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Abstract
In this paperwe consider a stochasticmodel of bacterial population growthwith antimicrobial
resistance under the influence of random fluctuations. We analyze the model for the problem
of persistence and extinction of bacterial cells. This analysis shows asymptotic extinction and
conditional persistence for growing population. Moreover, we perform computer simulations
in order to illustrate the model behavior. The model results have important implications for
the eradication of bacterial cells and the emergence of resistance.
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1 Introduction

The dynamics of growth of bacteria and other microbes treated with antibiotic drugs is
complex andmultifaced. For a recent study see [1], inwhich the authors used a compartmental
model to explore three scenarios by which bacteria develop antimicrobial resistance: point
mutations, plasmid mediated horizontal gene transfer via conjugation, and either mutation or
horizontal gene transfer resulting in resistance to the same class of antibiotic, using examples
motivated by a study of Escherichia coli. Other studies can be found in [2, 3]. Authors of
[2] characterized and built a model of the inoculum effect in E. coli cultures using a large
variety of antimicrobials, where the outcome of a antibiotic treatment on the growth capacity
of bacteria is largely dependent on the inoculum effect. In [3], the authors used a theoretical
model to predict the dynamical response of a bacterial cell to a time-dependent dose of
ribosome-targeting antibiotic.

Besides, it was found that bactericidal drugs induce demographic and environmental
stochasticity, and thus the population size fluctuates over time [4, 5]. Authors of [4] used the
Markovian birth-and-deathmodel to demonstrate the stochastic nature of eradicating bacteria
with antibiotics. In [5], stochastic response of bacterial cells to antibiotics was justified and its
mechanisms and implications for population and evolutionary dynamicswere shown.Also, in
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[6], the emergence of drug resistance both in bacterial colonies and in malignant tumors was
discussed. Particularly, it was shown that individual resistant mutants emerge randomly dur-
ing the birth events of an exponentially growing sensitive population. Overall, many factors
can affect bacterial susceptibility to antibiotics such as cell-to-cell heterogeneity as well as
mutations, which lead to the stochastic growth and stochastic fluctuations in population size.
These fluctuations have important implications for the extinction and persistence of bacterial
cells. Also, stochastic influences were justified in various population growth models. Some
examples can be found in [7–18]. With such different models, the effect of the stochastic
noise in the growth dynamics has been studied analytically and numerically. In such models,
the stochastic characters have been found and discussed, such as the stationary probability
distribution, mean first passage time, resonant activation, noise enhanced stability, stochastic
resonance. Also, other stochastic growth models can be found in [19, 20].

In this paper, we study a stochastic bacterial population growth model under the influence
of random fluctuations. Such a model is a simplified form of the model presented in [1] and
describes the growth dynamics of bacterial population with antibiotic resistance. We mainly
investigate the effect of multiplicative random noise on the growth dynamics especially
extinction and persistence of bacterial cells. Similar models have also been considered by
different authors can be found in [21–23].Authors of [21] formulated continuous timeMarkov
chain models using ODE models and analyzed the extinction probability for a cancer cell.
They also used computer simulations to examine the effect of chemotherapy when applied
to the different growth models. In [22] the authors derived and analyzed the time-dependent
probability density function for the number of individuals in a population at a given time in a
general logistic population model with harvesting effort using the Fokker–Planck equation.
Authors of [23] studied the stochastic logistic-harvest population model with and without
the Allee effect. With the help of the associated Fokker–Planck equation, they analyzed the
population extinction probability and the probability of reaching a large population size and
studied analytically and numerically the impact of the harvest rate, noise intensity, and the
Allee effect on population evolution. In the case considered here we focus on long time
behavior of the process solution.

The significance and novelty of this research work are follows.

• We proposed this stochastic model based on the deterministic within-host model [1] of
antibiotic resistance, which consists of the two/three equations for the strains of bacteria.

• This simple model is able to capture the stochastic dynamics of bacterial population
with antimicrobial resistance. Also, of that mentioned above, it is different from that for
instance in [4] where theMarkovian birth-and-death model has been used to demonstrate
the stochastic nature of eradicating bacteria with antibiotics using the master equation.

• Here,we studied the longtime behavior to obtain a threshold for extinction and persistence
of bacterial cells.

The advantages of this model are (i) it demonstrate the stochastic effect of eradicating bac-
teria with antibiotics and (ii) it has significant implications for the prediction of treatment
outcomes.

In practice, the results obtained enable us to understand the stochastic dynamics of the
bacterial cells and effects of the anti-microbial treatments, which also gives us insights on
how to eliminate bacterial cells. As a result, for instance we obtain a threshold which depends
on the intrinsic growth rate, the antimicrobial rate and the noise intensity rate. Regarding the
threshold, we find that decreasing the intrinsic growth rate of bacterial cells or increasing the
noise intensity rate or the antimicrobial rate lead to the elimination of bacterial cells.
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The rest of this paper is organized as follows. In Sect. 2, we introduce the stochastic
differential equation model. In Sect. 3, we analyze the steady probability distribution. In
Sect. 4, we analyze the extinction and persistence of bacterial cells. In Sect. 5 we verify and
illustrate the model behavior by computer simulations. Section6 contains a conclusion.

2 The Stochastic Differential EquationModel

In this section we introduce a stochastic model for bacterial growth with antibiotics. Differ-
ent deterministic differential equation models for bacterial growth have been proposed and
studied. Commonly used are logistic type growth models

dx

dt
= (α − βx) x, (1)

where x denotes the bacterial population density at time t , α is the per capita maximum
fertility rate of population, β denotes the strength of intra-competition of population. During
antimicrobial resistance the bacterial growth kinetics is perturbed by the antibiotic drug,
which can be described by a loss term −γ x , where γ is the antimicrobial rate. Taking into
account the effect of antimicrobial resistance leads to the model

dx

dt
= (α − βx) x − γ x . (2)

To study the bacterial evolution in stochastic environment, we assume that random fluctua-
tions, such as rapid environmental changes, affect the system through external parameters.
In this case, we suppose that, as random perturbations, the intrinsic growth parameter α in
model (2) is regarded as a random variable in the form

α̃ = α + σξ(t), (3)

where α is the mean intrinsic growth rate, ξ is Gaussian white noise, and σ is the intensity of
the noise. Then, equation (2) is replaced by stochastic differential equation for the random
process X in the form

dX = ((α − βX) X − γ X) dt + σ XdW (t), X(0) = x0, (4)

where dW (t) = ξ(t)dt . Here, W is defined on complete probability space (�,F, P)

equipped with the natural filtration (Ft )t≥0 associated to the Wiener process. It is assumed
that the variable x is dimensionless, i.e., the equation describes changes in relative bacterial
population size.

3 Analysis for Steady Probability Distribution

In this section we analyze the steady state probability density of bacterial cells. First, we
observe that the deterministic model can be written

dx

dt
= −∂V

∂x
,

where V is the potential function defined by

V (x) = −η

2
x2 + β

3
x3,
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Fig. 1 Plot of the effective potential V as a function of the population size x , where a α = 1.0, β = 0.1, b
α = 0.50, β = 0.05, c α = 0.1, β = 0.01, d α = 0.05, β = 0.005 and γ = 0.02

where η = α − γ , see Fig. 1. The potential function has a local minimum corresponding
to the stable equilibrium and a local maximum at x = 0, which is an unstable equilibrium
if α − γ > 0. For α − γ > 0, the bacterial population converges to the stable equilibrium
xs = (α − γ )/β. We observe that the population x(t) tends to 0, the state of extinction,
namely there is not bacterial cells, if and only if α/γ ≤ 1; while in the stable state α/γ > 1,
namely the bacterial cells exist and stay at a certain level. Thus, the system is bistable and
the bistable feature of system depends on the parameter γ .

Now, the transitional probability density P(x, t) satisfies the correspondingFokker-Planck
equation

∂P(x, t)

∂t
= − ∂

∂x
f (x)P(x, t) + σ 2

2
x2P(x, t), (5)

where f (x) = (η − βx)x . Then, the steady state probability Ps(x) density can be obtained
from (5) as in [24] and can be written as

Ps(x) = Nsx
2
(
(α−γ )/σ 2−1

)
exp

(
−2βx

σ 2

)
, (6)

where Ns is a normalizing constant. Note that the probability density (6) is normalized for
η => σ 2/2. At σ 2/2 < η < σ 2 the probability density is divergent at x = 0, and we have a
nose induced phase transition at the point η = σ 2, see Fig. 2.

Next, we simulate the steady-state probability Ps(x) density of bacterial cells for different
noise intensities σ 2 and antimicrobial parameter γ . In Fig. 2, we plot the steady-state proba-
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Fig. 2 This figure shows the steady probability probability Ps (x) density of bacterial cells X(t) for α =
0.05, β = 0.005, γ = 0.02 and different values of σ 2: a σ 2 = 0.002, b σ 2 = 0.005, c σ 2 = 0.01, and d
σ 2 = 0.04

bility Ps(x) density for given parameters α, β, γ and different noise intensities σ 2. In Fig. 3,
we plot the steady-state probability Ps(x) density varying with antimicrobial parameter and
fixed σ 2. Clearly, the extinction of bacterial cells increases with increase of γ and is the more
probable for large σ 2.

4 Analysis for Extinction and Persistence

In this section we analyze longtime behavior using methods in [25] and present analytical
results concerning the extinction and persistence for the model Eq. (4).

4.1 Extinction

In this subsection we will discus the extinction of the system (4).

Theorem 1 If
α

γ
− σ 2

2γ
< 1 and σ 2 ≤ α, (7)
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Fig. 3 This figure shows the steady probability probability Ps (x) density of bacterial cells X(t) for the same
parameters in figure 1 except σ 2 = 0.004 and different values of γ : a γ = 0.01, b γ = 0.02, c γ = 0.03, and
d γ = 0.047

then for any given initial values X(0) = X0 ∈ (0, α), the solution of the model (2) obeys

lim sup
t→∞

1

t
log(X(t)) ≤ α − γ − σ 2

2
< 0 a.s, (8)

namely, X(t) tends to zero exponentially almost surely.

Proof From the Ito formula, we have

log(X(t)) = log(X0) +
∫ t

0
f (X(s))ds +

∫ t

0
σdW (s), (9)

where f : R → R is defined by

f (x) = α − γ − βx − σ 2

2
. (10)

However, under condition (7), we have

f (X(s)) = α − γ − σ 2

2
− βX(s)

≤ α − γ − σ 2

2
,
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for X(s) ∈ (0, α). It then follows from (9) that

log(X(t)) ≤ log(X0) +
(

α − γ − σ 2

2

)
t +

∫ t

0
σdW (s). (11)

This implies

lim sup
t→∞

1

t
log(X(t)) ≤ α − γ − σ 2

2
+ lim sup

t→∞
1

t

∫ t

0
σdW (s) a.s. (12)

But by the larger number theorem for martingales, we have

lim sup
t→∞

1

t

∫ t

0
σdW (s) = 0 a.s.

We therefore obtain the desired assertion (8) from (12).
The following theorem cover the case when σ 2 > 2(α − γ ). ��

Theorem 2 If
σ 2 > 2(α − γ ), (13)

then for any given initial values X(0) = X0 ∈ (0, α), the solution of the model (2) obeys

lim sup
t→∞

1

t
log(X(t)) ≤ α − γ − σ 2

2
< 0 a.s, (14)

namely, X(t) tends to zero exponentially almost surely.

Proof From the Ito formula, we have

log(X(t)) = log(X0) +
∫ t

0
f (X(s))ds +

∫ t

0
σdW (s), (15)

It then follows that

log(X(t)) ≤ log(X0) +
(

α − γ − σ 2

2

)
t +

∫ t

0
σdW (s). (16)

In the same way as in the proof of Theorem 1, this implies that

lim sup
t→∞

1

t
log(X(t)) ≤ α − γ − σ 2

2
a.s., (17)

Hence, the proof is complete. ��

4.2 Persistence

In this subsection we will discus the persistence of the model system (4).

Theorem 3 If
α

γ
− σ 2

2γ
> 1, (18)

then for any given initial values X(0) = X0 ∈ (0, α), the solution of the model (2) obeys

lim sup
t→∞

X(t) ≥ ξ a.s., (19)
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Fig. 4 This figure shows computer simulation of the sample path X(t) for the model equation (4) (cyan)
and its corresponding deterministic model Eq. (2) (red) with given parameters, using initial values in the left
X(0) = 0.5 and in the right X(0) = 5

and
lim inf
t→∞ X(t) ≤ ξ a.s., (20)

where

ξ = 2(α − γ ) − σ 2

2β
, (21)

which is the unique root in (0, α) of

α − γ − βx − σ 2

2
= 0. (22)

That is, X(t) will rise to or above the level ξ infinitely often with probability one.

Proof We begin to prove assertion (19). If it is not true, then there is a sufficiently small
ε ∈ (0, 1) such that

P(�1) > ε, (23)

where�1 = {
lim supt→∞ X(t) ≤ ξ − 2ε

}
. Hence, for everyω ∈ �1, there is a T = T (ω) >

0 such that
X(t, ω) ≤ ξ − ε whenever t ≥ T (ω). (24)

It therefore follows from (24) that

f (X(t, ω)) ≥ f (ξ − ε) whenever t ≥ T (ω). (25)
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Fig. 5 This figure shows computer simulation of the sample path X(t) for the model equation (4) (cyan)
and its corresponding deterministic model Eq. (2) (red) with given parameters, using initial values in the left
X(0) = 0.5 and in the right X(0) = 5

Moreover, by the large number theorem for martingales, there is a �2 ⊂ � with P(�2) = 1
such that for every ω ∈ �2,

lim
t→∞

1

t

∫ t

0
σdW (s, ω) = 0. (26)

Now, fix any ω ∈ �1 ∩ �2. It then follows from the Ito formula and (25) that, for t ≥ T (ω),

log(X(t, ω)) ≥ log(X0) +
∫ T (ω)

0
f (X(s, ω))ds + f (ξ − ε)(t − T (ω))

+
∫ t

0
σdW (s, ω).

(27)

This yields

lim inf
t→∞

1

t
log(X(t, ω)) ≥ f (ξ − ε) > 0,

whence
lim
t→∞ X(t, ω) = ∞.

But this contradicts (24). We therefore must have the desired assertion (19).
Next we prove assertion (20). If it is not true, then there is a sufficiently small δ ∈ (0, 1)

such that
P(�3) > δ, (28)
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Fig. 6 This figure shows computer simulation of the sample path X(t) for the model equation (4) (cyan)
and its corresponding deterministic model Eq. (2) (red) with given parameters, using initial values in the left
X(0) = 0.5 and in the right X(0) = 5

where�3 = {lim inf t→∞ X(t) ≥ ξ + 2δ}. Hence, for everyω ∈ �3, there is a τ = τ(ω) > 0
such that

X(t, ω) ≥ ξ + δ whenever t ≥ τ(ω). (29)

Now, fix any ω ∈ �3 ∩ �2. It then follows from the Ito formula that, for t ≥ τ(ω),

log(X(t, ω)) ≤ log(X0) +
∫ τ(ω)

0
f (X(s, ω))ds + f (ξ + δ)(t − τ(ω))

+
∫ t

0
σi dW (s, ω).

(30)

This, together with (26), yields

lim sup
t→∞

1

t
log(X(t, ω)) ≤ f (ξ + δ) < 0,

whence
lim
t→∞ X(t, ω) = 0.

But this contradicts (28). We therefore obtain the desired assertion (20). Hence, the proof is
complete. ��
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Fig. 7 This figure shows computer simulation of the sample path X(t) for the model equation (4) (cyan)
and its corresponding deterministic model Eq. (2) (red) with given parameters, using initial values in the left
X(0) = 0.5 and in the right X(0) = 5

5 Computer Simulations

In this section we use the Euler-Maruyama method [26] with the time step 10−2 and present
computer simulations in order to illustrate the model behavior particularly for the extinction
and persistence of the bacterial cells. According to the conditions in Theorems 1, 2 and
3, the extinction and persistence of bacterial cells rely on the parameter space σ and γ .
Figure4 shows the extinction of bacterial cells according to the conditions in Theorem 1 for
the parameters α = 0.05, β = 0.004, γ = 0.035 and σ = 0.2. Figure5 shows the same
result according to the conditions in Theorem 2, with keeping the parameters the same but
let σ = 0.4.

To illustrate the result in Theorem 3, we keep the same parameter values except σ is
reduced to 0.15 from 0.2. The computer simulation in Fig. 6 shows this result, showing
clearly fluctuation around the level ζ = 0.9375. To further illustrate the effect of the noise
intensity, we keep all the parameter values unchanged but reduce σ to σ = 0.04. In Fig. 7,
we show the resulting computation simulation, illustrating clearly the increase of the level
ζ = 3.55 and persistence. Figure8 shows a computer simulation of the distribution of the
solution X(t) in the persistent case for higher and lower σ . In this figure we plot histograms,
showing the distribution of X(t) in the case of σ = 0.15, 0.1, 0.05 and 0.025.
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Fig. 8 This figure shows histograms of the values of the path X(t) for given parameter values with X(0) = 0.5,
and different values of σ

6 Conclusion

In this paper, based on the deterministicmodel equations in [1], we have considered a stochas-
tic model for the dynamics of bacterial population with antimicrobial resistance under the
influence of random fluctuations. We have used the technique of parameter perturbation and
investigated the effect of multiplicative noise on the evolutionary dynamics. We first have
evaluated the steady state probability density of bacterial cells for different noise intensities
and antimicrobial intensities. Then, we have studied the longtime behavior and obtained nec-
essary conditions (a threshold) for extinction and persistence of bacterial cells. Further, the
model behaviors ware illustrated by computer simulations. The obtained results demonstrate
the growth dynamics of the bacterial population which was controlled by the antimicrobial
rate and the noise strength rate. Regarding the results of the threshold, it can be used to
analyze the drug resistance observed in evolving and variable bacterial cell population.

Overall, the principal theoretical implication of this study is that the stochastic model is
capable to define the macroscale properties of the dynamics of bacteria with antimicrobial
resistance, capturing stochastic growth, and identifying the specific response to antibiotic
treatment. This may be important for the use of therapeutic purposes.
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