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Abstract
From a unified vision of vector valued solutions in weighted Banach spaces, this paper
establishes the existence and uniqueness for space homogeneous Boltzmann bi-linear sys-
tems with conservative collisional forms arising in complex gas dynamical structures. This
broader vision is directly applied to dilute multi-component gas mixtures composed of both
monatomic and polyatomic gases. Such models can be viewed as extensions of scalar Boltz-
mann binary elastic flows, as much as monatomic gas mixtures with disparate masses and
single polyatomic gases, providing a unified approach for vector valued solutions in weighted
Banach spaces. Novel aspects of this work include developing the extension of a general ODE
theory in vector valued weighted Banach spaces, precise lower bounds for the collision fre-
quency in terms of theweightedBanach norm, energy identities, angular or compactmanifold
averaging lemmas which provide coerciveness resulting into global in time stability, a new
combinatorics estimate for p-binomial forms producing sharper estimates for the k-moments
of bi-linear collisional forms. These techniques enable the Cauchy problem improvement that
resolves the model with initial data corresponding to strictly positive and bounded initial vec-
tor valued mass and total energy, in addition to only a 2+ moment determined by the hard
potential rates discrepancy, a result comparable in generality to the classical Cauchy theory
of the scalar homogeneous Boltzmann equation.
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Dositeja Obradovića 4, 21000 Novi Sad, Serbia

4 Applied and Computational Mathematics, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-023-03221-4&domain=pdf
http://orcid.org/0000-0002-7545-618X
http://orcid.org/0000-0003-1677-7722
http://orcid.org/0000-0002-4956-2376


9 Page 2 of 50 R. J. Alonso et al.

Keywords System of Boltzmann equations · Compact manifold averaging · Statistical
moment estimates for bi-linear integral forms · Multi-component gas mixtures

Mathematics Subject Classification 35Q20 · 76P05 · 82C40

1 Introduction

The goal of the present paper is to establish the rigorous result on existence and uniqueness
for the coupled system of space homogeneous Boltzmann equations modelling a mixture
composed of P ≥ 1 species of monatomic and polyatomic gases proposed in [5]. The idea of
such kinetic model is to describe a state of each gas component with its own single-particle
distribution function. Fixing onemixture component, sayAi , for any i ∈ {1, . . . , P}, themain
mechanism driving the change of the corresponding distribution function is its interactions
with all other mixture constituents through Boltzmann-like bi-linear collision forms, leading
to a coupled system governing the dynamics of the gas mixture as a whole.

A core ingredient of the Boltzmann flow is the bi-linear collision form or operator, an inte-
gral operator which describes the mutual species–species interactions. In the current setting
of a mixture of monatomic and polyatomic molecules there are four types of collision opera-
tors depending on whether the fixed speciesAi is monatomic or polyatomic and whether the
collision partner of such component belongs to a monatomic or polyatomic mixture compo-
nent. We prove estimates on statistical moments of the vector valued collision operator that
accounts for different possible interactions among species, which then allow to prove a priori
estimates on the system solution. The collision operator’s kernels are assumed to be of hard
potential form for the total collisional energy for at least one species–species interaction per
each mixture component allowing Maxwell interactions as well. The scattering part of such
kernels is assumed integrable, as much as the part related to the energy exchange variables for
polyatomic mixture components. Such a family of collision kernels is shown to be relevant
in physics and engineering applications that involve polyatomic gas interactions. Applying
a general ODE theory in Banach spaces, the Cauchy problem is resolved for the initial data
corresponding to strictly positive and bounded initial species’ mass and bounded mixture’s
total energy, and a 2+ moment determined by the hard potential rates discrepancy. The pre-
sented result unifies approaches for the classical single monatomic Boltzmann equation [2]
and recently obtained results in the case of monatomic mixtures [36] and single polyatomic
gases [37].

The kinetic theory of polyatomic gases andmixtures has recently become an active field of
research and the rigorous theory has been developed in certain physical contexts that can be
understood as a special case of the gas mixture model analysed in this paper. For the system
of Boltzmann equations describing a mixture of solely monatomic gases, which can be seen
as a sub-system of the present model when all P species are monatomic, in the linearized
setting, well-posedness, stability, compactness, energy method and hypocoercivity-related
issues were studied in [7, 12, 17, 18, 22, 23, 26]. In the spatial homogeneous case, questions
about well-posedness and regularity for the system of non-linear Boltzmann equations, were
addressed in [27, 36] with integrable angular part and in [4] for an angular part modelling
long-range interactions (the so-called non-cutoff scattering).

Polyatomic gases bring another level of difficulty. An underlying physical effect is the
internal energy exchange during the collision, apart from the usual translational energy of the
relative motion of the colliding particles. Themicroscopic internal energy can bemodelled as
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discrete or continuous variable, leading to the two branches in the kinetic theory of polyatomic
gases: the semi-classical [39, 40, 44] and the continuous [20, 29, 30] approaches. A general
framework unifying these two approaches was recently presented in [9, 14].

In this paper, we focus on the continuous kinetic approach that uses the Borgnakke-Larsen
procedure for the collision parametrization [13], whichmakes themodel accessible both from
the rigorous analytical and computational points of view. From the particle perspective, this
parametrization can be interpreted as a direct simulation Monte Carlo (DSMC) algorithm for
sampling particles’ internal energy exchanges [31]. The corresponding Boltzmann equation
for a single polyatomic gas (P = 1) or a polyatomic gas mixture (P > 1) can be also
seen as a subsystem of our present model when all species are polyatomic. Recently, a
compactness result has been obtained for the linearized polyatomic Boltzmann operator in
[8, 24, 25] and in [15] for the model of resonant collisions [19]. The global well-posedness
for bounded mild solutions near global equilibria on torus is established in [34]. For the
space homogeneous setting and the full non-linear Boltzmann operator, well-possedness
and L1 regularity were tackled in [37]. In particular, a form of the collision kernel which
corresponds to hard potentials in both relative velocity and microscopic internal energy is
proposed. It is shown to be highly physically relevant, as it provides transport coefficients
that match experimental data [32, 33] for polytropic or calorically perfect polyatomic gases,
and contains as a special case the collision kernel used in DSMC method with the variable
hard sphere cross-section [31].

Motivated by the success in the analysis of space homogeneous problems for separately
monatomic mixtures [4, 27, 36] and a single polyatomic gas [37], the aim of this paper is to
establish the existence and uniqueness theory for a system of Boltzmann equations describing
a mixture that involves both monatomic and polyatomic gases. We consider the model with
different types of collision operators proposed in [5] and slightly modify it, in order to work
with the L1 plain space in the energy variable. This setting corresponds to the non-weighted
one as described in [32], and coincides with the model used in [6]. Moreover, it reduces to
[20] for the single polyatomic gas model, analysed in [37]. The approach to prove existence
and uniqueness is based on an abstract ODE theory [42], first proposed by Bressan [21] in
the context of scalar kinetic equations. The method was recently revised in [1, 2], and was
successfully used not only in [27, 36, 37], but also in dissipative kinetic problems [1] and the
weak wave turbulence models for stratified flows [38].

The aforementioned approach is quite general in the context of kinetic operators with inte-
grable kinetic kernels where gain and loss collision operators can be treated independently;
the path to be followed is similar in all these problems consisting of some key steps. The
implementation of such steps varies from case to case, however in the current case, due to
the complexity of the underlying interactions happening in the general systems considered
here, the arguments are more intricate leading to new ideas in the mathematical treatment
which focus on the essential mechanisms of energy transfer between pairwise collisions. The
first notable improvement is capturing the general structure of the energy pairwise collision
interchange given in Lemma 5.1. Second, based on such general structure, we exploit the
natural occurring averaging in the gain collision operators to show the dissipative charac-
ter of each pairwise interaction. This character manifests in the fact that higher statistical
moments of pairwise collisions are uniformly controlled over time. For the classical Boltz-
mann case this result is known as the Povzner Lemma and dates back to [10, 11, 28, 47].
We address this result here more precisely as Compact Manifold (or angular) Averaging
Lemma, presented and proved in Lemma 5.2 for the general models considered here using a
more sophisticated method of proof based on the decomposition of the pairwise interaction
domain. This method is particularly useful for pairwise polyatomic interactions where the
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averaging effect occurs in the scattering angle and the internal energy exchange variables
in a complex manner. The Compact Manifold Averaging Lemma is complemented with a
coerciveness estimate for the loss collision operator, done in Lemma A.1. A dominant effect
of the loss operator with respect to the gain operator in terms of higher moments is deduced
from these considerations, given in Lemma 5.9. A final preparatory step consists in finding
a priori higher moment estimates of the Boltzmann system solution. Namely, a moment
ordinary differential inequality (ODI), satisfied by a suitable Banach space moment-norm of
the solution, is derived in Lemma 6.1, which yields generation and propagation of statistical
moments properties used later to implement an abstract ODI argument, here presented in
Sect. 7.

The analysis is performed under a quite general assumption on the collision kernel or
transition probability – it is assumed to be of the Maxwell-hard potential form for the colli-
sional total energy (which reduces to the relative speed when only monatomic interactions
are involved) with possible different rates γi j ≥ 0 satisfying max j γi j > 0. In addition, the
angular part is assumed integrable and the collision kernel is assumed to be bounded from
above and below by integrable partition functions of the Borgnakke-Larsen procedure. This
assumption is general enough to cover already established theory for monatomic mixture and
single polyatomic models and is compatible with the analysis of the linearized Boltzmann
polyatomic operator performed in [6, 8, 25, 34].

The existence anduniqueness of the systemsolution is proven for initial data corresponding
to strictly positive and bounded species mass (zero order species moment) and mixture
total energy (second order mixture moment), which are all conserved quantities for the
Boltzmann flow in the absence of chemical reactions (energy is interchanged between species
though). Moreover, a mixture moment of the order (2 + maxi j {γi j } − mini max j {γi j })+ is
required to be bounded. The approach developed in this paper has an optimal value of 2+
when maxi j {γi j } = mini max j {γi j }, which improves results of [37]. Another significant
improvement is to incorporate arguments of [4] and to allow the range of γi j to be [0, 2] with
at least one strictly positive γi j for each component i , which extends the previous results of
[27, 36] in the monatomic mixture case that require all γi j > 0. All the analysis is performed
for general integrable angular scattering.

We stress that the physical framework of multi-component gas mixtures composed of both
monatomic and polyatomic gases considered in this paper is highly relevant in applications
since, for instance, air itself is a mixture of monatomic (such as Ar, O, N) and polyatomic
(such as O2, N2, CO2) components. Thus, it is necessary to transcend the classical Boltzmann
equation that models an ideal gas composed of identical structureless particles. This work is
a step in that direction.

The paper is organized as follows. In Sect. 2, the systemofBoltzmann equations describing
a mixture of monatomic and polyatomic gases is presented. The notation and functional
spaces are introduced in Sect. 3, while assumptions on the collision kernel are listed in Sect.
4. Section 5 deals with estimates on the vector valued collision operator. Namely, we prove
various energy identities and estimates for different types of species-species interactions in
Sect. 5.1 that allow toprove theAveragingLemma inSect. 5.2, yielding estimates on statistical
moments for the collision operator firstly written in a bi-linear form in Sect. 5.3 and then
in the vector valued form in Sect. 5.4. This study allows to derive polynomial moments a
priori estimates on the system solution in Sect. 6. Finally, existence and uniqueness theory
is established in Sect. 7 and some technical results and general theorems used in the paper
are listed in Appendix A.
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2 System of Boltzmann Equations Modelling a Gas Mixture Composed
of Monatomic and Polyatomic Gases

We consider a mixture of M monatomic and (P − M) polyatomic gases. Each monatomic
component Ai , i = 1, . . . , M , is described with the distribution function fi (t, v) ≥ 0
depending on time t > 0 and molecular velocity v ∈ R

d . Polyatomic gases are modelled
based on the continuous internal energy approach [20, 29, 30] which amounts to assume
that a polyatomic component Ai , i = M + 1, . . . , P , of the mixture is described with the
distribution function fi (t, v, I ) ≥ 0 depending on time t > 0, molecular velocity v ∈ R

d and
also molecular microscopic internal energy I ∈ [0,∞). Assuming that distribution functions
change due to mutual interactions, the dynamics of the mixture is characterized by the system
of Boltzmann equations, here written in the space homogeneous setting,

∂t fi (v) =
P∑

j=1

Qi j ( fi , f j )(v), i = 1, . . . , M,

∂t fi (v, I ) =
P∑

j=1

Qi j ( fi , f j )(v, I ), i = M + 1, . . . , P,

(1)

where for the brevity we omit to write dependence on t . Note that (1) contains four collision
operators that describe collisions of various type of gases and, as such, are different in nature.
Namely, for the fixed monatomic speciesAi , i ∈ {1, . . . , M}, the pairwise interaction can be
mono-mono when j ∈ {1, . . . , M} or mono-poly for j ∈ {M + 1, . . . , P}. Similarly, when
the species Ai is polyatomic i.e. i ∈ {M + 1, . . . , P}, we distinguish poly-mono interaction
when j ∈ {1, . . . , M} or poly-poly for j ∈ {M + 1, . . . , P}. The form of corresponding four
collision operators was introduced in [5] following the approach given in [29, 30], called
the weighted setting in [32]. In this paper, motivated by the rigorous analysis for a single
polyatomic gas [37], we will follow [20] and rewrite the collision operators of [5] in the
non-weighted setting in the spirit of [32].

The system of Boltzmann-like equations (1) can be written in a vector form by introducing
the vector valued distribution function F and the vector valued collision operator Q(F)

F =
⎡

⎣

[
fi (t, v)

]

i=1,...,M[
fi (t, v, I )

]

i=M+1,...,P

⎤

⎦ , Q(F) =
⎡

⎣

[∑P
j=1 Qi j ( fi , f j )(v)

]

i=1,...,M[∑P
j=1 Qi j ( fi , f j )(v, I )

]

i=M+1,...,P

⎤

⎦ .

(2)

Therefore, the system (1) in the vector valued form, and together with initial data reads

∂tF = Q(F), F(0) = F0. (3)

The next section introduces the collision operator Q(F) for each of four possible binary
interactions between molecules of monatomic and polyatomic species.

2.1 Collision Operators for Interactions BetweenMonatomic Gases

For i, j ∈ {1, . . . , M}, the collision operator in a bilinear form for distribution functions
f (t, v) ≥ 0 and g(t, v) ≥ 0 describing species Ai and A j , respectively, reads

Qi j ( f , g)(v) =
∫

Rd

∫

Sd−1

(
f (v′)g(v′∗) − f (v)g(v∗)

)
Bi j (v, v∗, σ ) dσ dv∗, (4)
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where in the gain part v′ and v′∗ are pre-collisional velocities expressed as functions of the
post-collisional ones v, v∗ and a parameter σ in the center-of-mass framework defined by
vectors of the center of mass velocity V , relative velocity u and reduced mass μi j ,

V = miv + m jv∗
mi + m j

, u = v − v∗, μi j = mim j

mi + m j
, (5)

namely,

v′ = V + m j

mi + m j
|u|σ, v′∗ = V − mi

mi + m j
|u|σ, (6)

while the collision kernel Bi j satisfies the following microreversibility assumptions

Bi j := Bi j (v, v∗, σ ) = Bi j (v
′, v′∗, σ ′) = B j i (v∗, v,−σ) ≥ 0. (7)

Equations (6) are σ−parametrization of the conservation laws of momentum and kinetic
energy of a colliding pair of molecules, namely,

miv
′ + m jv

′∗ = miv + m jv∗,
mi

2
|v′|2 + m j

2
|v′∗|2 = mi

2
|v|2 + m j

2
|v∗|2, (8)

or equivalently

V ′ = V , |u′| = |u|. (9)

The kinetic energy can be represented in the center-of-mass framework,

Ei j = μi j

2
|u|2, (10)

which is by (9) a conserved quantity.
The collision operator weak form is carefully explained in [16], i.e. for any suitable test

functions ω(v) and χ(v),
∫

Rd
Qi j ( f , g)(v) ω(v) dv +

∫

Rd
Q ji (g, f )(v) χ(v) dv

=
∫

(Rd )2

∫

Sd−1

{
ω(v′) + χ(v′∗) − ω(v) − χ(v∗)

}
f (v) g(v∗)Bi j (v, v∗, σ ) dσ dv∗ dv.

(11)

2.2 Collision Operators for Interaction Between Polyatomic Gases

Let i, j ∈ {M + 1, . . . , P}, i.e. we consider two colliding polyatomic molecules. Let one be
of massmi and velocity-internal energy (v′, I ′) and the another one of massm j and velocity-
internal energy (v′∗, I ′∗), that change to (v, I ) and (v∗, I∗) (with same masses), respectively,
after the collision. We assume that collisions are elastic in the sense that momentum and the
total (kinetic + microscopic internal) energy are conserved during the collision,

miv
′ + m jv

′∗ = miv + m jv∗,
mi

2
|v′|2 + I ′ + m j

2
|v′∗|2 + I ′∗

= mi

2
|v|2 + I + m j

2
|v∗|2 + I∗. (12)

These laws can be rewritten in the center-of-mass framework (5), namely,

V ′ = V , E ′
i j = Ei j , (13)

123



The Cauchy Problem for Boltzmann Bi-linear … Page 7 of 50 9

with the energy

Ei j = μi j

2
|u|2 + I + I∗. (14)

In order to express pre–collisional velocities and internal energies in the original parti-
cle framework, the so-called Borgnakke-Larsen procedure [13, 20] is used. The idea is to
parametrize equations (13) with the scattering direction σ ∈ S

d−1 and energy exchange
variables R, r ∈ [0, 1]. More precisely, first split the kinetic and internal energy part of the
total energy with R ∈ [0, 1],

μi j

2

∣∣u′∣∣2 = REi j , I ′ + I ′∗ = (1 − R)Ei j .

Then, the kinetic part is distributed among particles with σ ∈ S
d−1 and total internal energy

is split on particles’ internal energies with r ∈ [0, 1],

v′ = V + m j

mi + m j

√
2 R Ei j

μi j
σ, I ′ = r(1 − R)Ei j ,

v′∗ = V − mi

mi + m j

√
2 R Ei j

μi j
σ, I ′∗ = (1 − r)(1 − R)Ei j .

(15)

For the convenience, we introduce the primed parameters as well, σ ′ ∈ S
d−1, r ′, R′ ∈ [0, 1],

σ ′ = û = u

|u| , R′ = μi j |u|2
2Ei j

, r ′ = I

I + I∗
= I

Ei j − μi j
2 |u|2 . (16)

The transformation Tpp : (v, v∗, I , I∗, r , R, σ ) �→ (v′, v′∗, I ′, I ′∗, r ′, R′, σ ′) is an involution
and its Jacobian, which will deeply influence the structure of collision operator, is computed
in [30],

JTpp :=
∣∣∣∣
∂(v′, v′∗, I ′, σ ′, r ′R′)
∂(v, v∗, I∗, σ, r , R)

∣∣∣∣ =
(1 − R)

√
R

(1 − R′)
√
R′ . (17)

The collision operator for distributions functions f := f (t, v, I ) ≥ 0 and g := g(t, v, I ) ≥ 0
describing speciesAi andA j , respectively, used in this paper is a variant of the one proposed
in [30],

Qi j ( f , g)(v, I )

=
∫

Rd×[0,∞)

∫

Sd−1×[0,1]2

{
f (v′, I ′)g(v′∗, I ′∗)

(
I

I ′

)αi
(
I∗
I ′∗

)α j

− f (v, I )g(v∗, I∗)
}

×Bi j (v, v∗, I , I∗, σ, r , R) di j (r , R) dσ dr dR dv∗ dI∗, (18)

where the pre-collisional quantities v′, v′∗, I ′ and I ′∗ are defined in (15), αi , α j > −1 are
constants related to the specific heats of the polyatomic gas [33], parameters’ function given
by

di j (r , R) = rαi (1 − r)α j (1 − R)αi+α j+1
√
R, (19)

and the collision kernel Bi j satisfies the microreversibility assumptions

Bi j := Bi j (v, v∗, I , I∗, σ, r , R)

= Bi j (v
′, v′∗, I ′, I ′∗, σ ′, r ′, R′) = B j i (v∗, v, I∗, I ,−σ, 1 − r , R) ≥ 0, (20)
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corresponding to the interchange of pre- and post-collisional molecules, and the interchange
of colliding molecules. It is important to notice that the choice of functions (19) depends on
the weight factor in the collision operator (18) because it ensures its invariance, since the
factor

(r(1 − R)I )αi ((1 − r)(1 − R)I∗)α j

is invariant with respect to the changes described in (20). Together with the Jacobian (17),
this implies the invariance of the measure

Iαi I
α j∗ di j (r , R) dσ dr dR dv∗ dI∗ dv dI ,

with respect to changes from (20). These considerations yield the well defined weak form,
∫

Rd×[0,∞)

Qi j ( f , g)(v, I ) ω(v, I ) dv dI +
∫

Rd×[0,∞)

Q ji (g, f )(v, I ) χ(v, I ) dv dI

=
∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
{
ω(v′, I ′) + χ(v′∗, I ′∗) − ω(v, I ) − χ(v∗, I∗)

}
f (v, I ) g(v∗, I∗)

×Bi j (v, v∗, I , I∗, r , σ, R) di j (r , R) dσ dr dR dv∗ dI∗ dv dI , (21)

for any suitable test functions ω(v, I ) and χ(v, I ).

2.3 Collision Operators for Interactions BetweenMonatomic and Polyatomic Gases

Let A j , j ∈ {1, . . . , M}, be a monatomic component of the mixture described with the
distribution function g(t, v) ≥ 0 and Ai , i ∈ {M + 1, . . . , P}, the polyatomic component
characterized by the distribution function f (t, v, I ) ≥ 0.

Since molecules differ in nature, the corresponding study of molecular collisions will
depend on which molecule the internal energy is associated to – whether to the molecule
of interest or the partner in collision. This raises the definition of two different collision
operators,

(i) collision operator Qi j ( f , g)(v, I ) describing the influence of a monatomic component
A j on the polyatomic one Ai and acting on (v, I ) pair (poly-mono interaction),

(ii) collision operator Q ji (g, f )(v) describing the influence of a polyatomic component Ai

on the monatomic one A j and acting on v only (mono-poly interaction).

2.3.1 Case (i): Study of Poly–Mono Interaction

We consider a pair of colliding molecules, one polyatomic molecule of massmi and velocity-
internal energy (v′, I ′) which collides with the monatomic partner of mass m j and velocity
v′∗. After the collision, they belong to the same species so masses do not change, but the
velocity–internal energy pair of a polyatomic molecule become (v, I ), while the velocity of
the monatomic molecule changes to v∗. This collision is assumed elastic, in the sense that
momentum and total energy are preserved during the collision,

miv
′ + m jv

′∗ = miv + m jv∗,
mi

2
|v′|2 + I ′ + m j

2
|v′∗|2 = mi

2
|v|2 + I + m j

2
|v∗|2.

(22)

For this setting we introduce the center-of-mass framework (5) together with the energy

Ei j = μi j

2
|u|2 + I . (23)
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Then, laws (22) are equivalent to

V ′ = V , E ′
i j = Ei j . (24)

These laws are parametrized with the angular parameter σ ∈ S
d−1 and a parameter R ∈

[0, 1],

v′ = V + m j

mi + m j

√
2 R Ei j

μi j
σ, v′∗ = V − mi

mi + m j

√
2 R Ei j

μi j
σ, I ′ = (1 − R) Ei j .

(25)

We complement these equations with the definition of primed parameters σ ′ ∈ S
d−1, R′ ∈

[0, 1],

σ ′ = û = u

|u| , R′ = μi j |u|2
2 Ei j

. (26)

2.3.2 Case (ii): Study of Mono–Poly Interaction

Let consider the counterpart problem for the Case (i). Now we fix the monatomic molecule
with mass m j and velocity w′ which changes to v due to a collision with the polyatomic
molecule partner ofmassmi and velocity-internal energy pair (w′∗, I ′∗) that changes to (v∗, I∗)
after the collision. During the collision, the following conservation laws hold

m jw
′ + miw

′∗ = m jv + miv∗,
m j

2
|w′|2 + mi

2
|w′∗|2 + I ′∗ = m j

2
|v|2 + mi

2
|v∗|2 + I∗.

(27)

Introducing the center-of-mass reference framework with (5) and the center of mass velocity
W which differs from V by the mass interchange mi ↔ m j ,

W = m jv + miv∗
mi + m j

, (28)

(27) can be rewritten as

W ′ = W , E ′
j i = E ji := μ j i

2
|u|2 + I∗. (29)

Similarly as in (25), these equations are parametrized with σ ∈ S
d−1 and R ∈ [0, 1],

w′ = W + mi

mi + m j

√
2 R E ji

μ j i
σ, w′∗ = W − m j

mi + m j

√
2 R E ji

μ j i
σ, I ′∗ = (1 − R) E ji .

(30)

For convenience, we also express primed parameters (σ ′, R′) in terms of non-primed quan-
tities,

σ ′ = û = u

|u| , R′ = μ j i |u|2
2 E ji

. (31)

Lemma 2.1 Let i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}. Let αi > −1 and define

di (R) = (1 − R)αi
√
R. (32)
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Consider transformations

Tpm : (v, v∗, I , σ, R) → (v′, v′∗, I ′, σ ′, R′), defined by (25)–(26), (33)

Tmp : (v, v∗, I∗, σ, R) → (w′, w′∗, I ′∗, σ ′, R′), defined by (30)–(31). (34)

Part (i) Transformations Tpm and Tmp are involutions and their Jacobians, respectively,

JTpm :=
∣∣∣ ∂(v′,v′∗,I ′,σ ′,R′)

∂(v,v∗,I∗,σ,R)

∣∣∣ and JTmp :=
∣∣∣ ∂(w′,w′∗,I ′∗,σ ′,R′)

∂(v,v∗,I∗,σ,R)

∣∣∣, are

JTpm = JTmp =
√
R√
R′ , (35)

where R′ is understood as (26) for Tpm and as (31) for Tmp.
Part (ii.a) The following measure is invariant under the collision transformation Tpm,

Iαi di (R) dR dσ dv∗ dv dI , (36)

Part (ii.b) The following measure is invariant under the collision transformation Tmp,

Iαi∗ di (R) dR dσ dv∗ dI∗ dv. (37)

2.3.3 Interchange of the Collision Reference

The aforementioned considerations concern relations connecting pre– and post–collisional
quantities. It remains to study a transformation describing the interchange of a collision
reference in the case of mixed poly-mono and mono–poly interactions. Take a monatomic
molecule of mass m j , j ∈ {1, . . . , M}, and velocity v∗ and a polyatomic molecule of mass
mi , i ∈ {M + 1, . . . , P}, and velocity-internal energy (v, I ), so the poly–mono interaction.
Collision reference interchange is a transformation constructed such that if (v∗, v, I ) ↔
(v, v∗, I∗ = I ) then the same change should hold before the collision i.e. (v′∗, v′, I ′) ↔
(w′, w′∗, I ′∗). Thus, we are led to consider the transformation

I : (v, v∗, I , σ, R) ↔ (v∗, v, I∗ = I ,−σ, R). (38)

Then, for fixed i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}, Tpm(I(v, v∗, I , σ, R)) =
(w′∗, w′, I ′∗,−σ ′, R′) and Tmp(I(v, v∗, I , σ, R)) = (v′∗, v′, I ′,−σ ′, R′).

2.3.4 Case (i): Collision Operator for Poly–Mono Interaction

The influence of a monatomic component A j described by distribution function g(t, v) ≥ 0
on the polyatomic one Ai with distribution function f (t, v, I ) ≥ 0 is captured with the
collision operator

Qi j ( f , g)(v, I ) =
∫

Rd

∫

Sd−1×[0,1]

{
f (v′, I ′)g(v′∗)

(
I

I ′

)αi

− f (v, I )g(v∗)
}

×Bi j (v, v∗, I , σ, R) di (R) dσ dR dv∗, (39)

where the measure di (R) is given in (32) and the collision kernel satisfies the following
micro-reversibility properties

Bi j := Bi j (v, v∗, I , σ, R) = Bi j (v
′, v′∗, I ′, σ ′, R′) = B j i (v∗, v, I ,−σ, R) ≥ 0, (40)

with v′, v′∗, I ′ as defined in (25).
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2.3.5 Case (ii): Collision Operator for Mono–Poly Interaction

The influence of a polyatomic component Ai characterized via distribution function
f (t, v, I ) ≥ 0 on the monatomic gas component A j with distribution function g(t, v) ≥ 0
is described with the collision operator

Q ji (g, f )(v) =
∫

Rd×[0,∞)

∫

Sd−1×[0,1]

{
g(w′) f (w′∗, I ′∗)

(
I∗
I ′∗

)αi

− g(v) f (v∗, I∗)
}

×B j i (v, v∗, I∗, σ, R) di (R) dσ dR dv∗ dI∗, (41)

where the measure di (R) is given in (32) and the collision kernel is assumed to satisfy the
micro-reversibility properties

B j i := B j i (v, v∗, I∗, σ, R) = B j i (w
′, w′∗, I ′∗, σ ′, R′), and

B j i (v∗, v, I ,−σ, R) = Bi j (v, v∗, I , σ, R), (42)

and w′, w′∗, I ′∗ are given in (30).

2.3.6 Weak Form of the Collision Operators for Poly–Mono &Mono–Poly Interactions

Lemma 2.1 ensures a well-defined weak form of the collision operators (39) and (41). The
conservative form of the weak formulation is obtained when all operators in the interaction
of two species are considered simultaneously. Indeed, for any suitable test functions ω(v, I )
and χ(v), the following weak form is obtained [5],

∫

Rd×[0,∞)

Qi j ( f , g)(v, I ) ω(v, I ) dv dI +
∫

Rd
Q ji (g, f )(v) χ(v)dv

=
∫

Rd×Rd×[0,∞)

∫

Sd−1×[0,1]
{
ω(v′, I ′) + χ(v′∗) − ω(v, I ) − χ(v∗)

}
f (v, I ) g(v∗)

(43)

× Bi j (v, v∗, I , σ, R) di (R) dσ dR dv∗ dv dI

=
∫

Rd×Rd×[0,∞)

∫

Sd−1×[0,1]
{
χ(w′) + ω(w′∗, I ′∗) − χ(v) − ω(v∗, I∗)

}
f (v∗, I∗) g(v)

× B j i (v, v∗, I∗, σ, R) di (R) dσ dR dv∗ dv dI∗, (44)

where the involved quantities are detailed throughout the Sect. 2.3.

2.4 Weak Form of the Vector Valued Collision Operator

Take a suitable vector valued test function X

X =
⎡

⎣

[
χi (v)

]

i=1,...,M[
χi (v, I )

]

i=M+1,...,P

⎤

⎦ . (45)
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Collecting collision operator weak forms for each pair of species, stated above in (11), (43)
and (21), the conservative weak form of the vector valued collision operator defined in (2)
reads

M∑

i=1

∫

Rd
[Q(F)(v)]i χi (v)dv +

P∑

i=M+1

∫

Rd×[0,∞)

[Q(F)(v, I )]i χi (v, I ) dv dI

=
M∑

i, j=1

∫

Rd
Qi j ( fi , f j )(v) χi (v)dv +

P∑

i, j=M+1

∫

Rd×[0,∞)

Qi j ( fi , f j )(v, I ) χi (v, I ) dv dI

+
M∑

j=1

P∑

i=M+1

(∫

Rd
Q ji ( f j , fi )(v) χ j (v) dv +

∫

Rd×[0,∞)

Qi j ( fi , f j )(v, I ) χi (v, I ) dv dI

)
.

(46)

Note that conservation laws of particles’ energies (8), (12) and (22) imply conservation
properties of the vector valued collision operator. Namely, define Lebesgue brackets

〈v〉i =
√
1 + mi

2m
|v|2, for i = 1, . . . , M,

〈v, I 〉i =
√
1 + mi

2m
|v|2 + 1

m
I , for i = M + 1, . . . , P, with m =

P∑

�=1

m�.

(47)

Then, for the choice χi (·) = 〈·〉2i ,
M∑

i=1

∫

Rd
[Q(F)(v)]i 〈v〉2i dv +

P∑

i=M+1

∫

Rd×[0,∞)

[Q(F)(v, I )]i 〈v, I 〉2i dv dI = 0. (48)

If χi (·) = 1, then the following conservation per each species holds
∫

Rd
[Q(F)(v)]i dv = 0, i = 1, . . . , M, and

∫

Rd×[0,∞)

[Q(F)(v, I )]i dv dI = 0,

i = M + 1, . . . , P. (49)

3 Notation and Functional Spaces

A natural framework to solve the spatially homogeneous Boltzmann equation is the space of
integrable functions appropriately weighted. In the present setting, with Lebesgue brackets
introduced in (47), the Banach space associated to the mixture constituent Ai is defined by

L1
q,i =

{
f : ‖ f ‖L1

q,i
:=
∫

Rd
| f (v)| 〈v〉qi dv < ∞

}
, i ∈ {1, . . . , M} ,

L1
q,i =

{
f : ‖ f ‖L1

q,i
:=
∫

Rd×[0,∞)

| f (v, I )| 〈v, I 〉qi dv dI < ∞
}

, i ∈ {M + 1, . . . , P} ,

(50)

for any q ≥ 0. The same notion is introduced for the vector valued Banach spaces associated
to the whole mixture,

L1
q =

{
F = [ fi ]i=1,...,P : ‖F‖L1

q
:=

P∑

i=1

‖ fi‖L1
q,i

< ∞
}

. (51)

A closely related concept is the one of polynomial moments.
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Definition 3.1 The i-th polynomial moment of order q ≥ 0 for a suitable function f (t, v)

for i = 1, . . . , M , and f (t, v, I ) for i = M + 1, . . . , P , is defined by

mi
q [ f ](t) =

∫

Rd
f (t, v) 〈v〉qi dv, for i = 1, . . . , M,

mi
q [ f ](t) =

∫

Rd×[0,∞)

f (t, v, I ) 〈v, I 〉qi dv dI , for i = M + 1, . . . , P .

(52)

Note that when f ≥ 0, the notion of polynomialmoment coincideswith L1 norms.Moreover,
for any i , whether i ∈ {1, . . . , M} or i ∈ {M + 1, . . . , P}, the monotonicity property holds

mi
q1 [ f ](t) ≤ mi

q2 [ f ](t),whenever 0 ≤ q1 ≤ q2. (53)

Definition 3.2 The polynomial moment of order q ≥ 0 for a suitable vector valued function
(2) is defined with

mq [F](t) =
P∑

i=1

mi
q [ fi ](t)

=
M∑

i=1

∫

Rd
fi (t, v)〈v〉qi dv +

P∑

i=M+1

∫

Rd×[0,∞)

fi (t, v, I )〈v, I 〉qi dv dI . (54)

The i-th polynomial moment of order 0, mi
0[ f ], has a physical intuition of Ai -th species

number density described with the distribution function f ≥ 0, whereas polynomial moment
of the second order, m2[F], is physically interpreted as the sum of number density and total
specific energy of the mixture described with the vector valued distribution function F ≥ 0.
Note that by conservative properties of the weak form (49) and (48), these quantities are
conserved for the Boltzmann flow.

4 Assumptions on the Collision Kernels

In this section, we summarize the assumptions we impose on the collision kernels Bi j ,
i, j ∈ {1, . . . , P}, that depend on the nature of the interactions. Our aim is to cover as many
models as possible, and thus assumptions are formulated in a rather general manner involving
upper and lower bounds on Bi j .

The main reason for this approach is to build a flexible strategy valid for a wide range
of collision kernels suitable for interactions involving polyatomic gases. Our motivation
comes from the analysis of the Boltzmann equation modelling a single polyatomic gas [37],
which successfully found its application in engineeringmodelling, as in [33] for gas transport
coefficients that match experimentally measured values, suggesting that the collision kernel
model is appropriate. Of course, for interactions involving only monatomic molecules, our
assumption reduces to the frequently used model of hard potentials.

For any pair of indices i, j ∈ {1, . . . , P}, the rate γi j is supposed to have the following
properties

γi j = γ j i , γi j ∈ [0, 2] and, additionally, ∀ i ∈ {1, . . . , P} max
1≤ j≤P

γi j =: ¯̄γi > 0.

(55)

We also denote

γ̄ := min
1≤i≤P

¯̄γi > 0, ¯̄γ := max
1≤i≤P

¯̄γi > 0. (56)
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4.1 Mono–Mono Interactions

The collision kernels Bi j (v, v∗, σ ), i, j ∈ {1, . . . , M} introduced in (7) describing interac-
tions between monatomic molecules are assumed to take the following form

Bi j (v, v∗, σ ) = bi j (û · σ)B̃i j (v, v∗), (57)

where the angular part is assumed non-negative, integrable and symmetric with respect to
the interchange i ↔ j ,

bi j (û · σ) ∈ L1(Sd−1), bi j (û · σ) = b ji (û · σ) ≥ 0, u = v − v∗, û = u

|u| , (58)

and B̃i j (v, v∗) is the usual model of hard potentials (up to a multiplicative constant),

B̃i j (v, v∗) =
(μi j

2m

)γi j /2 |v − v∗|γi j , (59)

with γi j from (55).

4.2 Poly–Mono andMono–Poly Interactions

For i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}, the collision kernelsBi j (v, v∗, I , σ, R) defined
by (40) are supposed to satisfy the following bounds

bi j (û · σ) b̃lbi j (R) B̃i j (v, v∗, I ) ≤ Bi j (v, v∗, I , σ, R0)

≤ bi j (û · σ) b̃ubi j (R) B̃i j (v, v∗, I ), (60)

where the angular part bi j (û · σ) is assumed to be as in (58), and non-negative functions
b̃lbi j (R), b̃ubi j (R) are assumed to have the following integrability properties,

b̃lbi j (R), b̃ubi j (R) ∈ L1([0, 1]; di (R) dR), (61)

where di (R) is from (32). The velocity-internal energy part is assumed to have the following
form

B̃i j (v, v∗, I ) =
(
1

m

(μi j

2
|v − v∗|2 + I

))γi j /2

, (62)

with γi j from (55).

4.3 Poly–Poly Interactions

For indices i, j ∈ {M + 1, . . . , P}, which describe interactions between polyatomic
molecules solely, the collision kernels Bi j (v, v∗, I , I∗, σ, r , R) are assumed to satisfy the
following bounds

bi j (û · σ) b̃lbi j (r , R) B̃i j (v, v∗, I , I∗) ≤ Bi j (v, v∗, I , I∗, σ, r , R)

≤ bi j (û · σ) b̃ubi j (r , R) B̃i j (v, v∗, I , I∗), (63)

where the angular part bi j (û ·σ) is supposed as in (58), and non-negative functions b̃lbi j (r , R),

b̃ubi j (r , R) are assumed to have the following integrability properties

b̃lbi j (r , R), b̃ubi j (r , R) ∈ L1([0, 1]2; di j (r , R) dr dR), (64)
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where the function di j (r , R) was introduced in (19). The velocity-internal energy part
B̃i j (v, v∗, I , I∗) takes the following form

B̃i j (v, v∗, I , I∗) =
(
1

m

(μi j

2
|v − v∗|2 + I + I∗

))γi j /2

, (65)

with γi j from (55).

4.4 Remarks

Note that all three assumptions (59), (62) and (65) on the form of B̃i j can be written concisely
as

B̃i j =
(
Ei j

m

)γi j /2

, (66)

where the energy Ei j is to be understood as (10), (23) or (14) depending on indices i, j .
Moreover, such a form of B̃i j is micro-reversible itself, by (9), (24) and (13).
Integrability properties (58) and (61) led us to define constants

(
κlbi j
κub
i j

)
=
∫

Sd−1×[0,1]
bi j (û · σ)

(
b̃lbi j (R)

b̃ubi j (R)

)
di (R) dσ dR,

i ∈ {M + 1, . . . , P} , j ∈ {1, . . . , M} , (67)

and by (64),

(
κlbi j
κub
i j

)
=
∫

Sd−1×[0,1]2
bi j (û · σ)

(
b̃lbi j (r , R)

b̃ubi j (r , R)

)
di j (r , R) dσ dr dR,

i, j ∈ {M + 1, . . . , P} . (68)

For convenience, we also introduce the constant for monatomic interaction which actually
reduces to the L1 norm of the angular part, i.e.

κlbi j = κub
i j = ∥∥bi j

∥∥
L1
Sd−1

, when i, j ∈ {1, . . . , M} . (69)

Note that discrepancy in constants κ lbi j and κub
i j is due to estimates on the parts of the

collision kernels that is concernedwith energy exchange variables. This difference disappears
when, for instance, b̃lbi j = b̃ubi j = 1 i.e. for the choice Bi j = bi j (û ·σ) B̃i j , which is a possible

choice due to micro-reversibility properties of B̃i j defined by (66) .

4.5 An Example of the Collision Kernel

Besides the model Bi j = bi j (û · σ) B̃i j , with B̃i j from (66), mentioned in the above Remark
4.4, which for a single species polyatomic gas corresponds to the Model 1 in [37], we
bring another example corresponding to Models 2 and 3 in [37], showed to be successful in
providing physical intuition of the single Boltzmann model for a polyatomic gas [32, 33].
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For i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}, consider
Bi j (v, v∗, I , σ, R)

= bi j (û · σ)

(
Rγi j /2|v − v∗|γi j +

(
(1 − R)I

m

)γi j /2
)

,

while for i, j ∈ {M + 1, . . . , P} take
Bi j (v, v∗, I , I∗, σ, r , R)

= bi j (û · σ)

(
Rγi j /2|v − v∗|γi j +

(
r(1 − R)I

m

)γi j /2

+
(

(1 − r)(1 − R)I∗
m

)γi j /2
)

.

Then, assumptions (60), (63) are satisfied, for example, by choosing

blbi j (R) = min

{
2m

μi j
R, 1 − R

}γi j /2

, bubi j (R) = 21−γi j /2 max

{
2m

μi j
R, 1 − R

}γi j /2

,

for i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}, and

blbi j (r , R) = min

{
2m

μi j
R, r(1 − R), (1 − r)(1 − R)

}γi j /2

,

bubi j (r , R) = 31−γi j /2 max

{
2m

μi j
R, r(1 − R), (1 − r)(1 − R)

}γi j /2

,

for i, j ∈ {M + 1, . . . , P}.

5 Estimates on the Collision Operator

Thefirst step in thewell-posedness proof is to showdissipative character of the gain operator’s
k-th moment reached by averaging post-collisional velocities or velocity-internal energy
pairs. The original techniquewas introduced byBobylev in [10],which uses decomposition of
the post-collisional velocities in the center-of-mass framework and relies on symmetries built
in the model of a single monatomic gas. This idea was lately used for different frameworks,
as for inelastic collisions [11], granular gases [3], more general cross sections [35, 41, 45,
46]. Recently, the authors developed an averaging tool for monatomic gas mixtures [4, 27,
36] and single polyatomic gases [37], which relies on the representation of post-collisional
velocities (and internal energies for polyatomic interactions) in a convex combination form
of the energies in the center-of-mass framework.

Exploiting this idea, we will first represent post-collisional quantities in a suitable convex
combination form in the upcoming Sect. 5.1, which will be the basis for the averaging over
the space of parameters in Sect. 5.2, crucial to show dissipation of the gain operator.

5.1 Energy Identities and Estimates

We first introduce notation that will be used in this section. The parameter si j ∈ (0, 1)
convexly splits the sum of masses mi + m j ,

si j = mi

mi + m j
⇒ 1 − si j = m j

mi + m j
= s ji . (70)
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Its minimum will play an important role in computations,

s̄i j = min
{
si j , s ji

} ∈ (0, 1). (71)

For the two colliding molecules, the total energy (kinetic or kinetic+internal) during col-
lision, which is a conserved quantity, will be written in brackets form of (47),

E 〈〉
i j = 〈·〉2i + 〈·〉2j = 〈·′〉2i + 〈·′〉2j , (72)

where the argument in the brackets can be either velocity or velocity-internal energy pair
depending on whether i or j belong to {1, . . . , M} or {M + 1, . . . , P}. This total energy in
brackets form can be written in the center-of-mass reference framework (5),

E 〈〉
i j = 2 + mi + m j

2m
|V |2 + Ei j

m
, (73)

where Ei j is (10) for i, j ∈ {1, . . . , M}, (14) for i, j ∈ {M + 1, . . . , P} and (23) if i ∈
{M + 1, . . . , P} and j ∈ {1, . . . , M}.

The goal of the upcoming lemma is to express the total energy (73) in convex components
in order to represent each primed bracket 〈·′〉2i and 〈·′〉2j separately in terms of non-primed
quantities.

Lemma 5.1 (Energy Identity Lemma) The following energy identities and estimates hold,
depending on the nature of particle interactions,

Part (i): mono–mono interactions Let i, j ∈ {1, . . . , M} and the primed velocities be
defined in (6). Then, there exist non-negative functions pi j , qi j and λi j which depend
only on velocities v, v∗ and parameter si j from (70) and satisfy pi j + qi j = 1, such that
the following representation hold,

〈v′〉2i = E 〈〉
i j pi j + λi j V̂ · σ, 〈v′∗〉2j = E 〈〉

i j qi j − λi j V̂ · σ, (74)

and the following estimate

〈v′〉2i , 〈v′∗〉2j ≤
(
1 − s̄i j

(
1 − |V̂ · σ |

))
E 〈〉
i j , (75)

where E 〈〉
i j = 〈v〉2i + 〈v∗〉2j and s̄i j is given in (71).

Part (ii): poly–poly interactions Let i, j ∈ {M + 1, . . . , P} and the primed velocity
- internal energy pairs be defined in (15). There exist non-negative functions p̃i j , q̃i j ,
t̃i j and λi j which depend on velocities v, v∗, internal energies I , I∗, energy exchange
variable R and mass ratio si j from (70) such that the following convexity property holds
p̃i j + q̃i j + t̃i j = 1 and representation of the primed velocity - internal energy pairs,

〈v′, I ′〉2i = E 〈〉
i j

(
p̃i j + r t̃i j

)+ λi j V̂ · σ, 〈v′∗, I ′∗〉2j = E 〈〉
i j

(
q̃i j + (1 − r)t̃i j

)− λi j V̂ · σ,

(76)

where E 〈〉
i j = 〈v, I 〉2i + 〈v∗, I∗〉2j . Moreover, the following estimate holds

〈v′, I ′〉2i ≤ E 〈〉
i j

(
1 − q̃i j (1 − |V̂ · σ |) − t̃i j (1 − r)

)
,

〈v′∗, I ′∗〉2j ≤ E 〈〉
i j

(
1 − p̃i j (1 − |V̂ · σ |) − t̃i j r

)
,

(77)

where the involved terms satisfy

( p̃i j + t̃i j ), (q̃i j + t̃i j ) ≥ s̄i j , (78)

with s̄i j from (71).
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Part (iii) - poly–mono and mono–poly interactions Consider i ∈ {M + 1, . . . , P} and
j ∈ {1, . . . , M}. Let the primed velocity-internal energy pair (v′, I ′) and the primed
velocity v′∗ be defined as in (25). There exist non-negative functions p̃i j , q̃i j , t̃i j and λi j
depending on v, v∗, I , R and si j from (70) such that it holds the convexity property
p̃i j + q̃i j + t̃i j = 1 and the representation

〈v′, I ′〉2i = ( p̃i j + t̃i j
)
E 〈〉
i j + λi j V̂ · σ, 〈v′∗〉2j = q̃i j E

〈〉
i j − λi j V̂ · σ, (79)

with E 〈〉
i j = 〈v, I 〉2i + 〈v∗〉2j . Moreover, the following estimate holds

〈v′, I ′〉2i , 〈v′∗〉2j ≤
(
1 − s̄i j R

(
1 − |V̂ · σ |

))
E 〈〉
i j , (80)

with s̄i j from (71).

Proof First define the function �i j which depends on velocities or velocity-internal energy
pairs solely,

�i j E
〈〉
i j = 1 + mi + m j

2m
|V |2 ⇒ (

1 − �i j
)
E 〈〉
i j = 1 + 1

m
Ei j . (81)

The part
(
1 − �i j

)
E 〈〉
i j is further split depending on the type of molecular interaction.

Mono–mono interactions This type of interactions was already studied in [36], Lemma 4.1.
Defining

pi j = si j�i j + (1 − si j )
(
1 − �i j

)
,

qi j = (1 − si j )�i j + si j
(
1 − �i j

)
,

λi j = 2
√
si j (1 − si j )

√
�i j E

〈〉
i j − 1

√(
1 − �i j

)
E 〈〉
i j − 1,

(82)

the representation (74) and estimate (75) hold.
Poly–poly interactions For i, j ∈ {M + 1, . . . , P}, in order to split the term

(
1 − �i j

)
E 〈〉
i j ,

we introduce the function �i j that, except on velocities and internal energies like for �i j ,
additionally depends on the parameter R,

�i j
(
1 − �i j

)
E 〈〉
i j = 1 + 1

m
REi j ⇒ (

1 − �i j
) (
1 − �i j

)
E 〈〉
i j = 1

m
(1 − R)Ei j .

(83)

We then define the following functions in terms of convex combination functions,

p̃i j = si j�i j + (1 − si j )�i j
(
1 − �i j

)
,

q̃i j = (1 − si j )�i j + si j�i j
(
1 − �i j

)
,

t̃i j = (1 − �i j
) (
1 − �i j

)
,

λi j = 2
√
si j (1 − si j )

√
�i j
(
1 − �i j

)
E 〈〉
i j − 1

√
�i j E

〈〉
i j − 1.

(84)

Taking the square of the primed velocities and internal energies from (15) and combining
them into the bracket form (47), for the term 〈v′, I ′〉2i it follows

〈v′, I ′〉2i = mi

mi + m j

(
1 + mi + m j

2m
|V |2

)
+ m j

mi + m j

(
1 + REi j

m

)
+ r(1 − R)Ei j

m

+ mim j

(mi + m j )m

√
2REi j

μi j
|V |V̂ · σ,
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and similarly for the counterpart 〈v′∗, I ′∗〉2i . Expressing
√

(mi + m j )

2m
|V | =

√
�i j E

〈〉
i j − 1,

√
μi j

mi + m j
=
√
si j (1 − si j ),

√
REi j

m
=
√

�i j
(
1 − �i j

)
E 〈〉
i j − 1,

the representation (76) is obtained. Note that for a single polyatomic gas corresponding to
the case si j = 1/2, the representation (76) coincides with the one introduced in [37].

To prove the second part, note that by Young’s inequality the following estimates on λi j
hold

λi j ≤ p̃i j E
〈〉
i j , λi j ≤ q̃i j E

〈〉
i j . (85)

Then, from (76) the following estimates are straightforward,

〈v′, I ′〉2i ≤ E 〈〉
i j

(
p̃i j + r t̃i j + q̃i j |V̂ · σ |

)
= E 〈〉

i j

(
1 − q̃i j (1 − |V̂ · σ |) − t̃i j (1 − r)

)
,

〈v′∗, I ′∗〉2j ≤ E 〈〉
i j

(
q̃i j + (1 − r)t̃i j + p̃i j |V̂ · σ |

)
= E 〈〉

i j

(
1 − p̃i j (1 − |V̂ · σ |) − t̃i j r

)
,

yielding (77). Estimate (78) follows from

( p̃i j + t̃i j ), (q̃i j + t̃i j )

≥ min
{
si j , 1 − si j , 1

} (
�i j + �i j

(
1 − �i j

)+ (1 − �i j
) (
1 − �i j

)) = s̄i j ,

by (71).
Poly–mono and mono–poly interactions For i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M},
functions p̃i j , q̃i j and t̃i j are of the same form as (84) for poly–poly interactions, except that
the total energy in the center-of-mass framework Ei j is understood as (23).

For the second part, we use the estimate on λi j as in (85). Then from the representation
(79), the following estimates hold,

〈v′, I ′〉2i ≤ E 〈〉
i j

(
p̃i j + t̃i j + q̃i j |V̂ · σ |

)
= E 〈〉

i j

(
1 − q̃i j

(
1 − |V̂ · σ |

))
,

〈v′∗〉2j ≤ E 〈〉
i j

(
q̃i j + p̃i j |V̂ · σ |

)
≤ E 〈〉

i j

(
1 − p̃i j

(
1 − |V̂ · σ |

))
.

Note that

p̃i j , q̃i j ≥ s̄i j
(
�i j + �i j

(
1 − �i j

)) = s̄i j
(
1 − t̃i j

) ≥ s̄i j R,

where the last inequality is due to

1 − t̃i j = 1

E 〈〉
i j

(
E 〈〉
i j − (1 − R)

Ei j

m

)
≥ R.

This implies (80), which concludes the proof. ��

5.2 Compact Manifold Averaging Lemma

The next goal is to show that estimates on the primed quantities 〈·′〉2i , 〈·′〉2j , proved in the

previous lemma yield decay properties of their k−th power 〈·′〉ki , 〈·′〉kj , with respect to k when
averaged over a suitable compact domain, such as angular transitions and partition functions,
describing transition probability rates depending on the particles’ interaction nature.
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To this end, we prove the following key lemma, highlighting a novel method of proof
flexible enough to conveniently adapt to all type of interactions satisfying the general pairwise
energy transfer identity structure of Lemma 5.1.

Lemma 5.2 (Compact Manifold Averaging Lemma) With the notation of Lemma 5.1 and
the assumptions on collision kernels stated in Sect. 4, there exist non-negative constants Ci jk
decreasing in k ≥ 0 and with limk→∞ Ci jk = 0 or more precisely

Ci jk = O(k− a
2 ), for all a ∈ (0, 1), (86)

such that the following estimates hold, depending on the nature of particle interactions.

Part (i): mono–mono interactions For i, j ∈ {1, . . . , M},
∫

Sd−1

(
1 − s̄i j

(
1 − |V̂ · σ |

))k
bi j (û · σ) dσ ≤ Ci jk . (87)

Part (ii): poly–poly interactionsWhen i, j ∈ {M + 1, . . . , P},
∫

Sd−1×[0,1]2

(
1 − q̃i j (1 − |V̂ · σ |) − t̃i j (1 − r)

)k
bi j (û · σ) b̃ubi j (r , R) di j (r , R) dσ dr dR

≤ Ci jk ,

and
∫

Sd−1×[0,1]2

(
1 − p̃i j (1 − |V̂ · σ |) − t̃i j r

)k
bi j (û · σ) b̃ubi j (r , R) di j (r , R) dσ dr dR ≤ Ci jk .

(88)

Part (iii): poly–mono and mono–poly interactions Consider i ∈ {M + 1, . . . , P} and
j ∈ {1, . . . , M}. Then,

∫

Sd−1×[0,1]

(
1 − s̄i j R

(
1 − |V̂ · σ |

))k
bi j (û · σ) b̃ubi j (R) di (R) dσ dR ≤ Ci jk . (89)

As a consequence of the estimates (87), (88), and (89), there exists k̄∗, depending only on
the angular part bi j (û · σ) and functions bubi j of energy exchange variables, such that for all
i, j ∈ {1, . . . , P},

Ci jk <
κ lbi j

2
, for k ≥ k̄∗, (90)

with κ lbi j provided in (69), (68) and (67), respectively for each type of particles’ interactions.

Proof We prove each type of interaction separately. The idea of the proof is to split the
domain of integration into sub-domains, one sub-domain, A0

ε , on which the term raised on
power k is strictly less than 1, guarantying the power decay in k, and its complement whose
measure will be O(ε). A suitable choice of ε in terms of k will allow to conclude the proof.
Mono–mono interactions Split the sphere Sd−1 into two sub-regions:

A0
ε =

{
σ ∈ S

d−1 : |V̂ · σ | ≤ 1 − ε
}

, A1
ε =

{
σ ∈ S

d−1 : |V̂ · σ | > 1 − ε
}

, ε > 0.

In A0
ε the following inequality holds

1 − s̄i j
(
1 − |V̂ · σ |

)
≤ 1 − s̄i jε < 1,
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since both s̄i j , ε > 0. Therefore, the averaging over this domain will ensure the power decay
in k, i.e. the left-hand side of (87) is estimated as

∫

Sd−1

(
1 − s̄i j

(
1 − |V̂ · σ |

))k
bi j (û · σ) dσ ≤ (1 − s̄i jε

)k ∥∥bi j
∥∥
L1
Sd−1

+
∫

Sd−1
1A1

ε
bi j (û · σ) dσ. (91)

It remains to show that the last term is of order O(ε). To that end, consider the family of
measurable functions �ε(V̂ , û) : Sd−1 × S

d−1 → [0,∞), for ε > 0 defined as

0 ≤ �ε(V̂ , û) :=
∫

Sd−1
1|V̂ ·σ |>1−ε

bi j (û · σ) dσ . (92)

Let us prove that �ε(V̂ , û) converges uniformly (in the variables V̂ , û) to zero as ε → 0. To
this end, fix δ > 0 and note that for any K > 0

�ε(V̂ , û) =
∫

Sd−1
1|V̂ ·σ |>1−ε

bi j (û · σ)1bi j (û·σ)>K dσ

+
∫

Sd−1
1|V̂ ·σ |>1−ε

bi j (û · σ)1bi j (û·σ)≤K dσ

=: �1
ε(V̂ , û) + �2

ε(V̂ , û) .

For�1
ε(V̂ , û)we use polar coordinates setting cos(θ) = û ·σ with û arbitrary but fixed. Then,

due to the monotone convergence theorem, there exists a sufficiently large K := K (δ, bi j )
such that

0 ≤ �1
ε(V̂ , û) ≤ |Sd−2|

∫ 1

−1
bi j (cos(θ))1bi j (cos(θ))>K sind−2(θ)dθ ≤ δ

2
.

As for �2
ε(V̂ , û),

0 ≤ �2
ε(V̂ , û) ≤ K

∫

Sd−1
1|V̂ ·σ |>1−ε

dσ = |Sd−2| K
∫ 1

−1
1|s|>1−εds ≤ 2 |Sd−2| K ε .

Thus, choosing ε < δ
4|Sd−2|K =: ε∗(δ, bi j ) it holds that �2

ε(V̂ , û) ≤ δ
2 . Consequently,

0 ≤ sup
V̂ ,û

�ε(V̂ , û) ≤ δ for any ε < ε∗(δ, bi j ) .

In the sequel we simply write that supV̂ ,û �ε(V̂ , û) = O(ε). Returning to (91), we conclude
that

∫

Sd−1

(
1 − s̄i j

(
1 − |V̂ · σ |

))k
bi j (û · σ) dσ ≤ (1 − s̄i jε

)k ∥∥bi j
∥∥
L1
Sd−1

+ O(ε). (93)

With the choice ε = k−a , with a ∈ (0, 1), it holds that

lim
k→∞

(
1 − s̄i j ε

)k ∼ lim
k→∞ e−s̄i j k1−a = 0 ,

and therefore,

sup
V̂ ,û

∫

Sd−1

(
1 − s̄i j

(
1 − |V̂ · σ |

))k
bi j (û · σ) dσ = O

(
k−a
)
, a ∈ (0, 1). (94)
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Poly–poly interactions For the first estimate in (88), split the region Sd−1 × [0, 1] into three
sub-regions:

A0
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, r ≤ 1 − ε
}

,

A1
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | > 1 − ε
}

,

A2
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, r > 1 − ε
}

.

In A0
ε , thanks to (78),

(
1 − q̃i j (1 − |V̂ · σ |) − t̃i j (1 − r)

)
≤ (1 − ε

(
q̃i j + t̃i j

)) ≤ 1 − s̄i jε.

Denoting

ρub
i j =

∫

[0,1]2
b̃ubi j (r , R) di j (r , R) dr dR,

the left-hand side of (88) becomes
∫

Sd−1×[0,1]2

(
1 − q̃i j (1 − |V̂ · σ |) − t̃i j (1 − r)

)k
bi j (û · σ) b̃ubi j (r , R) di j (r , R) dσ dr dR

≤ (1 − s̄i jε
)k

κub
i j + ρub

i j �ε(V̂ , û) + ∥∥bi j
∥∥
L1
Sd−1

∫

[0,1]2
1r>1−ε b̃

ub
i j (r , R) di j (r , R) dr dR

≤ (1 − s̄i j ε
)k

κub
i j + O(ε) ,

where for the latter integral we invoked the monotone convergence theorem. The estimate
follows, as in the previous case, choosing ε = k−a , with a ∈ (0, 1).
For the second estimate in (88) we proceed similarly by considering the regions

A0
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, r ≥ ε
}

,

A1
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | > 1 − ε
}

,

A2
ε =

{
(σ, r) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, r < ε
}

.

Then, for A0
ε the estimate (78) yields

(
1 − p̃i j (1 − |V̂ · σ |) − t̃i j r

)
≤ (1 − ε

(
p̃i j + t̃i j

)) ≤ 1 − s̄i jε,

and therefore
∫

Sd−1×[0,1]2

(
1 − p̃i j (1 − |V̂ · σ |) − t̃i j r

)k
bi j (û · σ) b̃ubi j (r , R) di j (r , R) dσ dr dR

≤ (1 − s̄i jε
)k

κub
i j + ρub

i j �ε(V̂ , û) + ∥∥bi j
∥∥
L1
Sd−1

∫

[0,1]2
1r<ε b̃

ub
i j (r , R) di j (r , R) dr dR

≤ (1 − s̄i j ε
)k

κub
i j + O(ε) .

To conclude choose ε = k−a , with a ∈ (0, 1).
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Poly–mono andmono–poly interactions Split the region Sd−1×[0, 1] into three sub-regions:
A0

ε =
{
(σ, R) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, R ≥ ε
}

,

A1
ε =

{
(σ, R) ∈ S

d−1 × [0, 1] : |V̂ · σ | > 1 − ε
}

,

A2
ε =

{
(σ, R) ∈ S

d−1 × [0, 1] : |V̂ · σ | ≤ 1 − ε, R < ε
}

.

Since in A0
ε the following bound holds,

1 − s̄i j R
(
1 − |V̂ · σ |

)
≤ 1 − s̄i j ε

2,

the left-hand side of (89) can be estimated as
∫

Sd−1×[0,1]

(
1 − s̄i j R

(
1 − |V̂ · σ |

))k
bi j (û · σ) b̃ubi j (R) di (R) dσ dR ≤ (1 − s̄i j ε

2)k κub
i j

+ρub
i j �ε(V̂ , û) + ∥∥bi j

∥∥
L1
Sd−1

∫

[0,1]
1R<ε b̃

ub
i j (R) di (R) dR = (1 − s̄i j ε

2)k κub
i j + O(ε) ,

where we denoted

ρub
i j =

∫ 1

0
b̃ubi j (R) di (R) dR.

We conclude taking ε = k− a
2 , with a ∈ (0, 1). ��

Remark 5.3 A particular important case is when the kernels are all bounded

bi j (û · σ); b̃ubi j (R) and di (R); b̃ubi j (r , R) and di j (r , R) ∈ L∞.

In such case there is an explicit rate for Ci jk , namely, Ci jk ≤ C√
k
. Indeed, we analyse the most

restrictive case of poly–mono and mono–poly interactions. One splits Sd−1 × [0, 1] into the
subregions

Aε =
{
(σ, R) ∈ S

d−1 × [0, 1] : R ≥ ε
}

,

Ac
ε =

{
(σ, R) ∈ S

d−1 × [0, 1] : R < ε
}

.

In Aε

1 − s̄i j R
(
1 − |V̂ · σ |

)
≤ 1 − s̄i j ε

(
1 − |V̂ · σ |

)
,

so that
∫

Aε

(
1 − s̄i j R

(
1 − |V̂ · σ |

))k
bi j (û · σ) b̃ubi j (R) ψi (R)

√
R dσ dR

≤ C
∫ 1

0

(
1 − s̄i j ε s

)k ds ≤ C

k s̄i j ε
.

Whereas, in Ac
ε

∫

Ac
ε

(
1 − s̄i j R

(
1 − |V̂ · σ |

))k
bi j (û · σ) b̃ubi j (R) ψi (R)

√
R dσ dR ≤ Cε .

The result follows minimising in ε, that is choosing ε ∼ 1√
k
.
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Corollary 5.4 With the notation of Lemma 5.1 and 5.2 and the assumptions on collision
kernels stated in Sect. 4, the following estimates hold,

Part (i): mono–mono interactions For i, j ∈ {1, . . . , M}

G+
i j (v, v∗) :=

∫

Sd−1

(
〈v′〉ki + 〈v′∗〉kj

)
bi j (û · σ) dσ ≤ 2 Ci jk

(
〈v〉2i + 〈v∗〉2j

)k/2
. (95)

Part (ii): poly–poly interactions For i, j ∈ {M + 1, . . . , P}
G+
i j (v, v∗, I , I∗)

:=
∫

Sd−1×[0,1]2

(
〈v′, I ′〉ki + 〈v′∗, I ′∗〉kj

)
bi j (û · σ) b̃ubi j (r , R) di j (r , R) dσ dr dR

≤ 2 Ci jk
(
〈v, I 〉2i + 〈v∗, I∗〉2j

)k/2
.

(96)

Part (iii): poly–mono and mono–poly interactions Consider i ∈ {M + 1, . . . , P} and
j ∈ {1, . . . , M}.

G+
i j (v, v∗, I ) :=

∫

Sd−1×[0,1]

(
〈v′, I ′〉ki + 〈v′∗〉kj

)
bi j (û · σ) b̃ubi j (R) di (R) dσ dR

≤ 2 Ci jk
(
〈v, I 〉2i + 〈v∗〉2j

)k/2
,

(97)

where the constant Ci jk is characterized in Lemma 5.2.

Proof The estimates follow from Lemma 5.1 and 5.2. ��

5.3 Estimates on the k-Moments of the Collision Operator in a Bi-linear Form

In this section, we will consider moments of the collision operator written in a bi-linear form.
Namely, depending on i and j , whether they refer to monatomic or polyatomic species, there
are three bi-linear forms,

(i) i, j ∈ {1, . . . , M}

Qi j
k [ f , g] :=

∫

Rd
Qi j ( f , g)(v) 〈v〉ki dv +

∫

Rd
Q ji (g, f )(v) 〈v〉kj dv, (98)

(i i) i ∈ {M + 1, . . . , P} and j ∈ {1, . . . , M}

Qi j
k [ f , g] :=

∫

Rd×[0,∞)

Qi j ( f , g)(v, I ) 〈v, I 〉ki dv dI +
∫

Rd
Q ji (g, f )(v) 〈v〉kj dv,

(99)

(i i i) i, j ∈ {M + 1, . . . , P}

Qi j
k [ f , g] :=

∫

Rd×[0,∞)

Qi j ( f , g)(v, I ) 〈v, I 〉ki dv dI

+
∫

Rd×[0,∞)

Q ji (g, f )(v, I ) 〈v, I 〉kj dv dI . (100)

The goal of this section is to estimate these bi-linear forms in terms of suitable statistical
moments of the input functions f and g with the help of the Compact Manifold Average
Lemma, as presented in Lemma 5.2 or Corollary 5.4, and the following pointwise lemma
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which provides, in the sequel, a new estimate valid in the whole range k > 2 for propagation
of moments estimates.

Lemma 5.5 (p-Binomial inequality) Assume p > 1. For all x, y > 0, the following inequality
holds

(x + y)p ≤ x p + y p + 2p+1(xy p−1 1y≥x + x p−1y 1x≥y
)
. (101)

Proof Consider the function ϕ(z) = z p + 1 + 2p+1z − (z + 1)p in z ∈ [0, 1]. Note that
ϕ(0) = 0 and ϕ′(0) > 0, that is ϕ is nonnegative in some [0, z∗]. Certainly z∗ ≥ zc with
zc the smallest critical point of ϕ in (0, 1). Now, ϕ′(z) = p z p−1 + 2p+1 − p (z + 1)p−1,
therefore ϕ′(zc) = 0 implies

zc + 1

zc
=
(
1 + 2p+1

pz p−1
c

) 1
p−1 ≥

( 4
p

) 1
p−1 2

zc
.

That is, zc ≥ ( 4p
) 1
p−1 2 − 1. It is not difficult to check that

( 4
p

) 1
p−1 ≥ 3

4 , for p > 1, which

implies that zc ≥ 1
2 . Consequently, ϕ ≥ 0 in the interval [0, 1

2 ]. As for the interval ( 12 , 1]
note that in such interval

ϕ(z) ≥ min
z∈( 12 ,1]

(
z p + 1 + 2p+1z − (z + 1)p

)
≥ 1

2p
+ 1 + 2p − 2p ≥ 0.

This proves that ϕ is nonnegative in [0, 1], that is

(z + 1)p ≤ z p + 1 + 2p+1z , z ∈ [0, 1] .

Now, for x, y > 0 write

(x + y)p = y p
( x
y

+ 1
)p

1y≥x + x p
( y
x

+ 1
)p

1x≥y

and, then, conclude applying the aforementioned inequality with z = x
y and z = y

x respec-
tively. ��

Lemma 5.6 Let non-negative functions f , g ∈ L1
k+ ¯̄γ , with k ≥ k̄∗, k̄∗ is from (90), ¯̄γ from

(56). There exist non-negative constants Ai j
� , ε > 0 and Bi j

k , such that the following estimate
holds on the bi-linear forms (98)–(100) with the collision kernel satisfying assumptions stated
in Sect. 4,

Qi j
k [ f , g] ≤ −Ai j

� m
j
0[g]mi

k+γi j
[ f ] − A ji

� mi
0[ f ]m j

k+γi j
[g]

+4 ε
(
m

j
0[g]mi

k+ ¯̄γi [ f ] + mi
0[ f ]m j

k+ ¯̄γ j
[g]
)

+ Bi j
k [ f , g] + B ji

k [g, f ], (102)

where expressions are to be understood depending on indices i and j according to (52).
Constants are explicitly computed in the proof with the final expression given in Remark 5.7.

123



9 Page 26 of 50 R. J. Alonso et al.

Proof Wefirstly present the proof for poly–poly interactions, so taking i, j ∈ {M + 1, . . . , P}.
By the weak form (21) and assumptions on the collision kernel,

Qi j
k [ f , g] =

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
f (v, I ) g(v∗, I∗)

{
〈v′, I ′〉ki + 〈v′∗, I ′∗〉kj − 〈v, I 〉ki − 〈v∗, I∗〉kj

}

× Bi j (v, v∗, I , I∗, r , σ, R) di j (r , R) dσ dr dR dv∗ dI∗ dv dI (103)

≤
∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
f (v, I ) g(v∗, I∗)B̃i j (v, v∗, I , I∗)

×
{
G+
i j (v, v∗, I , I∗) − κ lbi j

(
〈v, I 〉ki + 〈v∗, I∗〉kj

)}
dv∗ dI∗ dv dI . (104)

The term G+
i j (v, v∗, I , I∗) introduced in (96) can be split by exploiting the estimate (101),

given in Lemma 5.5, yielding

(
〈v, I 〉2i + 〈v∗, I∗〉2j

)k/2 ≤ 〈v, I 〉ki + 〈v∗, I∗〉kj
+c̃k

(
〈v, I 〉2i 〈v∗, I∗〉k−2

j 1〈v,I 〉i≤〈v∗,I∗〉 j + 〈v, I 〉k−2
i 〈v∗, I∗〉2j 1〈v∗,I∗〉 j≤〈v,I 〉i

)
,

(105)

where the constant c̃k is

c̃k = 2
k
2+1. (106)

This estimate implies

Qi j
k [ f , g] ≤

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
f (v, I ) g(v∗, I∗)B̃i j (v, v∗, I , I∗)

×
{
−
(
κ lbi j − 2 Ci jk

) (
〈v, I 〉ki + 〈v∗, I∗〉kj

)

+2 Ci jk c̃k
(
〈v, I 〉2i 〈v∗, I∗〉k−2

j 1〈v,I 〉i≤〈v∗,I∗〉 j + 〈v, I 〉k−2
i 〈v∗, I∗〉2j 1〈v∗,I∗〉 j≤〈v,I 〉i

)}
dv∗ dI∗ dv dI .

Since, by the assumption of this lemma, k ≥ k̄∗ with k̄∗ from (90), the constant in front of
the highest order term is strictly positive. Moreover, as Ci jk is decreasing in k, we choose

0 < Ãi j
� := κlbi j − 2 Ci j

k̄∗
≤ κ lbi j − 2 Ci jk , for any k ≥ k̄∗. (107)

Using the lower bound for the negative term and the upper bound for the positive term from
(183) in the Appendix Lemma A.1,

Qi j
k [ f , g] ≤

∫

(Rd×[0,∞))2
f (v, I ) g(v∗, I∗)

{
− Ãi j

� Li j

(
〈v, I 〉k+γi j

i + 〈v∗, I∗〉k+γi j
j

)

+ Ãi j
�

(
〈v, I 〉ki 〈v∗, I∗〉γi jj + 〈v, I 〉γi ji 〈v∗, I∗〉kj

)

+4 Ci jk c̃k
(
〈v, I 〉2i 〈v∗, I∗〉k−2+γi j

j 1〈v,I 〉i≤〈v∗,I∗〉 j

+〈v, I 〉k−2+γi j
i 〈v∗, I∗〉2j 1〈v∗,I∗〉 j≤〈v,I 〉i

)}
dv∗ dI∗ dv dI .
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Majorizing the indicator functions and switching to the moment notation (52), we rewrite
the previous inequality as

Qi j
k [ f , g] ≤ − Ãi j

� Li j

(
m

j
0[g]mi

k+γi j
[ f ] + mi

0[ f ]m j
k+γi j

[g]
)

+ Ãi j
�

(
mi

k[ f ]m j
γi j

[g] + mi
γi j

[ f ]m j
k [g]

)

+4 Ci jk c̃k
(
mi

2[ f ]m j
k−2+γi j

[g] + mi
k−2+γi j

[ f ]m j
2[g]

)
. (108)

The monotonicity of moments (53) allows to bound positive terms in (108) related to the
moments of the order containing γi j by moments of the same order but involving ¯̄γi or ¯̄γ j

instead of γi j , see (55). This will be an essential step for the upcomingmoments interpolation
which requires strict positivity of rates ¯̄γi , ¯̄γ j > 0. Thus, (108) becomes

Qi j
k [ f , g] ≤ − Ãi j

� Li j

(
m

j
0[g]mi

k+γi j
[ f ] + mi

0[ f ]m j
k+γi j

[g]
)

+ Ãi j
�

(
mi

k[ f ]m j
¯̄γ j

[g] + mi¯̄γi [ f ]m
j
k [g]

)

+4 Ci jk c̃k
(
mi

2[ f ]m j
k−2+ ¯̄γ j

[g] + mi
k−2+ ¯̄γi [ f ]m

j
2[g]

)
. (109)

Next, we invoke arguments of [2] that involve moment interpolation formulas

m�
λ ≤ (m�

λ1
)τ (m�

λ2
)1−τ , 0 ≤ λ1 ≤ λ ≤ λ2, 0 < τ < 1, λ = τλ1 + (1 − τ)λ2,

(110)

where � will be either i or j . For simplicity of the notation, we drop for the moment the
reference to the distribution function, i.e. we shorten mi := mi [ f ].

Thus, since ¯̄γ� > 0, (110) yields

m�
k ≤ (m�

2)

¯̄γ�
k−2+ ¯̄γ� (m�

k+ ¯̄γ�
)

k−2
k−2+ ¯̄γ� , m�

k−2+ ¯̄γ�
≤ (m�

0)
2

k+ ¯̄γ� (m�

k+ ¯̄γ�
)

k+ ¯̄γ�−2
k+ ¯̄γ� , � ∈ {i, j} .

(111)

Incorporating these estimates into (109) and using moment monotonicity (53) for 0 <
¯̄γi , ¯̄γ j ≤ 2,

Qi j
k [ f , g] ≤ − Ãi j

� Li j

(
m

j
0[g]mi

k+γi j
[ f ] + mi

0[ f ]m j
k+γi j

[g]
)

+ K i j
1 [ f , g] (mi

k+ ¯̄γi [ f ])
k−2

k−2+ ¯̄γi + K ji
1 [g, f ] (m j

k+ ¯̄γ j
[g])

k−2
k−2+ ¯̄γ j

+ K i j
2 [ f , g] (mi

k+ ¯̄γi [ f ])
k+ ¯̄γi−2
k+ ¯̄γi + K ji

2 [g, f ] (m j
k+ ¯̄γ j

[g])
k+ ¯̄γ j−2

k+ ¯̄γ j ,

=: − Ãi j
� Li j

(
m

j
0[g]mi

k+γi j
[ f ] + mi

0[ f ]m j
k+γi j

[g]
)

+ T1 + T2, (112)

with constants

K i j
1 [ f , g] = Ãi j

� (mi
2[ f ])

¯̄γi
k−2+ ¯̄γi m j

2[g], K i j
2 [ f , g] = 4 Ci jk c̃k (mi

0[ f ])
2

k+ ¯̄γi m j
2[g].

In order to factorize terms of the order k + ¯̄γi and k + ¯̄γ j , we use Young’s inequality,

|a b| ≤ 1

p ε p/p′ |a|p + ε

p′ |b|p′
, for ε > 0 and

1

p
+ 1

p′ = 1, (113)

123



9 Page 28 of 50 R. J. Alonso et al.

and proceed separately for each term.
Term T1. For the first term of T1, Young’s inequality (113) implies

Ki j
1 [ f , g] (mi

k+ ¯̄γi [ f ])
k−2

k−2+ ¯̄γi ≤ (m
j
0[g])−p/p′

p ε p/p′
(
K i j
1 [ f , g]

)p + εm
j
0[g] (mi

k+ ¯̄γi [ f ])
k−2

k−2+ ¯̄γi
p′

= K̃ i j
1 [ f , g] + εm

j
0[g]mi

k+ ¯̄γi [ f ],
with the notation

K̃ i j
1 [ f , g] = (m

j
0[g])−p/p′

p ε p/p′
(
K i j
1 [ f , g]

)p
, (114)

and the choice

p = k − 2 + ¯̄γi
¯̄γi

⇒ p′ = k − 2 + ¯̄γi
k − 2

. (115)

The very same computations imply for the counterpart,

K ji
1 [g, f ] (m j

k+ ¯̄γ j
[g])

k−2
k−2+ ¯̄γ j ≤ K̃ ji

1 [g, f ] + εmi
0[ f ]m j

k+ ¯̄γ j
[g].

Thus, term T1 is estimated as follows,

T1 ≤ K̃ i j
1 [ f , g] + K̃ ji

1 [g, f ] + εm
j
0[g]mi

k+ ¯̄γi [ f ] + εmi
0[ f ]m j

k+ ¯̄γ j
[g], (116)

where the involved terms are specified in (114) with (115).
Term T2. In a similar fashion, for the first part of term T2, Young’s inequality (113) implies

K i j
2 [ f , g] (mi

k+ ¯̄γi [ f ])
k−2+ ¯̄γi
k+ ¯̄γi ≤ (m

j
0[g])−q/q ′

q εq/q ′
(
K i j
2 [ f , g]

)q + εm
j
0[g] (mi

k+ ¯̄γi [ f ])
k−2+ ¯̄γi
k+ ¯̄γi

q ′

= K̃ i j
2 [ f , g] + εm

j
0[g]mi

k+ ¯̄γi [ f ],
with the choice

q = k + ¯̄γi
2

⇒ q ′ = k + ¯̄γi
k − 2 + ¯̄γi

, (117)

and notation

K̃ i j
2 [ f , g] = (m

j
0[g])−q/q ′

q εq/q ′
(
K i j
2 [ f , g]

)q
. (118)

Thus, for T2 we conclude

T2 ≤ K̃ i j
2 [ f , g] + K̃ ji

2 [g, f ] + εm
j
0[g]mi

k+ ¯̄γi [ f ] + εmi
0[ f ]m j

k+ ¯̄γ j
[g]. (119)

Gathering (116) and (119), the bi-linear form Qi j becomes

Qi j
k [ f , g] ≤ − Ãi j

� Li j

(
m

j
0[g]mi

k+γi j
[ f ] + mi

0[ f ]m j
k+γi j

[g]
)

+ 2 ε
(
m

j
0[g]mi

k+ ¯̄γi [ f ] + mi
0[ f ]m j

k+ ¯̄γ j
[g]
)

+ Bi j [ f , g] + B ji [g, f ],
where all constants are merged into the one,

Bi j
k [ f , g] = K̃ i j

1 [ f , g] + K̃ i j
2 [ f , g], (120)
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and we denoted

Ai j
� = Ãi j

� Li j , (121)

which concludes the proof for poly–poly interaction when i, j ∈ {M + 1, . . . , P}.

For monatomic gases, i.e. i, j ∈ {1, . . . , M}, the weak form (11) together with the appro-
priate assumptions on the collision kernel from Sect. 4 and Lemma 5.4 imply,

Qi j
k [ f , g] =

∫

(Rd )2

∫

Sd−1
f (v) g(v∗)

{
〈v′〉2ki + 〈v′∗〉2kj − 〈v〉2ki − 〈v∗〉2kj

}
Bi j (v, v∗, σ ) dσ dv∗ dv

≤
∫

(Rd )2

∫

Sd−1
f (v) g(v∗) B̃i j (v, v∗)

{
G+
i j (v, v∗) − κ lbi j

(
〈v〉2ki + 〈v∗〉2kj

)}
dv∗ dv.

With this estimate at hand, the same arguments as for the poly–poly interaction lead to the
desired estimate (102). Similarly, for poly–mono interaction when i ∈ {M + 1, . . . , P} and
j ∈ {1, . . . , M}, the weak form (43), assumptions on the collision kernel from Sect. 4 and
Lemma 5.4 yield

Qi j
k [ f , g] =

∫

Rd×Rd×[0,∞)

∫

Sd−1×[0,1]
f (v, I ) g(v∗)

{
〈v′, I ′〉2ki + 〈v′∗〉2kj − 〈v, I 〉2ki − 〈v∗〉2kj

}

× Bi j (v, v∗, I , σ, R) di (R) dσ dR dv∗ dv dI

≤
∫

Rd×Rd×[0,∞)

f (v, I ) g(v∗) B̃i j (v, v∗, I )
{
G+
i j (v, v∗, I ) − κ lbi j

(
〈v, I 〉2ki + 〈v∗〉2kj

)}
dv∗ dv dI ,

and, again, proceeding in the same fashion as for poly–poly interaction leads to (102), which
concludes the proof. ��

Remark 5.7 The constant Bi j
k [ f , g] is explicit and depends on k, ε, ¯̄γi , ¯̄γ j and on f and

g through their zero and second order species moment. Its formula is given in (120) after
gathering expressions for K̃ i j

1 [ f , g] and K̃ i j
2 [ f , g],

K̃ i j
1 [ f , g] = ε

− k−2
¯̄γi

¯̄γi
k − 2 + ¯̄γi

(
Ãi j

�

) k−2+ ¯̄γi¯̄γi mi
2[ f ]m j

0[g]
− k−2

¯̄γi m
j
2[g]

k−2+ ¯̄γi¯̄γi ,

K̃ i j
2 [ f , g] = ε

− 1
2+ ¯̄γ j− ¯̄γi

(
(k−2+ ¯̄γi )+ (k+ ¯̄γ j ) ¯̄γi

k−2

) (
2 + ¯̄γ j

k + ¯̄γ j

) (2+ ¯̄γ j )(k−2+ ¯̄γi )
(2+ ¯̄γ j− ¯̄γi )(k−2) (

4 Ci jk c̃k
) (k+ ¯̄γ j )(k−2+ ¯̄γi )

(k−2)(2+ ¯̄γ j− ¯̄γi )

× m
j
0[g]mi

0[ f ]
− k−2+ ¯̄γi

2+ ¯̄γ j− ¯̄γi mi
2[ f ]

k+ ¯̄γ j
2+ ¯̄γ j− ¯̄γi ,

where Ãi j
� is from (107), Ci jk as in (86) and c̃k is specified in (106).

Lemma 5.8 Let non-negative functions f , g ∈ L1
k , with k > 2. The following inequality holds

for the bi-linear forms (98)–(100) with the collision kernel satisfying assumptions stated in
Sect. 4,

Qi j
k [ f , g] ≤ 2 κub

i j c̃k
(
mi

2[ f ]m j
k [g] + mi

k[ f ]m j
2[g]

)
, (122)

with κub
i j from (68) and c̃k from (106).
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Proof As in the previous Lemma 5.6, we present the proof for poly–poly interactions, i.e.
for i, j ∈ {M + 1, . . . , P} keeping in mind that other types of interactions follow the same
strategy.

Start with the bi-linear form (103),

Qi j
k [ f , g] =

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
f (v, I ) g(v∗, I∗)

{
〈v′, I ′〉ki + 〈v′∗, I ′∗〉kj − 〈v, I 〉ki − 〈v∗, I∗〉kj

}

× Bi j (v, v∗, I , I∗, r , σ, R) di j (r , R) dσ dr dR dv∗ dI∗ dv dI .

Then the primed quantities are estimated in terms of non-primed by using the conservation
of energy (12). Indeed, for k > 2,

〈v′, I ′〉ki + 〈v′∗, I ′∗〉kj ≤
(
〈v′, I ′〉2i + 〈v′∗, I ′∗〉2j

)k/2 =
(
〈v, I 〉2i + 〈v∗, I∗〉2j

)k/2
.

The last term is estimated via (105), which in combination with the loss term implies can-
cellation of the highest order moment,

Qi j
k [ f , g] ≤ c̃k

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
f (v, I ) g(v∗, I∗)Bi j (v, v∗, I , I∗, r , σ, R) di j (r , R)

×
(
〈v, I 〉2i 〈v∗, I∗〉k−2

j 1〈v,I 〉i≤〈v∗,I∗〉 j + 〈v, I 〉k−2
i 〈v∗, I∗〉2j 1〈v∗,I∗〉 j≤〈v,I 〉i

)
dσ dr dR dv∗ dI∗ dv dI .

Then, the assumption on the collision kernel (63) allows to integrate over (σ, r , R) implying,
with notation (68),

Qi j
k [ f , g] ≤ κub

i j c̃k

∫

(Rd×[0,∞))2
f (v, I ) g(v∗, I∗) B̃i j (v, v∗, I , I∗)

×
(
〈v, I 〉2i 〈v∗, I∗〉k−2

j 1〈v,I 〉i≤〈v∗,I∗〉 j + 〈v, I 〉k−2
i 〈v∗, I∗〉2j 1〈v∗,I∗〉 j≤〈v,I 〉i

)
dv∗ dI∗ dv dI .

The last step consists in exploiting the upper bound (183) and conveniently using the indicator
functions, as in the previous lemma, to get

Qi j
k [ f , g] ≤ 2 κub

i j c̃k
(
mi

2[ f ]m j
k−2+γi j

[g] + mi
k−2+γi j

[ f ]m j
2[g]

)

≤ 2 κub
i j c̃k

(
mi

2[ f ]m j
k [g] + mi

k[ f ]m j
2[g]

)
,

where the last estimate is due to monotonicity of moments (53). ��

5.4 Estimates on theMoments of the Vector Valued Collision Operator

In this section, we consider the vector valued distribution functionF and the collision operator
Q(F) as introduced in (2) and provide estimates on the collision operator moments in terms
of the moments of the distribution function F. In other words, we switch from the bi-linear
forms presented in Sect. 5.3 to a vector valued form that combines all possible interactions
among species Ai and A j , for i, j = 1, . . . , P . For this Section, recall Definition 3.2 of
polynomial moments for vector valued function F.

Lemma 5.9 Take the vector valued collision operator Q(F) defined in (2) with the collision
kernel satisfying assumptions stated in Sect. 4. The following estimates on mk[Q(F)] hold,
(1) For k > 2, assuming that each component fi of the vector valued distribution function

F satisfy assumptions of Lemma 5.8

mk[Q(F)] ≤ Dk mk[F], (123)
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with Dk explicitly given in (126).
(2) For k ≥ k̄∗, assuming that each component fi of the vector valued distribution function

F satisfy assumptions of Lemma 5.6 and additionallymi
0[ fi ] > 0 for each i = 1, . . . , P,

there exist positive constants A� and Bk related to those in Lemma 5.6 such that

mk[Q(F)] ≤ −A� m2[F]− γ̄
k−2 mk[F]1+ γ̄

k−2 + Bk, (124)

with γ̄ defined in (56). An explicit choice for A� is given in (128) and asymptotic expres-
sion of Bk in (130).

Proof Starting from the definition of moments (52) for a vector valued function, the first goal
is to writemk-th moment of the collision operatorQ(F) in terms of bi-linear forms (98), (99)
and (100). To that end, we use the weak form (46) for the test function ψi (·) = 〈·〉ki ,

mk[Q(F)] = 1

2

M∑

i, j=1

Qi j [ fi , f j ] + 1

2

P∑

i, j=M+1

Qi j [ fi , f j ] +
M∑

j=1

P∑

i=M+1

Qi j [ fi , f j ].

(125)

For the first part of the statement valid for any k > 2, plugging the estimate (122) on each
bi-linear form and rearranging the sum,

mk[Q(F)] ≤ 2 c̃k

(
max

1≤i, j≤P
κub
i j

)
m2[F]mk[F],

which leads to the statement (123) with the constant

Dk = 2 c̃k

(
max

1≤i, j≤P
κub
i j

)
m2[F]. (126)

The second part valid for k ≥ k̄∗ starts with (125). Estimates (102) on bi-linear forms and
rearrangement of the sum imply

mk[Q(F)] ≤
M∑

i, j=1

(
−Ai j

� m
j
0 m

i
k+γi j

+ 2 εm
j
0 m

i
k+ ¯̄γi + Bi j

k

)

+
P∑

i, j=M+1

(
−Ai j

� m
j
0 m

i
k+γi j

+ 2 εm
j
0 m

i
k+ ¯̄γi + Bi j

k

)

+
M∑

j=1

P∑

i=M+1

(
−Ai j

� m
j
0 m

i
k+γi j

+2 εm
j
0 m

i
k+ ¯̄γi + Bi j

k − A ji
� mi

0 m
j
k+γi j

+ 2 εmi
0[ fi ]m j

k+ ¯̄γ j
[ f j ] + B ji

k

)

=
P∑

i, j=1

(
−Ai j

� m
j
0 m

i
k+γi j

+ 2 εm
j
0 m

i
k+ ¯̄γi + Bi j

k

)
, (127)

where for the simplicity of notation, we denotedmi
k := mi

k[ fi ] and Bi j
k := Bi j

k [ fi , f j ], since
the reference to the distribution function is clear in this case.

The first goal is to absorb the term multiplying a small constant ε by a negative term. To
that end, we use the lower bound for the negative term. Since Ai j

� > 0 and by assumption
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m
j
0 > 0 for every j , we denote

A� = 1

2
min

1≤i, j≤P

(
Ai j

� m
j
0

)
> 0. (128)

On the other side,

P∑

i, j=1

mi
k+γi j

≥
P∑

i=1

mi
k+ ¯̄γi ,

with ¯̄γi introduced in (55). Thus, (127) becomes

mk[Q(F)] ≤ − (2A� − 2 εm0)

P∑

i=1

mi
k+ ¯̄γi +

P∑

i, j=1

Bi j
k .

Therefore, the choice

ε = A�

2m0
, (129)

ensures the negative sign of the coefficient of the highest order term. Estimating

P∑

i=1

mi
k+ ¯̄γi [ fi ] ≥ mk+γ̄ [F],

with γ̄ from (56), we get the bound on the vector valued collision operator in terms of the
polynomial moments of the vector valued distribution function,

mk[Q(F)] ≤ −A�mk+γ̄ [F] +
P∑

i, j=1

Bi j
k .

Finally, the species-moment interpolation (111) formi
k implies the moment interpolation for

the k−th moment of the vector valued F by Hölder’s inequality,

mk[F] =
P∑

i=1

mi
k[ fi ] ≤

P∑

i=1

(mi
2[ fi ])

γ̄
k−2+γ̄ (mi

k+γ̄ [ fi ])
k−2

k−2+γ̄ ≤ (m2[F]) γ̄
k−2+γ̄ (mk+γ̄ [F]) k−2

k−2+γ̄ ,

which gives the lower bound for mk+γ̄ ,

mk+γ̄ [F] ≥ m2[F]− γ̄
k−2 mk[F]1+ γ̄

k−2 ,

and therefore for (127) implies

mk[Q(F)] ≤ −A�m2[F]− γ̄
k−2 mk[F]1+ γ̄

k−2 + Bk, with Bk :=
P∑

i, j=1

Bi j
k ,

which is exactly the desired estimate (124).
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In addition, constants K̃ i j
1 [ fi , f j ] and K̃ i j

2 [ fi , f j ] in Remark 5.7 can be made explicit by
plugging the choice of ε from (129), namely,

K̃ i j
1 =

(
A�

2m0[F]
)− k−2

¯̄γi ¯̄γi
k − 2 + ¯̄γi

(
Ai j

�

Li j

) k−2+ ¯̄γi¯̄γi
mi

2[ fi ]m j
0[ f j ]

− k−2
¯̄γi m

j
2[ f j ]

k−2+ ¯̄γi¯̄γi ,

K̃ i j
2 =

(
A�

2m0[F]
)− 1

2+ ¯̄γ j− ¯̄γi

(
(k−2+ ¯̄γi )+ (k+ ¯̄γ j ) ¯̄γi

k−2

) (
2 + ¯̄γ j

k + ¯̄γ j

) (2+ ¯̄γ j )(k−2+ ¯̄γi )
(2+ ¯̄γ j− ¯̄γi )(k−2) (

8 Ci jk 2
k
2

) (k+ ¯̄γ j )(k−2+ ¯̄γi )
(k−2)(2+ ¯̄γ j− ¯̄γi )

× m
j
0[ f j ]mi

0[ fi ]
− k−2+ ¯̄γi

2+ ¯̄γ j− ¯̄γi mi
2[ fi ]

k+ ¯̄γ j
2+ ¯̄γ j− ¯̄γi .

A simple comparison of the constants shows that the one driving the asymptotic behaviour
in Bk , as k increases, is the latter. Thus,

Bk ∼ max
i j

K̃ i j
2 [ fi , f j ]

∼ max
i j

m
j
0[ f j ]

(
16 Ci jk mi

2[ fi ]m0[F]
mi

0[ fi ] A�

) k
2+ ¯̄γ j− ¯̄γi

(
2 + ¯̄γ j

k

) 2+ ¯̄γ j
2+ ¯̄γ j− ¯̄γi

2
k2

2(2+ ¯̄γ j− ¯̄γi ) . (130)

��

6 Polynomial Moments a Priori Estimates on the Solution to the
Boltzmann System

In this section, we prove a priori estimates on polynomial moments for the solution of the
system of Boltzmann equations (3).

Proposition 6.1 (Moment ODI) Let F = [ fi ]1≤i≤P ≥ 0 be a solution of the system of
Boltzmann equations (3) having the collision kernel satisfying assumptions listed in Sect. 4.
The k-th polynomial moment of the system solution F satisfies the following ODIs,

(1) For k > 2 and F ∈ L1
k ,

dmk[F]
dt

≤ Dk mk[F], (131)

(2) For k ≥ k̄∗, k̄∗ from (90), and for F ∈ L1
k+ ¯̄γ , ¯̄γ from (56), with additionally mi

0[ fi ] > 0

for each i = 1, . . . , P. Then for any γ̄ > 0 defined in (56),

dmk[F]
dt

≤ −A� m2[F]− γ̄
k−2 mk[F]1+ γ̄

k−2 + Bk, (132)

where explicit form of constants A� > 0 and Bk, Dk ≥ 0 is given in Lemma 5.9.

Proof The proof follows by taking mk-th moment of the Boltzmann system (3),

dmk[F]
dt

= mk[Q(F)], (133)

and applying the estimate on the collision operator polynomial moment (124). ��
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Theorem 6.2 (Generation and propagation of polynomial moments) Let F satisfy assump-
tions of the Proposition 6.1 , then the following estimates hold,

(1) (Polynomial moments generation estimate.) Define

Ek = m2[F] γ̄
k−2+γ̄

(
Bk

A�

) k−2
k−2+γ̄

. (134)

Then for any k ≥ k̄∗,

mk[F](t) ≤ Ek + m2[F]
(
k − 2

γ̄ A�

) k−2
γ̄

t−
k−2
γ̄ , ∀t > 0, (135)

whereas for 2 < k < k̄∗,

mk[F](t) ≤ m2[F] k̄∗−k+1
k̄∗−1

(
Ek̄∗+1

) k−2
k̄∗−1 + m2[F] 1

k̄∗−1

(
k̄∗ − 1

γ̄ A�

) k−2
γ̄

t−
k−2
γ̄ , ∀t > 0.

(136)

(2) (Polynomial moments propagation estimate.) Moreover, assume mk[F](0) < ∞. Then
for any k ≥ k̄∗, the following estimate holds

mk[F](t) ≤ max {Ek,mk[F](0)} , ∀t ≥ 0. (137)

Define

Ẽk = m
k̄∗−k+1
k̄∗−1

2

(
Ek̄∗+1

) k−2
k̄∗−1 + m

1
k̄∗−1
2

(
k̄∗ − 1

γ̄ A�

) k−2
γ̄

D
k−2
γ̄

k , (138)

with Dk from (126). Then for 2 < k < k̄∗,

mk[F](t) ≤ max
{
Ẽk, emk[F](0)

}
, ∀t≥0. (139)

Proof The proof relies on the ODE comparison principle, already used in [2, 37]. First note
that Ek is the equilibrium solution of the associated upper ODE problem

{
y′(t) = −A� m

−c
2 y(t)1+c + Bk, c := γ̄ /(k − 2),

y(0) = mk(0),
(140)

where we abbreviated mk := mk[F]. If y(0) = mk(0) < ∞, then the propagation estimate
(137) follows, since

mk(t) ≤ y(t) ≤ max {Ek,mk(0)} , ∀t ≥ 0.

The generation estimate is proven by constructing the function as in [37],

z(t) = Ek + m2 (c A�)
−1/c t−1/c, (141)

and applying the comparison principle for ODEs stated in the Lemma A.3 proved in [2] that
yields the estimate on the solution of the moment ODI (132),

mk(t) ≤ z(t) ≤ Ek + m2 (c A�)
−1/c t−1/c, ∀t > 0, (142)

for k > k̄∗. For 2 < k < k̄∗, firstly the interpolation argument is used,

mk ≤ m
k̄∗−k+1
k̄∗−1

2 m
k−2
k̄∗−1

k̄∗+1
.
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Then, for mk̄∗+1 we apply the inequality above (142) and get, since (k − 2)/(k̄∗ − 1) < 1,

mk ≤ m
k̄∗−k+1
k̄∗−1

2

⎛

⎝(Ek̄∗+1

) k−2
k̄∗−1 + m

k−2
k̄∗−1
2

(
k̄∗ − 1

γ̄ A�

) k−2
γ̄

t−
k−2
γ̄

⎞

⎠ .

The propagation result for 2 < k < k̄∗ firstly uses the ODI (131) which for short time implies

mk(t) ≤ emk(0), 0 < t ≤ 1

Dk
.

Then, for t > 1
Dk

, use generation of moments (136) that yields

mk(t) ≤ m
k̄∗−k+1
k̄∗−1

2

(
Ek̄∗+1

) k−2
k̄∗−1 + m

1
k̄∗−1
2

(
k̄∗ − 1

γ̄ A�

) k−2
γ̄

D
k−2
γ̄

k .

Taking the maximum of the two constants completes the proof. ��

7 Existence and Uniqueness Theory

In this section, we prove the existence and uniqueness theory for the Cauchy problem (3).
To that end, we first define the set of initial data.

For i = 1, . . . , P , fix constants Ci
0,C2,C� > 0, with

C� ≥ Ek∗ + Bk∗ =: hk∗ , with k∗ = max{2 + 2 ¯̄γ, k̄∗}, (143)

where ¯̄γ is from (56) and k̄∗ is introduced in (90). Then define the set � ⊆ L1
2

� =
{
F ∈ L1

2 : F ≥ 0, mi
0[F] = Ci

0, m2[F] = C2, mk∗ [F] ≤ C�

}
. (144)

The following theorem holds.

Theorem 7.1 Let the collision kernel satisfy assumptions stated in Sect. 4 with γi j satisfying
(55)–(56). Assume that F0 ∈ �. Then the Cauchy problem (3) has a unique solution in
C([0,∞),�) ∩ C1((0,∞), L1

2).

Our final result uses Theorem 7.1 to find solutions in the bigger space

� ⊂ �̃ =
{
F ∈ L1

2 : F ≥ 0 , 0 < mi
0[F] < ∞, m(2+ ¯̄γ−γ̄ )+[F] < ∞

}
⊂ L1

2. (145)

Theorem 7.2 Let the collision kernel satisfy assumptions stated in Sect. 4 with γi j satisfying
(55)–(56). Assume that F0 ∈ �̃. Then the Cauchy problem (3) has a unique solution in
C([0,∞), �̃) ∩ C1((0,∞), L1

2).

Proof of Theorem 7.1 The goal is apply Theorem A.4 from the general ODE theory. For the
collision operator Q understood as a mapping Q : � → L1

2, we will prove the following
conditions for F,G ∈ �,

(1) Hölder continuity condition

‖Q(F) − Q(G)‖L1
2

≤ CH ‖F − G‖1/2
L1
2

, (146)

with the constant CH = 6C3/2
� max1≤i, j≤P (κub

i j ),
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(2) Sub-tangent condition

lim
h→0+

dist (F + hQ(F),�)

h
= 0, with dist (G,�) = inf

ω∈�
‖G − ω‖L1

2
.

(3) One-sided Lipschitz condition

[F − G,Q(F) − Q(G)] ≤ CL ‖F − G‖L1
2
, (147)

with the constant CL = 2C� max1≤i, j≤P (κub
i j ), where brackets are defined in (190).

��
Hölder continuity condition Firstly, we introduce some notation, namely,

H = F − G, L = F + G. (148)

Then, we notice that the bi-linear structure of all collision operators allows to write

Qi j ( fi , f j ) − Qi j (gi , g j ) = 1

2

(
Qi j (hi , l j ) + Qi j (li , h j )

)
, (149)

for any possible combination of i, j ∈ {1, . . . , P}, andwith the notation (148), (2). Therefore,
the left-hand side of (146) becomes

IH := ‖Q(F) − Q(G)‖L1
2

≤
P∑

i, j=1

∥∥Qi j ( fi , f j ) − Qi j (gi , g j )
∥∥
L1
2,i

≤ 1

2

P∑

i, j=1

(∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)
. (150)

For each combination of i and j we proceed separately.
Case (i): mono–mono interactions Let i, j ∈ {1, . . . , M} and take generic real-valued func-
tions f and g. The norm of the collision operator (4) is estimated as follows

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤
∫

(Rd )2

∫

Sd−1

(| f (v′)||g(v′∗)| + | f (v)||g(v∗)|
) 〈v〉2i Bi j dσ dv∗ dv

=: T1 + T2. (151)

For the first term T1, coming from the gain part, for the weight we use the estimate (186)
and for the collision kernel Bi j := Bi j (v, v∗, σ ) we use the microreversibility property (7)
together with the assumption on its form (57), (59) and again (186),

〈v〉2i Bi j ≤ 〈v′〉2i 〈v′∗〉2j B′
i j ≤ 〈v′〉2+γi j

i 〈v′∗〉2+γi j
j bi j (û

′ · σ ′).

It remains to interchange pre-post variables and obtain

T1 ≤
∫

(Rd )2

∫

Sd−1
| f (v)|〈v〉2+γi j

i |g(v∗)|〈v∗〉2+γi j
j bi j (û · σ) dσ dv∗ dv

= ∥∥bi j
∥∥
L1
Sd−1

‖ f ‖L1
2+γi j ,i

‖g‖L1
2+γi j , j

. (152)

For the second term T2 in (151) coming from the loss term, we only make use of the collision
kernel form (57), (59) together with the estimate (186), which together lead to

Bi j ≤ 〈v〉γi ji 〈v∗〉γi jj bi j (û · σ),
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and

T2 ≤ ∥∥bi j
∥∥
L1
Sd−1

‖ f ‖L1
2+γi j ,i

‖g‖L1
γi j , j

. (153)

Therefore, gathering (152) and (153), and using monotonicity of norms in (153), (151)
becomes

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤ 2
∥∥bi j

∥∥
L1
Sd−1

‖ f ‖L1
2+γi j ,i

‖g‖L1
2+γi j , j

.

For one part of the sum in (150), this implies

1

2

M∑

i, j=1

(∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)

≤
M∑

i, j=1

κub
i j

(
‖hi‖L1

2+γi j ,i

∥∥l j
∥∥
L1
2+γi j , j

+ ‖li‖L1
2+γi j ,i

∥∥h j
∥∥
L1
2+γi j , j

)
, (154)

in the light of (69).
Case (ii): poly–mono and mono–poly interactions From the sum in (150), we split the terms
involving different types of indices,

1

2

M∑

i=1

P∑

j=M+1

(∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)

+1

2

P∑

i=M+1

M∑

j=1

(∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)

= 1

2

P∑

i=M+1

M∑

j=1

(∥∥Q ji (h j , li )
∥∥
L1
2, j

+ ∥∥Q ji (l j , hi )
∥∥
L1
2, j

+ ∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)
.

(155)

For the first two terms, using definition of the collision operator (41) describing mono-poly
interaction, for some f = f (t, v, I ) and g = g(t, v), its L1

2, j norm can be estimated as
follows,

∥∥Q ji (g, f )
∥∥
L1
2, j

≤
∫

Rd

∫

Rd×[0,∞)

∫

Sd−1×[0,1]

{
|g(w′)|| f (w′∗, I ′∗)|

(
I∗
I ′∗

)αi

+ |g(v)|| f (v∗, I∗)|
}

×〈v〉2j B j i (v, v∗, I∗, σ, R) di (R) dσ dR dv∗ dI∗ dv.

Interchanging the collision reference using the transformation (38) and exploring micro-
reversibility of the collision kernel (42),

∥∥Q ji (g, f )
∥∥
L1
2, j

≤
∫

Rd

∫

Rd×[0,∞)

∫

Sd−1×[0,1]

{
|g(v′∗)|| f (v′, I ′)|

(
I

I ′

)αi

+ |g(v∗)|| f (v, I )|
}

×〈v∗〉2j Bi j (v, v∗, I , σ, R) di (R) dσ dR dv∗ dI dv =: T3 + T4. (156)

For the first term T3, we additionally interchange pre- and post-quantities with transformation
Tpm and using Lemma 2.1, after the use of estimates (60), (62) on the collision kernel
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Bi j := Bi j (v, v∗, I , σ, R) and on the weight (187) that yield

〈v∗〉2j Bi j ≤ 〈v′, I ′〉2i 〈v′∗〉2j B′
i j

≤ 〈v′, I ′〉2+γi j
i 〈v′∗〉2+γi j

j bi j (û
′ · σ ′) b̃ubi j (R′).

Therefore,

T3 ≤
∫

Rd

∫

Rd×[0,∞)

∫

Sd−1×[0,1]
|g(v∗)|〈v∗〉2+γi j

j | f (v, I )|〈v, I 〉2+γi j
i

×bi j (û · σ) b̃ubi j (R) di (R) dσ dR dv∗ dI dv = κub
i j ‖g‖L1

2+γi j , j
‖ f ‖L1

2+γi j ,i
. (157)

For the second term T4, we only use the estimate on Bi j from (60), (62) and (187),

Bi j ≤ 〈v, I 〉γi ji 〈v∗〉γi jj bi j (û · σ) b̃ubi j (R),

implying

T4 ≤
∫

Rd

∫

Rd×[0,∞)

∫

Sd−1×[0,1]
|g(v∗)| 〈v∗〉2+γi j

j | f (v, I )| 〈v, I 〉γi ji

×bi j (û · σ) b̃ubi j (R) di (R) dσ dR dv∗ dI dv = κub
i j ‖g‖L1

2+γi j , j
‖ f ‖L1

γi j ,i
. (158)

Therefore, (157) and (158) imply for (156), after the use of norm monotonicity (53),
∥∥Q ji (g, f )

∥∥
L1
2, j

≤ 2 κub
i j ‖g‖L1

2+γi j , j
‖ f ‖L1

2+γi j ,i
. (159)

On the other side, for the last two terms of (155), we use the collision operator (39) that
describes poly-mono interaction, and estimate its L1

2,i norm for some f = f (t, v, I ) and
g = g(t, v),

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤
∫

Rd×[0,∞)

∫

Rd

∫

Sd−1×[0,1]

{
| f (v′, I ′)||g(v′∗)|

(
I

I ′

)αi

+ | f (v, I )||g(v∗)|
}

×〈v, I 〉2i Bi j di (R) dσ dR dv∗ dv dI .

Incorporating the same arguments as for the counterpart term (156) since the same collision
kernel is used with assumptions (60), (62) and the same upper bounds apply to the weight
〈v∗〉 j in that context, and to the weight 〈v, I 〉i in the present one, by virtue of (187), it yields

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤ 2 κub
i j ‖ f ‖L1

2+γi j ,i
‖g‖L1

2+γi j , j
. (160)

Finally, (159) and (160) allow to conclude for (155),

1

2

P∑

i=M+1

M∑

j=1

(∥∥Q ji (h j , li )
∥∥
L1
2, j

+ ∥∥Q ji (l j , hi )
∥∥
L1
2, j

+ ∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)

≤ 2
P∑

i=M+1

M∑

j=1

κub
i j

(
‖hi‖L1

2+γi j ,i

∥∥l j
∥∥
L1
2+γi j , j

+ ‖li‖L1
2+γi j ,i

∥∥h j
∥∥
L1
2+γi j , j

)
, (161)

with κi j from (67).
Case (iii): poly–poly interactions For interactions involving only polyatomic molecules,
i, j ∈ {M + 1, . . . , P}, the L1

2,i norm of the corresponding collision operator (18) for some
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real-valued functions f , g can be estimated as follows

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤
∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2

{
| f (v′, I ′)||g(v′∗, I ′∗)|

(
I

I ′

)αi( I∗
I ′∗

)α j

+| f (v, I )||g(v∗, I∗)|
}

〈v, I 〉2i Bi j di j (r , R) dσ dr dR dv∗ dI∗ dv dI .

Using the same strategy as in the previous paragraphs which involves the assumption on the
collision kernel (63) and (65) together with the upper bounds (188), we obtain

∥∥Qi j ( f , g)
∥∥
L1
2,i

≤ 2 κub
i j ‖ f ‖L1

2+γi j ,i
‖g‖L1

2+γi j , j
,

after exploiting the monotonicity of norms (53). Thus, the part of the sum in (150) related to
only polyatomic interaction becomes

1

2

P∑

i, j=M+1

(∥∥Qi j (hi , l j )
∥∥
L1
2,i

+ ∥∥Qi j (li , h j )
∥∥
L1
2,i

)

≤
P∑

i, j=M+1

κub
i j

(
‖hi‖L1

2+γi j ,i

∥∥l j
∥∥
L1
2+γi j , j

+ ‖li‖L1
2+γi j ,i

∥∥h j
∥∥
L1
2+γi j , j

)
. (162)

Summarizing (154), (161) and (162), the left-hand side of theHölder condition (150) becomes

IH ≤ max
1≤i, j≤P

(κub
i j )

P∑

i, j=1

(
‖hi‖L1

2+ ¯̄γ,i

∥∥l j
∥∥
L1
2+ ¯̄γ, j

+ ‖li‖L1
2+ ¯̄γ,i

∥∥h j
∥∥
L1
2+ ¯̄γ, j

)

= 2 max
1≤i, j≤P

(κub
i j ) ‖H‖L1

2+ ¯̄γ
‖L‖L1

2+ ¯̄γ
, (163)

with ¯̄γ from (56). Interpolating the (2 + ¯̄γ )-th norm of H,

‖H‖L1
2+ ¯̄γ

=
P∑

i=1

‖hi‖L1
2+ ¯̄γ,i

≤
P∑

i=1

‖hi‖1/2L1
2+2 ¯̄γ,i

‖hi‖1/2L1
2,i

≤ ‖H‖1/2
L1
2+2 ¯̄γ

‖H‖1/2
L1
2

.

Since F,G are non-negative, it follows |hi | ≤ fi + gi = li , and therefore

‖H‖L1
2+ ¯̄γ

‖L‖L1
2+ ¯̄γ

≤ ‖L‖3/2
L1
2+2 ¯̄γ

‖H‖1/2
L1
2

,

by monotonicity of norms. Since F,G ∈ �, it implies

‖L‖L1
2+2 ¯̄γ

≤ ‖F‖L1
2+2 ¯̄γ

+ ‖G‖L1
2+2 ¯̄γ

≤ 2C�.

This allows to finally conclude for (150)

‖Q(F) − Q(G)‖L1
2

≤ 6C3/2
� max

1≤i, j≤P
(κub

i j ) ‖F − G‖1/2
L1
2

,

which is exactly (146) with the constant as announced.
Sub-tangent condition As shown in [2], the sub-tangent condition follows from the lemma
below.

Lemma 7.3 Fix F ∈ �. Then for any ε > 0 there exists h∗ > 0 such that the set B centered at
F+ hQ(F) with radius h ε denoted by B( f + hQ( f , f ), hε), has a non-empty intersection
with �

B(F + hQ(F), h ε) ∩ � �= ∅, for any 0 < h < h∗. (164)
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Proof For ρ > 0 to be determined later, we define sets depending on the index i ,

Bi (ρ) =
{
v ∈ R

d : |v| ≤ ρ
}

, i ∈ {1, . . . , M} ,

Bi (ρ) =
{

(v, I ) ∈ R
d × [0,∞) :

√
|v|2 + I

m
≤ ρ

}
, i ∈ {M + 1, . . . , P} .

For the fixed F ∈ �, we define its truncation function

Fρ =
⎡

⎣

[
fi (t, v)1Bi (ρ)(v)

]

i=1,...,M[
fi (t, v, I )1Bi (ρ)(v, I )

]

i=M+1,...,P

⎤

⎦ . (165)

In the spirit of [2], we construct the function of the form

Wρ = F + hQ(Fρ), 0 < h ≤ 1, (166)

such that for a certain choice of ρ and h, it is an element of the intersection (164).
Firstly, we prove that Wρ is non-negative on a certain interval for h. To that end, for

i ∈ {1, . . . , M}, we define the collision frequency and develop its upper bound, by virtue of
the assumption on the collision kernels stated in Sect. 4 and Lemma A.1,

[ν(F)]i =
M∑

j=1

∫

Rd

∫

Sd−1
f j (v∗)Bi j dσ dv∗

+
P∑

j=M+1

∫

Rd×[0,∞)

∫

Sd−1×[0,1]
f j (v∗, I∗)Bi j di (R) dσ dR dv∗ dI∗

≤
M∑

j=1

κub
i j

∫

Rd
f j (v∗)

(
〈v〉γi ji + 〈v∗〉γi jj

)
dv∗

+
P∑

j=M+1

κub
i j

∫

Rd×[0,∞)

f j (v∗, I∗)
(
〈v〉γi ji + 〈v∗, I∗〉γi jj

)
dv∗ dI∗

≤ max
1≤i, j≤P

(κub
i j )
(
m0[F]〈v〉 ¯̄γ

i + m ¯̄γ [F]
)

≤ K

2

(
1 + 〈v〉 ¯̄γ

i

)
, (167)

with the constant

K = 2 max
1≤i, j≤P

(κub
i j )m ¯̄γ [F]. (168)

Since for v ∈ Bi (ρ) is 〈v〉2i ≤ 1 + ρ2, the estimate (167) combined with the truncated
function (165) yields

[
Fρ

]
i [ν(F)]i ≤ K

(
1 + ρ

¯̄γ ) fi (t, v), i = 1, . . . , M . (169)
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For i ∈ {M + 1, . . . , P}, the same computations lead to the upper bound for the collision
frequency,

[ν(F)]i =
M∑

j=1

∫

Rd

∫

Sd−1×[0,1]
f j (v∗)Bi j di (R) dσ dR dv∗

+
P∑

j=M+1

∫

Rd×[0,∞)

∫

Sd−1×[0,1]2
f j (v∗, I∗)Bi j di j (r , R) dσ dr dR dv∗ dI∗ ≤ K

2

(
1 + 〈v, I 〉 ¯̄γ

i

)
,

which combined with the truncated function (165) implies, by 〈v, I 〉i ≤ 1 + ρ2 for (v, I ) ∈
Bi (ρ),

[
Fρ

]
i [ν(F)]i ≤ K

(
1 + ρ

¯̄γ ) fi (t, v, I ), i = M + 1, . . . , P. (170)

ForWρ , (169) and (170) yield positivity ofWρ for certain h,

Wρ ≥ F − h Fρ ν(Fρ) ≥ F − h Fρ ν(F) ≥ F

(
1 − hK

(
1 + ρ

¯̄γ )) ≥ 0, (171)

for the choice of h as follows, defining h∗ from the lemma’s statement,

0 < h ≤ 1

K
(
1 + ρ ¯̄γ

) =: h∗. (172)

Conservative properties of the collision operator Q imply

mi
0[Wρ] = mi

0[F], m2[Wρ] = m2[F]. (173)

In order to show the boundness of mk∗ [Wρ], the bound on mk[Q(F)] is recalled (124),

mk[Q(F)] ≤ −A� m2[F]− γ̄
k−2 mk[F]1+ γ̄

k−2 + Bk =: Lk(mk[F]), k ≥ k̄∗.

Incorporating arguments of [2], the map Lk : [0,∞) → R has only one root given in (134)
at which it changes from positive to negative and its maximal value is achieved at Bk , i.e.
Lk(x) ≤ Bk , for any x ∈ [0,∞). In particular, for k = k∗, and assuming mk∗ [F] ≤ Ek∗ , for
Wρ we get

mk∗ [Wρ] = mk∗ [F] + hmk∗ [Q(Fρ)] ≤ Ek∗ + h Bk∗ ≤ Ek∗ + Bk∗ =: hk∗ ≤ C�.

Otherwise, in the case mk∗ [F] > Ek∗ , we take sufficiently large ρ to ensure

mk∗ [F] > Ek∗ ⇒ mk∗ [Fρ] ≥ Ek∗ implying mk∗ [Q(Fρ)] ≤ Lk∗(mk∗ [Fρ]) ≤ 0,

(174)

leading to

mk∗ [Wρ] ≤ mk∗ [F] ≤ C�, since F ∈ �.

Thus, we conclude mk∗ [Wρ] ≤ C�, which together with (171) and (173) implies Wρ ∈ �

for sufficiently large ρ to have (174) and h as defined in (172).
On the other side, for this elementWρ ∈ �, by the Hölder property (146),

h−1
∥∥F + hQ(F) − Wρ

∥∥
L1
2

= ∥∥Q(F) − Q(Fρ)
∥∥
L1
2

≤ CH
∥∥F − Fρ

∥∥1/2
L1
2

≤ ε, (175)

for sufficiently large ρ.
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Therefore, we conclude that Wρ as defined in (166) for ρ sufficiently large to ensure
both (174) and (175) and the corresponding h from (172) is an intersection element of � and
B(F+hQ(F), h ε), proving (164) and concluding this lemma and the sub-tangent condition.

��
One-sided Lipschitz condition Denote the vector valued χ such that χi (·) = sign(( fi − gi )
(·))〈·〉2i , where the argument is either v for i ∈ {1, . . . , M} or (v, I ) for i ∈ {M + 1, . . . , P}.
Definition of the brackets (190) yields

IL := [F − G,Q(F) − Q(G)]

=
M∑

i=1

∫

Rd
[Q(F) − Q(G)]i χi (v)2dv +

P∑

i=M+1

∫

Rd×[0,∞)

[Q(F) − Q(G)]i χi (v, I )2dI .

The bi-linear structure of the collision operator (149) with the notation (148) together with
the weak form (46) imply

IL = 1

4

M∑

i, j=1

∫

(Rd )2

∫

Sd−1

(
hi (v) � j (v∗) + �i (v)h j (v∗)

)
�i j (v, v∗)Bi j dσ dv∗ dv

+1

4

P∑

i, j=M+1

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2
(
hi (v, I ) � j (v∗, I∗) + �i (v, I )h j (v∗, I∗)

)
�i j (v, I , v∗, I∗)

×Bi j di j (r , R) dσ dr dR dv∗ dI∗ dv dI

+1

2

M∑

j=1

P∑

i=M+1

∫

Rd×Rd×[0,∞)

∫

Sd−1×[0,1]
(
hi (v, I ) � j (v∗) + �i (v, I )h j (v∗)

)
�i j (v, I , v∗)

×Bi j di (R) dσ dR dv∗ dv dI , (176)

with notation

�i j (v, v∗) = χi (v
′) + χ j (v

′∗) − χi (v) − χ j (v∗), i, j ∈ {1, . . . , M} ,

�i j (v, I , v∗) = χi (v
′, I ′) + χ j (v

′∗) − χi (v, I ) − χ j (v∗), j ∈ {1, . . . , M} , i ∈ {M + 1, . . . , P} ,

�i j (v, I , v∗, I∗) = χi (v
′, I ′) + χ j (v

′∗, I ′∗) − χi (v, I ) − χ j (v∗, I∗), i, j ∈ {M + 1, . . . , P} .

First take i, j ∈ {1, . . . , M}. Conservation law of the energy (8) implies the following bound

hi (v)�i j (v, v∗) ≤ |hi (v)|
(
〈v′〉2i + 〈v′∗〉2j − 〈v〉2i + 〈v∗〉2j

)
= 2|hi (v)|〈v∗〉2j ,

h j (v∗)�i j (v, v∗) ≤ |h j (v∗)|
(
〈v′〉2i + 〈v′∗〉2j + 〈v〉2i − 〈v∗〉2j

)
= 2|h j (v∗)|〈v〉2i .

The same computations are performed with brackets that include internal energy, for
solely polyatomic interactions i, j ∈ {M + 1, . . . , P}. For j ∈ {1, . . . , M} and i ∈
{M + 1, . . . , P},
hi (v, I )�i j (v, I , v∗) ≤ |hi (v, I )|

(
〈v′, I ′〉2i + 〈v′∗〉2j − 〈v, I 〉2i + 〈v∗〉2j

)
= 2|hi (v, I )|〈v∗〉2j ,

h j (v∗)�i j (v, I , v∗) ≤ |h j (v∗)|
(
〈v′, I ′〉2i + 〈v′∗〉2j + 〈v, I 〉2i − 〈v∗〉2j

)
= 2|h j (v∗)|〈v, I 〉2i .

These estimates imply for (176),

IL ≤ 1

2

M∑

i, j=1

∫

(Rd )2

∫

Sd−1

(
|hi (v)| � j (v∗)〈v∗〉2j + �i (v)〈v〉2i |h j (v∗)|

)
Bi j dσ dv∗ dv
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+1

2

P∑

i, j=M+1

∫

(Rd×[0,∞))2

∫

Sd−1×[0,1]2

(
|hi (v, I )| � j (v∗, I∗) 〈v∗, I∗〉2j + �i (v, I )〈v, I 〉2i |h j (v∗, I∗)|

)

×Bi j di j (r , R) dσ dr dR dv∗ dI∗ dv dI

+
M∑

j=1

P∑

i=M+1

∫

Rd×Rd×[0,∞)

∫

Sd−1×[0,1]

(
|hi (v, I )| � j (v∗)〈v∗〉2j + �i (v, I )〈v, I 〉2i |h j (v∗)|

)

×Bi j di (R) dσ dR dv∗ dv dI .

Using upper bounds on the collision kernels as stated in Sect. 4 and Lemma A.2, together
with the upper bounds on γi j from (56),

IL ≤ 1

2

M∑

i, j=1

κub
i j

∫

(Rd )2

(
|hi (v)| � j (v∗)〈v∗〉2j + �i (v)〈v〉2i |h j (v∗)|

)
〈v〉γi ji 〈v∗〉γi jj dv∗ dv

+ 1

2

P∑

i, j=M+1

κub
i j

∫

(Rd×[0,∞))2

(
|hi (v, I )| � j (v∗, I∗) 〈v∗, I∗〉2j + �i (v, I )〈v, I 〉2i |h j (v∗, I∗)|

)

× 〈v, I 〉γi ji 〈v∗, I∗〉γi jj dv∗ dI∗ dv dI

+
M∑

j=1

P∑

i=M+1

κub
i j

∫

Rd×Rd×[0,∞)

(
|hi (v, I )| � j (v∗)〈v∗〉2j + �i (v, I )〈v, I 〉2i |h j (v∗)|

)
(177)

× 〈v, I 〉γi ji 〈v∗〉γi jj dv∗ dv dI

≤ max
1≤i, j≤P

(κub
i j )

⎛

⎝1

2

M∑

i, j=1

(
‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+ ‖�i‖L1
2+ ¯̄γ,i

∥∥h j
∥∥
L1¯̄γ, j

)

+1

2

P∑

i, j=M+1

(
‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+ ‖�i‖L1
2+ ¯̄γ,i

∥∥h j
∥∥
L1¯̄γ, j

)

+
M∑

j=1

P∑

i=M+1

(
‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+ ‖�i‖L1
2+ ¯̄γ,i

∥∥h j
∥∥
L1¯̄γ, j

)⎞

⎠

= max
1≤i, j≤P

(κub
i j )

⎛

⎝
M∑

i, j=1

‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+
P∑

i, j=M+1

‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+
M∑

j=1

P∑

i=M+1

(
‖hi‖L1¯̄γ,i

∥∥� j
∥∥
L1
2+ ¯̄γ, j

+ ‖�i‖L1
2+ ¯̄γ,i

∥∥h j
∥∥
L1¯̄γ, j

)⎞

⎠ = max
1≤i, j≤P

(κub
i j ) ‖L‖L1

2+ ¯̄γ
‖H‖L1¯̄γ

(178)

≤ 2C� max
1≤i, j≤P

(κub
i j ) ‖H‖L1

2
, (179)

since F,G ∈ � and ¯̄γ ≤ 2. This concludes the proof. ��
The idea of the proof of Theorem 7.2 is to use the fact that the Boltzmann operator is

one-sided Lipschitz assuming only (2+ ¯̄γ − γ̄ )+ moments, thus, an approximating sequence
of solutions can be drawn from Theorem 7.1 and pass to the limit. This follows a similar, but
perhaps more direct, idea from [43] and can be found in detail in [2, Lemma 23].

Proof of Theorem 7.2 Let 0 ≤ F0 ∈ �̃. Then, by density, there exits an approximating
sequence {F j

0} ⊂ � to F0, say strongly in L1(�̃). Now, following the computations per-
formed for the one-sided Lipschitz condition and the inequality (178), it holds that, for any
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j , l ∈ N,

d

dt

∥∥F j − F
l
∥∥
L1
2

=
[
F
j − F

l ,Q(F j ) − Q(Fl)
]

≤ max
1≤i, j≤P

(κub
i j )
∥∥F j + F

l
∥∥
L1
2+ ¯̄γ

∥∥F j − F
l
∥∥
L1
2
,

(180)

where F
j is the solution to the Boltzmann problem associated to the initial condition F

j
0,

given in Theorem 7.1 and brackets are defined in (190). Use moment interpolation formula
(110) together with the Hölder inequality to control the norm

∥∥F j + F
l
∥∥
L1
2+ ¯̄γ

≤ ∥∥F j + F
l
∥∥1−θ

L1
2+k1

∥∥F j + F
l
∥∥θ

L1
2+ ¯̄γ+k2

,

choosing for any ε ∈ (0, γ̄ )

k1 = ¯̄γ − γ̄ + ε , k2 = γ̄ ( ¯̄γ − γ̄ ) + ε2

ε
, θ = ε(γ̄ − ε)

γ̄ ( ¯̄γ − γ̄ + ε)
,

and taking ε sufficiently small such that 2 < 2+k1 = (2+ ¯̄γ − γ̄ )+. Consequently, it follows
by propagation of moments, estimates (137) or (139), that

sup
t≥0

∥∥F j + F
l
∥∥
L1
2+k1

≤ C1
(
m2,m2+k1 [F0]

)
.

In this inequality we used that max
{
m2+k1 [F j

0],m2+k1 [Fl0]
} ≤ 2m2+k1 [F0], taking j and

l ∈ N sufficiently large if necessary. Also, this choice of k1 and k2 implies that

¯̄γ + k2
γ̄

θ = γ̄ 2 − ε2

γ̄ 2 ,

which leads, thanks to generation of moments (estimates (135) or (136)), that

∥∥F j + F
l
∥∥θ

L1
2+ ¯̄γ+k2

≤ C2
(
m2
)(
1 + t

− γ̄ 2−ε2

γ̄ 2
)

,

and consequently,

∥∥F j + F
l
∥∥
L1
2+ ¯̄γ

≤ C3
(
m2,m2+k1 [F0]

)(
1 + t

− γ̄ 2−ε2

γ̄ 2
)

.

Then, performing integration in (180) it holds that

∥∥F j (t) − F
l(t)
∥∥
L1
2

≤ ∥∥F j (0) − F
l(0)‖L1

2
exp

(
max

1≤i, j≤P
(κub

i j )

∫ t

0

∥∥F j + F
l
∥∥
2+ ¯̄γ dτ

)

≤ ∥∥F j (0) − F
l(0)‖L1

2
exp

(
γ̄ 2

ε2
max

1≤i, j≤P
(κub

i j )C3
(
t + t

ε2

γ̄ 2
))

.

Since {F j
0} is Cauchy in L1

2, previous estimate implies that {F j (t)} is Cauchy in
L∞([0, T ), L1

2) for any T > 0 and, as such, there is a strong limit F for such sequence.
The theorem follows after passing to the limit since the limit F solves the mixture system
with associated initial datum F0. The fact that F ∈ C([0,∞), �̃) ∩ C1((0,∞), L1

2) follows a
standard argument. ��
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Appendix A.

Lemma A.1 (Bounds on the collision kernels) For the collision kernels (59), (62), (65) the
following estimates hold,

Li j 〈v〉γi ji − 〈v∗〉γi jj ≤ B̃i j (v, v∗) ≤ 〈v〉γi ji + 〈v∗〉γi jj , i, j ∈ {1, . . . , M} (181)

Li j 〈v, I 〉γi ji − 〈v∗〉γi jj ≤ B̃i j (v, v∗, I ) ≤ 〈v, I 〉γi ji + 〈v∗〉γi jj , j ∈ {1, . . . , M} , i ∈ {M + 1, . . . , P}
(182)

Li j 〈v, I 〉γi ji − 〈v∗, I∗〉γi jj ≤ B̃i j (v, v∗, I , I∗) ≤ 〈v, I 〉γi ji + 〈v∗, I∗〉γi jj , i, j ∈ {M + 1, . . . , P} (183)

where the involved constant Li j does not depend on the nature of interactions, but only on
mass species and the rate γi j ,

Li j =
(
s̄i j
2

)γi j /2

min
{
1, 21−γi j

}
, (184)

with s̄i j as defined in (71).

Proof Let i, j ∈ {M + 1, . . . , P}. Upper bound Since the total energy in center-of-mass
framework is only a part of the total energy in particles’ framework, due to

mi + m j

2
|V |2 + Ei j = mi

2
|v|2 + I + m j

2
|v∗|2 + I∗,

with Ei j from (65), it follows

Ei j

m
≤ mi

2m
|v|2 + I

m
+ m j

2m
|v∗|2 + I∗

m
. (185)
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Since γi j/2 ≤ 1,

(
Ei j

m

)γi j /2

≤ 〈v, I 〉γi ji + 〈v∗, I∗〉γi jj ,

as stated in (183).
Lower bound Triangle inequality |v − v∗| ≥ |v| − |v∗| and few rearrangements imply
√

Ei j

m
≥ 1√

2

(√
μi j

2m
|v − v∗| +

√
I

m

)
≥
√

m j

2(mi + m j )

(√
mi

2m
|v| +

√
I

m

)
− 1√

2

√
m j

2m
|v∗|

≥
√

m j

2(mi + m j )

(
1 +

√
mi

2m
|v|2 + I

m

)
− 1√

2

(
1 +

√
m j

2m
|v∗|2 + I∗

m

)

≥
√
s̄i j
2

〈v, I 〉i − 〈v∗, I∗〉 j .

Thus,
√
s̄i j
2

〈v, I 〉i ≤
√

Ei j

m
+ 〈v∗, I∗〉 j .

Taking the last inequality to the power γi j ,

(
s̄i j
2

)γi j /2

〈v, I 〉γi ji ≤ max
{
1, 2γi j−1}

((
Ei j

m

)γi j /2

+ 〈v∗, I∗〉γi jj
)

,

implying
(
Ei j

m

)γi j /2

≥
(
s̄i j
2

)γi j /2

min
{
1, 21−γi j

} 〈v, I 〉γi ji − 〈v∗, I∗〉γi jj ,

proving (183).
For other types of interactions, similar computations can be performed. ��

Lemma A.2 Let the energy in the center-of-mass framework Ei j be (10), (23) and (14)
depending on different combinations of i, j ∈ {1, . . . , P} or nature of particles’ interac-
tion. The following estimates hold,

Ei j

m
≤ 〈v〉2i 〈v∗〉2j , 〈v〉i ≤ 〈v′〉i 〈v′∗〉 j , i, j ∈ {1, . . . , M} , (186)

Ei j

m
≤ 〈v, I 〉2i 〈v∗〉2j , 〈v, I 〉i , 〈v∗〉 j ≤ 〈v′, I ′〉i 〈v′∗〉 j , j ∈ {1, . . . , M} , i ∈ {M + 1, . . . , P} ,

(187)

Ei j

m
≤ 〈v, I 〉2i 〈v∗, I∗〉2j , 〈v, I 〉i ≤ 〈v′, I ′〉i 〈v′∗, I ′∗〉 j , i, j ∈ {M + 1, . . . , P} . (188)

Proof Let j ∈ {1, . . . , M}, i ∈ {M + 1, . . . , P}. From (23) it follows

Ei j

m
= 1

m

(μi j

2
|u|2 + I

)
≤ mi

2m
|v|2 + I

m
+ m j

2m
|v∗|2 ≤ 〈v, I 〉2i 〈v∗〉2j .

The conservation law of the energy (22) implies

mi

2
|v|2 + I ,

m j

2
|v∗|2 ≤ mi

2
|v′|2 + I ′ + m j

2
|v′∗|2,
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which yields

〈v, I 〉2i , 〈v∗〉2j ≤ 〈v′, I ′〉2i 〈v′∗〉2j .
Taking the square root, we get (187).

For other combinations of i and j similar computations can be performed to conclude the
proof. ��
Lemma A.3 (ODI’s Comparison Lemma for Moments Generation, [2]) Let A, B and c be
positive constants and consider a function y(t) which is absolute continuous in t ∈ (0,∞)

and satisfies

y′(t) ≤ B − A y(t)1+c, t > 0.

Then

y(t) ≤ z(t) := E

(
1 + K

tβ

)
, t > 0,

for the choice

E =
(
B

A

) 1
1+c

, β = 1

c
, K = (cA)−1/c E−1.

Proof We start noticing that

z′(t) = −βEKt−(β+1) ,

and that

B − A z(t)1+c = B − AE1+c
(
1 + K

tβ

)1+c

≤ B − AE1+c
(
1 + K 1+c

tβ(1+c)

)
.

For the latter we invoked the binomial inequality (1+ K
tβ

)1+c ≥ 1+ ( K
tβ

)1+c. With the choice
of E, β and K as suggested in the statement of the lemma it follows then

B − A z(t)1+c(t) ≤ z′(t) , t > 0 . (189)

Next, note that for any ε > 0 the translation zε(t) := z(t − ε) satisfies (189) for t > ε

due to the time invariance of the inequality. Moreover, since y(t) is absolute continuous
in t ∈ [ε,∞), there exists δ∗ > 0 such that zε(ε + δ) ≥ y(ε + δ) for any δ ∈ (0, δ∗].
Consequently, we conclude the following setting for any ε > 0 and δ ∈ (0, δ∗]

⎧
⎪⎨

⎪⎩

y′(t) ≤ B − A y1+c(t) , t > ε + δ ,

z′ε(t) ≥ B − A z1+c
ε (t) , t > ε + δ ,

+∞ > zε(ε + δ) ≥ y(ε + δ) .

Since both zε(t) and y(t) are absolutely continuous in t ∈ [ε + δ,∞), we can use a standard
comparison in ODE to conclude that zε(t) ≥ y(t) for t > ε + δ, valid for any ε > 0 and
δ ∈ (0, δ∗]. Thus, sending first δ to zero and then ε to zero it follows that z(t) ≥ y(t) for any
t > 0 which is the statement of the lemma. ��
Theorem A.4 (Existence and Uniqueness Theory for ODE in Banach spaces) Let E :=
(E, ‖·‖) be a Banach space, S be a bounded, convex and closed subset of E, andQ : S → E
be an operator satisfying the following properties:
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(a) Hölder continuity condition

‖Q[u] − Q[v]‖ ≤ C ‖u − v‖β , β ∈ (0, 1), ∀u, v ∈ S;
(b) Sub-tangent condition

lim
h→0+

dist (u + hQ[u],S)

h
= 0, ∀u ∈ S;

(c) One-sided Lipschitz condition

[Q[u] − Q[v], u − v] ≤ C ‖u − v‖ , ∀u, v ∈ S,

where [ϕ, φ] = limh→0− h−1 (‖φ + hϕ‖ − ‖φ‖).
Then the equation

∂t u = Q[u], for t ∈ (0,∞), with initial data u(0) = u0 in S,

has a unique solution in C([0,∞),S) ∩ C1((0,∞), E).

The proof of this Theorem on ODE flows on Banach spaces can be found in [2]. As pointed
out in [2], for E := L1

2, the Lipschitz brackets are

[φ,ψ] =
M∑

i=1

∫

Rd
ψi (v) sign(φi (v))〈v〉2i dv

+
P∑

i=M+1

∫

Rd×[0,∞)

ψi (v, I ) sign(φi (v, I ))〈v, I 〉2i dv dI . (190)
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17. Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous
mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)
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