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Abstract
The paper presents the low temperature expansion of the 2D Isingmodel in the presence of the
magnetic field in powers of x = exp(−J/(kT )) and z = exp(B/(kT ))with full polynomials
in z up to x88 and full polynomials in x4 up to z−60, in the latter case the polynomials are
explicitly given. The new result presented in the paper is an expansion not in inverse powers
of z but in (z2 + x8)−k where the subsequent coefficients (polynomials in x4) turn out to
be divisible by increasing powers of (1 − x4). This result gives a hint about the intriguing
‘off-diagonal’ correlations in the Ising model mixing the B �= 0 contributions with the usual
low temperature B = 0 expansion what may be useful on the road to find the full analytic
expression for the partition function of the Ising model with non-vanishing magnetic field.
The paper describes both the analytic expansions of the partition function and the efficient
combinatorial methods to get the coefficients of the expansion.

Keywords Ising model with the magnetic field · Partition function · Low energy
expansion · Onsager solution

1 Introduction

The Ising model was proposed by Lenz in 1920 and solved in one dimension, therefore
without the phase transition, by Ising in 1925 in his doctoral dissertation [1]. The main result
is due to Onsager [2] in 1944 where the exact partition function for the model in 2D in
the absence of the magnetic field B was calculated. In 1952 Yang [3] has proven an exact
formula (earlier announced by Onsager and Kaufman in 1949) for the first derivative of the
partition function of the Ising Model in 2D with respect to B at B = 0 (magnetization).
There are thousands of papers on the subject trying to include the non-vanishing magnetic
field and huge body of results, both numerical and analytical, exists for the Ising on finite
lattices (for a review see for example [4]). The most surprising were the papers [5, 6] that
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gave the description of the Ising model with the magnetic field in the conformal field theory
language but only in the scaling limit (see for example [7] for a review of the results). There
are also far-reaching results and efficient polynomial algorithms for magnetic susceptibility
in the vicinity of the scaling limit [8]. The present paper presents the largest (as far as
we know) full low temperature expansion in the presence of the magnetic field in powers
of x = exp(−J/(kT )) and z = exp(B/(kT )) describing both the analytic expansions of
the partition function and the efficient combinatorial methods to get the coefficients of the
expansion in x4 (as polynomials in z−2) and in z−2 (as polynomials in x4) in the former case
up to x88 and in the latter up to z−60. In the combinatorial part new algorithms were invented
to speed up the computations and the supercomputing power of the Grid.pl was used with
parallel computing using 64 GPU cards (in the GPU oriented version of the algorithm) or
15,000 CPU (in the CPU oriented version).

2 Basic Considerations

On a 2D square lattice with N ‘spins’ σ = ±1 we introduce a Hamiltonian

H = − J

2

∑

i, j,i �= j

σiσ j − B
∑

i

σi . (1)

where the first sum runs over closest neighbours only. We will assume that J > 0 (the
ferromagnetic Ising model) and the system is on a square ∼ √

N × √
N with periodic

boundary conditions. We will introduce the notation

x := e−β J , z := eβB (2)

where β = 1/T and we assume that z ≥ 1 what corresponds to the choice of the direction
of B.

We define the normalized free energy

e−βNFN (x,z) = ZN (x, z) =
∑

e−β(E−E0) (3)

where the sum runs over all configurations and E0 is the lowest energy corresponding to the
configuration with all spins pointing in the direction of B for which e−βE0 = x−N2

zN . The
goal is to calculate the free energy per spin FN in the thermodynamic limit N → ∞. The
advantage of calculating FN (x, z) over ZN (x, z) is that one has to include only ‘connected
diagrams’.

A simple case of J = 0 gives immediately the result

− βFN (1, z) = ln

(
1 + 1

z2

)
(4)

The low temperature expansion (which starts from a special configuration with all spins
directed in the direction of B) consists of specially ordered contributions from configurations
with more and more inverted spins. For N sufficiently large so that the periodic boundary
conditions do no not play a role up to a given order we have

e−βNFN (x,z) =
(
1 + N

z2
x8 + N

2z4
(
(N − 5)x16 + 4x12

)

+ N

6z6
(
(N 2 − 15N + 62)x24 + 12(N − 6)x20 + 36x16

) + . . .

)

123



Ising Model with a Magnetic Field Page 3 of 13 152

=
(
1 + x8

z2
+ x12(1 − x4)2

z4
+ x16(1 − x4)(−8x4 + 6)

z6
+ . . .

)N

(5)

where we ordered terms by increasing powers of z−2 and the polynomial in parentheses is
finite with the last term equal to z−2N .

The task is to calculate the thermodynamic limit of the expression in parentheses

exp( f ∞(x, z)) = lim
N→∞ exp(−βFN (x, z)) = exp

⎛

⎝
∑

m,k

Cm,k x
4mz−2k

⎞

⎠ (6)

For example

exp( f ∞(1, z)) = 1 + 1

z2
(7)

The famous result of Onsager [2] gives the full result for the case z = 1 (B = 0):

exp( f ∞
Ons(x)) = lim

z→1
exp( f ∞(x, z)) = (1+x4) exp

(
−

∞∑

n=1

(
(2n)!
(n!)2

)2 1

4n

(
y

4(1 + y)2

)n
)

(8)
where

y = 4
(

1
x2

− x2
)2 (9)

In the original article the result was expressed in terms of elliptic functions. This result serves
as a check for our results. The beginning of the expansion:

exp( f ∞
Ons(x)) = 1 + x8 + 2x12 + 5x16 + 14x20 + 44x24 + 152x28 + 566x32 + . . . (10)

The result of Yang [3] for the magnetization at B = 0

z
∂ f ∞(x, z)

∂z

∣∣∣∣
z=1

= (
1 − y2

) 1
8 − 1 (11)

although extremely simple was obtained by a very complicated method and it serves as
yet another check on the results. The result for susceptibility z∂z(z∂z( f ∞(x, z)))|z=1 is not
known analytically but only as a beginning of an expansion in x4. There is a large literature on
the calculation of susceptibility, for example in [9] one can find explicitly 38 first coefficients
of the expansion and in [8] one can find asymptotic formulae for susceptibility close to the
scaling limit based on several hundred coefficients—it would be interesting to compare the
numerically known asymptotic behavior of susceptibility close to the scaling limit with the
results of the present paper.

The phase transition for B = 0 occurs for a temperaturewhen the expression in parentheses
in (8) diverges:

y = 1 ⇒ x4c + x−4
c = 6 ⇒ x4c = 3 − 2

√
2 (12)

The formula for the partition function when B �= 0 is not analytically known.

3 Combinatorial and Symbolic Algorithms

We consider a square lattice L× L on the torus and define configuration σ as any assignment
of values σi, j , spanning the set {0, 1}, to the lattice nodes i, j ∈ [0, L−1]. Let C(σ ) be a
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circumference function on σ , defined as follows:

C(σ ) =
L−1∑

i=0

L−1∑

j=0

(σi, j ⊕ σi, j+1mod L + σi, j ⊕ σi+1mod L, j ) (13)

where ⊕ denotes exclusive OR. Finding the formula proposed in this work requires deter-
mining the number of configurations σ with a given value of C(σ ) for a fixed number m
of ones in the σi, j set and a given torus size L . The problem is computationally extensive,
especially in the parameter range of interest. The total number of such configurations for a

givenm and L is
(L2

m

)
. Below we present two variants of an algorithm for finding the required

number of configurations and describe their respective differences.

Algorithm variant I

We denote by a the number of configurations σ sharing the same value of q = C(σ ),
for a given m and L. The total number of configurations for m = 10 and L = 21 is
69180774489220679208. Sample values of q and a are shown in the table below.

q a

14 13230
16 397782
18 17229870
· · · · · ·
36 3728300274453675564
38 19491600033692972892
40 45521466242717189340

The main idea of the proposed algorithm is to represent each configuration σ as an L-
element sequence p = [p1, p2, . . . pL ] of sums over the rows (or columns) of the torus
lattice, i.e.

∑L
i=1 pi = m, pi ∈ {0, 1, . . . L}. Thus, each element of the sequence is equal

to the number of ones in the corresponding row (or column). Considering that the studied
values of m and L are of the same order, there are many sequences p with multiple zero
values. We introduce a polynomial g:

g(x) =
∑

i

ai x
qi (14)

where: qi the value of C(σ )

ai the number of configurations σ with a given value of qi
We observe, that the number of configurations having the same value of theC(σ ) function

can be calculated by determining the polynomial g. Further, we find that the polynomial g(x)
can be formulated as an expression of polynomials gk(x) representing all subsequences Gk

of the sequence p separated by one or more consecutive zeros or ones. For the separator
0, this expression is the product of polynomials representing individual subsequences Gk ,
while for the separator 1 an analogous algebraic formula can be given.

For sequenceswith a size equal to the size of the torus L , the algorithm should be run for all
the sequences of length p0 and the computation of the final output should take into account
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the correspondence of the values for p0 and pL−1. Example: for L = 21 and sequence
p = [2, 3, 7, 5, 3], the polynomial representation is of the form:

g(x) = 1890x24 + 35469x26 + 513429x28 + 6059214x30

+60282390x32 + 532295715x34

+4216243920x36 + 30319386972x38

+198904938603x40 + 1191973363014x42

+6515264362656x44 + 32349141844341x46

+145002536779275x48 + 581984976967422x50

+2071038766883856x52 + 6459065687883018x54

+17419061247080493x56 + 40019991455704323x58

+77114090303006253x60 + 122702527182508161x62

+158880959047544181x64 + 165175913830079061x66

+136114567514444358x68 + 87688385553126582x70

+43396295154271416x72 + 16078044280858812x74

+4267980947851488x76 + 742151135328120x78 + 65807307035568x80(15)

Finding polynomial representations gk(x) for all Gk groups is computationally extensive.
The naive approach requires reviewing all configurations that make up a Gk group. Work is
underway to develop amore efficient algebraicmethod reducing the search space of sequences
and number of matrix operations.

We can observe that the generating function g(x) is invariant to certain transformations
of the subsequences Gk . These transformations include:

• Rotation In torus topology, a sequence canbe started at anygiven index; all such sequences
are equivalent, e.g. (p0, p1,..., p j ,... pm) is equivalent to (p j ,... pm , p0,..., p j−1)

• Inversion Of any subsequence Gk—Any subsequence (m0... m j−1, m j ) is equivalent to
subsequence (m j , m j−1... m0)

• Translation Elements of the zero subsequences (separators) can be shifted between those
subsequences, as long as each separator subsequence contains at least one element.

• Swap All sequences constructed by swapping entire subsequences Gk are equivalent to
the original sequence p.

Given a sequence, we can formulate an algorithm for finding the number of such transfor-
mations. Moreover, we can designate a sequence representing the group of sequences sharing
the same value of C(σ ), resulting from invariant transformations, and use it in downstream
computations. Intermediate results for subsequences Gk shared across groups p are reused
to reduce computational complexity. The final result for a sequence p is calculated based on
the values found for all its subsequences Gk .

Variant II

In this algorithm variant we fix the values of L and q=C(σ ) and look for the number of
configurations a withm ones, for all values ofm. We note that for a given value of C , we can
reduce computational complexity by performing the calculations on a lattice of size C

2 + 1.
Below is an example for C = 36 and L = 19
Next, for a perimeter C , we define Cv and Ch , denoting, respectively, the number of

vertical and horizontal lattice edges on C :
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m a

81 361
80 2166
79 7942
· · · · · ·
11 586185684966484668
10 682914380225164860
9 172190699515632837

Ch = [Ch1,Ch2, . . . ,Chn]
where Chi is the number of horizontal edges in column i .
Similarly to variant I, we can use symmetries in sequencesCv andCh to reduce the complexity
of the algorithm (in this method for separator 0 only).We observe that these symmetries allow
to perform computations for Ch in the range of 1, . . . , �C

4 � and reuse the results for higher
values (�...� is the floor function).
The above algorithm can be implemented as separate tasks performed on a computing cluster.
These tasks, i.e., finding symmetries, calculating the value of the polynomial generating
function and construction of the final solution are easily parallelizable and can be run on
GPUs.

The algorithms described were devised and implemented for the square Ising model with
the magnetic field but their possible scope of applications (with eventual modifications)
is much wider—different spin configurations, different boundary conditions, extension to
higher spins etc.

4 Results

We assume that x ≤ 1 and z ≥ 1 so all the expansions are in positive powers of x and
negative powers of z. We will present the results in two different expansions: all powers of
x up to a given inverse power of z (in our case up to z−60) and all inverse powers of z up to
a given power of x (in our case up to x88).

4.1 Expansion in Inverse Powers of z

As it turns out it is much better to expand the partition function (5) in inverse powers of
z2 + x8 and not z2. It is a new result that the polynomials being coefficients of the expansion
are divisible by the growing powers of (1 − x4):

z2 exp( f ∞) = z2 + x8 +
∞∑

k=1

(1 − x4)�k/2�+1x4l Mk(x4)

(z2 + x8)k
(16)

where Mk(x4) are ‘magnetic’ polynomials of degree (2k + 1 − �k/2� − l) with integer
coefficients and

l = �√4k + 3� + 1 (17)

In the Appendix all Mk polynomials are given up to k = 29 what corresponds to exp( f ∞)

up to z−60. Thanks to the powers of x and (1 − x4) in front of Mk in (16) the number of
polynomial coefficients to be calculated at each order of z−2k is greatly reduced in comparison
to the usual expansion in inverse powers of z2.
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The fact that the coefficients have to be divisible by a growing power of (1− x4) is a very
powerful check on calculations.

4.2 Expansion in Powers of x

The expansion reads

exp( f ∞) = 1 +
∞∑

k=1

x8k

z2k2
Ps
k

(
z2

) + 2
∞∑

k=1

x8k+4

z2k(k+1)
Pr
k

(
z2

)
(18)

The superscripts s and r stand for ‘square’ and ‘rectangle’ since the first class starts from a
square k×k and the subsequent powers of z2 correspond to reversing spins keeping the same
perimeter and the second class starts from two rectangles k × (k + 1) and (k + 1) × k and
again the subsequent powers of z2 correspond to reversing spins keeping the same perimeter.
Since the expansion is for exp( f ∞) we include the ‘disconnected diagrams’.

We quote first few polynomials (they were calculated up to Ps
11 and Pr

10 but they are too
long to be presented here)

Ps
1 = 1

Ps
2 = 1 + 6z2 − 2z4

Ps
3 = 1 + 6z2 + 22z4 + 40z6 + 44z8 − 77z10 + 8z12

Ps
4 = 1 + 6z2 + 22z4 + 68z6 + 151z8 + 310z10 + 462z12

+546z14 + 221z16 − 424z18 − 1556z20 + 799z22 − 40z24

Ps
5 = 1 + 6z2 + 22z4 + 68z6 + 187z8 + 426z10 + 914z12 + 1728z14 + 2979z16

+4572z18 + 6426z20 + 7444z22 + 7557z24 + 3699z26 − 2696z28 − 14444z30

−18964z32 − 13598z34 + 30348z36 − 7672z38 + 225z40 (19)

The polynomials Ps
k are of degree k(k − 1) in z2. These polynomials are the result of

calculations but the lowest coefficients in these polynomials can be understood analytically.
For example the first nontrivial term, 6z2, in Ps

k with the prefactor x8k (i.e. perimeter 4k): we
start from a very large lattice of spins (much bigger than k × k) pointing in the direction of B
and a square k × k with k2 spins pointing in the direction opposite to B—hence the prefactor
z−2k2 . The next term corresponds to reversing the spins of four corners of the square and
adding two rectangles (k−1)×(k+1) and (k+1)×(k−1)with all six contributions having
the same perimeter but one spin less pointing in the direction opposite of B—hence the term
6z2. The next term, 22z4, can be explained as coming from six pairs of reversed spins in
the disjoint corners of the square, eight pairs of reversed adjacent spins in the corners of the
square and eight reversed in the corners of the two rectangles all of which have again the
same perimeter 4k. For higher and higher terms the analysis gets more and more involved.

The second set:

Pr
1 = 1

Pr
2 = 1 + 4z2 + 9z4 − 7z6

Pr
3 = 1 + 4z2 + 15z4 + 36z6 + 67z8 + 69z10 + 20z12 − 185z14 + 49z16
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Pr
4 = 1 + 4z2 + 15z4 + 44z6 + 109z8 + 228z10 + 432z12 + 671z14 + 951z16

+948z18 + 615z20 − 611z22 − 1854z24 − 2735z26 + 2652z28 − 353z30

Pr
5 = 1 + 4z2 + 15z4 + 44z6 + 119z8 + 280z10 + 604z12 + 1204z14 + 2236z16 + 3787z18

+6088z20 + 8873z22 + 12000z24 + 14487z26 + 15697z28 + 12729z30 + 6636z32

−8736z34 − 24893z36 − 43974z38 − 32931z40 − 347z42

+75787z44 − 32552z46 + 2602z48 (20)

The polynomials Pr
k are of degree (k2−1) in z2. Analysis analogous to Ps

k gives the prefactor
x8k+4 from the perimeter (4k + 2), z−2k(k+1) from the number k(k + 1) of reversed spins
and 2 from the two rectangles k × (k + 1) and (k + 1) × k that we start with. Then the first
nontrivial term 8z2 corresponds to removing eight corners of any of these two rectangles.

These polynomials for z = 1 should match the expansion (10) and the derivatives ∂z at
z = 1 the expansion (11) what are very useful checks on the calculation.

We can note that some patterns emerge (what seems to be related to [10]). For Ps we have

As =
∞∏

m=1

(
1−z2m

)−3(1+z2m
)(
1+z4m−2)2 = 1+6z2+22z4+68z6+187z8+470z10+. . .

(21)
while for Pr we have

Ar =
∞∏

m=1

(
1− z2m

)−3(1+ z2m
)(
1+ z4m

)2 = 1+4z2+15z4+44z6+119z8+292z10+ . . .

(22)
k first terms of these expansions are exact in Pk (checked up to k = 10). The existence of
these ‘θ -function like’ patterns reproducing (19) and (20) is extremely intriguing but we were
unable to justify this heuristic observation.

5 Conclusions

It is pointed out that, unexpectedly, polynomials in the expansion of the free energy in the
thermodynamical limit in inverse powers of (z2+ x8) have to be divisible by growing powers
of (1 − x4). Not only does it provide a new and powerful check on the calculations but also
gives a hint about the intriguing ‘off-diagonal’ correlations in the Ising model mixing the
B �= 0 contributions with the usual low temperature B = 0 expansion what may be useful on
the road to find the full analytic expression for the partition function of the Ising model with
non-vanishing magnetic field. The patterns that are suggested by the results are not easy to
justify. Several combinatorial algorithms are proposed in the paper that make the calculations
of the expansion in x4 and z−2 feasible also for large powers, in the present case up to x88

and z−60.
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Appendix

We quote here results for polynomials Mk in a vector-like notation (for example M3 =
−26x8 + 20x4 + 1)

M1 = [2]
M2 = [6]
M3 = [−26,+20,+1]
M4 = [−127,+71,+8]
M5 = [672,−898,+204,+46,+2]
M6 = [3748,−4166,+588,+236,+22]
M7 = [−21717,+40932,−20522,+22,+949,+158,+6]
M8 = [−129520,+214612,−86971,−6965,+3771,+963,+77,+1]
M9 = [790148,−1918820,+1483560,−290292,−75786,+7222,+4606,+620,+30]
M10 = [4909146,−10797042,+7255634,−903474,

−449562,−1444,+21452,+4194,+358,+8]
M11 = [−30962104,+91955736,−95989312,

+36734982,+648594,−2197024,−287998,+61648,

+21974,+2930,+163,+2]
M12 = [−197754011,+541893587,−509230276,

+159559562,+16827439,−9743791,−2212687,+134119,

+112320,+20670,+1840,+68]
M13 = [1276651444,−4481462006,+5888629732,

−3336912386,+507888490,+182860044,−23454082,

−13707312,−907960,+373298,+113368,+14924,+1018,+22]
M14 = [8318116584,−27285459280,+32957952130,

−16392095652,+1420088296,+1094499026,−29149932,

−71932170,−9874482,+1086016,+610844,+107522,+10576,+504,+6]
M15 = [−54634033876,+221269623968,−350446626494,

+262519589328,−79805854962,−4861680892,+5602322995,

+694349132,−263792358,−74494034,

−3086437,+2210278,+600766,+82994,+6436,+226,+1]
M16 = [−361378718275,+1380363366137,−2037841061807,
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+1384516957207,−339726098694,−55777196860,

+25372379516,+5805545546,−897872662,

−441674754,−47589784,+7375250,+3339024,+597356

+63150,+3786,+88]
M17 = [2405313770932,−11038725876010,

+20459076402020,−19040080044628,+8543166176964,

−903999792052,−525107576520,

+61065093712,+40791836918,+845399686,−1929749934,

−415522266,−9391836,+12526844,+3342076,+479050,+42310,+1998,+30]
M18 = [16098926860110,−70172478945796,

+122441621521438,−105355508621080,+41389850278064,

−1648391207328,−3057071838208,

+68416975072,+223799676324,+22196957534,−8094930430,

−2677483506,−236138658,+44220938,

+18826588,+3425970,+392744,+27836,+994,+8]
M19 = [−108290356982558,+555344393668748,

−1178908721924776,+1310506856226150,−773054140102735,

+187057690111770,+23737054642583,−15340462008456,

−2164035828619,+906559319200,+230416622979,

−9994439316,−13061798808,−2320605406,

−36934929,+71656310,+19005030,+2868946,

+281288,+16690,+446,+2]
M20 = [−731709152575266,+3583691663824842,

−7215834429918597,+7511351606333315,−4020817476109895,

+754624227467905,+199817398773030,

−68254814924066,−17763048105609,+3420212152505,

+1483524029646,+64084853768,

−61312916779,−15954041785,−1297876625,+258289635,

+107459861,+20251417,+2492448,+203458,+9669,+187]
M21 = [4964332892833076,−28133197238821276,

+67300104285722984,−86967841632955304,+63409242872814544,

−23227587332928562,+1282793709832898,

+1633811587499322,−141181775899838,−128951641183966,

−20889333998,+7497910244412,+1233681714920,

−139104499720,−83484077492,−13561032290,

−189970950,+406807266,+110581872,

+17543456,+1891370,+133302,+5220,+68]
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M22 = [33806425311358576,−183784999141304612,

+419441020752357056,−512186890035532240,

+345770183378931912,−109630452562120848,

−1850647584517146,+9156720168793754,

+6423972242588,−712904992664848,

−58479322658924,+35025628260858,+9163417307794,

−19815098902,−420731560818,−97058895924,

−7619414314,+1451363340,+622280014,

+121910606,+16074882,+1472434,+87116,+2672,+22]
M23 = [−231002135440625862,+1433527032947567734,

−3815298343135201792,+5618371348540121274,

−4871765425756103964,+2362188884960645290,

−442366800051964037,−101294787760528598,

+43417616564427070,+7812114469414480,

−2976770019731457,−749191359290512,+77875540897627,

+54218018148624,+6153037058657,−1185771757596,

−530935259095,−81477374178,−1480726011,

+2309686974,+651875220,+109083958,

+12763607,+1037766,+52682,+1280,+6]
M24 = [−1583399340278954651,+9460737607397274677,

−24134353285045153077,+33813801413498875831,

−27501553341656639662,+12050255919780550394,

−1607301963657594836,−726904753275546804,

+184680190402757457,+60174098606851379,

−11473990972644543,−5009669037017009,+12735920920357,

+285895458704795,+53486341877765,−2051140106911,

−2803468862361,−598420478189,−48109704122,

+7935239290,+3627508821,+744530445,

+104559030,+10596356,+740911,+31323,+573,+1]
M25 = [10884693554643712676,−73408493920695886416,

+215138537745134201932,−355570454909753125570,

+357103032988949049906,−214328467366164680836,

+64567557020250901584,+228548135860027346,

−5265821888538578210,+253687998047700046,

+427429310958499346,−501271321184990,

−27408275155779494,−3659877703088848,

+943054815105740,+359954610770776,+30565891166372,

−8899098709344,−3360517710786,−506170836250,

−13059082862,+13002527194,+3882970500,
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+684708784,+86427172,+7894994,+489364,+17482,+238]
M26 = [75023767231490887760,−488660853060009343032,

+1377925415966711605784,−2178315228912642170888,

+2070673377503681101816,−1148980256371538905758,

+292961540923992725710,+26341406176661537010,

−28304903123365607242,−1030596163346967024,

+2333973697794365800,+191703897534125510,

−133844798062631704,−30442763983477720,

+2606201078299228,+2071780266912860,+311510001837782,

−22229279045734,−18311342994990,−3760877228382,

−318456407120,+41528232630,+21240981966,

+4584117448,+684494924,

+75675474,+6068030,+323702,+9470,+88]
M27 = [−518387340284430020982,+3775214669775049458940,

−12080269916586873168565,

+22140347000608754568532,−25260985204632789248215,

+18023658430925469281484,

−7329903378160861110362,+986223728074131506460,

+405624770544599070446,−123088111078947203624,

−30082516832441395322,+9605253074632342476,

+2605393325962197790,−353394764167166122,

−206701805068231974,−13272731638989550,

+8193340046502774,+2333066803917066,+150374885081637,

−62190085554868,−21382632293001,−3221034789466,

−116895226723,+72410084592,+23228937643,

+4328229458,+585088983,+59075406,

+4283674,+201146,+4830,+30]
M28 = [−3590108432622951335298,

+25316711368627966131280,−78193774533394538577742,

+137665082605576918870268,

−149668962863483902296618,+100129697659420156389018,

−36473851175828928140444,+2827989074975941570096,

+2635617061417455768228,−484642268458852715614,

−215683514441037098382,+36180049358445857954,

+17516655316608837166,−499261046232278414,

−1157452959278185582,−161390856308545356,

+30521581731227784,+14347371277456244,+1820693303869872,

−181349647442526,−118851006417810,−23981903472220,

−2184932637755,+204318017033,+124188237123,
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+28381423145,+4492794909,+536972689,

+48246770,+3082978,+123720,+2364,+8]
M29 = [24916720841121272335455,

−194872736057505425718283,+676021920366590339436897,

−1360614197832345026365699,

+1737752621990791202659455,−1434497151968629767087049,

+727833639756935607952019,

−178359188031595289400347,−13902310991614079140589,

+17152335076288853934005,−62341671204066640193,

−1457875370765181192375,−16446304149487078165,

+99084515754960031017,+11710272000335370753,

−4468603849628970737,−1374367733467125552,

−20272394137876164,+63544611331515132,

+14930319863373106,+761005460460104,−419902307917166,

−136622370428724,−20941545546944,−1005546596232,

+394440900824,+139191902302,+27445654000,

+3956479826,+435716300,+35938242,

+2071258,+72244,+1084,+2]
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