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Abstract
We studied random sequential adsorption packings constructed from rectangles, ellipses, and
discorectangles, where the orientations of constituent shapes were picked from discrete sets
of values with varying spacing. It allowed us to monitor the transition between the two edge
cases: the parallel alignment and the arbitrary, continuous orientation of the shapes within
the packing. The packings were generated numerically. Apart from determining the kinetics
of packing growth in low- and high-density regimes, we analyzed the results in terms of
packing density and probed the microstructural properties using the density autocorrelation
function.

Keywords Random sequential adsorption · Random packings · The kinetics of packing
growth · Packing fraction

1 Introduction

Random sequential adsorption (RSA) is a protocol utilized to generate loose randompackings
[1]. A packing is constructed iteratively by adding one object after another by repeating
the following steps. The position and orientation of a virtual particle are randomly selected,
usually using the uniformprobability distribution of places and orientations. The virtual shape
is then tested to check if it overlaps with any of the objects that have already been added to
the packing. If not, the virtual shape is placed in the packing and remains in its position and
orientation indefinitely. Otherwise, the virtual shape is removed and abandoned. Particles
can be added to a packing until it becomes saturated, meaning that there is no further space
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to place the next object. Although a similar approach was used for the first time by Flory to
model the attachment of substituents to a vinyl polymer [2], RSA owes its popularity to Feder,
who observed that the configuration of particles in such packings resembles the structure of
adsorption monolayers obtained in irreversible adsorption experiments [3, 4]. Since then,
RSA has become a valuable tool for interpreting a variety of adsorption experiments [5, 6],
and a standalone field of theoretical studies. It is considered one of the simplest protocols
for generating random configurations of arbitrary objects, taking into account the excluded
volume effects [7]. Interestingly, some results obtained for RSA packings are similar to
those observed for significantly different random close packings that model granular media
in which neighboring particles touch themselves. For example, for both types of packings,
slightly anisotropic shapes form denser configurations compared to more symmetric ones
[8–13].

In this study, we examine the kinetics of RSA packing growth. For the majority of shapes,
close to the saturation limit, the kinetics is given by Feder’s law:

θ − θ(t) ∼ t−
1
d , (1)

where θ represents the packing fraction at saturation, θ(t) denotes the packing fraction after t
RSA iterations, i.e. the number of random attempts to add the next particle to the packing, and
d is some parameter. For RSA of hyperballs in a flat and continuous hyperspace, it has been
proven analytically that d corresponds to the dimension of the packing [14, 15]. On the other
hand, simulations show that d = 3, for randomly oriented anisotropic objects positioned on
a continuous, flat, two-dimensional plane [12, 16, 17]. Thus, it is generally believed that d
equals the number of degrees of freedom of the particle [18], but there are exceptions to this
rule [19–21], and one of them is the RSA packing built of squares (or rectangles), aligned in
parallel. Here:

θ − θ(t) ∼ log t

t
. (2)

This result was obtained analytically [15] and was also confirmed numerically in multiple
studies [22, 23]. It should be noted that the randomly oriented squares or rectangles comply
with the general rule given by equation (1) with d = 3 [24, 25]. However, a recent study
demonstrated that the kinetics of RSA of rectangles, which are permitted to align in only two
perpendicular orientations conforms to the logarithmic law (2) [23]. This finding prompts
fundamental inquiries as to how is the RSA kinetics influenced by the number of potential
discrete orientations? Is the power law (1) recovered at some finite number of orientations or
in the limit of infinite possible orientations? What is the effect of the number of orientations
on other properties of generated packings? This study aims to address all these inquiries.
Although our focus is on the properties of RSA protocol, it is important to note that during
adsorption processes, a molecular docking process may occur as the adsorbate approaches
a surface or an interface, aligning the particle on the surface. This process restricts the
continuous spectrum of possible adsorbate orientations, and therefore, our study’s findings
could have implications for related physical experiments. On the other hand, it is crucial to
recognize that the amount of RSA iterations does not increase proportionally with the actual
time of an adsorption experiment. In addition to the decreasing probability of adsorption due
to surface filling, which can be determined through numerical RSA simulations, the transport
mechanism that carries molecules from a bulk phase to the vicinity of a surface must also be
considered. Examples of such calculations can be found in Refs. [6, 26–28].

In addition to squares and rectangles, we conducted the same study for ellipses and dis-
corectangles of variouswidth-to-height ratios.Here, in the limit of the loworientation number,
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the kinetics should be controlled by (1) with d = 2 [3, 18]. Therefore, in this instance, the
previously posed questions pertain to the shifts between the power-law kinetics depicted by
d = 2 and d = 3.

2 Model and Numerical Details

We generated saturated RSA packings consisting of rectangles, ellipses, and discorectangles
(flat spherocylinders). The possible orientations of the particles in a single packing were
given by kπ/n for k = 0, . . . , n − 1, and the parameter n varied from 1 to 2 · 104. We also
investigated the effect of particle anisotropy on the results using shapes with an aspect ratio
f of 1 (for rectangles only), 2, and 5. For every combination of (n, f ) parameters, and of
examined shapes, we generated 100 separated saturated configurations of shapes in a square
with a surface area S = 106, with each individual shape having a surface area of Sp = 1. To
mitigate the influence of finite-size effects, periodic boundary conditions were applied [29].
RSA iterations were measured in dimensionless time units, whereby one unit corresponds
to S/Sp iterations. Note that such linear rescaling has no impact on the asymptotic laws (1)
and (2).

To generate saturated packings, we employed the region tracing techniquewhich identifies
the areas where particles potentially can be inserted, see, e.g. [30, 31]. In brief, the sampling
of possible locations is restricted exclusively to these zones, which significantly speeds up
packing generation. The positioning of each particle reduces the size of these regions, which
goes to zero at the point of saturation. Thus, if no such regions exist, the packing is saturated,
making further attempts to add shapes unnecessary. Detailed instructions on implementing
this method for RSA of rectangles, ellipses, and spherocylinders can be found in Refs. [32,
33].

3 Results

Example Fig. 1 displays saturated RSA packings constructed using rectangles, ellipses, and
discorectangles.

Larger packings, measuring 1000 × 1000, were created and analyzed to yield the results
described below.

3.1 Kinetics of Packing Growth

The example dependence of the difference between the saturated packing fraction and the
packing fraction after a certain number of iterations for squares with varying numbers of
orientations is shown in the left panel of Fig. 2.

Each line represents distinct kinetics, which will be thoroughly examined in the following
subsections.

3.1.1 Kinetics Near Saturation

The kinetics of packing growth is analyzed using the parameter d from the power-law (1).
To eliminate the parameter θ , which may depend on the number of permitted orientations,
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Fig. 1 Example saturated random packings built of rectangles (top row), ellipses (middle row), and discorect-
angles (bottom row) of 1 (left column), 3, (middle column) and 10 (right column) possible orientations. The
packings have a surface area of 20 × 20 and the surface area of a single shape is 1. The width-to-height ratio
in all cases is f = 2

Fig. 2 The dependence of the difference between the saturated packing fraction and the packing fraction after
a specified number of iterations (left panel), and the dependence of the fitted value of parameter d on iteration
(right panel) for squares of different numbers of allowed orientations
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Fig. 3 The dependence of the
parameter d on the number of
possible orientations of packed
rectangles for several different
rectangle’s width-to-height ratios
f

this relationship can be reformulated as

d

dt
θ(t) ∼ 1

d
t−

d+1
d , (3)

which leads to ln d
dt θ(t) ∼ − d+1

d ln t . Thus, the parameter d can be determined by the
least squares fitting of the data (ln d

dt θ(t), ln t) obtained from the numerical experiment with
respect to the aforementioned relationship.Toperform this fittingweaveraged thedependence
of θ(t)over 100 independent, saturatedpackings.Although the slopes inFig. 2 appear straight,
the estimated value of d varies over time, as demonstrated in the right panel of Fig. 2. Here,
d(t) was obtained by fitting equation (1) to the data within the range [0.01 t, t]. Nonetheless,
we are interested in a value of d close to the saturation limit as the laws (1) and (2) are valid
asymptotically, thus, the fitting should be performed as close to the saturation as possible.
However, generated packings saturate after different numbers of iterations. Therefore, to
minimize deviation from the saturation limit and preserve statistical accuracy, we determined
the minimum saturation time t satmin and performed fitting on the data within the range of
[0.01 t satmin, t

sat
min]. For packings generated during this study the value of t satmin was typically of

the order of 1020 iterations. Please note that while there are differences between kinetics (1)
and (2), in practice, the second one closely follows Feder’s law with an exponent d slightly
larger than 1 (see case n = 1 in Fig. 2). Therefore, we only used the relation (1) to the data
in all cases. The results we obtained for the RSA packing made of rectangles can be seen in
Fig. 3, while Fig. 4 shows the results of the packings built of ellipses and discorectangles.

For rectangles with one or two possible orientations, we get d ≈ 1.2 from the power-law
fit. It is because in this case, the kinetics of packing growth is governed by the logarithmic
law (2), which has been analytically predicted for n = 1 [14, 15], and previously observed
for n = 2 [23]. When n = 3 we note a sudden change to d = 2, which is typical for RSA
of disks, and other anisotropic shapes aligned in parallel [18]. The rapid change observed
here is attributed to the shape of the regions, where subsequent objects are deposited. Close
to saturation, they are rectangular for n = 2 and triangular for n ≥ 3, resulting in diverse
asymptotic kinetics [15]. To test this hypothesis we generated several random packings built
of rectangles of various aspect ratios f ∈ 1, 2, 5, 10 and only two allowable orientations of
0◦ and 45◦. The kinetics of packing growth for all these cases were described by the exponent
d ≈ 2 that supports the aforementioned reasoning.

For a larger number of possible orientations n, this value remains unchanged until n ≈ 500.
Then the parameter d starts to grow and for n ≈ 2500 it almost reaches a plateau at d ≈ 3,
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Fig. 4 The dependence of the
parameter d on the number of
possible orientations of packed
ellipses and discorectangles for
several different width-to-height
ratios f

which is typical for most unoriented anisotropic objects [16, 24, 25]. The transition between
d = 2 and d = 3 occurs for a slightly larger n when the width-to-height ratio of the rectangle
increases. As discussed previously [20, 34, 35] such a transition is a result of mixing two
behaviors: some packings are filled according to a power law with larger exponent d while
others follow if with a smaller one. Here, for larger anisotropies of packed shapes, more
systems are described by d = 2 than by d = 3. This means that the more systems approach
saturation slower i.e. available sites for shape placement are filled at a slower rate. For
larger anisotropies of packed objects, near saturation, particles are placed in parallel to their
neighbors [24], and such parallel alignment may be more difficult to achieve, which could
explain the results.

These observations were also confirmed by RSA packing of ellipses and discorectangles,
as shown in Fig. 4.

Here, though, we do not see the logarithmic rule (2) since for f = 1 these shapes are
two-dimensional disks for which the power law (1) is applicable.

3.1.2 Finite Size Effects

The numerically obtained results for kinetics at saturation may be sensitive to packing size
[34]. Therefore, we investigated the variability of the above-presented results for RSA of
squares to other packing sizes. Here, we utilized packing of size S ∈ {104, 105, 106, 107}. To
have a comparable number of packed objects, we generated a different number of independent
packing for each size. For instance, therewere 104 packings for S = 104 and only 10 packings
for S = 107. The results are presented in Fig. 5.

The transition from d = 2 to d = 3 commences at a later stage for larger packings.
A comparable outcome has been observed for more anisotropic shapes. To understand this
result, it is crucial to acknowledge that statistically, the later the object is placed, the tighter
the spot it occupies [36]. Accordingly, for larger packings, there are more such tight spots,
and consequently, the kinetics decelerates and favors smaller values of d . Therefore, it is
possible that the growth kinetics of packing consisting of nonparallel squares is governed by
d = 2 for infinitely large packings given that the number of allowed orientations is finite.

The above observations are confirmed by the results from RSA of ellipses and discorect-
angles of f = 2, presented in Fig. 6.
The results are qualitatively the same with the only difference corresponding to the lack of
the case d ≈ 1, as for n = 1 the kinetics of packing growth is the same as for packings
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Fig. 5 The dependence of the
parameter d on the number of
possible orientations of packed
squares for several different
packing sizes S

Fig. 6 The dependence of the parameter d on the number of possible orientations of packed ellipses (left
panel) and discorectangles (right panel) for several different packing sizes S

of disks, having two degrees of freedom. It is noteworthy that even with n = 105 possible
orientations, the largest investigated packing of S = 107 did not achieve d = 3, which is
observed for arbitrarily oriented shapes.

3.1.3 Kinetics at Low Packing Fraction

The kinetics of RSA can also be studied at a low coverage limit [37, 38] using the available
surface function (ASF), which describes the relationship between the probability of the
successful placement of a new shape in the packing and the packing density. For low coverage,
the ASF can be expanded in the Taylor series:

ASF(θ) = 1 − C1θ + C2θ
2 + ... , (4)

where θ denotes a packing fraction andC1,C2 are the expansion coefficients. The coefficient
C1 has a straightforward physical interpretation as it quantifies the mean surface area blocked
by a single shape of a unit surface area. For instance, if the packing includes a solitary disk
of radius r , the center of the next disk cannot be located within a circle with a radius of 2r
around the first disk’s center. Therefore, the area blocked by the first disk is 4 times larger
than its own surface area, and C1 = 4. The coefficient C2 denotes the mean intersection
area of the blocked area of two deposited shapes [37, 39]. It is important to mention that the
parameters C1 and C2 are in close relation with the parameters B2, B3 of virial expansion
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Fig. 7 The dependence of the coefficientC1 on the number of allowed orientations n for squares and rectangles
(left panel), and ellipses and discorectangles (right panel). Dots are data from numerical simulations, the solid
lines are to guide the eye

Fig. 8 The dependence of the coefficientC2 on the number of allowed orientations n for squares and rectangles
(left panel), and ellipses and discorectangles (right panel). Dots are data from numerical simulations, the solid
lines are to guide the eye

used for approximating a state equation of a system at thermodynamic equilibrium:

pV

NkBT
= 1 + B2ρ + B3ρ

2 + ... , (5)

where p is a pressure, V is a volume, T is an absolute temperature, N the number of particles,
kB the Boltzmann constant, and ρ a density of the system. For these expansions C1 = 2B2

and C2 = 2B2
2 − 3

2 B3 [38].
To determine the coefficients C1 and C2, we numerically estimated ASF(θ) for θ < 0.1

and then fitted a parabola to the data in this range using the least squares method. The
dependence of the coefficient C1 on the number of orientations allowed n for the packings
studied is shown in Fig. 7.

When there is only one orientation available, C1 ≈ 4, and then the value increases rapidly
with n. Its limiting value is reached for n < 10 and, as expected, depends on the particle
anisotropy f – the larger f is, the more space is blocked. A similar behavior is observed for
the coefficient C2, see Fig. 8.

To conclude, the packing growth kinetics at low packing fractions is indistinguishable
from the kinetics of unoriented particles when the number of allowed orientations is three
orders of magnitude smaller than in the case of the kinetics near saturation, where n ≥ 104.
This behavior is identical for all shapes studied.
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Fig. 9 The dependence of the saturated packing fraction θ on the number of allowed orientations n for squares
and rectangles (left panel), and ellipses and discorectangles (right panel). Dots are data from numerical
simulations, the solid lines are to guide the eye

3.2 Saturated Packing Fraction

The most fundamental property of a random packing is its mean density. The density is
different for aligned and randomly oriented objects. For example, for RSA packing built
of parallel squares or rectangles, it is 0.5620219 ± 0.0000072 [22, 35], and for arbitrarily
oriented ones, it is 0.527640 ± 0.000018 [24, 32, 40]. Additionally, the highest density is
reached for slightly anisotropic shapes [11, 12, 41]. The results for rectangles, ellipses, and
discorectangles studied here are shown in Fig. 9.

In general, the packing fraction reaches its limit value for randomly oriented shapes when
the number of allowed orientations exceeds n = 100, however, this threshold is slightly
lower in the case of rectangles and slightly higher for ellipses end discorectangles. For a
smaller number of allowed orientations, the packing fraction is strongly dependent on the
specific shape of the particles. For rectangles of small to medium anisotropy f , we observe
the maximum at n = 2 and then decrease to the limiting density. Different scenarios are
observed for ellipses. For identical orientations (n = 1), regardless of f , the packing fraction
is identical as for disks, which is expected, since all of these systems are identical up to
scaling in the direction of one of the semiaxes. Then, for small anisotropy f we observe
monotonic growth of θ with n. However, for f = 5 the packing fraction decreases with n
and reaches a minimum at n = 4 well below the asymptotic value and then slowly increases.
For discorectangles, the dependence seems to be monotonic for all width-to-length ratios
studied.

3.3 Density Autocorrelation Function

The density autocorrelation function gives us information on the microstructural properties
of the packing. The density autocorrelation function is proportional to the probability density
function of finding two shapes at a given distance between their centers.

G(r) = lim
dr→0

N (r , r + dr)

2πrdrθ
, (6)

where N (r , r + dr) is the mean number of neighbors of a given shape whose centers are
at a distance between r and r + dr . The packing fraction θ in the denominator is due to
normalization G(r → ∞) = 1. The density autocorrelation function in RSA packings is
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Fig. 10 Density autocorrelation function for rectangles, ellipses, and discorectangles of anisotropy f = 2 and
various numbers of allowed orientations n

known to have a superexponential decay at large r [42]. Here, we estimate the function G(r)
numerically using dr = 0.01. The results for the shapes studied are shown in Fig. 10.

As expected, the density autocorrelation function is sensitive to the number of orientations
allowed, and therefore at small distances (r < 1.5), we can observe a fine structure of local
minima andmaxima that correspond to specific orientations. However, the graphs are smooth
for n = 100, suggesting that such packings are practically indistinguishable from those
containing unoriented objects. This observation agrees with the results for packing fractions.
Thus, the local and global properties of RSA packings built of unoriented shapes are the
same as for shapes of discrete orientations if their number is large enough. For larger r and
n ≥ 3, autocorrelations are generally difficult to distinguish. The only exception is observed
for shapes aligned in parallel (n = 1) because there the G(r) differs significantly from other
correlation functions up to r = 3.

4 Conclusion

The number of discrete orientations allowed for shapes in RSA packings has an impact on all
properties of the packings that were considered. Themost interesting behavior is observed for
the kinetics of packing growth near saturation. The number of orientations allowed must be
greater than n = 104 to obtain numerically the same results as for arbitrarily oriented shapes,
at least for S = 106. For larger packings, more allowed orientations can be needed. It is in line
with other results, where the kinetics at the jamming limit was the most sensitive observable
for detecting particle anisotropy [43], irregularities in its shape [20, 34] or in the space
where objects were deposited [44]. The transition between these two universality classes of
kinetics occurs for n ∈ [400, 4000] for rectangles and n ∈ [1000, 20000] for ellipses and
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discorectangles. For rectangles, there is also a special case for n = 1 where the kinetics is
governed by a logarithmic law (2). There, the regions in an almost saturated packing, where
the center of the next particle can be successfully placed, are rectangular instead of triangular
– see the reasoning in Ref. [15], and thus we observe there the difference in kinetics near
saturation. The same is valid for n = 2 as long as the angles allowed are perpendicular to
each other. Otherwise, kinetics is governed by the power law (1 with the exponent d = 2. For
larger n, where the kinetics (1) and (2) are mixed, the asymptotic behavior is governed by
the one, which decays slower, thus, for sufficiently large packings, law (1) is observed [20,
34, 35]. In the low packing fraction regime, the kinetics of packing growth varies only when
n < 10. For a larger number of allowed orientations, it is the same as for arbitrarily oriented
particles, regardless of the shape. The transition between limits for parallelly and arbitrarily
oriented shapes can also be observed in the mean density and microstructural properties of
the generated packings. However, their values become indistinguishable for n > 100, which
is much earlier than in the case of packing growth kinetics at saturation.
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36. Cieśla,M.: Scaling properties of the number of random sequential adsorption iterations needed to generate
saturated random packing. J. Stat. Phys. 166, 39–44 (2017)

37. Adamczyk, Z.: Particles at Interfaces: Interactions, Deposition, Structure. Elsevier, Amsterdam (2006)
38. Ricci, S., Talbot, J., Tarjus, G., Viot, P.: Random sequential adsorption of anisotropic particles. II. Low

coverage kinetics. J. Chem. Phys. 97(7), 5219–5228 (1992)
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