẇ(t)

)
dt .

��

Remark 3.2 On this formal level we do not specify the precise topological space in which the
large-deviation principle holds; typically one can choose the Skorohod space D(0, T ;Z ×
W), possibly requiring weaker topologies on Z×W . However, this topological setting does
not influence the geometric picture of Sect. 2.1. We also stress that although the described
proof strategy is classic, there are known cases were it fails [48]. A different proof technique
is developed in [49], but the main argument described above are the same. ��

Following similar arguments one can derive the large deviations of the tilted measures.

Corollary 3.3 For a given path ζ(t), the tilted probability P(n)

ζ from (3.2) satisfies the large-
deviation principle

P
(n)

ζ

(
(ρ(n),W (n)) ≈ (ρ,w)

) ∼ e−n
∫ T
0 Lζ(t)(ρ(t),ẇ(t)) dt , (3.3)

where Lζ is the convex dual of

Hζ (ρ, ζ̂ ) := H(ρ, ζ + ζ̂ )−H(ρ, ζ ).

The proof follows from the same arguments as Formal Theorem 3.1, with (3.2) replaced
by

dP(n)

ζ+ζ̂

dP(n)

ζ

(ρ̂, ŵ) =
dP(n)

ζ+ζ̂

dP(n)
(ρ̂, ŵ)

dP(n)

dP(n)

ζ

(ρ̂, ŵ)

= exp
[
n
∫ T

0

(
〈ζ̂ (t), ˙̂w(dt)〉 −H(n)

(
ρ̂(t), ŵ(t), ζ(t)+ ζ̂ (t)

)

+H(n)
(
ρ̂(t), ŵ(t), ζ(t)

))
dt
]
.

Note that Hζ−F is exactly as in (2.14) and consequently we interpret the tilted L-functions
introduced in Definition 2.14 as the large-deviation cost functions for the tilted probability
measures.
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From the Formal Theorem 3.1, one immediately obtains the following large-deviation
principle for the state by applying the contraction principle [33, Thm. 4.2.1], whichmotivates
the definition (1.9)3

Proposition 3.4 Assume that the large-deviation principle (3.1) holds for the pair (ρ(n),W (n)).
Then the large-deviation principle also holds for ρ(n), i.e.,

P
(n)(ρ(n) ≈ ρ

) ∼ e−n
∫ T
0 L̂(ρ(t),ρ̇(t)) dt , with L̂(ρ, ρ̇) := inf

j :ρ̇=dφρ j
L(ρ, j). (3.4)

Moreover, Ĥ(ρ, ξ) := supρ̇∈TρZ 〈ξ, ρ̇〉 − L̂(ρ, ρ̇) = H(ρ, dφρ
Tξ).

So far we have assumed that the initial condition ρ(n)(0) is fixed and deterministic. If the
initial condition is random then we have the following result, which will be useful in what
follows.

Proposition 3.5 (Mixing [50]) Assume that the large-deviation principle (3.1) holds for the
pair (ρ(n),W (n)) with a deterministic initial condition. If the initial condition is replaced by
a sequence ρ(n)(0) ∈ Z which satisfies the large-deviation principle

P
(n)
(
ρ(n)(0) ≈ ρ

) ∼ e−nI0(ρ)

for some functionalI0 : Z → [0,∞]andW (n)(0) = 0almost surely, then the pair (ρ(n),W (n))

with random initial condition ρ(n)(0) ∈ Z satisfies the large deviation principle

P
(n)
(
(ρ(n),W (n)) ≈ (ρ,w)

) ∼ e−nI0(ρ(0))−n
∫ T
0 L(ρ(t),ẇ(t)) dt . (3.5)

Remark 3.6 The abstract framework introduced in Sect. 2.1 automatically fixes the state
ρ(0) = φ[0], which coincides with deterministic initial conditions in context of large devi-
ations. Strictly speaking, to work with varying random initial conditions would require
additional flexibility in the abstract framework. This can be achieved by either replacing
the mapping φ (recall Definition 2.3) by a family of mappings (φρ(0))ρ(0), or by keeping a
fixed reference state φ[0], and redefining the initial integrated flux as w(0) ∈ φ−1[ρ(0)],
exploiting the surjectivity of φ. To keep the notation simple, we stick to the setup of a
deterministic initial condition, and with a slight abuse of notation always tacitly assume that
ρ(t) = φ[w(t)] = φρ(0)(w(t)). ��

3.2 Quasipotential

Wenowmotivate Definition 2.6 of the quasipotentialV . The following result is largely known
in the literature, see for instance [51, Sec. 2.2], [52, Sec. 3.3], [53, Sec. 4] and [54, Cor. 2],
although it is not often made explicit at the level of generality used in this section.

Theorem 3.7 Assume that the Markov process ρ(n)(t) satisfies the large-deviation princi-
ple (3.4)andhas an invariantmeasure(n) ∈ P(Z) that satisfies the large-deviation principle

(n)
(
μ(n) ≈ μ

) ∼ e−nV(μ), (3.6)

where μ(n) denotes a random variable distributed with (n). Then we have

3 In practice, the mapping from paths (ρ, w) to paths ρ is clearly continuous. In order to make the statement
rigorous one only needs to show that the infimum can be moved inside the integral.
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(i)

V(μ) ≡ inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(T )=μ

{

V(ρ̂(0)
)+

∫ T

0
L̂(ρ̂(t), ˙̂ρ(t)

)
dt

}

for any T ≥ 0, (3.7)

(ii) H(μ, dφμ
TdV(μ)

) = Ĥ(μ, dV(μ)
) ≡ 0,

where L̂, Ĥ are defined in Proposition 3.4.

Note that (3.7) implies thatV is always a Lyapunov function along the zero-cost dynamics,
which can also be deduced from the decomposition (2.33).

Formal proof For arbitrary T > 0 and fixed deterministic initial condition ρ(n)(0) = ρ(0),
the state ρ

(n)

T satisfies the large-deviation principle [33, Thm. 4.2.1],

P (n)

T

(
dμ | ρ(0)

) := P
(n)
(
ρ(n)(T ) ≈ μ | ρ(n)(0) = ρ(0)

) ∼ e−nIT (μ|ρ(0)), with

IT (μ | ρ(0)) := inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(0)=ρ(0),ρ̂(T )=μ

∫ T

0
L̂(ρ̂(t), ˙̂ρ(t)

)
dt . (3.8)

By definition the invariant measure is invariant under the transition probability, i.e., for any
T > 0,

(n)(dμ) =
∫

P (n)

T (dμ | ρ(0))(n)(dρ(0)).

Hence the large-deviation functional of the left-hand side is equal to the large-deviation rate
of the right-hand side, which using a mixing argument [50] is given by

V(μ) = inf
ρ(0)∈Z

{V(ρ(0))+ IT
(
μ | ρ(0)

)}

= inf
ρ(0)∈Z inf

ρ̂∈C1
b ([0,T ];Z):

ρ̂(0)=ρ(0),ρ̂(T )=μ

{
V(ρ(0))+

∫ T

0
L̂(ρ̂(t), ˙̂ρ(t)

)
dt
}

which proves the first claim. From here on the arguments are purelymacroscopic.We proceed
by noting that

�T (ρ) := inf
ρ̂∈C1

b ([0,T ];Z):
ρ̂(T )=ρ

V(ρ̂(0)
)+

∫ T

0
L̂(ρ̂(t), ˙̂ρ(t)

)
dt,

which has the form of the value function from classical control theory, and hence solves the
Hamilton-Jacobi-Bellman equation

�̇T (ρ) = −Ĥ(ρ, d�T (ρ)
)
, �0(ρ) = V(ρ). (3.9)

We have already shown that�T ≡ V does not depend on T , and therefore �̇T (ρ) ≡ 0, which
proves the second claim. ��
Remark 3.8 Strictly speaking, V should be a viscosity solution of the Hamilton-Jacobi-
Bellman (3.9) and hence also of the stationary version Theorem 3.7(ii). However, it is not
precisely clear to us which boundary conditions should be imposed in the definition of
the viscosity solution. This issue is particularly challenging since most classical Hamilton-
Jacobi-Bellman theory is developed for quadratic Ĥ only. Therefore, Theorem 3.7(ii) should
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be seen as formal. We remind the reader that a viscosity solution V(ρ) is a solution in the
classical sense at points of differentiability. At least on a formal level, this already suffices
for the applications in this paper. ��
Remark 3.9 In Theorem 3.7(ii) we do not require that the invariant measure is unique, neither
dowe claim that the quasipotentialV(ρ)will be unique. In particular, we do not require stable
points π ∈ Z for which L̂(π, 0) = 0 to be unique. In case of uniqueness, the quasipotential
from Theorem 3.7(ii) will also satisfy the classical definition of the quasipotential [55]

V(ρ) = inf
ρ̂∈C1

b (−∞,0;Z):
ρ̂(0)=ρ

∫ 0

−∞
L̂(ρ̂(t), ˙̂ρ(t)

)
dt .

In case of multiple stable points, one usually defines a family of non-equilibrium quasipo-
tentials indexed by the stable points [55]. Any one of these will also satisfy Theorem 3.7(ii),
which is sufficient for our purpose. Therefore the abstract theory from Sect. 2 can be con-
structed with any of these quasipotentials. ��

3.3 Time Reversal

In the following propositionwe relate the large-deviation rate functions forMarkov processes
and their time-reversed counterparts, which motivates the notion of reversed L-function
introduced in Definition 2.19. Since the proof below is standard in MFT, we only outline the
proof idea for completeness.

Proposition 3.10 ([10, Sec. II.C], [31, Sec. 4.2]) Let
(
ρ(n)(t),W (n)(t)

)
be a Markov process

with random initial distribution (n) for ρ(n)(0) and W (n)(0) = 0 almost surely, where (n) ∈
P(Z) is the invariant measure of ρ(n)(t). Define the time-reversed process4

←−ρ (n)(t) := ρ(n)(T − t),
←−
W (n)(t) := W (n)(T − t)−W (n)(T ).

Assume that (n) satisfies a large-deviation principle (3.6),
(
ρ(n)(t),W (n)(t)

)
with deter-

ministic initial condition satisfies a large-deviation principle (3.1) with cost function L,
and

(←−ρ (n)(t),
←−
W (n)(t)

)
with deterministic initial condition satisfies a large-deviation princi-

ple (3.1) with cost function
←−L . Then for any (μ, j) ∈ Z ×W ,

←−L is related to L and V via
the relation

←−L (μ, j) = L(μ,− j)+ 〈dφρ
TdV(μ), j〉.

Proof Note that if ρ(n)(0) is distributed according to(n), then so is←−ρ (n)(0), and ifW (n)(0) =
0 almost surely, then

←−
W (n)(0) = 0 almost surely as well. Since

P
(n)
((

ρ(n),W (n)
) ∈ (dρ, dW )

) = P
(n)
((←−ρ (n),

←−
W (n)

) ∈ (d←−ρ , d
←−
W )

)
,

using Proposition 3.5, we find for all paths (ρ,w),

V(ρ(0))+
∫ T

0
L(ρ(t), ẇ(t)

)
dt = V(ρ(T ))+

∫ T

0

←−L (ρ(t),−ẇ(t)
)
dt .

4 This construction requires a vector structure on W . For all applications that we have in mind this holds
trivially, as long as we work with net fluxes (see the discussion in Example 2.12).
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Since the equality above holds for any T > 0, we can write

〈
dφρ(0)

TdV(ρ(0)), ẇ(0)
〉 = 〈

dV(ρ(0)), ρ̇(0)
〉 = lim

T→0

V(ρ(T ))− V(ρ(0))

T

= lim
T→0

1

T

∫ T

0

[L(ρ(t), ẇ(t))−←−L (ρ(t),−ẇ(t))
]
dt

= L(ρ(0), ẇ(0))−←−L (ρ(0),−ẇ(0)
)
,

for any ρ(0) and ẇ(0) (assuming sufficient regularity on t �→ L(ρ(t), ẇ(t)) −←−L (ρ(t),−ẇ(t))). The claimed result then follows by choosing any path ρ,w for which
ρ(0) = μ and ẇ(0) = j . ��

A special and important case of the previous result pertains to detailed balance.

Corollary 3.11 Let
(
ρ(n)(t),W (n)(t)

)
and

(←−ρ (n)(t),
←−
W (n)(t)

)
be as in Proposition 3.10. If,

under initial distribution (n) ∈ P(Z) of ρ(n)(0) and ←−ρ (n)(0) and W (n)(0) = ←−
W (n)(0) = 0

almost surely,

P
(n)
((

ρ(n),W (n)
) ∈ (dρ, dW )

) = P
(n)
((←−ρ (n),

←−
W (n)

) ∈ (dρ, dW )
)
, (3.10)

then L =←−L .

For the applications that we have in mind, the condition (3.10) holds precisely when
ρ(n)(t) is in detailed balance with respect to(n), see for example [31, Prop. 4.1]. The relation
L =←−L is the time-reversal symmetry from [3], which implies thatL induces a gradient flow,
or Fasym = 0 in the context of this paper.

4 Zero-cost Velocity for IPFG Antisymmetric L-Function

In Sect. 2.6we argued that the both the purely symmetric flux and velocity are dissipative, that
is, they are generalised gradient flows of the energy 1

2V (and 1
2VW respectively). Moreover,

LFsym defines the variational structure of those gradient flows via the equalities (2.43) and
(2.46).

The interpretation of LFasym is more complicated. In general LFasym will not have V as
its quasipotential, and using Lemmas 2.11 and 2.15 for any ρ ∈ Domsymdiss(Fasym) and
j ∈ TρW it satisfies the time-reversal relation

L−Fasym (ρ, j) = LFasym (ρ,− j).

This relation in fact holds for any tilted L-function, but −Fasym can be interpreted as the

time-reversed counterpart of Fasym in the sense that
←−−−−−−−−−
F sym + Fasym = F sym − Fasym (see

Remark 2.24). Formally this means that time-reversal reverses the fluxes, which is a physical
indication that LFasym might correspond to Hamiltonian dynamics, as proposed in Conjec-
ture 2.38.

In this section we illustrate this principle for the IPFG example with L-function L from
Example 2.3. As far as we are aware this is has not been studied in the literature, and as a first
step we will focus solely on the trajectories of the zero-cost velocity u(t) = ρ̇(t) = u0(ρ(t))
of LFasym , largely ignoring fluxes as well as the variational structure.

Let (ρ, j) satisfyLFasym
(
ρ(t), j(t)

) = 0 or equivalently j(t) ∈ ∂�∗(ρ(t), Fasym(ρ(t))
)
,

where the subdifferential is with respect to the second variable. Substituting λ = 1
2 in
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LF−2λFsym (defined in Example 2.33), for any x ∈ X , ρ : [0, T ] → P(X ) satisfies the
ODE5

ρ̇x (t) = − divx j(t) =
∑

y∈X
y �=x

(
Qyx

√
πy

πx
− Qxy

√
πx

πy

)√
ρx (t) ρy(t). (4.1)

Introducing the change of variables ωx (t) := √
ρx (t), the zero-cost velocity (4.1) trans-

forms into a linear ODE with a matrix A ∈ RX×X , i.e.

ω̇(t) = 1

2
Aω(t), with Axy := Qyx

√
πy

πx
− Qxy

√
πx

πy
. (4.2)

Solutions to this equation have a nice geometric interpretation, see Figure 3 for an example in
three dimensions. Clearly, |ω(t)|22 = |ρ(t)|1 = 1 and so the solutions are confined to the unit
sphere SX−1. On the other hand, the matrix A is skewsymmetric with imaginary eigenvalues
and represents rotations around the axis

√
π , implying that the solutions are confined to a

plane perpendicular to
√

π . Therefore, solutions ω(t) lie on the intersection of these planes
with the unit sphere, resulting in periodic orbits that conserve the distance of the plane to the
origin. In the following result we show that this transformed system is indeed a Hamiltonian
system with a suitable energy and Poisson structure which satisfies the Jacobi identity (see
Lemma A.1 for a useful alternative characterisation of the Jacobi identity in our context).

Proposition 4.1 The ODE (4.2) admits a Hamiltonian structure (RX×X , Ẽ, J̃), i.e. ω̇ =
J̃(ω)∇Ẽ(ω), where the linear energy Ẽ : RX → R and Poisson structure J̃ : RX → RX×X
are given by

Ẽ(ω) := 1−√
π · ω, J̃(ω) := 1

2

(√
π ⊗ (Aω)− (Aω)⊗√

π
)
.

Here ω · v is the standard Euclidean inner product and ω⊗ v is the outer product of vectors
ω, v.

Proof In Appendix A we present a Hamiltonian structure for a general class of ODEs, which
includes the transformed system (4.2). The proof of Proposition 4.1 follows directly from
Theorem A.2 with the choice d = |X |, ω∗ = √

π and observing that |ω∗|2 = ∑
x πx = 1

and A
√

π = AT√π = 0 since π is the invariant solution corresponding to the original
dynamics (4.1). ��

We would now like to transform the Hamiltonian structure of the transformed ODE (4.2)
back to obtain a Hamiltonian structure for the original non-linear equation (4.1). This trans-
forms the positive octant of the sphere in Fig. 3 to the simplex in Fig. 1(c). However,
transforming back via ωx (t) = √

ρx (t) is valid only if ωx (t) ≥ 0 for every x ∈ X . In
the following result we state the criterion for this to hold.

Proposition 4.2 Define the threshold

σ := min
x∈X

(
1−√

1− πx
)
,

the energy E : RX → R and the Poisson structure J : RX → RX×X as

E(ρ) := 1−√
π · √ρ, (J(ρ))xy := 2

∑

z∈X

(√
πx Ayz −√

πy Axz
)√

ρxρyρz,

5 Although Fasym is only defined on the interior, this ODE can be defined on the whole domain by continuous
extension of dζ �∗(ρ, Fasym).
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where A is defined in (4.2). If the energyof the initial distributionρ0 ∈ P(X ) for theODE (4.1)
satisfies 0 ≤ E(ρ0) < σ , then (4.1) has a unique solution and admits a Hamiltonian structure
(RX×X , E, J), i.e., ρ̇ = J(ρ)∇E(ρ). If the energy of the initial distribution satisfies E(ρ0) ≥
σ , then (4.1) has non-unique, non-energy-conserving solutions.

Proof We first analyse the critical case, where the periodic orbit ω(t) of (4.2) touches one
of the boundaries of SX−1 ∩ RX≥0. The energy level of such an orbit can be calculated by
solving the constrained minimisation problem

min
{Ẽ(ω) : ω ∈ SX−1, ωx = 0 for some x ∈ X} = min

x∈X min
{Ẽ(ω) : ω ∈ SX−1, ωx = 0

}
.

Assume x ∈ X is optimal. For the interior minimisation problem, the optimal ω with ωx = 0
solves

0 = ∂ωy

[Ẽ(ω)+ 1
2λ|ω|22

] = −√πy + λωy, for all y �= x,

where the Lagrange multiplier λ ≥ 0 is such that the constraint |ω|22 = 1 holds. It follows
that ωy = √

πy/
√
1− πx , and so Ẽ(ω) = 1−√

1− πx =: σ , yielding the critical case.
Using Proposition 4.1 we thus find that if E(ρ0) = Ẽ(ω0) < σ , the solution ω(t) of

the linear system satisfies Ẽ(ω(t)) = Ẽ(ω0) and remains positive (coordinate-wise), so that
ρ(t) = √

ω(t) solves (4.1), and has the corresponding transformed Hamiltonian structure.
Note that this is possible since Poisson structures are preserved by coordinate transformations
[56, Sec. 4.2]. The uniqueness of the thus constructed solutionρ(t) follows since

√
ρx (t)ρy(t)

is strictly bounded away from zero, and therefore the right hand side of (4.1) is Lipschitz.
Now we show the non-uniqueness when E(ρ0) ≥ σ , for simplicity with |X | = 3 only.

The idea is to use the argument above to construct an energy-conserving solution until time
t1 it hits a boundary, say x̂ = 0, a solution that moves along the boundary until an arbitrary
time but sufficiently large time t1 + δ > 0, and an energy-conserving solution that moves
away from the boundary again. See Fig. 1(c). More precisely, let ω0

x =
√

ρ0
x and define

ρx (t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(e
1
2 At

ω0)2x , 0 ≤ t < t1,

(e
1
2 Āt

ω1)2x , t1 ≤ t ≤ t1 + δ,

(e
1
2 At

ω2)2x , t > t1 + δ.

Here t1 := min{t ≥ 0 : (e
1
2 At

ω0)x̂ = 0}, ω1 := e
1
2 At1ω0 and ω2 := e

1
2 A(t1+δ)

ω1, and
Āxy := Axy1{x,y �=x̂}. Note that δ > 0 must be large enough so that outgoing instead of
incoming characteristics cross the boundary x̂ = 0 and small enough that the corners in the
simplex are avoided. It is easily checked that ρ(t) is continuously differentiable and satisfies
the ODE (4.1). Since δ > 0 is arbitrary we have constructed an infinite number of solutions.

��
In the following remark we comment on the role of λ �= 1

2 in LF−2λFsym .

Remark 4.3 One can also study the zero-cost velocity associated to LF−2λFsym from (2.33)
for λ ∈ (0, 1). For λ < 1

2 , the symmetric part is dominant and the trajectories spiral inwards
towards π , i.e., π is a spiral sink, and for λ > 1

2 , the antisymmetric part is dominant and
the trajectories spiral outwards from π , i.e. π is a spiral source (compare with Fig. 1(c) for
λ = 1

2 ). ��
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Fig. 3 For |X | = 3, the trajectories ω(t) rotate around the
√

π -axis, and lie at the intersection of the two-
dimensional sphere S2 and a plane perpendicular to the

√
π -axis. The transformation ρx = √

ωx maps the
(octant) sphere to the simplex of Fig. 1(c)

Remark 4.4 As pointed out to us by André Schlichting, the energy E(ρ) = 1
2

∑
x∈X (

√
πx −√

ρx )
2 is exactly the squared Hellinger distance between ρ and the steady state π . At this

stage we do not know the physical meaning behind the Hellinger distance, but it appears
naturally in the context of purely time-antisymmetric flows. ��

5 Examples

Throughout Sect. 2 we applied the abstract theory developed therein to the example of
independent Markovian particles. We now apply the abstract theory to three examples of
interacting particle systems. In Sect. 5.1 we consider the example of zero-range processes
with an atypical scaling limit which leads to an ODE system in the limit as opposed to the
usual parabolic scaling. Section 5.2 deals with the case of chemical reaction networks in
complex balance. Finally in Sect. 5.3 we consider the case of lattice gases with parabolic
scaling (which lead to diffusive systems).

For each of these examples we derive the decompositions in Theorem 2.29,

L(ρ, j) = L(1−2λ)F (ρ, j)+Rλ
F (ρ)− 2λ〈F(ρ), j〉,

L(ρ, j) = LF−2λFsym (ρ, j)+Rλ
Fsym (ρ)− 2λ〈F sym(ρ), j〉,

L(ρ, j) = LF−2λFasym (ρ, j)+Rλ
Fasym (ρ)− 2λ〈Fasym(ρ), j〉,

and explicitly calculate all the different terms. We stress that these decompositions were
previously unknown for zero-range processes and chemical reactions; we include the lattice
gas example to show that for quadratic cost functions our decompositions coincide with
existing results in MFT.

We expect that by using approximation arguments similar to [6, Thm 1.6], [7, Sec. 5]
and [57, Part II.A], one can derive global-in-time decompositions of the rate functionals∫ T
0 L(ρ(t), j(t)) dt ; this is beyond the scope of the current paper.
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5.1 Zero-Range Processes

Microscopic particle system. To simplify and unify notation, we first consider the irreducible
Markov process on a finite graph X from the IPFG example, with generator (represented by
a matrix) Q ∈ RX×X , and assume that it has a unique and coordinate-wise positive invariant
measure π ∈ P+(X ). Similar to the setup in Example 2.1 we study the Markov process
(ρ(n)(t),W (n)(t)) onP(X )×X 2/2,whereρ(n)(t) is the particle density of interacting particles
andW (n)(t) is the integrated net flux (both defined in Example 2.1). The interaction between
the particles is such that the jump rate nκxy(ρ) from x to y only depends on the density at
the source node x (“zero-range”), through a given family of functions ηx : [0,∞) → [0,∞)

via

κxy(ρ) = κxy(ρx ) = Qxyπxηx

(
ρx

πx

)

.

For each x , the functions ηx are assumed to satisfy

(i) ηx is strictly increasing,
(ii) ηx (0) = 0 and ηx (1) = 1,
(iii) log ηx (z) is integrable near z = 0.

The condition ηx (0) = 0 ensures that ρx ≥ 0, i.e. there are no negative densities. The strict
monotonicity of η implies that the macroscopic dynamics ((5.1) below) has a unique steady
state. The condition ηx (1) = 1 ensures that π is this steady state, and is assumed only for
convenience (see Remark 5.2 below). The integrability condition is necessary and sufficient
for the large-deviation principle to hold [44]. Observe that the particular choice ηx ≡ id
corresponds to the IPFG model.

The pair
(
ρ(n),W (n)(t)

)
has the n-particle generator

(Q(n) f )(ρ,w) = n
∑∑

(x,y)∈X 2/2

κxy(ρx )
[
f (ρ − 1

n1x + 1
n1y, w + 1

n1xy)− f (ρ,w)
]

+ κyx (ρy)
[
f (ρ − 1

n1y + 1
n1x , w − 1

n1xy)− f (ρ,w)
]
.

As opposed to the typical diffusive scaling for zero-range processes [10], we keep the
graph X fixed. The many-particle limit for this process as n →∞ is the solution to the ODE
system [7, Sec. 3.1]

{
ẇxy(t) = κxy(ρx (t))− κyx (ρy(t)), (x, y) ∈ X 2/2,

ρ̇x (t) = − divx ẇ(t), x ∈ X (5.1)

where div is again thediscrete divergencedefined in (2.4). TheMarkovprocess (ρ(n)(t),W (n)(t))
satisfies a large-deviation principle with the rate functional (2.5) where the corresponding L
and its dual H are now given by [43, 44, 58]

L(ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

[
s
(
j+xy | κxy(ρx )

)+ s
(
j+xy − jxy | κyx (ρy)

)]
,

H(ρ, ζ ) =
∑∑

(x,y)∈X 2/2

[
κxy(ρx )

(
eζxy − 1

)+ κyx (ρy)
(
e−ζxy − 1

)]
,

(5.2)

and s(· | ·) is defined in (2.7).
State-flux triple and L-function. The manifolds Z,W with the corresponding tangent and
cotangent spaces and the map φ : Z → W with dφρ = − div, dφT = ∇ are exactly as in
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Example 2.2. It is easily checked that L and H are convex duals of each other, so that L is
indeed convex and lower semicontinuous.
Quasipotential. Define V : Z → R ∪ {∞} as

V(ρ) =

⎧
⎪⎨

⎪⎩

∑

x∈X

∫ ρx

0
log ηx

(
z

πx

)
dz, ρ ∈ P(X ),

∞, otherwise,

(5.3)

Note that V depends on Q through the steady state π only. Moreover, the integral is
well-defined due to the integrability condition on ηx . This function can be found as the
large-deviation rate of the explicitly known invariant measure (n) using Theorem 3.7, [46,
Prop. 3.2] and [58, Sec. 4.1]. However, in the next proposition we show that it is the correct
quasipotential without any reference to a microscopic particle system, in the macroscopic
sense of Definition 2.6.

Proposition 5.1 The function V defined in (5.3) satisfies H(ρ, dφTdV(ρ)) = 0 at all points
of differentiability ρ ∈ P+(Z) of V .
Proof At the points of differentiability of V we have

H(ρ, dφT
ρdV(ρ)

) = H(ρ,∇ log η(
ρ
π
)
)

=
∑∑

(x,y)∈X 2/2

(

κxy(ρx )

[
ηy(ρy/πy)

ηx (ρx/πx )
− 1

]

+ κyx (ρy)

[
ηx (ρx/πx )

ηy(ρy/πy)
− 1

])

=
∑∑

x,y∈X
x �=y

(
πx Qxyηy

(
ρy
πy

)
− πx Qxyηx

(
ρx
πx

))

=
∑

y∈X
ηy

(
ρy
πy

)∑

x∈X
x �=y

(πx Qxy − πy Qyx ) = 0,

where the fourth and fifth equality follows by exchanging indices and the final equality
follows since QTπ = 0. ��
Remark 5.2 If the condition ηx (1) = 1 is not satisfied then one can always construct Q ∈
RX×X , π ∈ P+(X ) and a family ηx with ηx (1) = 1, such that κxy(ρ) = Qxyπ xηx

( ρx

π x

)
,

QTπ̄ = 0, and π is the unique stable point of (5.1). To calculate these modified objects, we
minimise V(ρ) for ρ ∈ P(X ), which gives the minimiser

π x := πxη
−1
x (e−λ), where λ ∈ R satisfies

∑

x∈X
πxη

−1
x (e−λ) = 1,

and define

ηx (z) := ηx
(
zη−1

x (e−λ)
)
eλ, Qxy := Qxy

e−λ

η−1
x (e−λ)

.

It is easily checked that these modified objects satisfy all the properties described above, and
one can work with these objects instead. ��
Dissipation potential, forces and orthogonality.As in Example (2.12), using Definition 2.10
the driving force is

Fxy(ρ) = 1

2
log

κxy(ρx )

κyx (ρy)
= 1

2
log

πx Qxyηx (
ρx
πx

)

πy Qyxηy(
ρy
πy

)
, Dom(F) = P+(X ).
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with the dissipation potentials

�∗(ρ, ζ ) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx )κyx (ρy) (cosh(ζxy)− 1),

�(ρ, j) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx )κyx (ρy)

(

cosh∗
(

jxy
2
√

κxy(ρx )κyx (ρy)

)

+ 1

)

.

Since � �→ cosh(�) is an even function, using Lemma 2.11 it follows that Domsymdiss(F) =
Dom(F), i.e. the dissipation potential is symmetric.

Using Corollary 2.21 we find

F sym
xy (ρ) = −

(
1

2
dφρ

TdV(ρ)

)

xy
= 1

2
log

ηx

(
ρx
πx

)

ηy

(
ρy
πy

) ,

Fasym
xy (ρ) = Fxy(ρ)− F sym

xy (ρ) = 1

2
log

πx Qxy

πy Qyx
,

with Dom(F sym) = Dom(Fasym) = P+(X ). Observe that the expressions of F sym and
Fasym imply that their domains can be easily extended to P+(X ) and P(X ) respectively;
however the theory of Sect. 2 will not automatically be valid on that extension. Also note that
Fasym
xy = 0 if the particle system satisfies detailed balancewith respect toπ . The orthogonality

relations in Proposition 2.26 apply with (see [7])

�∗
ζ 2

(ρ, ζ 1) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx )κyx (ρy) cosh(ζ

2
xy)[cosh(ζ 1

xy)− 1],

θρ(ζ 1, ζ 2) = 2
∑∑

(x,y)∈X 2/2

√
κxy(ρx )κyx (ρy) sinh(ζ

1
xy) sinh(ζ

2
xy).

Decomposition of the L-function. The decompositions in Theorem 2.29 hold with the L-
functions

L(1−2λ)F (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s

(

j+xy |
(
πx Qxyηx

(
ρx
πx

))1−λ (
πy Qyxηy

(
ρy
πy

))λ
)

+ s

(

j+xy − jxy |
(
πx Qxyηx

(
ρx
πx

))λ (
πy Qyxηy

(
ρy
πy

))1−λ
)

,

LF−2λFsym (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s

(

j+xy |
(
πx Qxyηx

(
ρx
πx

))1−λ (
πx Qxyηy

(
ρy
πy

))λ
)

+ s

(

j+xy − jxy |
(
πy Qyxηy

(
ρy
πy

))1−λ (
πy Qyxηx

(
ρx
πx

))λ
)

,

LF−2λFasym (ρ, j) = inf
j+∈RX 2/2

≥0

∑∑

(x,y)∈X 2/2

s

(

j+xy |
(
πx Qxyηx

(
ρx
πx

))1−λ (
πy Qyxηx

(
ρx
πx

))λ
)

+ s

(

j+xy − jxy |
(
πy Qyxηy

(
ρy
πy

))1−λ (
πx Qxyηy

(
ρy
πy

))λ
)

,

and the corresponding Fisher informations

Rλ
F (ρ) = −H (ρ,−2λF(ρ))
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=
∑∑

x,y∈X
x �=y

πx Qxyηx

(
ρx
πx

)
−
(
πx Qxyηx

(
ρx
πx

))1−λ (
πy Qyxηy

(
ρy
πy

))λ

,

Rλ
Fsym (ρ) = −H (

ρ,−2λF sym(ρ)
)

=
∑∑

x,y∈X
x �=y

πx Qxyηx

(
ρx
πx

)
−
(
πx Qxyηx

(
ρx
πx

))1−λ (
πx Qxyηy

(
ρy
πy

))λ

,

Rλ
Fasym (ρ) = −H (

ρ,−2λFasym(ρ)
)

=
∑∑

x,y∈X
x �=y

πx Qxyηx

(
ρx
πx

)
−
(
πx Qxyηx

(
ρx
πx

))1−λ (
πy Qyxηx

(
ρx
πx

))λ

.

In particular, with ηx ≡ id, we indeed arrive at the expressions in Example 2.33.
With the expressions above the zero-range model satisfies the FIR inequality from Corol-

lary 2.34 for λ = 1
2 , which is consistent with [7, Cor. 4.3] but also holds more generally for

λ ∈ [0, 1]. We also mention that the zero-cost flux for the symmetric LFsym satisfies EDI
(see Corollary 2.36), i.e., it induces a gradient flow structure. We now turn our attention to
its antisymmetric counterpart.
Zero-cost velocity for antisymmetric L-function. As in the IPFG case in Sect. 4, we now
consider the zero-cost velocity associated to LFasym which for any x ∈ X solves the ODE

ρ̇x (t) =
∑

y∈X
y �=x

Axy

√

πxπyηx

(
ρx (t)
πx

)
ηy

(
ρy(t)
πy

)
, with Axy := Qyx

√
πy

πx
− Qxy

√
πx

πy
.

(5.4)

Note that the corresponding ODE for IPFG (4.1) follows with ηx ≡ id. The geometric
arguments of Sect. 4 cannot be fully repeated, because it is unclear how to transform (5.4)
into a linear equation. However, by analogy to that section, we make an educated guess for
the energy and the Poisson structure, which is summarised in the following result. We will
make use of the following family of functions gx : [0, 1] → R

gx (a) :=
∫ a

0

1
√

ηx (
b
πx

)
db,

for every x ∈ X . Using these functions we now show that the Conjecture 2.38 holds for the
zero-range process.

Proposition 5.3 Assume that ηx is such that gx is well defined for any x ∈ X . Define the
threshold

σ := min
x∈X min

ρ∈RX
ρx=0

⎡

⎢
⎢
⎣1−

∑

z∈X
z �=x

gz(ρz)+ λx

⎛

⎜
⎜
⎝
∑

z∈X
z �=x

ρz − 1

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ ,

where λx > 0 satisfies
∑

z∈X
z �=x

πzη
−1
z

(
1

λ2x

)

= 1, (5.5)
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and the energy E : RX → R ∪ {∞} and the skew-symmetric matrix field J : RX → RX×X
as

E(ρ) := 1−
∑

x∈X
gx (ρx ), (J(ρ))xy

:= 2
∑

z∈X

√

πxπyπzηx

(
ρx
πx

)
ηy

(
ρy
πy

)
ηz

(
ρz
πz

) (√
πx Ayz −√

πy Axz
)
,

where A is defined in (5.4). If the energy of initial distribution ρ0 ∈ P(X ) for the ODE (5.4)
satisfies 0 ≤ E(ρ0) < σ , then (4.1) has a unique solution and ρ̇ = J(ρ)∇E(ρ). If the
energy of the initial distribution satisfies E(ρ0) ≥ σ , then (5.4) has non-unique, non-energy-
conserving solutions.

Proof For any x ∈ X we have

(J(ρ)∇E(ρ))x =
∑

y∈X
(J(ρ))xy(∇E(ρ))y

=
∑

y,z∈X

√
πxπzηx

(
ρx
πx

)
ηz
( ρz

πz

)(
πy Axz −√

πxπy Ayz

)

=
∑

z∈X

√
πxπzηx

(
ρx
πx

)
ηz
( ρz

πz

)
Axz = ρ̇x (t),

where the third equality follows since
∑

y πy = 1 and (AT√π)y = 0 for any y ∈ X . Finally,
note that (5.4) has unique solutions if the right hand side is Lipschitz, which follows if ρx > 0,
since ηx (0) = 0, for every x ∈ X . The expression (5.5) for this threshold follows by solving

min
{E(ρ) : ρ ∈ P(X ), ρx = 0 for some x ∈ X} = min

x∈X min
{E(ρ) : ρ ∈ P(X ), ρx = 0

}
,

where λx in (5.5) is the Lagrange multiplier for the constraint
∑

z �=x ρz = 1. The non-

uniqueness of solutions follows if E(ρ0) ≥ σ due to non-Lipschitz right-hand side in (5.4).
��

The equation (5.4) may have an underlying Hamiltonian structure, but while the matrix
field J(ρ) proposed here is skew-symmetric, it generally does not satisfy the Jacobi identity.

5.2 Complex-Balanced Chemical Reaction Networks

Microscopic particle system. We now describe a particle system that is commonly used to
model chemical reactions. For a detailed review of this particle system with motivation and
connections to related particle systems see [20].

Let X be a finite set of species, R be the finite set of reactions between the species,
and let the vectors γ (r) ∈ RX denote the net number of particles of each species that are
created/annihilated during a reaction r ∈ R. Furthermore, let R = Rfw ∪Rbw such that each
forward reaction r ∈ Rfw corresponds to a backward reaction bw(r) ∈ Rbw, meaning that
γ (bw(r)) = −γ (r) for all r ∈ Rfw.6. The set Rfw will play the role of X 2/2 from Example 2.1.

6 This does not necessarily mean that each forward reaction α(r) → α(bw(r)) corresponds to a backward
reaction α(bw(r)) → α(r), which is known in the literature as a reversible network [59, Def. 2.2] The difference
between the two notions is clearly seen in the example at the end of our Appendix B.
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The microscopic model involves a finite volume V that controls the number of randomly
reacting particles in the system. For a fixedV , we study the random concentration or empirical
measure ρ

(V )
x (t), which is the number of particles belonging to species x ∈ X . Note that the

total number of particles may not be conserved here, as opposed to the setting of Example 2.1.
We also consider the integrated net reaction flux for r ∈ Rfw,

W (V )

r (t) = 1

V
#
{
reactions r occurred in time (0, t]}

− 1

V
#
{
reactions bw(r) occurred in time (0, t]}.

Forward and backward microscopic reactions r take place with given microscopic jump
rates V κ

(V )
r (ρ(V )) and V κ

(V )

bw(r)(ρ
(V )) respectively. Typically these jump rates are modelled

with combinatoric terms (B.2), see also [20]. Since our framework is purely macroscopic,
the precise expressions for the microscopic jump rates are not relevant; the only crucial point
is that both converge sufficiently strongly to macroscopic reaction rates κr (ρ) and κbw(r)(ρ).
The pair (ρ(V )(t),W (V )(t)) is a Markov process on RX × RRfw with generator

(Q(V ) f )(ρ,w) = V
∑

r∈Rfw

κ(V )

r (ρ)
[
f
(
ρ + 1

V γ (r), w + 1
V 1r

)− f (ρ,w)
]

+ κ
(V )

bw(r)(ρ)
[
f
(
ρ + 1

V γ (bw(r)), w + 1
V 1bw(r)

)− f (ρ,w)
]
.

Using the matrix notation � := [γ (r)]r∈Rfw ∈ RX×Rfw , in the limit V → ∞ the pair
(ρ(V ),W (V )) converges to the solution of (see [60] and [7, Sec. 3.1])

{
ẇr (t) = κr (ρ(t))− κbw(r)(ρ(t)), r ∈ Rfw

ρ̇x (t) = (�ẇ(t))x , x ∈ X .
(5.6)

The Markov process (ρ(V )(t),W (V )(t)) satisfies a large-deviation principle (2.5) where
L,H are now given by (see [43, Thm. 1.1] and [7, Cor. 3.1])

L(ρ, j) = inf
j+∈RRfw≥0

∑

r∈Rfw

s( j+r | κr (ρ))+ s( j+r − jr | κbw(r)(ρ)),

H(ρ, ζ ) =
∑

r∈Rfw

κr (ρ)(eζr − 1)+ κbw(r)(ρ)(e−ζr − 1),

and s(· | ·) is defined in (2.7). As in the IPFG and zero-range models, the infimum over
one-way fluxes j+ can be derived using the contraction principle.

We mention that at this level of generality one can already derive many interesting MFT
properties, see [7]. After all, the IPFG and zero-range models fall within this class. However,
in order to apply our framework and obtain explicit results, the quasipotential needs to be
known. To this aim we make two crucial assumptions.

First, the system satisfies mass-action kinetics i.e. there exists stoichiometric vectors or
complexes α(r) ∈ RX≥0 (encoding the number of reactants involved) and reaction constants
cr > 0 for each r ∈ R such that

γ (r) = α(bw(r)) − α(r), γ (bw(r)) = α(r) − α(bw(r)),

and the forward and backward rates satisfy, setting ρα(r) :=∏
x∈X ρ

α
(r)
x

x ,

κr (ρ) = crρ
α(r)

, ∀r ∈ R. (5.7)
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Second, we assume that the system is in complex balance [59, Sec. 3.2] with respect to
some π ∈ RX

>0, i.e.

∀ ψ ∈ R
C :

∑

r∈Rfw

(crπ
α(r) − cbw(r)π

α(bw(r))
)(ψα(r) − ψα(bw(r)) ) = 0, (5.8)

where C := {α(r) : r ∈ R} signifies the set of complexes. This immediately implies that
π is a steady state of the macroscopic dynamics (5.6). Observe that complex balance w.r.t.
π is a macroscopic notion, whereas detailed balance of the Markov process w.r.t. (V ) is a
microscopic notion. However, for reversible networks (see footnote 6) microscopic detailed
balance corresponds to the macroscopic notion of detailed balance crπα(r) = cbw(r)π

α(bw(r))

[59, Th. 4.5], which is clearly a stronger than complex balance. Most importantly, whereas
detailed balance corresponds to purely dissipative dynamics [3], complex balance allows for
non-dissipative effects.
State-flux triple and L-function. Fix a reference or initial concentration ρ0 ∈ RX≥0 and recall
the matrix notation �w = ∑

r∈Rfw
γ (r)wr . The state space is the flat manifold of concen-

trations that can be produced from ρ0 via reactions, with corresponding local (co)tangent
spaces:

Z = ρ0 + Ran(�), TρZ = Ran(�), T ∗ρ Z = R
X /Ker(�T). (5.9)

As in the case of IPFG and zero-range, we include negative concentrations to simplify
the geometric setting; this set Z is known in the literature as the stoichiometric compat-
ibility class, whereas the subset of Z of coordinate-wise non-negative concentrations is
called the stoichiometric simplex.7. Moreover, as in the previous examples, TρZ restricts the
directions of RX in which one can differentiate, and T ∗ρ Z appears as a quotient space.
Indeed the Euclidean inner product between tangents u = � j ∈ Ran(�) and cotan-
gents ξ ∈ RX /Ker(�T) is again invariant under addition of vectors ν ∈ Ker(�T), since
T ∗ρ Z 〈ξ + cν, u〉TρZ = (ξ + cν) · � j) = ξ · u. The space Ker(�T) encode the quantities
(usually numbers of atoms) that are conserved under the reactions.

The flux space and its associated tangent and cotangent spaces are simply the Euclidean
space

W = TρW = T ∗ρ W = R
Rfw ,

and the continuity map φ : W → Z and its differential are

φ(w) = ρ0 + �w, dφρ = �, dφT
ρ = �T.

Note that with this setup, φ is indeed surjective. Again,L is convex and lower semicontinuous
since L is its own convex bidual.
Quasipotential. The quasipotential is again the relative entropy with respect to the invariant
measure,

V(ρ) =
⎧
⎨

⎩

∑

x∈X
s(ρx | πx ), ρ ∈ Z,

∞, otherwise.
(5.10)

Similar to Example 5.10, as a function on the state manifold Z, this quasipotential is
differentiable on Z+ := {ρ ∈ Z : ρ > 0 (coordinate-wise)}, with Gateaux derivative
dV(ρ) = {(log(ρx/πx ))x∈X + ξ : ξ ∈ Ker(�T)}.
7 Under the complex balance assumption the steady state π is unique and stable within such simplex [59,
Thm. 3.2].
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Recall the relation between the quasipotential and the large-deviation rate functional for
the invariant measure of the microscopic system from Theorem 3.7. Whereas in the IPFG
model this relative entropy appears as the large-deviation rate functional for independent
particles by Sanov’s Theorem, in the complex balance case this is the rate functional of the
explicitly known invariant measure of the microscopic particle system [59, Thm. 4.1]. As in
the previous examples, it can also be checked purely macroscopically that this is the correct
quasipotential satisfying (2.12). In fact, it turns out that (2.12) is equivalent to complex
balance; both directions of the equivalence will be shown in Theorem B.1 in Appendix B.

Remark 5.4 As mentioned in Sects. 1.1 and 3.2, the quasipotential V is always a Lyapunov
function along the zero-cost dynamics (1.1). For the case of chemical reactions this was
worked out explicitly in [61]. ��
Dissipation potential, forces and orthogonality. The driving force is

Fr (ρ) = 1

2
log

κr (ρ)

κbw(r)(ρ)
= 1

2
log

(
cr

cbw(r)
ρ−γ (r)

)

, Dom(F) = Z+,

recalling that κr (ρ) = crρα(r)
andZ+ denote the positive concentrations inZ. The dissipation

potentials are

�∗(ρ, ζ ) = 2
∑

r∈Rfw

√
κr (ρ)κbw(r)(ρ) (cosh(ζr )− 1),

�(ρ, j) = 2
∑

r∈Rfw

√
κr (ρ)κbw(r)(ρ)

(
cosh∗( jr )

2
√

κr (ρ)κbw(r)(ρ)
+ 1

)

.

Note that Domsymdiss(F) = Dom(F), i.e., the dissipation potential is symmetric.
Following Corollary 2.21, the symmetric and antisymmetric forces are

F sym
r (ρ) = −

(
1

2
dφρ

TdV(ρ)

)

r
= −1

2
log

(
ρ

π

)γ (r)

,

Fasym
r (ρ) = Fr (ρ)− F sym

r (ρ) = 1

2
log

(
cr

cbw(r)
π−γ (r)

)

,

with Dom(F sym) = Dom(Fasym) = Dom(F) = Z+. The orthogonality relations in Propo-
sition 2.26 apply with

�∗
ζ 2

(ρ, ζ 1) = 2
∑

r∈Rfw

√
κr (ρ)κbw(r)(ρ) cosh(ζ 2

r )[cosh(ζ 1
r )− 1],

θρ(ζ 1, ζ 2) = 2
∑

r∈Rfw

√
κr (ρ)κbw(r)(ρ) sinh(ζ 1r) sinh(ζ 2

r ).

This notion of generalised orthogonality is consistent with the derivations in [7].
Decomposition of the L-function. The decompositions in Theorem 2.29 hold with the L-
functions

L(1−2λ)F (ρ, j) = inf
j+∈RRfw≥0

∑

r∈Rfw

s
(
j+r | (κr (ρ))1−λ(κbw(r)(ρ))λ

)

+ s
(
j+r − jr | (κr (ρ))λ(κbw(r)(ρ))1−λ

)
,

LF−2λFsym (ρ, j) = inf
j+∈RRfw≥0

∑

r∈Rfw

s
(
j+r | κr (ρ)

(
ρ

π

)λγ (r))
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+ s

(

j+r − jr | κbw(r)(ρ)
(

ρ

π

)−λγ (r))

,

LF−2λFasym (ρ, j) = inf
j+∈RRfw≥0

∑

r∈Rfw

s

(

j+r | (κr (ρ))1−λ(κbw(r)(ρ))λ
(

ρ

π

)−λγ (r))

+ s
(
j+r − jr | (κr (ρ))λ(κbw(r)(ρ))1−λ

( ρ

π

)λγ (r))
,

with the corresponding Fisher informations

Rλ
F (ρ) = −H(ρ,−2λF(ρ)

) =
∑

r∈R
κr (ρ)− (κr (ρ))1−λ(κbw(r)(ρ))λ,

Rλ
Fsym (ρ) = −H(ρ,−2λF sym(ρ)

) =
∑

r∈R
κr (ρ)− κr (ρ)

(
ρ

π

)λγ (r)

,

Rλ
Fasym (ρ) = −H(ρ,−2λFasym(ρ)

) =
∑

r∈R
κr (ρ)− (κr (ρ))1−λ(κbw(r)(ρ))λ

(
π

ρ

)λγ (r)

.

The zero-cost flux for LFsym is related to a gradient flow by Corollary 2.36; this has been
discussed in [31, Cor. 4.8]. As opposed to IPFG and zero-range examples, the construction
of a Poisson structure for LFasym is difficult in the chemical reaction setting due to the non-
locality of the jump rates and the interplay with the stoichiometric vectors, and remains an
open question.

5.3 Lattice Gases

In this section we focus on the typical setting of MFT [10]. We are given a nonnega-
tive potential U ∈ C∞(Td ; (0,∞)), a covector field A ∈ C∞(Td ;Rd) and a ‘mobility’
χ ∈ C∞(R; [0,∞)). The lattice gas model is a discrete state-space particle system whose
hydrodynamic limit is the following drift-diffusion equation on the torus Td

ρ̇(t) = − div j(t),

j(t) = j0
(
ρ(t)

)
, with

j0(ρ) := −∇ρ − χ(ρ)(∇U + A). (5.11)

As before ρ ∈ P(Td) is the limiting density of the particle system, but now ∇, div denote
the continuous differential operators in Rd . We assume that,8

div A = 0

∇U · A = 0

d2

da2
h(a) = 1

χ(a)
(5.12)

for some h : [0,∞) → [0,∞),
Most results about this class of models are well known; we present them here to show that

our abstract theory is consistent with ‘classical’ MFT.

8 In order to make sure that the rate functional
∫ T
0 L̂(ρ(t), ρ̇(t)) dt = ∞ whenever negative concentrations

are reached, one should in fact require χ(a) ≡ 0 for all a /∈ [0, 1], and assume that χ is continuous and smooth
away from its zeros.
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Microscopic particle system.Although themacroscopic framework works for general mobil-
ities, we only describe two standard microscopic particle systems that give rise to different
mobilities. For independent random walkers χ(a) = a, h(a) = a log a − a + 1 and for the
simple-exclusion process χ(a) = a(1 − a), h(a) = a log a + (1 − a) log(1 − a). Since
these two particle systems with limit (5.11) have been extensively studied in the literature,
we only present the essential features here.

For both particle systems, the particles can jump to neighbouring sites on the lattice
Td ∩ ( 1nZ)d . In order to pass to the hydrodynamic limit (5.11) and derive the corresponding
large deviations, the state space will be embedded in the continuous torus. The first particle
system consists of independent random walkers with drift. For any n ∈ N, the corresponding
empirical measure-flux pair (ρ(n)(t),W (n)(t)) is a Markov process in P(Td) ×M(Td ;Rd)

with generator (see [21])

(Q(n) f )(ρ,w) = n2
∑

τ∈Zd

|τ |=1

∫

Td
ndρ(dx)e

−
[
1
2U (x+ 1

n τ)− 1
2U (x)+ 1

2n A(x)·τ
]

×
[
f
(
ρ − 1

nd
δx + 1

nd
δx+ 1

n τ , w + 1
nd+1 τδx+ 1

2n τ

)− f (ρ,w)
]
.

This system can also be derived as the spatial discretisation of interacting stochastic differ-
ential equations, although in such continuous-space setting it becomes less straight-forward
how to define particle fluxes.

The second particle system is the weakly asymmetric simple exclusion process (WASEP)
which has been extensively studied in the MFT literature (see for instance [10, 62]). In this
case the Markov process (ρ(n)(t),W (n)(t)) has generator

(Q(n) f )(ρ,w) = n2
∑

τ∈Zd

|τ |=1

∫

Td
ndρ(dx)

(
1− ndρ({x + 1

n τ })
)
e
−
[
1
2U (x+ 1

n τ)− 1
2U (x)+ 1

2n A(x)·τ
]

×
[
f
(
ρ − 1

nd
δx + 1

nd
δx+ 1

n τ , w + 1
nd+1 τδx+ 1

2n τ

)
− f (ρ,w)

]
.

Observe that in both generators, the flux w has a different scaling than the particle density
ρ. This is required to ensure that the discrete-space, finite-n continuity equation converges
to the continuous-space continuity equation with differential operator − div.

Letting n → ∞ we arrive at the hydrodynamic limit (5.11) with χ(a) := a for the first
particle system and χ(a) := a(1 − a) for the second particle system. The corresponding
large-deviation cost function and its dual are

H(ρ, ζ ) = ‖ζ‖2L2(χ(ρ))
+
∫

Td
ζ(x) j0(ρ)(x) dx,

L(ρ, j) =
{ 1

4
‖ j − j0(ρ)‖2

L2(1/χ(ρ))
, if j − j0(ρ) ∈ L2(1/χ(ρ))

+∞, else.

(5.13)

Here L2(χ(ρ)) is theχ(ρ)-weighted L2-spaceonTd with‖ f ‖2
L2(χ(ρ))

:= ∫
Td f (x)2χ(ρ(x))dx

and ‖ · ‖L2(1/χ(ρ)) is the dual norm to ‖ · ‖L2(χ(ρ)). Note that L is constructed by taking the
convex dual of H which is defined in terms of ‖ · ‖L2(χ(ρ)). See [21, Sec. 5] for the large-
deviations of the random walkers (with A = 0), [46, Chap. 10] for exclusion process without
fluxes, and [62, Thm. 2.1] for exclusion process with fluxes (with A = 0).
State-flux triple and L-function. Apart from the fact that the state space is infinite-
dimensional, the lattice gas example differs from the previous examples in a number of ways.
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First of all, in this setting, one actually has a microscopic state-flux triple (Zn,Wn, φn) that
converges to the macroscopic one (Z,W, φ) in a suitable sense, see for example [31, Sec. 5].
For simplicity we only present the macroscopic structure. The second difference is that the
cost (5.13) happens to be a quadratic functional, which induces a norm on the cotangent
space. However as in the finite-dimensional examples, we regard such induced geometry
to be a posteriori; one first needs a basic geometric setup in order to derive the dissipation
potentials. Therefore we shall work with the following setting, and discuss the geometry
induced by (5.13) in Remark 5.5.

For the state space we choose, analogous to (2.9) and (5.9),

Z := {
ρ ∈ L1(Td) : ∫

Tdρ(x) dx = ∫
Tdρ

0(x) dx
}
,

TρZ = {
u ∈ L1(Td) : ∫

Td u(x) dx = 0
}
,

T ∗ρ Z = {{ξ + c : c ∈ R} : ξ ∈ L∞(Td)
}
.

For χ(a) = a one might be tempted to choose Z as the space of signed measures with total
mass

∫
ρ0 dx , but then the quasipotential V will fail to be differentiable.

For the flux space we choose the flat Banach manifold (see [63, Theorem 3.12])

W = TρW = W 1,1(Td ;Rd), T ∗ρ W = W−1,∞(Td),

and for the continuity operator the usual one:

φ[w] := ρ0 − divw with differential dφρ j = − div j and its adjoint dφρ
Tξ = ∇ξ.

(5.14)

As a validity check, this setup indeed satisfies φ : W → Z, dφρ : TρW → TρZ and
dφρ

T : T ∗ρ Z → T ∗ρ W . Finally, L is clearly convex and lower semicontinuous in the L2
1/χ(ρ)-

norm.

Remark 5.5 A posteriori we could also choose the state-flux triple implied by the large devi-
ations (5.13). Then Z = (P(Td),W2), the space of probability measures on the (compact)
torus, endowed with the Wasserstein-2 metric W2. For any ρ ∈ Z, the corresponding cotan-
gent and tangent spaces and the associated norms are

T ∗ρ Z := {C∞(Td)}‖·‖1,χ(ρ)
,

TρZ =
{
− div(χ(ρ)h) (in distr. sense) : h ∈ {∇ϕ : ϕ ∈ C∞(Td)}‖·‖L2(χ(ρ))

}
.

with the standard (semi)norms from Wasserstein-2 geometry [64, Sec. 3.4.2]

‖ξ‖21,χ(ρ) := ‖∇ξ‖2L2(χ(ρ))
, ‖u‖2−1,χ(ρ) := inf

j∈TρW
u=− div j

‖ j‖2L2(1/χ(ρ))
.

The induced flux space is the metric space

W =
{
w ∈ M(Td ;Rd) : ρ0 − divw (in distr. sense) ∈ P(Td)

}
,

d2W (w1, w2) := inf
ŵ:[0,1]→W

ŵ(0)=w1,ŵ(1)=w2

∫ 1

0
‖ŵ(t)‖2L2(1/χ(ρ0−div ŵ(t))) dt,

T ∗ρ W = L2(χ(ρ)), TρW = L2(1/χ(ρ)).
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And the continuity operator is again (5.14). This setup is slightly different from the standard
Wasserstein geometry, where by convention the fluxes are defined so as to satisfy ρ̇ =
div(ρ j), while in our context the fluxes satisfy ρ̇ = div j .

However, this induced state-flux triple is formal, as Z and W are not Banach manifolds,
and differentiability of the quasipotential V becomes less straightforward. We therefore work
with the simpler triple described above. ��
Quasipotential. The quasipotential V : Z → R is defined as, recalling (5.12),

V(ρ) =
∫

Td

[
h(ρ(x))+U (x)ρ(x)

]
dx,

Its Gateaux derivative in Z is simply, recalling (2.26),

dV(ρ) = h′(ρ)+U (modulo constants ), for ρ ∈ Dom(F sym) = {ρ ∈ Z : h′(ρ)

∈ L∞(Td)}.
It is easy to verify that H(ρ, dφT

ρdV(ρ)) = 0 and therefore V is indeed a quasipotential in
the sense of Definition 2.6. In the case χ(a) = a, V is the relative entropy with respect to the
Gibbs-Boltzmann measure μ(dx) = Z−1e−U (x) dx .
Dissipation potential, forces and orthogonality. Using Definition (2.10) the driving force is

F(ρ) = 1

2
(χ(ρ))−1 j0(ρ), Dom(F) = {

ρ ∈ Z : χ(ρ(x)) > 0 almost everywhere
}
.

The dissipation potential and its dual are

�∗(ρ, ζ ) = ‖ζ‖2L2(χ(ρ))
+ 〈ζ, j0(ρ)− 2χ(ρ)F(ρ)〉 = ‖ζ‖2L2(χ(ρ))

,

�(ρ, j) = 1

4
‖ j‖2L2(1/χ(ρ))

.

Observe that Domsymdiss(F) = Dom(F), i.e., the dissipation potential is symmetric. Fol-
lowing Corollary 2.21, the symmetric and antisymmetric forces are

F sym(ρ) = − 1

2
dφρ

TdV(ρ) = − 1

2

[
(χ(ρ))−1∇ρ + ∇U],

Fasym(ρ) = F(ρ)− F sym(ρ) = − 1

2
A.

Indeed the antisymmetric force Fasym is again independent of ρ.
The generalised orthogonality relations in Proposition 2.26 apply with

�∗
ζ 2

(ρ, ζ 1) = ‖ζ 1‖2L2(χ(ρ))
, θρ(ζ 1, ζ 2) = 2(ζ 1, ζ 2)L2(χ(ρ)),

where (·, ·)L2(χ(ρ)) is the χ(ρ)-weighted L2 norm. This shows that for quadratic dissipa-
tion potentials, the generalised expansion of Proposition 2.26 indeed collapses to the usual
expansion of squares, i.e.:

�∗(ρ, ζ 1 + ζ 2) = ‖ζ 1 + ζ 2‖2L2(χ(ρ))
= ‖ζ 1‖2L2(χ(ρ))

+ 2(ζ 1, ζ 2)L2(χ(ρ)) + ‖ζ 2‖2L2(χ(ρ))

= �∗(ρ, ζ 1)+ θρ(ζ 2, ζ 1)+�∗
ζ 1

(ρ, ζ 2).

Decomposition of the L-function. The decompositions in Theorem 2.29 hold with the L-
functions

L2λF (ρ, j) = 1

4
‖ j − 4λχ(ρ)F(ρ)‖2L2(1/χ(ρ))

,
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LF−2λFsym (ρ, j) = 1

4
‖ j − 2χ(ρ)Fasym − 2(1− 2λ)χ(ρ)F sym(ρ)‖2L2(1/χ(ρ))

, (5.15)

LF−2λFasym (ρ, j) = 1

4
‖ j − 2(1− 2λ)χ(ρ)Fasym − 2χ(ρ)F sym(ρ)‖2L2(1/χ(ρ))

, (5.16)

and the corresponding Fisher informations

Rλ
F (ρ) = H(ρ,−2λF(ρ)) = λ(1− λ) ‖−2F(ρ)‖2L2(χ(ρ))

,

Rλ
Fsym (ρ) = H(ρ,−2λF sym(ρ)) = λ(1− λ)

∥
∥−2F sym(ρ)

∥
∥2
L2(χ(ρ))

,

Rλ
Fasym (ρ) = H(ρ,−2λFasym) = λ(1− λ)

∥
∥−2Fasym

∥
∥2
L2(χ(ρ))

.

The positivity of these Fisher informations is obvious from the definition. In this setting,
the decompositions in Theorem 2.29 can be derived simply by expanding the squares in the
L-function.

Repeating the calculations in Corollary 2.34 for χ(a) = a, we arrive at the local FIR
equality for diffusion processes (with u as a placeholder for ρ̇) [6, Eq. (14)]

〈d RelEnt(ρ|μ), u〉 +
∥
∥
∥∇ log

ρ

μ

∥
∥
∥
L2(ρ)

≤ L̂(ρ, j),

where the contracted L-function L̂ is defined in (2.40), the relative entropy with respect to μ

is defined as RelEnt(·|μ) := V(·).
We now briefly comment on the symmetric and antisymmetric L-functions. Substituting

λ = 1
2 in (5.16) and expanding the square we find

LFsym (ρ, j) = 1

4
‖ j‖2L2(1/χ(ρ))

+ 1

4
‖ − 2χ(ρ)F sym(ρ)‖2L2(1/χ(ρ))

− 1

2
〈 j,−2F sym(ρ)〉

= 1

4
‖ j‖2L2(1/χ(ρ))

+ 1

4
‖∇dV(ρ)‖2L2(χ(ρ))

− 1

2
〈div j, dV(ρ)〉,

where we have used −2Fasym(ρ) = ∇dV(ρ) and the definition of ‖ · ‖−1,χ(ρ). Using this
decomposition of LFsym , the contracted symmetric L-function

L̂Fsym (ρ, u) := inf
j∈TρW: u=− div j

LFsym (ρ, j),

admits the decomposition

L̂Fsym (ρ, u) = �̂(ρ, u)+ �̂∗(ρ,− 1
2dV(ρ))+ 1

2
〈dV(ρ), u〉, (5.17)

where the contracted dissipation potential �̂(ρ, u) = 1

4
‖u‖2−1,χ(ρ) and its dual �̂∗(ρ, s) =

‖s‖21,χ(ρ) (recall abstract definition in (2.42)). The decomposition (5.17) is the standard
Wasserstein-based EDI for the drift-diffusion equation (5.11) (see for instance [3, Sec. 4.2]).

Similarly, the purely antisymmetric L-function and its contraction read

LFasym (ρ, j) = 1

4
‖ j + χ(ρ)A‖2L2(1/χ(ρ))

, L̂Fasym (ρ, u) = 1

4
‖u + div(χ(ρ)A)‖2−1,χ(ρ),

with zero-cost velocity u0(ρ) = − div(χ(ρ)A) = −∇(χ(ρ)) · A. While the corresponding
evolution equation ρ̇(t) = div(χ(ρ)A) preserves the energy

E : Z → R, E(ρ) :=
∫

Td
U (x) dρ(x),
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it is not clear if we can define an operator J such that Conjecture 2.38 holds. However in the
case A = J∇U where J ∈ Rd×d is a constant skew-symmetric matrix and χ(a) = a, we
define the operator

J : Z → (T ∗ρ Z → TρZ), J(ρ)(ζ ) := div(ρ J∇ζ ).

Using the antisymmetry of J it follows that

〈ζ 1, J(ρ)ζ 2〉 =
∫

Td
ζ 1 div(ρ J∇ζ 2)

= −
∫

Td
∇ζ 1 · J∇ζ 2ρ

= −〈J(ρ)ζ 1, ζ 2〉,
i.e., J is a skew-symmetric operator. Furthermore J satisfies the Jacobi identity by an elemen-
tary but tedious calculation which we skip. Therefore the antisymmetric zero-cost velocity
indeed evolves according to the standard Hamiltonian system (see for instance [28, Section
3.2]) with energy E and Poisson structure J.

6 Conclusion and Discussion

In this paper we have presented an abstract macroscopic framework, which, for a given
flux-density L-function, provides its decomposition into dissipative and non-dissipative
components and ageneralised notionof orthogonality between them.This decomposition pro-
vides a natural generalisation of the gradient-flow framework to systems with non-dissipative
effects. Specifically we prove that the symmetric component of the L-function corresponds
to a purely dissipative system and conjecture that the antisymmetric component corresponds
to a Hamiltonian system, which has been verified in several examples. We then apply this
framework to various examples, both with quadratic and non-quadratic L-functions.

We now comment on several related issues and open questions.
Why does the density-flux description work? While at the level of the evolution equa-

tions which are of continuity-type, the density-flux description does not offer any advantage
(recall (1.1)), at the level of the cost functions it allows us to naturally encode divergence-free
effects. This is clearly visible for instance in Theorem 2.29, where the evolutions correspond-
ing to LFsym , LFasym are dissipative and energy-preserving respectively, while the zero of
the full L-function characterises the macroscopic evolution. A simple contraction argument
allows us to retrieve the classical gradient-flow structure as well as the FIR inequalities in a
fairly general setting, which further reveals the power of this description.

Antisymmetric force and L-function.While in the abstract theory the antisymmetric force
Fasym = Fasym(ρ) is a function of ρ ∈ Dom(Fasym), in all the concrete examples studied
in this paper, Fasym is independent of ρ. It is not clear to us if this is a general property of
the antisymmetric force or a special characteristic of the examples studied in this paper.

In Sect. 2.6 we conjectured that the zero-velocity flux for the contracted antisymmetric
L-function admits a Hamiltonian structure, which was concretely proved for IPFG and zero-
range process in Proposition 4.2, 5.3 respectively. While this gives insight into the associated
zero-flows, it is not clear if LFasym admits a variational formulation akin to the gradient-flow
structure for LFsym discussed in Corollory 2.36.

Chemical-reaction networks. In Appendix B we provide a new interpretation of systems
in complex balance as being exactly those systems which admit the relative entropy as the
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quasipotential. This also restricts the search for invariant measures of the CME without
complex balance to measures that are not exponentially equivalent to the product-Poisson
form. However, motivated by the example in that appendix, an interesting question would be
to identify the class of systemswhich admit a rescaled relative entropy as their quasipotential.

Furthermore, the Hamiltonian structure of the zero-velocity for LFasym in the chemical-
reaction setting is open. As pointed out in Sect. 5.2, the non-locality of the jump rates for
chemical-reaction networks offers a challenge as opposed to the local jump rates for IPFG
and zero-range process.

Generalised orthogonality. The notion of generalised orthogonality as introduced in
Sect. 2.4 allows us to decompose the L-function as in Theorem 2.29 for the special case
λ = 1

2 . However a natural question is whether this notion of orthogonality encoded via θρ

can be generalised to allow for any λ ∈ [0, 1]. This would provide a deeper understand-
ing of our main decomposition Theorem 2.29 as well as a clear interpretation of the Fisher
information in terms of a modified dissipation potential.

Quasipotentials for multiple invariant measures. In Remark 3.9 we discussed the pos-
sibility of having multiple quasipotentials. On a macroscopic level, forcing uniqueness
for non-quadratic Hamilton-Jacobi-Bellman equations is generally challenging. This is not
merely a technical issue, since even on a microscopic level there may be multiple invariant
measures; we have not pursued this possibility any further.

Global-in-time decompositions. In this paper we have focussed on the local-in-time
description of the L-function as opposed to working with time-dependent trajectories. While
it is not obvious how to generalise the various abstract results to allow for global-in-time
descriptions, we expect that it can be worked out case by case for the examples presented
in this paper. The main difficulty here is that the time-dependent trajectories are allowed to
explore the boundary of the domain where the forces are not well-defined, and therefore an
appropriate regularisation procedure is required to extend the domain of definition of these
forces.
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Appendices

A Hamiltonian Structure for Linear Antisymmetric Flow

We learnt the arguments of Appendix A from Alexander Mielke.
We study the linear ODEs of the form

ω̇ = 1

2
Aω ∈ R

d with ATω∗ = Aω∗ = 0 for some ω∗ �= 0. (A.1)

In Theorem A.2 we provide a complete characterisation of a natural Hamiltonian structure
for these ODEs. In contrast to the typical settings of Hamiltonian systems, where A ∈ Rd×d

is assumed to be skew-symmetric, here we assume the existence of an invariant vector ω∗
for the dynamics. The zero-cost antisymmetric flux for the IPFG system discussed in Sect. 4
is of the form (A.1).

The following lemma provides a useful alternative characterisation of the Jacobi identity
for Poisson structures which will be used to prove Theorem A.2 below.

Lemma A.1 Define a (Poisson-like) bracket {·, ·} by
{G1,G2}(ω) := (∇G1)(ω) · J̃(ω)(∇G2)(ω) ∀ω ∈ R

d , (A.2)

where G1,G2 : Rd → R are C2-mappings, and the C1 matrix-valued function ω �→ J̃(ω) ∈
Rd×d is antisymmetric, i.e., J̃T = −̃J. The bracket (A.2) satisfies the Jacobi identity if and
only if for all smooth G1,G2,G3 : Rd → R and for all ω ∈ Rd we have

(∇G1) · ∇J̃[̃J(∇G2)](∇G3)+ (∇G2) · ∇J̃[̃J(∇G3)](∇G1)
+(∇G3) · ∇J̃[̃J(∇G1)](∇G2) = 0, (A.3)

where ∇J̃[v] is the matrix valued function with (∇J̃[v])i j (ω) =∑
k vk(∂ωk J̃(ω)i j ).

The proof follows by straightforward manipulation of the Jacobi identity. We now present
the Hamiltonian structure for (A.1).

Theorem A.2 The linearODE (A.1) admits theHamiltonian system (Rd , Ẽ, J̃)with the linear
energy and the linear Poisson structure

Ẽ(ω) = c − ω∗ · ω, J̃(ω) = 1

2|ω∗|2
(
ω∗ ⊗ (Aω)− (Aω)⊗ ω∗

)
,

for any c ∈ R. Consequently ω̇ = J̃(ω)∇Ẽ(ω).

Proof For any b ∈ Rd we have

J̃(ω)b = 1

2|ω∗|2 ((Aω · b)ω∗ − (ω∗ · b)Aω) = 1

2|ω∗|2
(
(ω · ATb)ω∗ − (ω∗ · b)Aω

)
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and inserting b = ω∗ in this relation and using ATω∗ = 0 it follows that 1
2 Aω = −̃J(ω)ω∗ =

J̃(ω)∇Ẽ(ω). Since J̃(ω)T = −̃J(ω) by construction, we only need to prove the Jacobi iden-
tity (A.3) to prove this result. Using the linearity of J̃we find∇J̃[v](ω) = J̃(v), and therefore
for any F ∈ Rd we have

∇J̃[̃J(ω)F](ω) = J̃(̃J(ω)F) = 1

2|ω∗|2
(
ω∗ ⊗

(
ÃJ(ω)F)− (

ÃJ(ω)F)⊗ ω∗
)
.

Using Aω∗ = 0 we find

ÃJ(ω)F = −F · ω∗
2|ω∗|2 A

2ω.

Using the above two relations we arrive at

F1 · ∇J̃[̃J(ω)F2](ω)F3

= 1

4|ω∗|4
(
(F1 · A2ω)(F2 · ω∗)(ω∗ · F3)− (F1 · ω∗)(F2 · ω∗)(A2ω · F3)

)
.

Setting Fi = ∇Gi we can compute the remaining two terms on the left hand side of (A.3) by
rotating the indices. ��

B Complex Balance and Quasipotential Condition (2.12)

The results in this appendix were developed during discussions with the participants of the
online AIM workshop “Limits and control of stochastic reaction networks”. This appendix
explores the relation between the quasipotential for chemical reaction networks on the one
hand (defined via (2.12)) and the notion of complex balance on the other. Interestingly, it turns
out that complex balance is equivalent to having the relative entropy as the quasipotential.

Consider chemical-reaction networks satisfying mass-action kinetics (5.7) as explained
in Sect. 5.2. To stress that these results are independent of the flux formulation and do not
require a decomposition into forward and backward reactions, we will simply work with the
density formulation (2.40), with the dual of the contracted L-function given by

Ĥ(ρ, ξ) := sup
u∈TρZ

ξ · j − L̂(ρ, u)

=
∑

r∈R
crρ

α(r)
(
eγ (r)·ξ − 1

)
.

The equation (2.12) for the quasipotential reads

Ĥ(ρ,∇V(ρ)
) = 0 for all coordinate-wise positive ρ ∈ R

X
>0. (B.1)

The following result shows that the notion of complex balance is inherently connected
to (B.1), in the casewhen the quasipotential is the relative entropy. This result has also appears
in [65, Lemma 3.6].

Theorem B.1 The following two statements are equivalent.

1. Complex balance (5.8) holds with respect to π ∈ Z.
2. Equation (B.1) holds with V(ρ) =∑

x∈X s(ρx | πx ).
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Proof We first prove the forward implication. Let V(ρ) = ∑
x∈X s(ρx | πx ) and calculate

for ρ ∈ RX
>0

Ĥ(ρ,∇V(ρ)
) =

∑

r∈R
crρ

α(r)
((

ρ
π

)α(bw(r))−α(r) − 1
)

=
∑

r∈R
crπ

α(r)
((

ρ
π

)α(bw(r)) − (
ρ
π

)α(r)) = 0,

where the final equality follows by choosing ψα = (
ρ
π
)α in the complex-balance condi-

tion (5.8).
Nowwe present the backward implication (proof due toArtur Stephan). Assume that (B.1)

holds with V(x) =∑
x∈X s(ρx | πx ). Sorting the expression with respect to the complexes,

one obtains

Ĥ(ρ,∇V(ρ)
) = p

(
ρ
π

)
, where

p(a) :=
∑

α∈C
Aαa

α and

Aα :=
∑

r∈R:α(r)=α

crπ
α(r) −

∑

r∈R:α(bw(r))=α

crπ
α(r)

.

Since all α ∈ C are distinct, the polynomial p( ρ
π
) can only be 0 for all ρ/π ∈ RX

>0 when all
coefficients are zero. Hence Aα = 0 for all α ∈ C, which is equivalent to complex balance
[59, Eq. (8)]. ��

The forward implication in Theorem B.1 can also be shown indirectly via the Chemi-
cal Master Equation (CME), describing the probability of the microscopic random particle
system with jump rates

κ(V )

r (ρ) := cr

V |α(r)|1
(Vρ)!

(Vρ − α(r))!1{Vρ≥α}. (B.2)

If complex balance holds with respect to π ∈ Z, then the CME is known to have the invariant
measure of product-Poisson form [59, Thm. 4.1], i.e.

(V )(ρ) =
∏

x∈X

(Vπx )
Vρx

(Vρx )! e−Vπx . (B.3)

The large-deviation rate can be explicitly calculated using Stirling’s formula, which gives
limV→∞− 1

V log(V )(ρ) = ∑
x∈X s(ρx | πx ), and so by Theorem 3.7 the equation (B.1)

must hold.
Very little can be said about the invariant measures for the CMEwithout the assumption of

complex balance. However, the following is a straightforward consequence of Theorem B.1.

Corollary B.2 If complex balance does not hold, any invariant measure (V ) of the CME will
not be exponentially equivalent to the product-Poisson form (B.3), i.e., (V ) and (B.3) will
not have the same large-deviation rate.

The following simple example, constructed by Daniele Cappelletti and Anne J. Shiu,
shows that an appropriately rescaled relative entropy can still be a quasipotential. Consider
a simple birth-death process

∅ κb−→ A
κd←− 2A,
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for which the CME has the explicit invariant measure (for simplicity writing ρ := ρA)

(V )(ρ) = 1

ZV

Vρ−1∏

i=1

V κb

V−1κd(i + 1)i
= 1

ZV

1

(Vρ − 1)!
1

(Vρ)! (V
2 κb

κd
)V x−1,

where ZV is the V-dependent normalisation constant. Note that the corresponding (zero-
cost) reaction rate equation reads ρ̇(t) = κb − κdρ(t)2, which clearly has the steady state
π := √

κb/κd . TheCME is in detailed balancewith respect to(V ), but the reaction network is
not in complex balance w.r.t. π . Again by Stirling’s formula and using the fact that inf V = 0,
we find

V(x) := lim
V→∞− 1

V
log(V )(x) = 2s(ρ | √κb/κd).

Although the CME is in detailed balance, this result does not contradict the findings of [15],
since this reaction network is not reversible in the sense of footnote 6.
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