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Abstract
The aim of this paper is to obtain polynomial decay of correlations of a Lorenz-like flow
where the hyperbolic saddle at the origin is replaced by a neutral saddle. To do that, we take
the construction of the geometrical Lorenz flow and proceed by changing the nature of the
saddle fixed point at the origin by a neutral fixed point. This modification is accomplished by
changing the linearised vector field in a neighbourhood of the origin for a neutral vector field.
This change in the nature of the fixed point will produce polynomial tails for the Dulac times,
and combined with methods of Araújo and Melbourne (used to prove exponential mixing for
the classical Lorenz flow) this will ultimately lead to polynomial upper bounds of the decay
of correlations for the modified flow.
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1 Introduction

The study of flows on surfaces and higher-dimensional manifolds has caught the interest of
many scientists because of its numerous applications such as Hamiltonian flows, geodesic
and horocycle flows, billiard flows or flows from meteorological models. These flows are
usually equipped with a natural invariant measure μ, for instance the SRB-measure.

The main goal is to have a better understanding of the properties of these flows, such
as hyperbolicity, ergodicity, mixing (or at least weak mixing) and, in chaotic settings, rates
of mixing; that is, we would like to investigate the asymptotic behaviour of the correlation
coefficients

ρt (v,w) =
∣
∣
∣
∣

∫

M
v · w ◦ f t dμ −

∫

M
vdμ

∫

M
wdμ

∣
∣
∣
∣
, (1)

where f t : M → M is a flow acting on a manifold M and μ its SRB-measure, and for
observables v, w chosen from an appropriate Banach space. Knowing the rates of mixing is
very helpful for proving other ergodic and statistical properties since mixing is one of the
strongest statistical properties.

Obtaining good mixing rates for flows, even for hyperbolic flows, is far more difficult than
for maps. Some seminal ideas were provided by Liverani [29] and Dolgopyat [20, 21], with
applications of these methods in e.g., [9, 10, 16]. To obtain sharp estimates in the polynomial
setting, the operator renewal theory techniques developed by Sarig [34] and Gouëzel [24]
are the only ones available.

The model we would like to study is probably one of the most emblematic ones, the
Lorenz flow. In the mid seventies Afraı̆movič, Bykov and Shilnikov [1] and independently
Guckenheimer and Williams [25] introduced the geometric Lorenz attractor to model the
original Lorenz attractor. Our research focuses on a modified version of this geometrical
model and study its rate of mixing, based on the precise estimates in [17] of Dulac times
associated to a neutral saddle.

Recently, Araújo andMelbourne in [3] proved that the geometrical Lorenz flow (and hence
the classical Lorenz flow), also enjoys exponential mixing. It is techniques from their papers,
specifically C1+α smoothness of the stable foliation, that leads eventually to the claimed
mixing rates.

1.1 The Framework

The geometrical Lorenz flow can be seen as the natural extension of a suspension semiflow
built over a certain type of one-dimensional expanding map fLor. We first consider the cross-
section� transversal to the flow and the Poincaré map PLor : � → �, which is decomposed
in two parts. The first one is the Dulac map, denoted by P1, deals with the local behaviour
near the origin and is obtained by considering a linear system in a neighbourhood of the
origin; that is, we take the flow Xt obtained from the linear system

ẋ = λux

ẏ = −λs y

ż = −λss z (2)
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Fig. 1 The Guckenheimer-Williams geometric model of the Lorenz flow (Image taken from [4])

where λu , λs and λss denote the unstable, stable and strong stable eigenvalues of the original
Lorenz system, respectively. Then we let points in � flow under Xt until flow time τ ′

Lor :=
min{t > 0 : Xt ∈ S} = −λ−1

u ln(|x |) + O(ln(|x |)) as x → 0. Thus we have that X τ ′
Lor =

P1 : � → S, where S± is the image of �± under P1 and has a cusp-like shape, see Fig. 1.
The second part, denoted by P2, consists of the return of S to � and simulates the random

turns of a regular orbit around the origin and describes a butterfly-like shape. This is done by
a composition of a rotation, expansion and translation with hitting time τ2(x) ∈ Cε . Thus,
the full return time of the Poincaré map PLor = P2 ◦ P1 is given by

rLor(x) = τ ′
Lor(x) + τ2(x). (3)

As we will see later, the lines in the y-direction (i.e.,, parallel to the y axis) in � form
the stable foliation, invariant under PLor ; that is, for any leaf γ of this foliation, its image
PLor(γ ) is contained in a leaf of the same foliation. By quotienting out the stable direction we
can rewrite the Poincaré map as a skew-product; that is, PLor(x, y) = ( fLor(x), gLor(x, y)).

The geometric Lorenz flow is the couple (W , Xt
W ), where W = {Xt (x̄) | x̄ ∈ �, t ∈

R
+}. Consider U = ⋃

x̄∈� X [0,rLor(x)]
W (x̄), then the geometric Lorenz attractor (of the

corresponding vector field) is given by 	Lor = ⋂

t>0 X
t
W (U ).

In [3], exponential mixing for the geometrical Lorenz flow was proven under two condi-
tions: the stable foliation has to be C1+α and a uniform non-integrability (UNI) condition
needs to be satisfied.
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The modified version is obtained by changing the local behaviour near the origin. We
achieve this by replacing the linear system for the following system;

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ = Z

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎝

x(a0x2 + a1y2 + a2z2)
−
y(1 + c0x2 + c2z2)

−z(b0x2 + b1y2 + b2z2)

⎞

⎠ + O(4), (4)

where a0, a1, a2, b0, b1, b2, c0, c2 and 
 > 0, a2b0 < 9a0b2, � := a2b0 − a0b2 �= 0
and O(4) refers to terms of order four or higher, under the condition that they are of the form
x2O(2) near the yz-plane and z2O(2) near the xy-plane. This system has a polynomial Dulac
time (see (8) and Fig. 3) given by;

τ ′
Neu := min{t > 0 : Nt ∈ S} = |x |− 1

β2 (1 + O(|x | 1
2β2 )), (5)

as x → 0 and β2 = a2+b2
2b2

. To obtain the flow time τ ′
Neu , we make use of the estimates of

the Dulac map and the tails of the return map obtained by Bruin and Terhesiu in [17]. This
change of flow time, from logarithmic to polynomial, will ultimately allow us to deduce the
polynomial decay of correlations.

We denote by Nt the flow obtained from the system given by (4). This change in the
local behaviour near the origin leads to a change on the map P1; that is, we have now
Nτ ′

Neu = D1 : � → S. For the second part, the return of S to �, we consider the same
diffeomorphism P2 with same hitting time. In this way, we obtained the modified Poincaré
map PNeu = P2 ◦ d1 with return time given by,

rNeu(x) = τ ′
Neu(x) + τ2(x). (6)

Similarly, we define the geometric neutral Lorenz flow as the couple (W ,Nt
W ), where

W = {Nt (x̄) | x̄ ∈ �, t ∈ R
+}. We consider again U = ⋃

x̄∈� N[0,rNeu(x)](x̄), the
geometric neutral Lorenz attractor (of the corresponding vector field) is given by 	Neu =
⋂

t>0 N
t (U ).

As we will see in more detail in Sect. 2, the geometrical neutral Lorenz flow will be split
into three models. Model 1 is obtained when we take the parameters c0 = c2 = 0 in (4).
Model 2 when we consider a1 = b1 = 0. Finally, Model 3, the most general, will be given
by taking all parameters strictly positive.

1.2 Main Results

Let Cη be the space of functions that are η-Hölder in the space direction, and Cm,η be the
space of functions that are m + η-Hölder (i.e., m time differentiable with an η-Hölder m-th
derivative) in the flow direction, see Sect. 4 for the precise definitions. The main result in this
paper is the following theorem:

Theorem 1.1 Let Nt : 	Neu → 	Neu be the geometrical neutral Lorenz flow for Model 1
and Model 2 obtained from the neutral form given by (4), with corresponding parameters.
	Neu its attractor and its SRB measure μ. Then Nt has polynomial decay of correlations
(with exponent β2 = a2+b2

2b2
); that is, there exist m ≥ 1 and a constant C > 0 such that for

observables v ∈ Cη(M) ∩ C0,η(M), w ∈ Cm,η(M), and time t > 1 we have

ρt (v,w) ≤C(‖v‖Cη + ‖v‖C0,η ) ‖w‖Cm,η t−β2 .
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A first question that presents itself is of course if these bounds are sharp, and if current
operator renewal theory methods [24, 34] cannot prove that. We say more on this at the end
of Sect. 4.

For the proof of Theorem 1.1, we obtain an explicit form of the Poincaré map, since we
can solve the differential equation in the y component. Thus we are able to prove polynomial
decay of correlations by using the results on non-uniformly hyperbolic flows established by
Bálint et al. in [12].

For the third model the situation is more subtle since, to our knowledge, finding the
solution of the differential equation in the y component is next to impossible. To overcome
this problemwewill analyse and compare, with numericalmethods, the limit behaviour of the
Dulac maps obtained in [15] and [17] and adapted to our framework. More precisely, we will
analyse the limit behaviour of the maps D1 : � → S obtained for each Neutral model. This
is sufficient since the Poincaré maps considered in this work are given by PNeu = P2 ◦ D1,
where P2 is a diffeomorphism and the map D1 is the Dulac map from the cross-section
� to the cusps S, which depends on the differential equation being considered. Therefore,
the behavioural changes exhibited by the map PNeu are represented by the changes of the
map D1. Dulac in [22] made a significant contribution to solving Hilbert’s 16th problem by
incorporating his map as an element to establish that polynomial vector fields in the plane
possess a limited number of limit cycles, demonstrating that they cannot have an infinite
number of such cycles.

The numerical analysis on the behaviour of the Dulac maps will give us the plausibility
of the following conjecture.

Conjecture 1.2 Let Nt : 	Neu → 	Neu be the geometrical neutral Lorenz flow for Model
3 obtained from the neutral form given by (4), with the corresponding parameters. 	Neu

its attractor and its SRB measure μ. Then Nt has polynomial decay of correlations (with
exponent β2 = a2+b2

2b2
).

The organization of this paper is as follows: In Sect. 2 we will give the construction of
the Poincaré maps of the Neutral Model 1 and 2. In Sect. 3 we will be devoted to the proof
that the stable foliation for the geometrical neutral models is C1+α and the UNI condition is
satisfied by adapting the existing proofs for the geometrical Lorenz model. Section4 contains
the framework of non-uniformly hyperbolic flows and the proof of Theorem 1.1. Finally, in
Sect. 5 we will present the numerical analysis and results we obtained for the Dulac map and
the tails of the return map.

For the remaining of this paper we will adopt the following notation.

Notation 1.3 In order to avoid excessive notation of the higher order terms, obtained from
the estimates of the Dulac time given in [17], we will write A1(x, β) and A2(x, β2) to

denote ξ |x |β(1 + O(|x | 1
2β2 )) and ζ |x |− 1

β2 (1 + O(|x | 1
2β2 )), respectively, where β0 = a0+b0

2a0
,

β2 = a2+b2
2b2

, β = β0
β2
, ξ and ζ are constants given in [17], namely in Theorem 1.1 and the

proof of Proposition 2.1. X ∈ Xr (M) will denote the vector space of Cr vector fields in a
manifold M with the Cr topology.
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Fig. 2 The map D1 (Image taken from [4])

2 The Poincaré Maps

2.1 Neutral Model 1

To create the modified models we will apply local surgery in a neighbourhood of the hyper-
bolic saddle equilibrium of the geometrical Lorenz model, namely the origin, and transform
it into a neutral equilibrium. We do this because we aim to slow down the orbit and thus
increase the time that orbits take to flow from the cross-section � to the cusps S, see Fig. 1,
and see the changes this newmotion produces in the decay of correlations. The flow obtained
from this modification will be an almost Anosov flow [27, 28]. Existence of a finite or infinite
SRB measure for two-dimensional almost Anosov diffeomorphisms was already proven in
[27, 28]. Bruin and Terhesiu in [17] proved mixing rates in the infinite SRB measure setting
for almost Anosov diffeomorphism and established the required spectral properties for the
transfer operator (acting on an appropriate anisotropic Banach space of distributions) of an
inducedmap so as to obtain optimal rates of mixing. Furthermore, they gave more precise tail
estimates for the inducing scheme. We will take advantage of these methods and estimates
and use them to deduce the rates of mixing of our almost Anosov flow.

We consider now �∗ = {(x, y, 1) ∈ R
3 | |x | ≤ 1, |y| ≤ 1}, �− = {(x, y, 1) ∈

�∗ | x < 0}, �+ = {(x, y, 1) ∈ �∗ | x > 0}, � = �+ ∪ �− = �∗ \ �̃, where
�̃ = {(x, y, 1) ∈ �∗ | x = 0, } and S = S+ ∪ S− where S± is the image of �± under
the Dulac map D1, see Fig. 2. The section � is transversal to the flow and every trajectory
eventually crosses � in the direction of the negative axis z. Then for each (x, y, 1) ∈ �,
the time τ ′

Neu such that Nτ ′
Neu(x, y, 1) ∈ S is determined by the estimates of the Dulac map

provided in [17], as we will explain now.
Let us start with the Neutral model 1; that is, we consider a neighbourhoodU of the fixed

point 0̄ = (0, 0, 0) where the vector field has the form (4) (in local Euclidean coordinates)
with c0 = c2 = 0 and the other parameters satisfying the constraints given before. Note that
U is taken much smaller than the scale of Fig. 2. This vector field, denoted by Z , is cubic at
0̄ in the direction transversal to the stable manifold of 0̄, but this is the only source of non-
hyperbolicity. The y-axis is invariant and all solutions tend to 0̄. The divergence is given by
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Fig. 3 The Dulac map
D : Wu(0, z0) → Ws (z0, 0)

Div(Z) = (3a0 − b0)x
2 + (a1 − b1)y

2 + (a2 − 3b2)z
2 − 
.

Since we want the flow to shrink volume exponentially fast, as does the Lorenz flow, we
need Div(Z) ≤ −c < 0. Therefore, we let 
 be large enough such that (3a0 − b0)x2 + (a1 −
b1)y2 + (a2 − 3b2)z2 < 
 for all (x, y, z) ∈ U . The solution for the y-component is given
by y(t) = y0 e−
t . Thus we obtain a non-autonomous system of differential equations, since
the contribution of the y-component to the x and z- component is exponentially small as time
increases, these terms are of smaller order than the higher order terms. Thus we are left with
the two-dimensional system studied in [17]:

(

ẋ
ż

)

= Zhor

(

x
z

)

=
(

x(a0x2 + a2z2)
−z(b0x2 + b2z2)

)

. (7)

Now let Ws and Wu be two mutually tranversal foliations of the interior of U ∩
{positive quadrant} that is invariant under the flow of (7) and such that

• the leaves of Ws accumulate in C1 topology on the stable manifold of (0, 0) and are
transversal to the unstable manifold of (0, 0), and

• the leaves of Wu accumulate in C1 topology on the unstable manifold of (0, 0) and are
transversal to the stable manifold of (0, 0).

One would like to use the stable and unstable foliation of the horizontal flow φhor of (7) for
Ws andWu , but as long as we defined the flow only locally, the above properties suffice.

Nowfixanunstable leafWu(0, z0) ∈ Ws and a stable leafWs(x0, 0) ∈ Wu , then theDulac
map D : Wu(0, z0) → Ws(x0, 0), shown in Fig. 3, assigns the first intersection φT (x, z0)
of the integral curve through (x, z0) with the stable leaf Ws(x0, 0), where x ∈ Wu(0, z0),
φt (x, z) is the flow from (7) and T is the exit time. The estimates for the map D and the flow
time given in [17] are:

ω = D(x) = c(z0)x
β(1 + O(x

1
2β2 )) (8)

and

τ ′
Neu(x) = A2(x, β2), (9)

where β = β0
β2

for β0 = a0+b0
2a0

and β2 = a2+b2
2b2

.
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More relevant to the proof of the decay of correlations of the neutral geometrical Lorenz
flow is the estimate of the tails of the return map which we state in the following theorem.

Theorem 2.1 [17, Theorem 1.1] Let Q be a region bounded by the stable and unstable
manifolds of 0 and a leaf Ws(x0, 0) ∈ Ws and a leaf Wu(0, z0) ∈ Wu, see Fig.3. Let β∗ =
1
2 min{1, a2

b2
, b0
a0

}, then there exists C0 > 0 a constant such that μ(ϕ > n) = C0n−β2(1 +
O(n−β∗

)), where ϕ = inf{t > 0 | φt
hor (z) /∈ Q} and μ is Lebesgue measure1 on Wu(0, z0).

Putting all together we get the following expression for the map D1

D1(x, y, 1) = Nτ ′
Neu(x)(x, y, 1)

=
(

1, y e−
A2(x,β2), A1(x, β)
)

, (10)

where the functions A2(x, β2) and A1(x, β) come from Notation 1.3.
We make the following observations:

Observation 2.2 1. D1(�
±) has the shape of a cusp at (±1, 0, 0) and (with some abuse of

notation) we will denote these images as S± and S = S+ ∪ S−.
2. Denote by 
v(c) = {(x, y, 1) ∈ � | x = c}, where c is a constant, the line segments

in � parallel to the y-axis and by 
h(c) = {(±1, y, z) ∈ S | z = c}, the line segments
in S parallel to the y-axis. Then D1(
v(c0)) = 
h(c1); that is, the map D1 takes the
y-direction lines in � to the horizontal line segments in S as illustrated in Fig.2.

The return of the cusps S to the cross-section� is described by the map P2 = T ◦Ea ◦ Rθ ,
where Rθ is a rotation by an angle of θ = 3π

2 and the rotation axis are the boundaries of
the cross-section � parallel to the y-axis, Ea is an expansion by a factor of a > 1 in the
x-direction and a translation T such that the unstable direction which starts from the origin
is sent to the boundary of �; that is, we want to send the cusp points C± to A±, see Fig. 1.
Thus, the full Poincaré map PNeu = P2 ◦ D1 : � → �, shown in Fig. 4, is given by,

PNeu(x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

(

aA1(x, β) − 1, y e−
A2(x,β2) −1

2

)

, if x ∈ (0, 1];
(

aA1(x, β) + 1, y e−
A2(x,β2) +1

2

)

, if x ∈ [−1, 0).
(11)

In the positive quadrant the matrix DPNeu has eigenvalues λ1 = a β0
β2

|x |
β0
β2

−1
and λ2 =

e−
A2(x,β2). By restricting 1
2 < β0 < 2 we have that 0 <

β0

β2
< 1 since β2 > 2. Then

λ1 → ∞ as x → 0. For the other eigenvalue we have that λ2 < 1 and λ2 → 0 as x → 0
since A2(x, β2) → ∞ as x → 0. Thus the modified Poincaré map PNeu is hyperbolic when
x approaches the origin.

The foliation given by the lines 
v(c) is invariant under the map PNeu; that is, given
any leaf γ of this foliation its image PNeu(γ ) is contained in a leaf of the same foliation
(See Fig. 4). Therefore, we can express PNeu as PNeu(x, y) = ( fNeu(x), gNeu(x, y)), where

1 In [17], the measure of interest is the SBR measure, but because the SBR measure is flow-invariant (hence,
with smooth holonomies in the flow-direction) and conditioned to unstable leaves is absolutely continuous
w.r.t. Lebesgue (in fact, equivalent to Lebesgue with a density that is bounded and bounded away from 0,
see [17, Proposition 3.1] and [28, Lemma 4.1]) and the separate unstable leaves are C1 smooth curves, it is
justified to work with the Lebesgue measure on Wu(0, z0).
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Fig. 4 The Poincaré map for the
neutral geometrical model

fNeu : I \ {0} → I is a Lorenz-like map with exponent β = β0
β2

with β0 = a0+b0
2a0

and

β2 = a2+b2
2b2

; that is, fNeu is given by,

fNeu(x) =
{

aA1(x, β) − 1, if x ∈ (0, 1];
1 − a|A2(x, β)|, if x ∈ [−1, 0),

(12)

and the function gNeu : (I\{0}) × I → I , where I = [−1, 1], satisfies the following:
g1. The map gNeu is piecewise C2 and for fixed x0, the map gNeu(x0, y) is a contraction in

the y-direction, i.e.,

d(gNeu(x0, y1), gNeu(x0, y2)) ≤ cd(y1, y2),

where d is the Euclidean distance in I and 0 < c < 1.
g2. DPNeu has the following bound on its partial derivatives:

a) For all (x, y) ∈ � we have ∂ygNeu(x, y) = e−
A2(x,β2). Since β2 > 2 and |x | ≤ 1,
there is 0 < η < 1 such that

|∂ygNeu(x, y)| < η.

b) For (x, y) ∈ � with x �= 0 we have ∂x gNeu(x, y) = 

β2
y(A2(x, β2))

′

e−
A2(x,β2). Since 1 < 1 + 1

β2
<

3

2
and |y|, |x | ≤ 1 we get that |∂x gNeu(x, y)| is

bounded. In fact, it tends to zero exponentially fast as x approaches the origin.

g3. From g2.a) above follows the uniform contraction of the foliation given by the lines

v(c); in other words, there is C > 0 such that, for any given leaf γ of the foliation and
for y1, y2 ∈ γ , we have

d(Pn
Neu(y1), P

n
Neu(y2)) ≤ Cηnd(y1, y2),

when n → ∞.

2.2 Neutral Model 2

Nowwewill consider the Neutral model 2; that is, we consider the same neighbourhoodU of
the origin where the flow has the local form given by (4) with a1 = b1 = 0 and the remaining
parameters satisfying the same constraints stated in this framework. Again 0̄ = (0, 0, 0) is
the only neutral periodic orbit and the vector field is cubic in the direction transversal the
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stable manifold of 0̄, but this is the only source of non-hyperbolicity. If x = 0 and z = 0,
then we see that ẋ = 0, ẏ = −
y and ż = 0. Hence, the y-axis is invariant and all solutions
tend to the origin as in the previous model. Moreover, since ẋ and ż are decoupled from y, we
have (7). Thus the asymptotics for the Dulac map and the flow time given in [17] follow. Also
Div(Z) = (3a0 − 
c1 − b0)x2 + (a2 − 
c2 − 3b2)z2 − 
. Since we want a flow that shrinks

volume exponentially fast as before, we take 
 large enough so that (3a0−b0)x2+(a2−3b2)z2

1+c0x2+c2z2
< 


for all (x, y, z) ∈ U .
We consider the same cross-section � as before and proceed to construct the Poincaré

map in the same way. Denote by Nt the flow obtained from (4) with the pertinent constraints
in the parameters; that is, Nt (x, y, z) = (x(t), y(t), z(t)). By (8) we obtain the following
form for the flow,

Nt(x,z)(x, y, z) = (x0, y(t(x, z)), ω(z, t(x, z)). (13)

Note that ẏ = y(−
(1 + c0x2 + c2z2)), applying Grönwall’s Lemma we get,

y(t) = y0 exp(−


∫ t

0
(1 + c0x

2 + c2z
2)ds)

= y0 e
−
t exp(−


∫ t

0
(c0x

2 + c2z
2)ds). (14)

By the estimates of the Dulac map and since z ∈ �, we obtain that the time t(x, z)
becomes a function of the variable x and the integral

∫ t
0 (c0x2 + c2z2)ds can be expressed as

a function q of the variable x . Observe that q(x) > 0 for every x . Therefore we get that,

y(t) = y0 e
−
t e−
q(x) . (15)

Hence y(t) decreases exponentially fast as before but with a faster rate. All together, we
get that the map D1 : � → S is given by

D1(x, y, 1) = Nτ ′
Neu(x)(x, y, 1)

=
(

1, y e−
(A2(x,β2)+q(x)), A1(x, β))
)

, (16)

where β = β0
β2
, compare this with (10). The statements from Observation 2.2 for this new

version of the map D1 will also hold. To finish the construction of the Poincaré map we
compose now with the map P2. Therefore, the full return map PNeu : � → � of � is given
by

PNeu(x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

(

aA1(x, β) − 1, y e−
(A2(x,β2)+q(x)) −1

2

)

, if x ∈ (0, 1];
(

1 − a|A1(x, β)|, y e−
(A2(x,β2)+q(x)) +1

2

)

, if x ∈ [−1, 0),
(17)

where β = β0
β2

∈ (0, 1).

The matrix DPNeu has eigenvalues λ1 = aβ|x |β−1 and λ2 = e−
(A2(x,β2)+q(x)). Since
β ∈ (0, 1)we have that λ1 → ∞ as x → 0. For the other eigenvalue we have that λ2 < 1 and
λ2 → 0 as x → 0 since (A2(x, β2) + q(x)) → ∞ as x → 0. Thus the modified Poincaré
map PNeu is hyperbolic when x approaches the origin.

The properties stated before remain true for this new modified return map PNeu like the
invariance of the stable foliation given by the vertical lines 
v(c) under the map PNeu. Hence,
we can express again PNeu as PNeu(x, y) = ( fNeu(x), gNeu(x, y)), where fNeu : I \ {0} → I
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is again a Lorenz-like mapwith exponent β (see (12)) and gNeu : (I \{0})× I → I satisfy the
same properties stated in the previous section. The existence of a unique a.c.i.p and statistical
properties such as exponential decay of correlations for observables with bounded variation
for the Lorenz-like map fNeu are well established, see for example [35].

3 The Stable Foliation and the UNI Condition

3.1 Existence and Regularity of the Strong Stable Foliation

In this subsection we will study the properties of the strong stable foliationFss for the neutral
geometrical Lorenz model we built in Sect. 2.

For the neutral geometrical Lorenz attractor, denoted by 	Neu, we consider the Lorenz
attractor	Lor in an open neighbourhoodU of the origin. Instead of considering the linearised
vector field we consider the vector field given by (4) with the parameters corresponding for
model 1 and 2 described in Sect. 2.1 and 2.2, respectively. More precisely, we take an open
neighbourhoodU in which the cross-section � is contained. Then the Dulac map from � to
S has the form given by (10) and (16) for the models 1 and 2, respectively.

This modification yields a different flow time from the cross-section� to S. In the original
Lorenz construction we have a logarithmic Poincaré return time but for these modifications
we have a polynomial Poincaré return time given by (5). The rest of the construction, however,
remains unchanged; that is, the flow constructed from S to � is made by a composition of an
expansion, a rotation and a translation. Thereforewe have the same hitting time τ2(x) and thus
the full return time for the modified Poincaré map PNeu is given in (6). The modified Poincaré
map PNeu : � → � is given by (11) and (17) for the model 1 and 2, respectively.We saw that
the lines in the y-direction, denoted by 
v(c), in the cross-section � form the stable foliation
which is preserved by the return map PNeu. Thus by quotienting out the stable direction we
can rewrite the Poincaré map as a skew-product; that is, PNeu(x, y) = ( fNeu(x), gNeu(x, y)),
where fNeu is a one-dimensional Lorenz-like map.

Lemma 3.1 If a2b0 < 9a0b2, then the eigenvalues of DZ(x,y,z) satisfy 0 < −λs < λu <

−λss for all (x, y, z) ∈ U.

Proof The derivative matrix DZ(x,y,z) of the vector field Z is

⎛

⎝

3a0x2 + a1y2 + a0z2 2a1xy 2a2xz
−2c0
xy −
(1 + c0x2 + c2y2) −2c2
yz
−2b0xz −2b1yz −(b0x2 + b1y2 + 3b2z2)

⎞

⎠ .

In finding the eigenvalues, we get λss = −
 for Model 1 (i.e., c0 = c2 = 0) and λss =
−
(1+c0x2+c2z2) for Model 2 (i.e., a1 = b1 = 0), In both cases, the other two eigenvalues

are 1
2

(

trace(A) ± √

trace(A)2 − 4 det(A)
)

for the submatrix

A =
(

3a0x2 + a1y2 + a0z2 2a2xz
−2b0xz −(b0x2 + b1y2 + 3b2z2)

)

.

To ensure that these eigenvalues are real and of opposite sign, it suffices to check that

λuλs = det(A) = −(3a0x
2 + a1y

2 + a0z
2)(b0x

2 + b1y
2 + 3b2z

2) + 4a2b0x
2z2 < 0.
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The worst case is when y = 0, so we consider the terms not including y (and divide by 3 for
simplicity):

(a2b0 − 3a0b2)x
2z2 − a0b0x

4 − a2b2z
2 < 0.

Divide by z4 and introduce the new coordinate u = x2/z2:

− Pu2 + Qu − R < 0 for P = a0b0, Q = a2b0 − 3a0b2, R = a2b2. (18)

The left hand side is indeed negative for u = 0, and it is negative for all u if the equation
−Pu2 + Qu − R = 0 has no real solution, i.e., if the discriminant is negative:

0 > Q2 − 4PR = (a2b0 − 3a0b2)
2 − 4a0b2a2b0 = 9a20b

2
2 + a22b

2
0 − 10a0b2a2b0.

Divide by a2b0 and use the new coordinate γ = a0b2
a2b0

. Then we get the inequality

0 > 9γ 2 − 10γ + 1 =
(

3γ − 5

3

)2

− 16

9
,

which is equivalent to |γ − 5
9 | < 4

9 . That is, it fails if γ ≤ 1
9 or γ ≥ 1. Now consider equality

in(18) and we divide by a2b0, which brings it to the form

−a0
a2

u2 + (1 − 3γ )u − b2
b0

= 0,

with solutions

u = a2
2a0

(

1 − 3γ ∓
√

(1 − 3γ )2 − 4γ

)

= a2
2a0

(

1 − 3γ ∓
√

9γ 2 − 10γ + 1

)

.

If γ ≥ 1, then these solutions are negative, and since u = x2/z2, this means that there are
no solutions (x, y, z) ∈ U . The remaining case γ ≤ 1

9 is exactly the excluded case in the
lemma. This concludes the proof. ��

Using our assumption a2b0 < 9a0b2 and Lemma 3.1, we obtain that the origin is the only
point where we have λss = −
 and λs = λu = 0. Before continuing, we recall the definitions
of a partially hyperbolic set and strongly dissipativity.

Definition 3.2 Let 	 be a compact invariant set of X ∈ Xr (M), c > 0 and 0 < λ < 1. We
say that	 has a (c, λ)−dominated splitting if the tangent bundle T	M has a DXt -invariant
splitting of sub-bundles

T	M = E1 ⊕ E2,

such that for all t > 0 and x ∈ 	, we have
∥
∥
∥DXt |E1

x

∥
∥
∥ ·

∥
∥
∥
∥
DX−t |E2

Xt (x)

∥
∥
∥
∥

< c · λt . (19)

We say that 	 is partially hyperbolic if it has a (c, λ)−dominated splitting such that E1 is
uniformly contracting; that is, for some c > 0 and all t > 0 and every x ∈ 	 it holds

∥
∥
∥DXt |E1

x

∥
∥
∥ < c · λt . (20)

In this case we will denote E1 by Es and call it the contracting direction. Also E2 will be
denoted by Ecu and called the center-unstable direction.
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Definition 3.3 Let G be a C∞ vector field on R3 with a Lorenz-like equilibrium; that is, the
eigenvalues of DGp are real and satisfy 0 < −λs < λu < −λss . We say that G is strongly
dissipative if the divergence of the vector field G is strictly negative; that is, there is c > 0
such that Div(G)(x) ≤ −c for every x and the eigenvalues of the singularity at p satisfy the
constraint

λu + λss < λs . (21)

Figure 2 shows how the flows given by the Neutral model 1 and 2 send the lines in the
y-direction in � to lines in the y-direction in S. Thus, its derivative DNt preserves the lines
in the y-direction. Furthermore, by the way the flow from S to � was constructed (Fig. 1) we
notice that horizontal lines in S; that is, parallel to the y-axis, are taken to parallel lines to the
same axis in �. In other words, the flow from S to � preserves parallel lines to the y-axis.
Since this flow is a composition of a rotation, an expansion and a translation, the derivative
of the flow also preserves planes orthogonal to the y-axis. From this we can deduce that the
splitting R

3 = E ⊕ F , where E = {0} × R × {0} and F = R × {0} × R, is preserved by
the flow; i.e., DNt (E) = E and DNt (F) = F for any t , where Nt is the flow obtained
from Equation (4) with the corresponding parameters for model 1 and 2. Since we have
uniform contraction along E (

∥
∥DNt |Ex

∥
∥ ≤ eλss t with λss = −
 < 0 for every x ∈ U ) and

domination of the splitting (
∥
∥DNt |Ex

∥
∥ ·

∥
∥
∥DN−t |FNt (x)

∥
∥
∥ ≤ eλss−λs t with λss − λs < 0 for

every x ∈ U ) we can conclude that U is partially hyperbolic. It is worth noticing that the
origin is the only point that spoils the singular hyperbolicity condition (a set A is singular
hyperbolic if all its singularities are hyperbolic and it has volume expanding central direction)
since J cut (0̄) = | det DNt |F0 | = e(λu+λs )t = 1 (recall λs = 0 = λu); that is, there is no area
expansion along the subbundle F . Hence, 	Neu is a partially hyperbolic attractor.

Theorem 6 in [6] provides us with local strong-stable and center-unstable laminations
Wss

ε (x) and Wcu
ε (x), respectively, through the points x ∈ 	Neu \ {0̄}. We note that both,

Wss
ε (x) and Wcu

ε (x), are embedded discs and hence sub-manifolds of M . Also Wss
ε (x) is

uniquely determined since Es is uniformly contracting. Corollary 6 in [6] shows us that the
local strong-stable lamination can be extended to an invariant foliation Fss(x) of a open
neighbourhood of 	Neu with C2 leaves and whose foliated charts are C1. Moreover, the
leaves are uniformly contracted by the action of the flow.

We note that� is aC2 embedded compact disk transversal to the flowNt . Furthermore,�
is contained in the open neighbourhood V of 	Neu. By Theorem 6 and Corollary 6 from [6]
we know that local strong-stable laminationWss

ε (x) extends to an invariant foliation Fss(x).
In this way, for x ∈ � we define Wss(x, �) to be the connected component of Fsc(x) ∩ �,
where Fsc(x) = ⋃

t∈R Nt (Fss(x)) is the center-stable leaf. Since the flow (Nt )t∈R is C2,
Wss(x, �) is a C2 one-dimensional embedded curve for every x ∈ � and their leaves form
a C1 foliation Fss

� of �.
Given a pair of embedded disks D1 and D2 in � intersecting transversally a set

{Wss(x, �)}x∈� of stable leafs, the holonomymap H : D1∩Wss(x, �) → D2∩Wss(x, �)

assigns to y ∈ D1 ∩ Wss(x, �) the unique point in h(y) ∈ D2 ∩ Wss(x, �), see Fig. 5.
From the developments in the partially hyperbolicity theory by Brin-Pesin [13] and Pugh-

Shub [32] we have that the projection along leaves, also known as holonomies, between pair
of transversal surfaces to Fss have a Hölder continuous Jacobian with respect to Lebesgue
measure. This implies a similar conclusion for the holonomies transversal to Fcs . It follows
that the holonomy between pairs of transversal curves to Fss

� along the lines of Fss
� can be

thought of as interval maps having a Hölder Jacobian. Hence these holonomies are C1+α for
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Fig. 5 The holonomy map

some 0 < α < 1. In this setting, the leaves Wss(x, �), with x ∈ �, determine a foliation
Fss

� of � with transversal smoothness C1+α .
Therefore, we can assume that � is the image of the unit square I × I under the action of

a C1+α diffeomorphism h, for some 0 < α < 1. Furthermore, h sends vertical lines inside
the leaves of Fss

� . The next step is to prove that the strong stable foliation Fss(x) is not only
C1 but also C1+α , for some 0 < α < 1. This was done by Araújo, Melbourne and Varandas
in [7], stated as Lemma 2.2. This result is a consequence of domination of the splitting
(Equation (19)), uniform contraction along the stable direction (Equation (20)) and strong
dissipativity (Definition 3.3). Therefore, we can conclude that the neutral geometrical flow
has a strong-stable foliationFss(x)which isC1+α . Furthermore, themodified returnmap also
has a strong-stable foliation Fss

� , whose transversal smoothness is C1+α , with 0 < α < 1.
A final remark concerning this subsection, Theorem 6 in [6] is stated for a singular hyper-

bolic attractor. However, the conclusions and arguments still hold true if we consider a
compact partially hyperbolic invariant set instead of a singular hyperbolic set. We will also
like tomention that the situation for the origin is slightly different, since the splitting of the tan-
gent bundle is given by a one-dimensional strong-stable direction Es and a two-dimensional
center direction Ec. However, we are only concerned with the existence of the strong-stable
manifold Wss(0̄), which follows from the theory of partial hyperbolicity.

3.2 The UNI Condition

The main goal of this subsection is to show that the stable and unstable manifolds of the
modified geometrical model are jointly nonintegrable. The joint nonintegrability of stable
and unstable foliations can be interpreted as follows: The stable and unstable foliation of
an Anosov flow are always transversal, therefore, if they are jointly integrable, this provides
us with a codimension one invariant foliation which is transversal to the flow direction. In
contrast, if there exists a codimension one submanifold transversal to the flow direction,
then this foliation must be subfoliated by both the stable and unstable foliations. Thus they
must be jointly integrable. In this situation it is known [23, Proposition 3.3] that the flow
is semiconjugate to a suspension with a locally constant roof-function over a subshift of
finite type. Such a flow need not mix! From the work of Araújo, Butterley and Varandas [8],
we know that the joint nonintegrability of the stable and unstable manifolds is equivalent
to the uniformly nonintegrability (UNI) condition. As we will see later in this section, the
UNI condition, stated formally in Definition 3.7, will ensure that the roof function of the
suspension flow, which we will use to model the Neutral geometrical Lorenz flow, is not
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cohomologous to a constant function; that is, the time it takes for a point in the base to reach
the roof of the suspension flow is not the same for every point. This property will guarantee
the mixing properties.

In this chapter we will aim to prove the UNI condition. In [5] and [7] Araújo et al. prove
the UNI condition by exploiting the properties obtained by using hyperbolic times. From
now on, when we talk about the neutral geometrical model, we will refer to both models we
constructed in Sect. 2.

Let I = [−1, 1] and fNeu : I → I be the one-dimensional Lorenz-likemap obtained from
the neutral geometricalmodel.We notice that {0} is a nondegenerate2 exceptional set for fNeu.
From Theorem 4.3 in [5] we know that there are X̃ a neighbourhood of the singularity 0, a
countable partition Q̃ of X̃ Lebesgue modulo zero into subintervals, a function τ : X̃ → Z

+
constant on partition elements and the induced map F̃ = f τ

Neu : Q̃ → X̃ which is a C2

uniformly expanding diffeomorphism with bounded distortion for any Q̃ ∈ Q̃.
The motivation behind taking the inducing scheme is that we aim to extend the Gibbs-

Markovmap F̃ to a two-dimensional Gibbs-Markovmap F and build the suspension flow Ft

over the map F with roof function R (see Equation (22)). This will allow us to use the results
given in [12] to deduce the decay of correlations for the suspension flow Ft and ultimately for
the geometrical neutral Lorenz flow Nt . Furthermore, we want to use the properties provided
by the hyperbolic times and the bounded distortion of the map F̃ , to obtain the bound stated
in Proposition 3.9 for the roof function R, which will help us prove the UNI condition for the
geometrical neutral flow. We make now some observations regarding the induced map F̃ .

Observation 3.4 The map F̃ is obtained by inducing fNeu on the interval X̃ , and the inducing
time is given by the sum of a hyperbolic time with a non-negative integer bounded by N,
where N is such that

⋃N
i=1( f

i
Neu)

−1({0}) is 2δ-dense in X̃ . Furthermore, F̃ is a full branch
Markov map onto X̃ since 0 has dense preimages under fNeu. For more details we refer the
reader to [5].

In addition to the bounded distortion and uniform expansion of F̃ , we have the following
inequalities for fNeu as a consequence of hyperbolic times. Given σ ∈ (0, 1) and c > 0,
there is a constant b > 0 such that:

1. (Backward contraction) Let Q̃(x) denotes the element of the partition Q̃ containing x,
for y ∈ Q̃(x)

| f iNeu(y) − f iNeu(x)| ≤ bσ τ(x)−i |F̃(y) − F̃(x)|, i = 0, . . . , τ (x) − 1.

2. (Slow recurrence to the singular point)

| f iNeu(x)| ≥ σ c(τ (x)−i), i = 0, . . . , τ (y) − 1.

Following [7], our next step is to construct a piecewise uniformly hyperbolic map F with
infinitely many branches, which covers F̃ . First, let Wss

PNeu
(x) denote the stable leaf under

the Poincaré map PNeu containing the point x , π : � → I the projection map. We define
X = ⋃{Wss

PNeu
(x) | x ∈ X̃} as the union of stable leaves along X̃ . We also extend the induced

time τ to a function on X denoted also by τ and given by τ(x) = τ(π(x)). We make the
following important observation on the tails of τ .

Observation 3.5 The tails of the return time τ and its extension also denoted by τ are expo-
nential (see [33]); i.e., there exists a constant c > 0 such that μX̃ (τ > n) = O(e−cn) and

2 Nondegenerate here is meant for the derivative of the one-dimensional map fNeu and shouldn’t be confused
with the degeneracy at the singularity 0 concerning the eigenvalues being zero.
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μX (τ > n) = O(e−cn), where μX̃ and μX are the SRB-measures of the Gibbs-Markov maps

F and F̃, see below.

Now, we construct F : X → X the Poincaré map by setting F(x) = Pτ(π(x))
Neu (x) for

x ∈ X . Furthermore, let Q be the measurable partition of X by taking
⋃{Wss

PNeu
(x) | x ∈ Q̃}

as its elements, with Q̃ ∈ Q̃. We will make use of X and F when making the model of the
neutral geometrical Lorenz flow by a suspension flow.

It is standard [33] that the map F̃ has a unique a.c.i.p measure μX̃ on X̃ . Furthermore,
rNeu ∈ L1(μX̃ ) and there exists a unique invariant measure μX for F , μ� for PNeu and μI

for fNeu satisfying π∗(μX ) = μX̃ , π∗(μ�) = μI , and also

μ� =
∑

n≥1

n−1
∑

i=0

(Pi
Neu)∗(μX |{τ ◦ π = n}),

μI =
∑

n≥1

n−1
∑

i=0

( f iNeu)∗(μX̃ |{τ ◦ π = n}).

Moreover, μX � μ� and μX (X) = 1, thus μ�(X) > 0. We take the induced roof function
R : X → R

+ given by

R(x) =
τ(x)−1
∑

k=0

rNeu(P
k
Neu(x)). (22)

Notice that R is constant along stable leaves because rneu is constants along stable leaves.
We also call R the quotient induced roof function R : X̃ → R

+. With this in mind we can
state the definition of the UNI condition. First, we give the definition of suspension flow.

Definition 3.6 Let (�, ν) be a probability space and P : � → � an ergodic measure-
preserving transformation. Let r : � → R

+ be a measurable (Hölder continuous) roof
function. We define the suspension space as �r = {(x, u) ∈ � × [0, r(x)]}/ ∼, where
(x, r(x)) ∼ (P(x), 0). The suspension flow ft : �r → �r is given by ft (x, u) = (x, u+ t)
computed modulo identifications and the measure μ = ν × λ, where λ is the Lebesgue
measure, is ergodic and ft -invariant. In the finite measure case, we normalise by r̄ = ∫

�
rdμ

so that μ = ν×λ
r̄ is a probability measure.

Definition 3.7 Let R : X → R
+ be a roof function as above, Ft : X R → X R the suspension

flow built over F : X → X , Rn(x) = ∑n−1
i=0 R ◦ Fi (x). Define ψh1,h2 = Rn ◦ h1 − Rn ◦ h2 :

X → R, for h1, h2 ∈ Hn ; that is, inverse branches of Fn . Then the UNI condition holds
if there exist D > 0 and h1, h2 ∈ Hn0 for some sufficiently large n0 ≥ 1, such that
|ψ ′

h1,h2
| ≥ D.

We saw in the previous subsection that the Poincaré map PNeu : � → � has a strong
stable foliation. We observe that the leaves of this foliation cross �, hence the induced map
F has a strong stable manifold Wss

F (x) = Wss
PNeu

(x) that crosses X . Araújo et al. in [7,
Proposition 2.4] provide us with local unstable manifolds of uniform size for F and defined
almost everywhere, and by [7, Proposition 2.4] we obtain a local product structure, see Fig. 6.

To use the arguments given in [7] for the temporal distortion function we need to adapt
the proofs of the uniform bound of the derivative of the induced roof function R and a bound
on the flow time rNeu. An adjustment is required because we are changing the flow time
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Fig. 6 Local product structure for F

from � to S. Recall that the original flow time for the geometrical Lorenz model is given by
(3), whereas the modified flow time is given by (6); that is, we change from logarithmic to
polynomial. More precisely, we have the following propositions.

Proposition 3.8 Let Q̃ ∈ Q̃ and F̃ : Q̃ → X̃ as above. Denote by H the set of all inverse
branches of F̃ . Then we have

sup
h∈H

sup
x∈X̃

|D(R ◦ h)(x)| < ∞.

Proof Let Q̃ ∈ Q̃ and h ∈ H; that is, h : X̃ → Q̃ be an inverse branch of F̃ with inducing
time τ = τ(Q̃) ≥ 1 and fix x ∈ Q̃. We first observe that

|D(R ◦ h)(x)| = |DR(h(x))| · |Dh(x)| = |DR(h(x))|
|DF̃(h(x))|

=
∣
∣
∣
∣
∣

τ−1
∑

i=0

(DrNeu ◦ f iNeu) · Df iNeu
DF̃

◦ h(x)

∣
∣
∣
∣
∣
.

From the construction of the inducing partition using hyperbolic times (for more details
on hyperbolic times see [2] and [5]), we have that backward contraction and slow recurrence
to the singular point, see Observation 3.4; that is, there are constants σ ∈ (0, 1), b0 > 0 and
c ∈ (0, 1

2 ] such that
1. (Backward contraction) For y ∈ Q̃(x)

| f iNeu(y) − f iNeu(x)| ≤ b0σ
τ−i |F̃(y) − F̃(x)|, i = 0, . . . , τ − 1.

2. (Slow recurrence to the singular point)

| f iNeu(x)| ≥ σ c(τ−i), i = 0, . . . , τ − 1.

Notice that
∣
∣
∣
∣
∣

Df iNeu
DF̃

◦ h(x)

∣
∣
∣
∣
∣
≤ b0σ

τ−i i = 0, . . . , τ − 1, (23)
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where the inequality follows from the backward contraction.
Moreover, from the slow recurrence to the singularitywe also get the following inequality;

|(DrNeu ◦ f iNeu) ◦ h(x)| ≤ b1σ
−c(1+ 1

β2
)(τ−i)

i = 0, . . . , τ − 1, (24)

for some constant b1 > 0. Altogether, Equations (23) and (24) imply that

|D(R ◦ h)(x)| ≤ b
τ−1
∑

i=0

σ si , (25)

where s = 1 − c(1 + 1
β2

). Since 0 < c ≤ 1
2 and β2 > 2, we have s < 1. Therefore the sum

converges, and we have that

sup
h∈H

sup
x∈X̃

|D(R ◦ h)(x)| < ∞.

��
For x, y ∈ X̃ we define the separation time s(x, y) as the least integer n ≥ 0 such that

F̃n(x) and F̃n(y) are in different partition elements ofQ0. For given 0 < η < 1, the symbolic
metric is defined on X̃ as dη(x, y) = ηs(x,y). Finally, we set r (k)

Neu(x) = ∑k−1
i=0 rNeu(P

i
Neu(x)).

Proposition 3.9 There exists B > 0 such that for all x, y ∈ X̃ with s(x, y) ≥ 1 and
0 ≤ k ≤ τ(x) = τ(y) we have |r (k)

Neu(x)−r (k)
Neu(y)| ≤ B|F̃(x)− F̃(y)|ε . Consequently, there

is η ∈ (0, 1) such that |R|η < ∞, where |R|η = supx �=y
|R(x)−R(y)|

dη(x,y) denotes the Lipschitz

constant of the quotient induced roof function R : X̃ → R
+ with respect to dη. Moreover,

|F̃(x) − F̃(y)| ≤ Bdη(x, y).

Proof For convenience, in this proof f will denote fNeu. Let x, y ∈ X̃ such that s(x, y) =
n ≥ 1 and 0 ≤ k ≤ τ(x) = τ(y). Thus y ∈ Q̃n(x), where Q̃n(x) =

n−1
∨

i=0

(F̃ i )−1(Q̃(x))

is the nth refinement of Q̃(x), and so τ(F̃ i (x)) = τ(F̃ i (y)) for i = 0, . . . , n − 1. Hence,
the choice of the cross- section assures that rNeu is constant along stable leaves and that

rNeu(x) = |x |− 1
β2 h(x) + τ2(x), where h(x) is bounded and bounded away from zero. In

fact, h(x) is of the form h0 + O(|x |γ ) where h0 is a positive constant and γ > 0 depending
on whether the higher order terms are consider in (7) or not. Also h(x) is differentiable for
x > 0, because the Dulac map is differentiable. Then we can write

|R(x) − R(y)| ≤
τ(x)−1
∑

i=0

|rNeu( f i (x)) − rNeu( f
i (y))|

≤
τ(x)−1
∑

i=0

∣
∣
∣
∣
| f i (x)|− 1

β2 h( f i (x)) − | f i (y)|− 1
β2 h( f i (y))

∣
∣
∣
∣

+|τ2( f i (x) − τ2( f
i (y))|.

We first notice that,
∣
∣
∣τ2( f

i (y)) − τ2( f
i (x))

∣
∣
∣ ≤ ‖τ2‖ε

∣
∣
∣ f i (y) − f i (x)

∣
∣
∣

ε

≤ σ ε(τ(x)−i) ‖τ2‖ε

∣
∣
∣F̃ i (y) − F̃ i (x)

∣
∣
∣

ε

. (26)
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The second inequality in (26) follows from Observation 3.4-1. Now, denote

∣
∣
∣
∣
| f i (x)|− 1

β2

h( f i (x)) − | f i (y)|− 1
β2 h( f i (y))

∣
∣
∣
∣
by A, then we obtain that,

A ≤
∣
∣
∣
∣
| f i (x)|− 1

β2 − | f i (y)|− 1
β2

∣
∣
∣
∣
|h( f i (x))|

+| f i (y)|− 1
β2 |h( f i (x)) − h( f i (y))|. (27)

We notice that

∣
∣
∣
∣
| f i (x)|− 1

β2 − | f i (y)|− 1
β2

∣
∣
∣
∣
is bounded. Indeed we have the following:

∣
∣
∣
∣
| f i (x)|− 1

β2 − | f i (y)|− 1
β2

∣
∣
∣
∣
= | f i (x)|− 1

β2

∣
∣
∣
∣
∣
∣

1 −
( | f i (y)|

| f i (x)|
)− 1

β2

∣
∣
∣
∣
∣
∣

≤ | f i (x)|− 1
β2

∣
∣
∣
∣
∣
∣

1 −
(

1 + | f i (y) − f i (x)|
| f i (x)|

)− 1
β2

∣
∣
∣
∣
∣
∣

≤ | f i (x)|− 1
β2
C0

β2

| f i (y) − f i (x)|
| f i (x)|

= C0

β2
| f i (x)|−(1+ 1

β2
)| f i (y) − f i (x)|

≤ C0

β2
σ

(

1−c
(

1+ 1
β2

))

(τ (x)−i)
∣
∣
∣F̃(y) − F̃(x)

∣
∣
∣ , (28)

where C0 > 0 and 0 < c ≤ 2
3 . The first and second inequalities follow from the Bernoulli

inequality and from Observation 3.4-1 and 2, respectively. Since h( f i (x)) is bounded and by

(28), we can bound the first term in the sum of (27) by C0
β2

σ
(1−c(1+ 1

β2
))(τ (x)−i)

∣
∣
∣F̃(y) − F̃(x)

∣
∣
∣.

To finish the proof it remains to find a bound for

| f i (y)|− 1
β2 |h( f i (x)) − h( f i (y))|. (29)

Notice that |h( f i (x)) − h( f i (y))| ≈ h′(ξ)| f i (x) − f i (y)|, with f i (x) < ξ < f i (y).

Hence, byObservations 3.4-1 and 2, we have that (29) is bounded byC0h′(ξ)σ
(1− c

β2
)(τ (x)−i)|

F̃(y) − F̃(x)|. Assuming that h′(ξ) is bounded and combining all the previous bounds we
have that,

|R(x) − R(y)| ≤ C
τ(x)−1
∑

i=0

[(σ s(τ (x)−i) + σ u(τ (x)−i))|F̃(y) − F̃(x)|

+ σ ε(τ(x)−i) ‖τ2‖ε |F̃ i (y) − F̃ i (x)|ε]
≤ B|F̃ i (y) − F̃ i (x)|ε,

for some constant B > 0 where s = 1 − c(1 + 1
β2

) > 0 and u = 1 − c
β2
. As in the previous

proof, the sum converges since β2 > 2, 0 < c ≤ 2
3 and hence 0 < s, u < 1. This establishes

what we were aiming to prove.
One caveat we have to make here is that this argument is only valid if we assume bound-

edness for h′. This is true if the higher order terms in (7) are not present. If higher order terms
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Fig. 7 Local product structure for F

are present, boundedness of h′ is plausible, but since the required perturbation argument in
[17] is less constructive so as to immediately derive this boundedness, we will try to convince
the reader with the numeric analysis performed at the end of this work that this boundedness
is indeed true. Thus, rather than a rigorous proof we give a combination of mathematical
arguments and numerical verification. ��

Now let Q ∈ Q be a partition elements for F . The temporal distortion function T :
Q × Q → R is defined almost everywhere by,

T (x, y) =
∞
∑

i=−∞
[rNeu(Pi

Neu(x)) − rNeu(P
i
Neu([x, y])) − rNeu(P

i
Neu([y, x]))

+ rNeu(P
i
Neu)(y)]

=
−1
∑

i=−∞
[rNeu(Pi

Neu(x)) − rNeu(P
i
Neu([x, y])) − rNeu(P

i
Neu([y, x]))

+ rNeu(P
i
Neu(y))], (30)

where [x, y] is the local product of x and y (see Fig. 7). The second inequality follows from
the property of rNeu of being constant along stable leaves.

Now, for every x, y ∈ X in the same unstable manifold for F : X → X we define

T0(x, y) =
∞
∑

i=1

[rNeu(P−i
Neu(x)) − rNeu(P

−i
Neu(y))]. (31)

The continuity and other properties of T0 are stated in [7, Lemma 3.1]. Furthermore, we
can rewrite the temporal distortion function T (x, y) in terms of T0; that is,

T (x, y) = T0(x, [x, y]) + T0(y, [y, x]).
The main result concerning the temporal distortion function establishes the joint nonin-

tegrability of the stable and unstable foliations for the flow by proving that the temporal

123



Mixing Rates of the Geometrical Neutral Lorenz Model Page 21 of 31 198

distortion function T is not identically zero, that is, there is Q ∈ Q and x, y ∈ Q such that
T (x, y) �= 0 and is stated and proven in [7, Theorem 3.4].

We adjusted the proof of the uniform bound of the derivative of the induced roof function
for the geometrical neutral Lorenz model since we want to apply [9, Proposition 7.4] in order
to use the same arguments given in [3, Corollary 4.3]. Thus, we get the UNI condition for
the geometrical neutral Lorenz flow. For completeness we state it in the following theorem.

Theorem 3.10 The UNI condition holds for the geometrical neutral Lorenz flow.

For fixed x ∈ X , we define the map h : Wu
F (x) → R given by

h(y) = T (x, y) = T0(x, [x, y]) + T0(y, [y, x]),
the map h is C1. Furthermore, there exists a nonempty open setU ⊂ Wu

F (x) such that h|U is
a C1 diffeomorphism. For the proofs of the properties of the map h see Proposition 3.6 and
Corollary 4.7 in [7].

The next result will be of great help in proving the decay of correlations for the geometrical
neutral Lorenzflow.The original statement involves the geometrical Lorenzflow, but the same
arguments can be used to prove the same result for our setting. Before stating the result we
give a definition.

Definition 3.11 Let X and F be as in the beginning of Section 6.3. A subset Z0 ⊂ X is called
a finite subsystemof X if Z0 = ⋂

n≥0 F
−n Z , where Z is the union of finitely many partition

elements of X .

Let Q1 and Q2 ∈ Q be two partition elements and consider Q = Q1 ∪ Q2. We define the
finite subsystem Q0 = ⋂

n≥0 F
−nQ, then we have the following:

Proposition 3.12 [7, Proposition 3.8] For the finite subsystem Q0, the set T (Q0 × Q0) has
positive lower box dimension.

We will like to end this Section with the following remark. To establish their results on
decay of correlations, Bálint et al. in [12] andMelbourne in [30] assumed a very important, yet
technical property namely, absence of approximate eigenfunctions. They also provide some
criteria that guarantees the absence of approximate eigenfunctions. The first one, involves
the temporal distortion function providing a nonintegrability condition. This criteria is given
by Proposition 3.12; that is, when the temporal distortion function is not identically zero. In
other words, when the UNI condition is satisfied. The second one, is a Diophantine condition
on the periods of three periodic solutions [21], which is satisfied with probability one. It is
important to remark that from these criteria, theUNI condition is robustwhile theDiophantine
condition is not.

4 Decay of Correlations

In this section we prove Theorem 1.1 for the first two neutral models. The third and more
general model will be analysed in Sect. 5. We will use the results of Bálint et al. [12] to prove
our theorem. In [12] polynomial decay of correlations for non-uniformly hyperbolic flows is
proven under absence of approximate eigenfunctions. Let us start by giving the description
of a non-uniformly hyperbolic flow described in [12].

First, we observe that the geometrical neutral Lorenz flow Nt : 	Neu → 	Neu, where
	Neu is the geometrical neutral Lorenz attractor, can be modelled as the suspension flow
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St : �rNeu → �rNeu over the Poincaré map PNeu with base the cross-section � and roof
function rNeu from (6). However, in order to use the results of [12], we take the alternative
model Ft : X R → X R , where X ⊂ � is a cross-section to the flow with nice hyperbolic
structure (local product structure) and with induced roof function R : X → R

+ given by
R(x) = ∑τ(x)−1

k=0 rNeu(Pk
Neu(x)), see Sect. 3.2. Then the suspension flow Ft built over the

uniformly hyperbolic map F : X → X is identical to the suspension flow St , thus Ft is an
extension of the underlying flow, namely the neutral geometrical Lorenz flow. Within this
framework, Nt is called in [12] a non-uniformly hyperbolic flow.

Under suitable conditions it can be shown that the suspension flow Ft described above is
a Gibbs-Markov flow [12, Section 6]. Therefore, the mixing rates for non-uniformly hyper-
bolic flows can be deduced from the corresponding results for Gibbs-Markov flows, see [12,
Corollary 8.1].

For observables v and w, let ρt (v,w) denote the decay of correlations of the geometrical
neutral Lorenz flow; that is,

ρt (v,w) =
∣
∣
∣
∣

∫

v · w ◦ Ntdμ −
∫

vdμ

∫

wdμ

∣
∣
∣
∣
, (32)

where μ is the SRB measure of Nt . Before giving the proof of Theorem 1.1 for the neutral
models 1 and 2, we will give the definitions of the space of observables.

Let (M, d) be a metric space with diam(M) ≤ 1 and define a flow T t : M → M on M .
We fix η ∈ (0, 1] and for a given observable v : M → R we define

|v|Cη = sup
x �=y

|v(x) − v(y)|
d(x, y)η

,

and the norm ‖v‖Cη = |v|∞ + |v|Cη . We define the Banach space of Hölder functions on M
by Cη(M); i.e.,

Cη(M) = {v : M → R | ‖v‖Cη < ∞}.
Furthermore, let

|v|C0,η = sup
x∈M
t>0

|v(T t (x)) − v(x)|
tη

and define ‖v‖C0,η = |v|∞ + |v|C0,η . We denote the space of Hölder observables in the flow
direction by

C0,η(M) = {v : M → R | ‖v‖C0,η < ∞}.
We will say that an observable w : M → R is differentiable in the flow direction if

∂tw = lim
t→0

w ◦ T t − w

t

exists pointwise. Let ‖w‖Cm,η = ∑m
k=0

∥
∥∂kt w

∥
∥
Cη . We will denote the space of observables

that are m-times differentiable in the flow direction by

Cm,η(M) = {w : M → R | ‖w‖Cm,η < ∞}.
For a Borel set X ⊂ M we define Cη(X) as above by using the restriction of the metric

d to X .
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Proof Theorem 1.1 We first note that the suspension flow Ft projects to a quotient suspension
semiflow F̃ t : X̃ R → X̃ R , where X̃ is the quotient space obtained from X after quotienting
out the stable leaves and F̃ : X̃ → X̃ is a Gibbs-Markov map. Proposition 3.9 ensures that
the following inequality holds.

|ϕ(x) − ϕ(y)| ≤ Cγ s(x,y) inf
Qi

ϕ for all x, y ∈ Q̃i , i ≥ 1, (33)

where {Q̃i }i≥0 is a countable Lebesguemodulo zero partition into subintervals, 0 < γ < 1
and s(x, y) is the separation time.

Therefore, we have that F̃ t is a Gibbs-Markov semiflow and consequently that Ft is a
Gibbs-Markov flow. Then the conclusion follows from [12, Corollary 8.1].

There are still four details concerning the hypothesis in [12, Corollary 8.1] that we have
not mentioned yet. The first one is regarding condition (H); for us this condition holds
automatically since R is constant along stable leaves.

The second concerns the absence of approximate eigenfunctions for Ft . Melbourne gave
in [30,Chapter 5] sufficient conditions for the absence of approximate eigenfunctions, namely
the existence of a finite subsystem with positive lower box dimension. Hence, it follows from
Proposition 3.12 and Lemma 8.9 in [12] that Ft has absence of approximate eigenfunctions.

The third concerns the tails of R; that is, we want to estimate μX (R > t). From Obser-
vation 3.5 we know that μX (τ > n) has exponential tails; i.e., there exists a constant c0 > 0
such that μX (τ > n) = O(e−c0n). Moreover, by Theorem 2.1 we have that μX (rNeu > t)
has polynomial tails; that is, there is a constant c1 > 0 such that μX (rNeu > t) = O(c1t−β2),
whereβ2 = a2+b2

2b2
. Then by [18, Proposition 5.1]we have thatμX (R > t) = O((ln t)β2 t−β2).

The fourth and last detail concerns how to improve the estimates for μX (R > t) and
remove the logarithmic term. For this, we make use of [11, Lemma 4.1]. There the settings is
made for infinite horizon planar periodic Lorentz gases, for that setting the tails of the flow
time (in this work denoted by rNeu) is of order O(t−2). By replacing in [11, Lemma 4.1] the
order of the tails fromO(t−2) toO(c1t−β2)we can use the same proof to remove the logarith-
mic term. Hence, we have that μX (R > t) = O(t−β2). With this we conclude our proof. ��

The natural questions is about the lower bounds, i.e., if the bounds given in this theorem
are sharp.

Although we definitely think they are, the currently available literature is insufficient to
conclude this, although the margin is fairly narrow.

In [24], the renewal operatormethods are developed to get such lower bounds, but his paper
is for maps, not flows. Melbourne and Terhesiu come the closest in [31], where they consider
suspension semiflows with polynomial roof functions over Gibbs-Markov base maps, and
indeed, their results imply polynomial mixing for the flow Ft : X R → X R , for Hölder
observables that are constant on the stable fibers. The step from this suspension flow to the
actual flow Nt : 	Neu → 	Neu, however, is not trivial at all. (Here the effect of the second
inducing step needs to be undone, in a way).

In [18] this step was taken for discrete suspensions (i.e., Young towers), specifically for
billiard maps, but not for flows. However, the lower bounds that we obtain for Ft : X R →
X R as a corollary of the results in [31] are sufficient to prove stable laws (with exponent
1/β2 ∈ (1, 2]) for the neutral Lorenz flow Nt : 	Neu → 	Neu, cf. [15, 19].

5 Numerical Analysis and Results

In this section we provide the results of the numerical approximation we obtained for the
exponent β of the Dulac map (see Equation (8)) and the exponent β2 of the tails of the
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return map (see Theorem 2.1) for the two-dimensional setting (the setting of [17]) and for
the 3-dimensional setting concerning this work.

5.1 Numerics of the 2-Dimensional Case

To verify the existing theoretical asymptotics from [17], we will start the numerical analysis
in the 2-dimensional case; that is, we consider the framework of [15] and [17]. There, the
following neutral form was considered:

(

ẋ
ẏ

)

=
(

x(a0xκ + a2zκ )

−y(b0xκ + b2yκ )

)

+ O(4), (34)

where a0, a2, b0 and b2 > 0 and � := a2b0 − a0b2 �= 0. For simplicity we let κ = 2. For
the analysis of the Dulac map close to the neutral equilibrium of Equation (34), we take an
unstable leaf Wu(0, y0) and a stable leaf Ws(x0, 0), then the Dulac map D : Wu(0, y0) →
Ws(x0, 0), shown in Fig. 3, assigns the firs intersection of the integral curve through (x, y0)
with the stable leaf Ws(x0, 0), where x ∈ Wu(0, y0) and T is the flow time; that is, the exit
time.

For the setting considered in this work, we will perform the numerical experiments with
x0 = 1. In order to corroborate the estimates of the Dulac map given by Equation (8), we
expect the numerical experiments to show us that

β ≈ ln(y)

ln(x)
. (35)

We actually will see that

β = ln(y)

ln(x)
− ln(c(y0))

ln(x)
+ O

( 1

ln(x)

)

. (36)

From [15] and [17] we know that the constants c(y0) are given by a specific formula
which is not easy to compute. For this reason, we decided to use the least-squares method to
calculate these constants.

For the numerical experiments we will take different values of β and 250 points x ∈
[1.0 × 10−5, 1.0 × 10−4] at the unstable leave Wu(0, y0) with y0 = 1.0. The integration
method we will use for the numerical experiments concerning this work is the so-called
Radau quadrature method, to deal with the numerical complications of integrating near a
neutral stationary point, see [26].

Figure 8 a), b) show us the approximation of β (the red graph), the adjusted approximation
of β (green graph), and the theoretical value of β (blue graph) for β = 0.266 and β = 0.40,
respectively. The approximation of beta is done by taking the last y value of each integral
curve and divide it by the x value ranging in [1.0 × 10−5, 1.0 × 10−4], the adjusted beta is
calculated usingEquation (36). The points-axis corresponds to the 250 x valueswe considered
starting from 1.0 × 10−4 and ending in 1.0 × 10−5; that is, point 0 corresponds to the value
x = 1.0 × 10−4 and point 250 corresponds to the value x = 1.0 × 10−5. The constants
c(y0) = ln(0.8) and c(y0) = 1.2 ln(1.1) for the adjusted approximation correspond to Fig. 8
a) and b), respectively. The approximations show an error that tends to decrease as we get
closer to x = 0 as depicted in the graphs. The value β = 0.40 and β = 0.266 are obtained
by taking a0 = 15.0, a2 = 5.0, b0 = 1.0 and b2 = 3.0 and a0 = 15.0, a2 = 6.0, b0 = 1.0
and b2 = 2.0, respectively, in the vector field from Equation (34).
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Fig. 8 2-dimensional β approximation

Fig. 9 2-dimensional β2 approximation

We proceed in the same way to perform the numerical analysis for the exponent β2. From
the estimates obtained in [17], we can see that,

β2 ≈ − ln(x)

ln(t)
, (37)

where t is the flow time that it takes a point from the unstable leaf to hit the stable leaf and
x ∈ [1.0 × 10−5, 1.0 × 10−4]. We will actually show that

β2 = ln(c(y0))

ln(t)
− ln(x)

ln(t)
+ O

( 1

ln(t)

)

. (38)

Figure 9 shows the approximation of the exponent of the tail of the return map with
values β2 = 0.1333 and β2 = 2.0 which correspond to the values β = 0.400 and β = 0.266,
respectively. For this case the constants for the adjusted approximations are c(y0) = ln(0.06)
and c(y0) = ln(0.045) for Fig. 9 a) and b), respectively. From the approximations we see,
as before, that the error decreases as we approach to x = 0.

123



198 Page 26 of 31 H. Bruin et al.

5.2 Numerics of the 3-Dimensional Case

In this subsectionwewill perform the numeric experiments for the 3-dimensionalmodels.We
will start with Neutral model 1. Recall that the Neutral model 1 was given by Equation (39)

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ = N

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎝

x(a0x2 + a1y2 + a2z2)
−
y

−z(b0x2 + b1y2 + b2z2)

⎞

⎠ + O(4), (39)

where a0, a1, a2, b0, b1, b2 and 
 > 0 and � := a2b0 − a0b2 �= 0.Precise asymptotics
are not available, but since y(t) decreases exponentially fast, the same asymptotics as in (34)
are expected, and our numerics indeed confirm this. Note that the strong stable direction of
(39) is still purely y-directed.

For the analysis of the Dulac map close to the neutral equilibrium of Equation (39), we
will perform the numerical analysis on N1 : � → S. For the purpose of this work, we
want to show with the numeric experiment that the x and z components behave like the
2-dimensional model from the previous subsection regardless of the y value. To perform
the numerical analysis we will take different unstable leaves Wu(x, y0, z0) and a stable leaf
Ws(1, 0, 0), where y0 = 1.0 and z0 = 1.0. Hence, like in the 2-dimensional analysis we
expect the numerical experiments to show us that,

β ≈ ln(z)

ln(x)
, (40)

where z is the last value of the integral curve with initial condition (x, y0, z0) for x ∈
[1.0 × 10−5, 1.0 × 10−4]. Again, we will actually show that

β = ln(z)

ln(x)
− ln(c(z0))

ln(x)
+ O

( 1

ln(x)

)

. (41)

As before, we will use the Radau quadrature method and take 250 points for the values
of x starting from 1.0 × 10−4 and ending with 1.0 × 10−5; that is, point 0 and point 250
correspond to x = 1.0× 10−4 and x = 1.0× 10−5, respectively. We will consider the same
values of β we considered in the previous subsection. The approximation of β, corresponding
to the red line in all figures, is done by taking the last z value of each integral curve with
initial condition (x, y0, z0) and divide it by the x value ranging in [1.0× 10−5, 1.0× 10−4],
the adjusted β, plotted in green in all figures, is calculated by using Equation (41), and the
theoretical value of β, corresponding to the blue graph in all figures, is obtained from the
parameters a0, a2, b0 and b2 as before. The constants c(z0) were calculated using the least
squares method. The constants c(z0) = ln(1.1) and c(z0) = ln(1.06) correspond to Fig. 10
a) and b), respectively.

Next, we consider the Neutral model 2 given by Equation (42), with the parameters
satisfying the usual constraints, and present the numerical results obtained by performing the
same experiments we did for the Neutral model 1. We consider this form since it is no longer
a skew product like the previous model and poses a new challenge to deduce its asymptotics
and u decay of correlations.

⎛

⎝

ẋ
ẏ
ż

⎞

⎠ = G

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎝

x(a0x2 + a2z2)
−
y(1 + c0x2 + c2z2)

−z(b0x2 + b2z2)

⎞

⎠ + O(4). (42)

Figure 11 a) and b) show us the the numerical approximations of the Neutral model 2 for
β = 0.40 and β = 0.266 with constants c(z0) = ln(1.2) and c(z0) = ln(1.08), respectively.
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Fig. 10 Neutral model 1 β approximation

Fig. 11 Neutral model 2 β approximation

We observe that the constants c(z0) and c(y0) from Equation (41) and Equation (36), respec-
tively, are almost equal; that is, the x and z components of the 3-dimensional model behaves
like the x and y component of the 2-dimensional model.

Until now we have performed the numerical experiments for the Neutral model 1 and 2
corresponding to the normal forms given by Equations (39) and (42), respectively. We saw
there that for both models, the asymptotic behaviour of the x and z components are the same
as the x and y component of the 2-dimensional model. Recall that for this two models we
had explicit formulas for the map N : � → S and hence for the modified Poincaré map
PNeu : � → �. Our goal is to see whether the asymptotic behaviour of the Neutral model
3 given by Equation (4) is similar to the other two models. Therefore, the numerical results
obtained for the Neutral models 1 and 2 will be our reference and we will compare them to
the numerical results obtained for the third model.

Figure 12 a) and b) show us the the numerical approximations of the Neutral model 2 for
β = 0.40 and β = 0.266with constants c(z0) = ln(1.12) and c(z0) = ln(1.07), respectively.
We observe again that the x and z components of the 3-dimensional model behaves like the

123



198 Page 28 of 31 H. Bruin et al.

Fig. 12 Neutral model 2 β approximation

x and y component of the 2-dimensional model. From this numerical experiments we can
conclude that the behaviour of the map N1 obtained by considering the neutral model 3 is
asymptotically similar to the other two models; that is, the asymptotics of the Dulac map of
the three models are similar.

5.3 Numerics of the Tails of the Return Map in the 3-Dimensional Case

Next we will perform the numeric experiments for the 3-dimensional models and see
the approximations for the exponent of the decay of correlations; that is, for the expo-
nent β2. The general Neutral model or neutral model 3 is given by Equation (4), where
a0, a1, a2, b0, b1, b2, c0, c2 and 
 > 0 and � := a2b0 − a0b2 �= 0. Note that the
neutral model 1 and the neutral model 2 are obtained from the general neutral model if we
let c0, c2 = 0 and if we let a1, b1 = 0, respectively.

In the previous subsectionwe saw the numerical analysis on N1 : � → S and showed,with
the numeric experimentation, that the x and z components behaves like the 2-dimensional
model. For the next numerical analysis, we will take an unstable leaf Wu(x, y0, z0) and a
stable leaf Ws(1, 0, 0), where y0 = 1.0 and z0 = 1.0. From the estimates obtained in [17]
we can see that

β2 ≈ − ln(x)

ln(t)
, (43)

where t is the flow time that it takes a point from the unstable leaf to hit the stable leaf and
x ∈ [1.0 × 10−5, 1.0 × 10−4]. We will actually show that

β2 = ln(c(z0))

ln(t)
− ln(x)

ln(t)
+ O

( 1

ln(t)

)

. (44)

As before, we will use the Radau quadrature method and take 50 points for the values of x
starting from 1.0×10−4 and ending with 1.0×10−5; that is, point 0 and point 50 correspond
to x = 1.0× 10−4 and x = 1.0× 10−5, respectively. We will consider the same values of β

we considered in the previous subsection. The approximation of β2, corresponding to the red
line in all figures, is done by taking the x value, ranging in [1.0× 10−5, 1.0× 10−4], of each
integral curve with initial condition (x, y0, z0) and divide it by the flow time t , the adjusted
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Fig. 13 Neutral model 2 β approximation

Fig. 14 Neutral model 2 β approximation

approximation of β2, shown in green in all figures, is calculated by using Equation (44), and
the theoretical value of β2, corresponding to the blue graph in all figures, is obtained from
the parameters a2 and b2; that is, β2 = a2+b2

2b2
.

We start considering the neutral model 1. Figure13 a) shows the approximation for β2 =
1.333 which corresponds to the case β = 0.40, for the adjusted approximation the constant
is ln(c(z0)) = 0.06 and b) displays the approximation for β2 = 2.0 corresponding to the
case β = 0.266 with adjustment constant ln(c(z0)) = 0.05.

Next, we consider the neutral model 2. Figure14 a) and b) show the approximation for
β2 = 1.333 and β2 = 2.0, respectively. Their adjusted approximation the constant are
ln(c(z0)) = 0.06 and ln(c(z0)) = 0.04, respectively.

Finally, we consider the neutral model 3. Figure15 a) and b) show the approximation
for β2 = 1.333 and β2 = 2.0, respectively. Their adjusted approximation the constant are
ln(c(z0)) = 0.06 and ln(c(z0)) = 0.04, respectively.

This numerical experiment has shown us a good approximation of the exponent of the
decay of correlations for the 3 neutral models. From this we can deduce the same results
concerning the decay of correlations, and obtaining Theorem 1.1 in its full generality.
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Fig. 15 Neutral model 2 β approximation
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