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Abstract
We report on molecular dynamics simulations of spacetime correlations of the Toda lattice
in thermal equilibrium. The correlations of stretch, momentum, and energy are computed
numerically over a wide range of pressure and temperature. Our numerical results are com-
pared with the predictions from linearized generalized hydrodynamics on the Euler scale.
The system size is N = 3000, 4000 and time t = 600, at which ballistic scaling is well
confirmed. With no adjustable parameters, the numerically obtained scaling functions agree
with the theory within a precision of less than 3.5%.

Keywords Toda lattice · Integrable systems · Generalized hydrodynamics · Correlation
functions

1 Introduction

A central goal of Statistical Mechanics is to explore the structure of equilibrium correlations
for observables of physical interest. These could be static correlations, but more ambitiously
also correlations in spacetime. For our contribution the focus is one-dimensional classical
fluids with a short range interaction potential. Their static correlations have exponential
decay [18, 36]. Spacetime correlations are generically concentrated in three narrow peaks.

The heat peak has zero velocity and broadens in time as t
3
5 . In addition there are the two

sound peaks with velocity±c, c > 0 the isentropic speed of sound. These peaks broadenwith

the characteristic power law t
2
3 [3, 50]. Such super-diffusive spreading is a feature special

for one dimension. However, known are also fine-tuned interaction potentials such that the
mechanical system is integrable. The most famous one is the Calogero fluid for which the
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interaction potential is 1/ sinh2(x) with x denoting the distance between two particles. At
low density the Calogero fluid can be approximated by the Toda chain with interaction 4e−2x

between particles having neighboring labels. The latter system will be at the center of our
investigations. A further model is the hard rod fluid for which the spacetime correlator in
one-particle phase space has been computed exactly [33].

Integrable models have an extensive number of conservation laws. On a very heuristic
level, every conservation law adds a further spectral line travelling with its own characteristic
velocity. Thus for the infinitely extended system, at least to leading order, the spacetime
correlator is expected to scale ballistically and to be governed by a smooth profile. For hard
rods this structure can be deduced from the exact solution. Beyond hard rods no such result
is available. On the theoretical side the situation has improved dramatically through the 2016
construction of generalized hydrodynamics (GHD) [4, 7]. As noted by [12] in the context of
the Lieb-Liniger δ-Bose gas, the ballistic part of the spacetime correlator can be computed
fromGHD linearized at thermal equilibrium.With such predictions a quantitative comparison
between theory and molecular dynamics (MD) simulations is in reach.

The broad spectrum of the spacetime correlator has been observed already in pre-GHD
simulations. As examples we only mention the MD simulation [42] of the Ablowitz-Ladik
model, an integrable discretization of the nonlinear Schrödinger equation, and the MD
simulation [30] of the Toda lattice for few parameter values. Thereby the conventional
Landau-Lifshitz theory is extended froma few to a large number ofmodes.A further extension
concerns initial states which are not spacetime stationary [9], thus not thermal equilibrium.
Linearized GHD is also a powerful tool to investigate the correlations of quantum spin chains
in great detail [11]. From the side of condensed matter physics, the interest is mainly focused
on integrable quantummodels, as the XYZ spin chain and the spin- 12 Fermi-Hubbard model.
Such models are accessible to time-dependent DMRG simulations, see [5, 6] for examples.
The rigid limitations in size and number of equilibrium samples makes the simulation of
correlations a challenging enterprise and often the simulation of macroscopic profiles are
preferred. In recent years, particular attention has been given to the spacetime spin-spin cor-
relation of the XXZ model at half-filling and at the isotropic point [13, 27, 34]. The same
quantity has also been investigated for a discrete classical chain with 3-spins of unit length
and interactions such that the model is integrable [8]. A comparable situation occurs for the
classical sinh-Gordon equation, which is integrable as a nonlinear continuum wave equation
and possesses an integrable discretization, see [2] for MD simulations for equilibrium time
correlations of the discrete model.

For a specific model under study, linearized GHD requires the knowledge of the two-
particle scattering shift, the density of states of the equilibrium Lax matrix, the static
correlator, and the effective velocity of the modes. While the first item is known analytically
for all models, for the other items one has to solve numerically the TBA equation and the
linear integral equation determining the effective velocity. These tasks can be accomplished
with modest numerical efforts. The real challenge are MD simulations of the deterministic
dynamics for sufficiently large system size and with a huge number of samples so to reduce
the unavoidable noise. For the Toda lattice these conditions can be met and we arrive at a
parameter free comparison between MD and linearized GHD.

To provide a brief outline, in the following section we recall the Landau–Lifshitz theory
for the nonintegrable case of three conservation laws. With this input the extension to the
integrable Toda lattice can be graspedmore easily. In Sect. 4we report on ourMDsimulations,
estimate the noise level of data, and compare with the predictions from linearized GHD. The
Toda lattice is simulated with periodic boundary conditions. Thus, the available time span of
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simulation is linearly linked to system size. In particular, with our methods we cannot study
the long time behavior beyond the Euler scale.

2 Landau–Lifshitz Theory

The dynamics of the Toda chain is governed by the hamiltonian

H =
∑

j∈Z

(
1

2
p2j + exp(−(q j+1 − q j ))

)
, (1)

where (q j , p j ) ∈ R
2 are position and momentum of the j-th particle [54, 55]. Introducing

the j-th stretch (free volume) through r j = q j+1 − q j , the equations of motion read

d

dt
r j = p j+1 − p j ,

d

dt
p j = −e−r j + e−r j−1 , j ∈ Z. (2)

By tradition, one introduces coefficients for the range and strength of the interaction potential
through (g/γ ) exp(−γ (q j+1 − q j )). However, by a suitable change of spacetime scales, the
form (2) can be regained, see the discussion in Sect. 5. The Toda hamiltonian has no free
parameters. Since the equilibrium measure for (1) is of product form, static correlations are
easily accessible. Time correlations are more challenging, see [46, 47] for early attempts.
A novel approach relies on GHD. The guiding idea is to first identify the hydrodynamic
equations for the Toda chain, which by necessity are a set of nonlinear coupled hyperbolic
conservation laws. Given such an input one can construct the corresponding Landau-Lifshitz
theory [17, 32], as based on linearized GHD.

Before entering into details, it will be useful to first recall the Landau-Lifshitz theory for
a chain with a generic interaction potential, denoted by V (for the Toda lattice V (x) = e−x ),
see [50] and references listed therein. Thus in (1) the interaction term reads V (q j+1 − q j )

and the equations of motion become

d

dt
r j = p j+1 − p j ,

d

dt
p j = V ′(r j ) − V ′(r j−1). (3)

To define spacetime correlations we first have to specify the random initial data modelling
thermal equilibrium. ByGalileian invariance one restricts to the case of zero averagemomen-
tum.Then theGibbs states are characterized by the inverse temperatureβ > 0 and a parameter
P such that the physical pressure equals P/β. For simplicity, we will refer to P also as pres-
sure. The allowed range of P depends on V . If V diverges faster than |x | for |x | → ∞, then
P ∈ R. For the Toda lattice P > 0 because of the one-sided divergence of the exponential. In
thermal equilibrium {(r j , p j ), j ∈ Z} are a collection of i.i.d. random variables with single
site probability density

Z0(P, β)−1 exp

(
−β

(
1

2
p20 + V (r0)

)
− Pr0

)
. (4)

Here Z0(P, β) is the normalizing partition function. Note that, with our convention, P and
β appear linearly in the exponent. Expectations with respect to such i.i.d. random variables
are denoted by 〈·〉P,β . We also shorten the notation for the covariance through 〈X1X2〉cP,β =
〈X1X2〉P,β −〈X1〉P,β〈X2〉P,β , where the particular random variables X1, X2 will be obvious
from the context.
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For general V , the conserved fields are stretch, momentum, and energy with densities

Q( j) = (
r j , p j , e j

)
, e j = 1

2
p2j + Vj , (5)

using as shorthand Vj = V (r j ).Q is a three-vector with components labeled by n = 0, 1, 2.
The static space correlator is defined through

Cm,n( j) = 〈Qm( j)Qn(0)〉cP,β (6)

and the static susceptibility by summing over space,

Cm,n =
∑

j∈Z
〈Qm( j)Qn(0)〉cP,β , (7)

m, n = 0, 1, 2. Since the underlying measure is product, only the j = 0 term is nonvanishing
and

C =
⎛

⎝
〈r0r0〉cP,β 0 〈r0e0〉cP,β

[0.5ex]0 〈p0 p0〉cP,β 0
[0.5ex]〈r0e0〉cP,β 0 〈e0e0〉cP,β

⎞

⎠ , (8)

the zero entries resulting from 〈p0〉P,β = 0, 〈p30〉P,β = 0, and r0, p0 being independent
random variables. Later on we will need the statistical properties of the conserved fields on
the hydrodynamic scale.More precisely, for smooth test functions f , we consider the random
field

ξ ε( f ) = √
ε
∑

j∈Z
f (ε j)

(
Q( j) − 〈Q(0)〉P,β

)
. (9)

Then, by the central limit theorem for independent random variables,

lim
ε→0

ξ ε( f ) =
∫

R

dx f (x)u(x), (10)

where the limit field u(x) is a Gaussian random field on R with mean zero, E(u(x)) = 0,
and covariance

E(um(x)un(x
′)) = Cm,nδ(x − x ′), (11)

in other words, u(x) is Gaussian white noise with correlated components.
Microscopically, spacetime correlations are defined by evolving one of the observables to

time t which yields
Sm,n( j, t) = 〈Qm( j, t)Qn(0, 0)〉cP,β . (12)

Note that the Gibbs measure is spacetime stationary and thus without loss of generality both
arguments in Qn in (12) can be taken as (0, 0). To understand the structure of Sm,n one
has to rely on approximations. For the long time ballistic regime a standard scheme is the
Landau-Lifshitz theory, which views Qn(0, 0) as a small perturbation of the initial Gibbs
measure at the origin. This perturbation will propagate and is then probed by the average of
Qm at the spacetime point ( j, t). For large ( j, t) the microscopic dynamics is approximated
by the Euler equations, but only in their linearized version since the perturbation is small.
More concretely, the approximate theory will be a continuum field u(x, t) overR×R, which
is governed by

∂tu(x, t) + A∂xu(x, t) = 0 , (13)

with random initial conditions as specified in (11). The 3× 3 flux Jacobian A is constant, i.e.
independent of (x, t). To explain the structure of A requires some further efforts. We refer to
[50] for more details and proofs of the key identities.
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From the equations of motion one infers that to each density Qn( j, t) there is a current
density Jn( j, t) such that

d

dt
Qn( j, t) + Jn( j, t) − Jn( j − 1, t) = 0. (14)

Explicitly, the current densities are

J( j) = −(p j , V
′
j−1, p j V

′
j−1), (15)

where we adopted the convention that omission of time argument t means time 0 fields. One
then defines the static current-conserved field correlator

Bm,n( j) = 〈Jm( j)Qn(0)〉cP,β , (16)

and the corresponding susceptibility

Bm,n =
∑

j∈Z
〈Jm( j)Qn(0)〉cP,β . (17)

Despite its asymmetric looking definition,

Bm,n = Bn,m . (18)

As a general property, Euler equations are built on thermally averaged currents. Linearizing
them with respect to the average fields yields

A = BC−1. (19)

Here B appears when differentiating the average currents with respect to the chemical poten-
tials andC−1 when switching from intensive to extensive variables. By constructionC = CT

and C > 0, in addition B = BT according to (18). Hence

A = C1/2C−1/2BC−1/2C−1/2, (20)

which ensures that A has real eigenvalues and a complete set of left-right eigenvectors.
Anharmonic lattices are symmetric under time reversal, which implies the eigenvalues
c = (−c, 0, c), with c > 0 the isentropic speed of sound. We denote the right, resp. left
eigenvectors of A by |ψα〉 and 〈ψ̃α|, α = 0, 1, 2. With this input the solution to (13) with
initial conditions (11) reads

SLL
m,n(x, t) = E

(
um(x, t)un(0, 0)

)

= (δ(x − At)C)m,n =
2∑

α=0

δ(x − cαt)(|ψα〉〈ψ̃α|C)m,n (21)

with m, n = 0, 1, 2. There are three δ-peaks, the heat peak standing still and two sound
peaks propagating in opposite directions with speed c. Specifying m, n, each peak has a
signed weight which depends on C and the left-right eigenvectors of A.

The Landau-Lifshitz theory asserts that the microscopic correlator

Sm,n( j, t) 	 SLL
m,n(x, t) (22)

for j = 
xt�, 
·� denoting integer part, with t sufficiently large. The reader might be disap-
pointed by the conclusion. But with such basic information the fine-structure of the peaks
can be investigated, in particular their specific sub-ballistic broadening and corresponding
scaling functions [41, 49, 50].
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When turning to the Toda lattice, the conservation laws are now labeled by n = 0, 1, ...
and thus A,B,C become infinite dimensional matrices. The corresponding Landau-Lifshitz
theory has been worked out in [51] using the recipe from above: the matrices B and C are
computed exactly on the basis of thermal GGE. The matrix A is still defined through (19).
However the expression (22) holds approximately only in the ballistic regime.

3 Toda Lattice, Linearized Generalized Hydrodynamics

The conservation laws of the Toda lattice are obtained from a Lax matrix [15, 35]. For this
purpose, we first introduce the Flaschka variables

a j = e−r j /2. (23)

Then the equations of motion become

d

dt
a j = 1

2
a j (p j − p j+1),

d

dt
p j = a2j−1 − a2j . (24)

The Lax matrix, L , is defined by

L j, j = p j , L j, j+1 = L j+1, j = a j , (25)

j ∈ Z, and Li, j = 0 otherwise. Clearly L = LT. The conserved fields are labelled by
nonnegative integers and have densities given by

Q0( j) = 1

2
(r j−1 + r j ), Qn( j) = (Ln) j, j , (26)

with n ≥ 1. Note that Qn( j) is local in the sense that it depends only on the variables with
indices in the interval [ j − n, j + n]. An explicit expression for these quantities is given in
[20]. For the current densities one obtains

J0( j) = −1

2
(p j+1 + p j ), Jn( j) = (LnL↓) j, j , n = 1, 2, ... , (27)

where L↓ is the lower triangular part of L . Then under the Toda dynamics

d

dt
Qn( j, t) + Jn( j, t) − Jn( j − 1, t) = 0, (28)

which is the n-th conservation law in local form.
The conserved field n = 1 is momentum and agrees with the definition in (5). For the

stretch we use a variant which is reflection symmetric relative to the origin. For n = 2 one
obtains (L2)0,0 = p20 + a2−1 + a20 and (L2 L↓)0,0 = a20(p0 + p1) which differs from (5) and
(15) by the trivial factor of 2. In our numerical plots we use the physical energy density e j .
However we touched upon a more subtle issue. Densities are not uniquely defined, since one
can add a difference of some local function and its shift by one. When summing a particular
choice for the density over some spatial interval, the result differs from another choice of
the density by a boundary term only. Thus the bulk term will have a correction of order
1/(length of interval), which does not affect the hydrodynamic equations. For the currents
the difference can be written as a total time derivative which is again a boundary term when
integrating over some time interval. In this section we adopt the conventions (26) and (27),
since the analysis heavily relies on the Lax matrix. Beyond n = 2, while the fields no longer
have a name, they still have to be taken into account in a hydrodynamic theory.
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The infinite volume static field-field correlator is defined as in (6) and the current-field
correlator as in (16). In particularly, B = BT. Of course,C, B are nowmatrices in the Hilbert
space of sequences indexed by N0, i.e. the space 	2(N0). To distinguish 3× 3 matrices from
their infinite dimensional counterparts, for the latter we use standard italic symbols. The
spacetime correlator of the Toda lattice is defined by

Sm,n( j, t) = 〈Qm( j, t)Qn(0, 0)〉cP,β . (29)

Using invariance under space reversal of the dynamics and the equilibrium covariancematrix,
the correlator satisfies the symmetry

Sm,n( j, t) = (−1)m+n Sm,n(− j, t) (30)

form, n = 0, 1, 2, for details see [48], Chapter 15. Adding time reversal symmetry, in general
one concludes

Sm,n( j, t) = Sm,n(− j,−t). (31)

As a first step, the free energy of the Toda lattice is given by

Feq(P, β) = log
√

β/2π + P logβ − log�(P). (32)

In particular, the average stretch, ν, is determined through

ν(P, β) = ∂P Feq(P, β) = 〈Q0(0)〉P,β = logβ − ψ(P), (33)

with ψ the digamma function. Expectations of higher order fields can be written as moments
of a probability measure denoted by νρp,

κn = 〈Qn(0)〉P,β =
∫

R

dwνρp(w)wn, (34)

n ≥ 1. ρp is called particle density. To determine this density one first has to solve the
thermodynamic Bethe equations (TBA). For this purpose we introduce the integral operator

T f (w) = 2
∫

R

dw′ log |w − w′| f (w′), (35)

w ∈ R, considered as an operator on L2(R, dw) and define the number density

ρn(w) = e−ε(w), (36)

with quasi-energies ε. The quasi-energies satisfy the TBA equation

ε(w) = 1

2
βw2 − μ − (T e−ε)(w), (37)

where the chemical potential μ has to be adjusted such that
∫

R

dwρn(w) = P. (38)

Thereby the number density depends on the parameters P and β.
In practice, the TBA equation has to be solved numerically. But for thermal equilibrium

an exact solution is available [1, 16, 45]. Denoting the solution of (37) for β = 1 and the
constraint (38) by ρ∗

n one has

ρ∗
n(w) = e−w2/2

√
2π | f̂ P (w)|2 , f̂ P (w) =

∫ ∞

0
dt fP (t)eiwt , fP (t) = √

2π−1�(P)−1/2t P−1e− 1
2 t

2
.

(39)
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In our numerical simulations it is of advantage to use the exact solution.
The TBA equation is a standard tool from GHD as one way to write the Euler-Lagrange

equations for the variational principle associated with the generalized free energy. For the
Toda lattice such a variational formula was obtained in [10, 52]. Proofs using methods from
the theory of large deviations and transfer operator method have also become available [19,
23, 38, 40]. The next steps are outlined only briefly, with more details provided in [52] and
[48], Chapter 7. The main goal is to explain the required numerical task on the level of
linearized GHD.

We introduce the dressing transformation of some function f by

f dr = (
1 − Tρn

)−1
f (40)

with ρn regarded as a multiplication operator. Then number and particle density are related
as

ρn(w) = ρp(w)

1 + Tρp(w)
(41)

with inverse
ρp = (1 − ρnT )−1ρn = ρnς

dr
0 , (42)

using the convention ςn(w) = wn .
For the average currents similar identities are available. The central novel quantity is the

effective velocity

veff = ςdr
1

ςdr
0

, (43)

see [4, 7, 53, 56]. Then
〈J0(0)〉P,β = −κ1, (44)

and, for n ≥ 1,

〈Jn(0)〉P,β =
∫

R

dwρp(w)(veff (w) − κ1)w
n . (45)

In thermal equilibrium we have κ1 = 0.
Since in the following there will be many integrals over R, let us first introduce the

abbreviation

〈 f 〉 =
∫

R

dw f (w). (46)

With this notation the C matrix turns out to be of the form

C0,0 = ν3〈ρpςdr
0 ςdr

0 〉,
C0,n = Cn,0 = −ν2〈ρpςdr

0 (ςn − κnς0)
dr〉,

Cm,n = ν〈ρp(ςm − κmς0)
dr(ςn − κnς0)

dr〉, (47)

m, n ≥ 1. Note that the matrix C has the block structure

C =
(
C0,0 C0,n

Cm,0 Cm,n

)
, (48)

in the sense that Cm,n for m, n ≥ 1 follows a simple pattern. This structure will reappear for
B and eAtC .

The field-current correlator B can be computed in a similar fashion with the result

B0,0 = ν2〈ρp(veff − κ1)ς
dr
0 ςdr

0 〉,
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B0,n = Bn,0 = −ν〈ρp(veff − κ1)ς
dr
0 (ςn − κnς0)

dr〉,
Bm,n = 〈ρp(veff − κ1)(ςm − κmς0)

dr(ςn − κnς0)
dr〉. (49)

As in (21), we want to determine the propagator of the Landau-Lifshitz theory, denoted by
SLLm,n(x, t). In principle, all pieces have been assembled. However to figure out the exponential
of A requires its diagonalization. We only mention that one constructs a linear similarity
transformation, R, such that R−1AR is multiplication by

ν−1(veff (w) − κ1) (50)

in L2(R, dw). Here veff is the effective velocity defined in (43). Using the block convention
as in (48), the spacetime correlator in the Landau-Lifshitz approximation is given by

SLL(x, t) =
∫

R

dwδ
(
x − tν−1(veff (w) − κ1)

)
νρp(w)

×
(

ν2ςdr
0 (w)2 νςdr

0 (w)(ςn − κnς0)
dr(w)

νςdr
0 (w)(ςm − κmς0)

dr(w) (ςm − κmς0)
dr(w)(ςn − κnς0)

dr(w)

)
. (51)

Note that SLL(x, 0) = δ(x)C . As a property of the Euler equations, the expression (51)
possesses exact ballistic scaling,

SLLm,n(x, t) = 1

t
SLLm,n(x/t, 1). (52)

The correlator Sm,n( j, t) is computed in our MD simulations which will then be compared
with SLLm,n(x, t). To recall, the matrices B,C are exact while the exponential of A = BC−1

holds only on the ballistic scale.

4 Numerical Simulations

For a molecular dynamics simulation one has to first specify a finite ring [1, . . . , N ] with
suitable boundary conditions. For the dynamics of positions q j andmomenta p j one imposes

qN+1 = q1 + νN . (53)

The parameter ν fixes the free volume per particle and can have either sign. In our simulation,
we actually allow for a fluctuating free volume by choosing random initial conditions such
that {r1, p1, . . . , rN , pN } are i.i.d. random variables with a single site distribution as specified
in (4). Then the deterministic time evolution is governed by (24) with boundary conditions

r0 = rN , pN+1 = p1. (54)

In fact, the boundary condition in (53) amounts to the micro-canonical constraint

N∑

j=1

r j = νN . (55)

If one sets ν = 〈Q0(0)〉P,β , then for large N , by the equivalence of ensembles, the two
schemes for sampling the correlator Sm,n( j, t) should differ by the size of statistical fluctua-
tions. For a few representative exampleswe checked that indeed the equivalence of ensembles
holds for the particular observables under study.
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Returning to the choice of system size there is an important physical constraint. In all
simulations one observes a sharp right and left front, which travel with constant speed and
beyond which spatial correlations are exponentially small. On a ring necessarily the two
fronts will collide after some time. Such an encounter has a noticeable effect on themolecular
dynamics which is not captured by the linearized GHD analysis. Therefore the simulation
time is limited by the time of first collision. Indeed, we note in Figs. 1-3that both linearized
GHD and MD clearly display maximal speeds of at most � j/�t = 2 for the entire range of
(P, β,m, n) displayed in these figures. Taking into account that the initial correlations are
proportional to δ0 j , we conclude that for a ring of size N = 3000 there will be no collision
of the two fronts up to time t = 750 which is larger than t = 600 used in our simulations.

Before displaying and discussing our results, we provide more details on numerically
solving the TBA equations and on the actual scheme used for MD.

4.1 Details of the Numerical Implementation

4.1.1 Solving Linearized GHD

To numerically solve the linearized GHD equations, we use a numerical method similar to
the one from [43]. First, Eq. (39) can be expressed in terms of the parabolic cylinder function
Dν(z), which is readily available in Mathematica. This provides the solution to the TBA
equations (37), (38).

Then, we use a simple finite element discretization of the w-dependent functions by hat
functions, resulting in piecewise linear functions on a uniform grid. After precomputing the
integral operator T in (36) for such hat functions, the dressing transformation (41) becomes
a linear system of equations, which can be solved numerically. This procedure yields ςdr

n ,
and subsequently ρp via (42) and veff via (43). The moments can be computed from κn =∫
R
dwνρn(w)ςdr

n (w), or (equivalently) Eq. (34).
To evaluate the correlator in (51), we note that the delta-function in the integrand results

in a parametrized curve, with the first coordinate (corresponding to x/t) equal to ṽeff from
(50), and the second coordinate equal to the remaining terms in the integrand divided by the
Jacobi factor | d

dw ṽeff (w)| resulting from the delta-function.

4.1.2 Molecular Dynamics Simulations

We approximate the expectation value that is contained in the MD-definition of the cor-
relations Sm,n in equation (29) by the following numerical scheme, whose implementation
program is written in Python, and can be found at [37]. First, we generate the random initial
conditions distributed according to the Gibbs measure, as given by (4) for the i.i.d. ran-
dom variables (r j , p j )1≤ j≤N . Specifically, the variables p j are distributed according to a
standard normal random variable, that we generate with Numpy v1.23’s native function
random.default_rng().normal [25], times 1/

√
β. It takes a brief calculation to

see that r j can be chosen to be − ln(X/(2β)) where X is chi-square distributed with shape
parameter 2P . We obtain the random variable X using Numpy v1.23’s native function
random.default_rng().chisquare. Having chosen the initial conditions in such a
manner, we solve equation (2).

For the evolution, we adapt the classical Störmer–Verlet algorithm [24] of order 2 to work
with the variables (p, r).
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Fig. 1 Toda correlation functions: GHD predictions y �→ SLLm,n(y, 1) vs. numerical simulations of the molec-
ular dynamics y �→ t Sm,n(yt, t) at t = 600 for β = 0.5 with low pressure (top), medium pressure (middle)
and high pressure (bottom). Numerical simulations are colored according to the legend, the corresponding
GHD predictions are displayed by dashed lines. Number of trials: 3 × 106
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Fig. 2 Toda correlation functions: GHD predictions y �→ SLLm,n(y, 1) vs. numerical simulations of the molec-
ular dynamics y �→ t Sm,n(yt, t) at t = 600 for β = 1.0 with low pressure (top), medium pressure (middle)
and high pressure (bottom). Numerical simulations are colored according to the legend, the corresponding
GHD predictions are displayed by dashed lines. Number of trials: 3 × 106
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Table 1 Values for β and P and the corresponding mean stretches used in experiments

pressure β = 0.5 β = 1 β = 2

low P = 0.32, 〈r〉 ≈ +2.58 P = 0.4, 〈r〉 ≈ +2.56 P = 0.52, 〈r〉 ≈ +2.56

medium P = 0.95, 〈r〉 ≈ −0.03 P = 1.5, 〈r〉 ≈ −0.04 P = 2.55, 〈r〉 ≈ −0.03

high P = 1.21, 〈r〉 ≈ −0.42 P = 2.0, 〈r〉 ≈ −0.42 P = 3.53, 〈r〉 ≈ −0.42

Specifically, we used a time step equal to δ = 0.05, and, given the solution (r(t),p(t)) at
time t , we approximate the solution at time t + δ through the following scheme,

p j

(
t + δ

2

)
= p j (t) − δ

2

(
e−r j (t) − er j−1(t)

)
, (56)

r j (t + δ) = r j (t) + δ

(
p j+1

(
t + δ

2

)
− p j

(
t + δ

2

))
, (57)

p j (t + δ) = p j

(
t + δ

2

)
− δ

2

(
e−r j (t+δ) − er j−1(t+δ)

)
, (58)

for all j = 1, . . . , N . In this part of the implementation, we extensively used the library
Numba [31] to speed up the computations.

Our approximation for the expectation Sm,n is then extracted from 3 × 106 trials with
independent initial conditions. Here we take the empirical mean of all trials where for each
trial we also take the mean of the N = 3000 sets of data that are generated by choosing each
site on the ring for j = 0.

To evaluate the quality of our numerical simulations, we have repeated the numerical
experiments up to five times including variations for the length of the ring and evaluating the
solutions at more intermediate time steps than displayed in the figures below. Furthermore,
we have compared the results with the corresponding outcomes obtained by a MATLAB
program that has been developed independently from the Python program, and that follows
a different numerical scheme. It usesMATLAB’s random number generatorsrandn for initial
momenta and rand combined with the rejection method to produce initial stretches. The
dynamics is then evaluated by the solver ode45, which exploits the Runge–Kutta method to
numerically solve the Hamiltonian system associated with (1) on the ring. We found that the
deviations between different experiments are comparable to the size of the amplitudes of the
high frequency oscillations that are present in figures 4-5. These oscillations are due to the
random fluctuations of the empirical means around their expectation values Sm,n . Agreement
of different experiments up to the order of these oscillations therefore shows the consistency
of the corresponding numerical results.

We also want to mention that all the pictures that appeared in this paper are made using
the library matplotlib [26].

4.2 Comparison of Linearized GHDwith MD at Time t = 600

We compare the GHD predictions with MD simulations for three different temperatures that
correspond to β = 0.5 (Fig. 1), β = 1 (Fig. 2), and β = 2 (Fig. 3). For each β we choose
three different values for the pressure parameter P in such a way that the correspondingmean
stretches, given by (33), are positive (≈ 2.57) for low pressure, negative (≈ −0.42) for high
pressure and approximately zero for medium pressure.We summarize their values in Table 1.
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Fig. 3 Toda correlation functions: GHD predictions y �→ SLLm,n(y, 1) vs. numerical simulations of the molec-
ular dynamics y �→ t Sm,n(yt, t) at t = 600 for β = 2.0 with low pressure (top), medium pressure (middle)
and high pressure (bottom). Numerical simulations are colored according to the legend, the corresponding
GHD predictions are displayed by dashed lines. Number of trials: 3 × 106
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Fig. 4 Toda correlation functions S1,1 (left) and S1,0 (right) for medium pressure and increasing temperatures
(top to bottom). For each value of β and P the top panels show GHD prediction vs. numerical simulations as
in Figs. 1-3 but with the the molecular dynamics evaluated at two times t = 150 and t = 600. The bottom
panels display the differences between the GHD prediction and numerical simulations at time t = 150 (red)
and at time t = 600 (green). Number of trials: 3 × 106

In each of the nine caseswe have evaluated the Landau-Lifshitz approximations SLLm,n(·, 1),
see (51), of the correlators for all 0 ≤ n ≤ m ≤ 2 using the numerical scheme described in
Sect. 4.1.1. Their graphs are displayed in Figs. 1-3 as dashed lines. The correlators S0,0, S1,1,
S2,2, S0,2 are even in j and S0,1, S1,2 are odd, in agreement with (30). In each panel, there
is a left and right moving outer peak. At low pressures and high temperatures the scaling
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Fig. 5 Toda correlation functions S0,0 (left) and S2,0 (right) for β = 1 and increasing pressure (top to bottom).
For each value of β and P the top panels show GHD prediction vs. numerical simulations as in Fig. 2 but
with the molecular dynamics evaluated at two times t = 150 and t = 600. The bottom panels display the
differences between the GHD prediction and numerical simulations at time t = 150 (red) and at time t = 600
(green).Number of trials: 3 × 106

function has still a pronounced inner structure. In particular S2,2 can have a local maximum
at 0. Even further into this regime (not displayed) the diagonal correlators are approximately
of the form

a20e
−βw2/2, (a1w)2e−βw2/2 (a2w

2 + a3)
2e−βw2/2 (59)

with coefficients a0, ..., a3 depending on P, β. Upon increasing P and β the outer peaks
become narrower and move faster. The inner structure reduces to being essentially flat. Such
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behavior reflects that in this parameter regime the DOS is proportional to the derivative of
the Wigner semicircle law, which is supported by a finite interval.

The colored lines in Figs. 1-3 show our numerical results for the corresponding molecular
dynamics. According to the predicted ballistic scaling (52)we plot t Sm,n( j, t) as a function of
j/t for t = 600. Here the values of Sm,n( j, t) are approximated using the numerics explained
in Sect. 4.1.2.

The agreement between linearized GHD and MD is striking, in particular since there are
no adjustable parameters. In all of the 54 comparisons shown in Figs. 1-3 theGHDpredictions
for the outer peaks and their inner structure are in excellent agreement with the ones observed
from molecular dynamics at time t = 600. As we show in more detail in the next subsection
the largest deviations occur mostly near the outer peaks and do not exceed 3.5% of the peaks’
maximal values.

4.3 Deviation of Linearized GHD fromMD at Times t = 150 and t = 600

The purpose of this subsection is twofold. On the one hand, we have a look at the small
differences between GHD predictions and molecular dynamics simulations that can hardly
be detected in Figs. 1-3. On the other hand, we indicate how these differences evolve in time
by including time t = 150 for the molecular dynamics. Recall that the GHD predictions
are time-invariant in the scaling y �→ t Sm,n(yt, t) we have chosen, see (52). It would be
interesting to investigate the rate of convergence at which the difference tends to 0 as t → ∞
and whether such a rate exists. As it turned out, the resolution of our numerical experiments
is far too weak to say anything meaningful about this question, and we leave it for future
research.

From the54 comparisons that are displayed inFigs. 1-3we select 12 cases that are represen-
tative and show all the phenomena that we have observed. In Fig. 4 we consider correlations
S1,1 and S1,0 at medium pressure (cf. Table 1) for all three values of β. The small scale fluc-
tuations displayed in the bottom panels are due to the approximation of expectation values by
empirical averages. Their amplitudes become smaller if one increases the number of trials.
Note that the difference in amplitudes of these fluctuations between t = 150 and t = 600 is
mostly due to the scaling y �→ t Sm,n(yt, t) that we use. This implies that the values of the
correlations are multiplied by a factor that is 4 times larger at the later time. The same holds
for the plots in Fig. 5 where the correlations S0,0 and S2,0 are shown for fixed β = 1 and our
three different choices for pressure. We now summarize our main findings:

(1) The deviations occur mostly near the outer peaks and amount to 1.5%-3.5% of the peaks’
maximal values at time t = 600.

(2) There appear to be small but systematic deviations concerning the shapes of the outer
peaks in all cases. One would need to conduct experiments with a higher resolution,
i.e. more sites and consequently larger times and more trials, to determine whether there
is indeed such a systematic deviation. With the resolution present in our experiments,
the question of a systematic deviation with respect to the shape of the peak cannot be
decided.

(3) In some of the experiments the maximal deviations would be significantly smaller if a
constant only depending on the values ofβ, P ,m, n is added to all values of Sm,n( j, t), see
e.g. correlations S0,0 and S2,0 for β = 1, P = 0.4 in Fig. 5. This seems to be related to the
approximation errors for the means 〈r〉, 〈p〉, and 〈e〉, that appear to be less pronounced in
the case of momentum p. We have observed that these deviations decrease as the number
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of trials is increased and we do not expect a systematic deviation between GHD and MD
in this respect.

(4) For (β; P) ∈ {(0.5; 0.95), (0.5; 1.21)} we observe that the size of the deviations
is essentially the same for times t = 150 and t = 600 whereas for (β; P) ∈
{(0.5; 0.32), (1; 0.4), (2; 0.52), (2; 2.55), (2; 3.53)} these deviations are significantly
larger at the smaller time. The remaining two cases (β; P) ∈ {(1; 1.5), (1; 2)} are some-
what in between, also depending on the correlation function that is considered, see Fig. 5.
This is an indication that the speed of convergence of t Sm,n(yt, t) to the GHD prediction
SLLm,n(y, 1) as t → ∞ depends on the values of β and P . As a rule we have observed that
both increasing temperature or increasing pressure leads to a faster speed of convergence.

5 Further Comments

We list a few observations of interest.

(1) As can be seen from Table 1, we picked the intermediate pressure such that ν 	 0. In
the particle picture ν = 0 corresponds to the boundary condition q1 = qN . In thermal
equilibrium, the positions then perform an unbiased randomwalk with typical excursions
of order

√
N . Thus, the free volume is of order 1/

√
N . The particles are extremely dense

and the picture of successive pair collisions breaks downcompletely. Soonemightwonder
whether GHD is still valid under such extreme conditions. ν = 0 poses no particular
difficulties forMD simulations. In GHD, the factor 1/ν appears in the expression for veff ,
see Eq. (50). This makes the numerical scheme slow and only values close to ν = 0 are
accessible. However, the correlator S changes smoothly through ν = 0. As conclusion,
GHD covers also this seemingly singular parameter value.

(2) Simultaneously,A.Kundu [29] posted a somewhat puzzlingnote.He considers the param-
eter values β = 1, P = 1. When cutting the matrices Cm,n and Am,n at low orders, the
resulting Sm,n consists of a few δ-peaks which move at constant velocity. After ballistic
scaling, with high precision, they turn out to lie on the profile obtained from GHD. A
theoretical explanation seems to be missing.

(3) In [30] the molecular dynamics of Toda lattice correlations are simulated for the potential

Vkd(x) = g

γ
e−γ x (60)

with arbitrary γ, g > 0. To distinguish their parameters from ours, the variables in [30]
are here denoted by t̄, r̄ , P̄, β̄. P̄ is the physical pressure and, comparing the Gibbs
weights, one obtains the relations

β = g

γ
β̄, P = 1

γ
P̄β̄. (61)

From the equations of motions one deduces

t̄ = 1√
γ g

t, r(t) = γ r̄(t̄), p(t) = g

γ
p̄(t̄). (62)

Thus, translating to our units, the MD simulations reported in [30] are (a) P = 0.01,
β = 0.01, N = 1024, t = 400, (b) P = 1, β = 1, N = 1024, t = 200, 300, and
(c) P = 400, β = 400, N = 256, t = 80. In fact, in all three cases the time scales
are identical, t = t̄ . Since GHD was not available yet, no comparison could have been
attempted.
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Case (a) is a very dilute chain. In this limit νρp is a mean zero Gaussian. The dressed
functions becomepolynomials asςdr

0 (w) = a0,ςdr
1 (w) = a1w, andςdr

2 (w) = a2w2+a3 with
coefficients a0, ..., a3 depending on P, β, compare with (59). Note that for a noninteracting
fluid a3 would vanish. As a result S0,0 is Gaussian, S1,1 has two peaks, and S2,2 has either
two or three peaks. This is in good agreement with [30] and explains our motivation not to
venture into the low pressure regime. Case (b) interpolates between our β = 1, P = 0.40
and β = 1, P = 1.5. Note that now S0,0 has developed a local minimum at w = 0, which is
very different from the structure in the dilute regime. On the other hand, S2,2 still has a local
maximum at w = 0, as is the case for low pressure/high temperature.

An interesting parameter value is (c), which requires more detailed studies. The issue is
the behavior of the Toda chain at very low temperatures. Simply letting β → ∞ will freeze
any motion. But the simultaneous limit β → ∞ with P = P̄β at fixed physical pressure
P̄ is meaningful, at least on the level of the free energy and the Lax density of states. To
understand the dynamical behavior, the effective potential is expanded as

e−r + P̄r 	 1

2
P̄(r − r0)

2 + c0 (63)

at its minimum r0. Since β is large, the initial fluctuations are of order 1/
√

β. Therefore
the dynamics can be approximated by a harmonic chain with ω2 = P̄ . The equilibrium
time correlations of the harmonic chain have intricate oscillatory behavior [22], which in the
large β limit should match with the Toda lattice, as partially evidenced by the results in [30].
Clearly, GHD cannot reproduce such fine details. Nevertheless, when averaged on suitable
scales, the coarse behavior of spacetime oscillations for the harmonic chain correlations
might be visible.
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