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Abstract
We show that the topological entropy of the billiard map in a Bunimovich stadium is at most
log(3.49066).
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1 Introduction

The Bunimovich stadium is a planar domain whose boundary consists of two semicircles
joined by parallel segments as in Fig. 1. In this article we study the billiard in a Bunimovich
stadium, this is the free motion of a point particle in the interior of the stadium with elastic
collisions when the particle reaches the boundary. Billiards in stadia were first studied by
Bunimovich in [6, 7] where he showed that the billiard has hyperbolic behavior and showed
the ergodicity, K-mixing and Bernoulli property of the billiard map and flow with respect to
the natural invariant measure (see also [14, 15]).

In this article we will study the topological entropy of the billiard map in a Bunimovich
stadium. The topological entropy of a topological dynamical system is a real nonnegative
number that is ameasure of the complexity of the system.Roughly, itmeasures the exponential
growth rate of the number of distinguishable orbits as time advances.Wewill discuss its exact
definition in our setting in the next section.
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Fig. 1 Labeling the sides of the
stadium and a period 4 orbit
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The study of topological entropy of billiards was initiated in [13]. In this article it was
claimed with a one sentence proof that the topological entropy of the billiard map of stadia
is at most log(4). A detailed proof using this strategy was given later by Bäker and Chernov,
but they were able to show only a weaker estimate, that the topological entropy is at most
log(6) [2]. Our main result will be a better upper bound on the topological entropy.

Recently, Misiurewicz and Zhang [18] have shown that as the side length tends to infinity
the topological entropy of stadia is at least log(1 + √

2) by studying the map restricted to a
subspace of the phase space which is compact and invariant under the billiard map. Another
lower bound of the topological entropy can be derived from the variational principle1 and the
results of Chernov on the asymptotics of the metric entropy when the stadium degenerates to
a circle, an infinite stadium, a segment, a point, or the plane in certain controlled ways [12].

Topological entropy of hyperbolic billiards has also been studied in several other articles
[3, 8, 11, 21].

2 Definitions and Statement of the Results

We consider the Bunimovich stadium billiard table Bl , with the radius of the semicircles 1,
and the lengths of straight segments l > 0. The phase space of this billiard map will be
denoted by Ml . It consists of points s in the boundary of Bl and unit vectors pointing into
the interior of Bl . We represent the unit vector by measuring its angle θ with respect to the
inner pointing normal vector, thus

Ml := {(s, θ) : s ∈ ∂Bl , θ ∈ (−π/2, π/2)}.
The billiard map Fl is the first return map of the billiard flow � to the set Ml . Note that Fl

is continuous, but Ml is not compact since we do not include vectors tangent to the boundary
of Bl .

We remark that the map Fl does not extend to a continuous map of the closure of Ml . Thus
all of the usual definitions of the topological entropy due to Adler, Konheim and McAndrew
[1], Bowen [4, 5] and Dinaburg [17] can not be applied. There are several definitions of
topological entropy which are possible. The definition we take, is a very natural one: we
take a natural coding of the billiard, and then consider the entropy of the shift map on the
closure of the set of all possible codes. This definition gives an upper bound of another natural
definition of topological entropy on non-compact spaces, the Pesin-Pitskel’ [20] topological
entropy (this approach is closely related to that of Bowen given in [5], however Bowen’s
definition is not equivalent to the of Pesin-Pitskel’, see [20][IV p. 308]). In particular, similar
results for Sinai billiards (also known as Lorentz gas) were recently obtained by Baladi and
Demers [3]. For a more detailed discussion of possible definitions of topological entropy in
our setting and their relationship to our definition see Sect. 5.

1 The variational principle holds for the Pesin-Pitskel’ definition of entropy [20], see Sect. 5 for applicability
to our situation.
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We now give a precise definition of the topological entropy we consider. We label the four
smooth components of the boundary by the alphabet {L, T , R, B}, the meeting points of the
components have double labels (see Fig. 1). Slightly abusing notation we will say that s ∈ Y
where Y ∈ {L, T , R, B} and mean that s is a point in ∂Bl with the label Y . It is easy to see
that the corresponding partition is not a generator, for example the period 4 orbit with code
LLRR shown in Fig. 4 has the same code traced forward and backwards.

We consider two copies of L , denoted by L̄ and ¯L , (similarly R̄ and ¯R for R) and let
c̄ : Ml → A := {L̄, ¯L, T , B, R̄, ¯R} be the (multi-valued) coding map defined by c̄(s, θ) = s
if s ∈ {T , B}, c̄(s, θ) = s̄ if θ ≥ 0 and c̄(s, θ) = ¯s if θ ≤ 0 for s ∈ {L, R}. We consider the
cover of the phase space into 6 elements given by this coding. The interiors of each element
of the cover are disjoint, thus with the traditional misuse of terminology we will call this
cover a partition.

We code the orbit of a point by the sequence of partition elements it hits, i.e.,

c(s, θ) := (ωk)k∈Z where ωk = c̄(Fk
l (s, θ)).

For i ≤ j let

M̃l
i, j := {(s, θ) ∈ Ml : Fn

l (s, θ) is in the interior of a partition element ∀i ≤ n ≤ j}.
Notice that since c̄ ismulti-valued, themap c ismulti-valued in particular on ∂ M̃l

i, j . However,
for any point in the set M̃l

i, j the letter ωk is unique for i ≤ k ≤ j , and thus for any point in
the set

M̃l := ∩i≤ j M̃l
i, j

the infinite coding is unique.
Let �̃ be the set of bi-infinite codes of points from M̃l , and let � be the closure of �̃ in

the product topology, and let L(n) be the set of words of length n appearing in �̃ (and thus
in � as well). We let p(n) denote the complexity of �̃; i.e.,

p(n) := #{(ω0, . . . , ωn−1) ∈ L(n)}.
The quantity log p(n) is sub-additive, thus the growth rate

lim
n→∞

log p(n)

n

is well defined and is called the topological entropy of the shift map restricted to the set �.
The 6 element partition is a generating partition in the sense that for eachω ∈ �\{(T B)∞}

there is a unique (s, θ) ∈ Ml whose orbit has code ω (see [2] and the Appendix for a
justification of this claim) thus it is natural to call this quantity the topological entropy of the
billiard map Fl , i.e.,

htop(Fl) := lim
n→∞

log p(n)

n
.

In this definition of the topological entropy we first miss a set by restricting to the interiors
of partition elements, and then we add some points by taking the closure of �̃. The sequences
in � \ �̃ are all the codes of points which hit boundaries of partition elements obtained by
using one sided continuity extension in the spatial coordinate. Although the entropy of �

equals the entropy of �̃, we do not know anything about the Pesin-Pitsel’ entropy of the
invariant set Ml \ M̃l since the open (clopen) covers of � do not necessarily arise from an
open cover of Ml . In particular we do not know if this entropy is smaller than the estimate
from Theorem 1.

123



148 Page 4 of 15 J. Činč and S. Troubetzkoy

Our work was originally inspired by [18] where it was shown that

lim
l→∞ htop(Fl) ≥ log(1 + √

2) > log(2.4142).

In fact in [18] the authors identify a certain compact subset of the phase space, such that if
we restrict Fl to this set then we get equality in the above limit.

Another inspiration is [2]; the above mentioned fact about the six element partition being
a generating partition immediately implies

htop(Fl) ≤ log(6).

In the current paper we improve the upper bound on htop(Fl). Let a := 2W ( 1e )

1+W ( 1e )
whereW ( 1e )

is the unique solution to the equation 1 = wew+1, see [16] and the beginning of the proof of
Lemma 8 for more information on the Lambert W function.

The main result of our article is the following theorem

Theorem 1 For any l > 0 we have htop(Fl) < log

(
2

(
2

a
− 1

)a)
< log(3.49066).

We prove Theorem 1 by studying possible word complexity of the 6 elements language
associated to the Bunimovich billiard. In Sect. 3 we use Cassaigne’s formula from [9] and
prove that htop(Fl) is bounded from above by the limit of logarithmic growth rate of the
number of distinct saddle connections of increasing lengths. Cassaigne’s formula is very
useful in studying low complexity systems, for example polygonal billiards [10]. To the best
of our knowledge this is the first application of this formula to positive entropy systems. In
Sect. 4 we give upper bounds for the number of different possible saddle connections using
analytical tools, which yields our estimate for htop(Fl).

3 Saddle Connections

We consider the 6 element partition A defined in the previous section. We will use the word
corner to refer to the four points where the semi-circles meet the line segments as well as the
two centers of the semi-circles. More formally, in the case of the centers of the semi-circles,
by starting at a corner wemean that we start perpendicularly to a semi-circle and thus the flow
passes through the corner when leaving the half-disk defined by the semi-circle. Recall that
the four smooth components of the boundary of Bl are denoted by the alphabet {L, T , R, B},
see Fig. 1. The corners separate partition elements, this is clear for the four points, while for
the centers of the semicircles we remark that the forward and backward orbit of any point
L̄ ∩ ¯L = {(s, θ) : s ∈ L, θ = 0} passes through the center of the left semi-circle (a similar
statement holds for points in R̄ ∩ ¯R).In analogy to polygonal billiards a saddle connection is an orbit segment which connects
two corners of Bl (possibly the same) and does not visit any corner in between. To avoid
technical complications, we do not consider the diameters of the semi-circles as saddle
connections. The length of a saddle connection is the number of links in this trajectory.
Except for saddle connections of length one we will represent a saddle connection by the
first point of collision after leaving the starting corner, thus the code of the orbit segment of
length n − 1 codes the saddle connection. Analogously, the empty word codes the saddle
connections with length one. Let N (n) denote the number of distinct saddle connections of
length at most n andN (n) denote the number of distinct saddle connections of length exactly
n. Our main result is based on the following result.
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Proposition 2 p(n) ≤ 30
∑n−1

j=0 N ( j) for all n ≥ 1.

Thus

htop(Fl) = lim
n→∞

log p(n)

n
≤ lim

n→∞
log

(
30

∑n−1
j=0 N ( j)

)
n

= lim
n→∞

log
( ∑n−1

j=0 N ( j)
)

n
,

which yields

Corollary 3

htop(Fl) ≤ lim
n→∞

log
( ∑n−1

j=0 N ( j)
)

n
.

To prove the proposition we need some techniques that were developed by Cassaigne in
[9] and applied to polygonal billiards in [10]. Remember that L(n) is the set of blocks of
length n in the subshift� (so p(n) = #L(n)). For n ≥ 1, we define s(n) := p(n+1)− p(n).
For u ∈ L(n) let

m�(u) := #{a ∈ A : au ∈ L(n + 1)},
mr (u) := #{b ∈ A : ub ∈ L(n + 1)},
mb(u) := #{(a, b) ∈ A2 : aub ∈ L(n + 2)}.

We remark that all three of these quantities are larger than or equal to one. A word u ∈ L(n)

is called left special if m�(u) > 1, right special if mr (u) > 1 and bispecial if it is left and
right special. Let

BL(n) := {u ∈ L(n) : u is bispecial}.
In a more general setting in [9] (see [10] for an English version) it was shown that for all

k ≥ 1 we have

s(k + 1) − s(k) =
∑

v∈BL(k)

(
mb(v) − m�(v) − mr (v) + 1

)
.

Consider the set of strongly bispecial words

BLs(n) := {u ∈ L(n) : u is bispecial and mb(v) − m�(v) − mr (v) + 1 > 0}.
Clearly for all k ≥ 1 we have

s(k + 1) − s(k) =
∑

v∈BLs (k)

(
mb(v) − m�(v) − mr (v) + 1

)
.

Proof of Proposition 2 Note that(
mb(v) − m�(v) − mr (v) + 1

) ≤ max
0≤x,y≤6

(xy − x − y + 1) = 25,

thus summing over 1 ≤ k ≤ j − 1 yields

s( j) ≤ s(1) + 25
j−1∑
k=1

#BLs(k).

In our case #BLs(1) = p(1) = 6 and p(2) = 30 since among the 36 possible words, the 6
words that can not be realized are T T , BB, L̄ ¯L, ¯L L̄, R̄ ¯R, ¯RR̄. Thus s(1) = p(2) − p(1) =
30 − 6 = 24 = 4#BLs(1), and thus we can estimate
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Fig. 2 The singularity sets of Fl (dotted) and F−1
l (dashed). The singularity sets are monotone curves but for

clarity they are drawn as linear segments. The two segments which are both dotted and dashed are in both
singularity sets

s( j) ≤ 29
j−1∑
k=1

#BLs(k).

Remember that s( j) = p( j + 1) − p( j), thus summing over 1 ≤ j ≤ n − 1 yields

p(n) ≤ p(1) + 29
n−1∑
j=1

j−1∑
k=1

#BLs(k).

Again we can adjust the constant to absorb the term p(1) yielding the estimate

p(n) ≤ 30
n−1∑
j=1

j−1∑
k=1

#BLs(k).

To finish the proof of Proposition 2 we need part a) from the following result. 
�
Proposition 4 a) For each k ≥ 1 there is an injection C : BLs(k − 1) → N (k).

b) For any v ∈ BL(k) and any pair of corners (s, s′) there is at most one saddle connection
with code v starting at the corner s and ending at the corner s′.

Once (a) is proven, this yields

p(n) ≤ 30
n−1∑
j=1

j−1∑
k=1

#N (k + 1) ≤ 30
n−1∑
j=0

N ( j).

which completes the proof of Proposition 2.
Before proving Proposition 4 we need to introduce some more terminology. Let 	′ be the

set of points from Ml perpendicular to the semicircles, i.e. 	′ ⊂ Ml is the set of points for
which s ∈ L, R and θ = 0. Let 	 be the union of 	′with the set of points where Fl fails to
be C2, and analogously 	− is the union of 	′with the set of points where F−1

l fails to be C2.
We call 	 and 	− the singularity sets for Fl and F−1

l respectively.
The singularity sets 	,	− consist of a finite number of C1-smooth compact curves in Ml

(see Figure 3), which are increasing, decreasing, horizontal, or vertical. Define the singularity
set for the map Fn

l for n ≥ 1 by 	n := ⋃n
i=1 F

−i+1
l (	) and the singularity set for the map

F−n
l for n ≥ 1 by 	−n := ⋃n

i=1 F
i+1
l (	−).
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Fig. 3 Examples of ω(v) which are weakly and strongly bispecial with m�(v) = mr (v) = 2

Remember that the set M̃l defined in Sect. 2 is the set of points in Ml having a well defined
code, and M̃l is the set of points whose orbit does not hit a corner.

For (s, θ) ∈ M̃l let ck(s, θ) := (c̄(Fi
l (s, θ))k−1

i=0 denote the block of length k containing
c(s, θ). For v ∈ L(k) we define the set

ω(v) := {(s, θ) ∈ M̃l : v = ck(s, θ)}
and call ω(v) a k-cell.

Proof of Proposition 4 (a) For k = 1 we note that the empty word is bispecial and it corre-
sponds to 22 saddle connections, one for each pair of distinct corners excluding diameters
and sides, and thus a) holds for k = 1.

Now suppose k ≥ 2 and fix v ∈ BLs(k − 1). The proof of Lemma 2.5 in [2] shows that
the set ω(v) is a simply connected closed set whose boundary consists of a finite collection
of piecewise smooth curves with angles less than π at vertices. These curves belong to the
union of the singular sets of Fi

l for 0 ≤ i ≤ k − 2. For each 0 ≤ i ≤ k − 2 the map Fi
l is

continuous on ω(v).
Consider the “partition”

⋃
avb∈L(k+1) Fl(ω(avb)) of the set ω(v), this is a partition in

the sense that the interiors of the partition elements are pairwise disjoint. This partition is
produced by cutting ω(v) by the singular sets of Fk−1

l and F−1
l .

By assumption v is bispecial, so the branches of the singular set of Fk−1
l cut ω(v) into

mr (v) ≥ 2 pieces and the branches of the singular set of F−1
l cut ω(v) into m�(v) ≥ 2

pieces. Suppose first that these singularities do not intersect, then the union of these singular
sets cut ω(v) into mr (v) + m�(v) − 1 pieces and thus the word v is weakly bispecial, i.e.,
v ∈ BL(n) \ BLs(n) and as mentioned above does not contribute to the sum, see Fig. 3 left.

Consider a point x of intersection of these two singular sets. As mentioned above the
angle formed is less than π , i.e., the intersection must be transverse. If this intersection is
on the boundary of a cell, then the orbit of x has at least three singular collisions, and so by
definition x does not represent a saddle connection. So suppose x is in the interior of a cell
ω(v). We have the preimage of x is a corner, and its forward image by Fk−1

l is also a corner,
and all intermediate collisions are non-singular, thus it corresponds to a saddle connection
of length k − 1. Thus for k ≥ 2 we have verified part (a).

We turn to the verification of part (b). Label the corners of Bl by the alphabet A′ :=
{1, 2, 3, 4, 5, 6}. The code of a saddle connection is the sequence from A ∪ A′ a point hits
along with the starting and ending corners; thus a saddle connection of length n will have a
code of length n + 1. To finish the proof we need to show that there is a bijection between
saddle connections and their codes.

We will give a brief sketch describing the bijection between the set of codes and possible
trajectories of the billiard map. A smooth curve from the phase space Ml equipped with a
continuous family of unit normal vectors is called a wave front. Suppose by way of contra-
diction that two trajectories start at the same corner s′ and end at the corner s′′ (possibly
s′′ = s′) and have the same code. For concreteness the starting points are (s′, θ1) and (s′, θ2).
We consider the set G := {(s′, θ) : θ1 ≤ θ ≤ θ2} and for each t ≥ 0 the corresponding wave
front Gt = �t (G). A wave front is said to focus at time t > 0 when the projection of the

123



148 Page 8 of 15 J. Činč and S. Troubetzkoy

TBTBTB

RRRRR

LLLLL

. . . . . .

Fig. 4 Unfolding the stadium. Remember that centers of semi-circles are also corners. There are eight saddle
connections with signed composition 2, 1, 2, two of them having code T B R̄T B are drawn in red, there are
two more saddle connections with this code, the other four have code T BL̄T B. If we reverse the arrows we
obtain the saddle connection with signed composition −2, 1, −2. In blue we show a saddle connection with
code T BT B ¯LBT BT and signed composition 4, 1,−4. If we reverse the arrows the blue saddle connection
has the same code and signed composition

wave front Gt to the billiard table intersects itself. By way of contradiction we thus assumed
the wave front Gt refocuses at a corner; we will show that this is in fact impossible. We refer
to Subsection 8.4. in [14] for a more complete description of what follows.

Focusing occurs in Bunimovich billiards after the wave front reflects from one of the two
semi-circles. Suppose that an infinitesimal wave front Gt collides with ∂Ml at some point in
a semi-circle; denote the post-collisional curvature of the projection ofGt to the billiard table
by G+

t . The curvature of a wave front does not change at the instance of a collision with a flat
boundary. Now suppose that the projection of Gt to the billiard table experiences collisions
with semi-circles at times t and t + τ , with possibly some flat collisions in between. Using
(3.35) from [14] thewave front expands from a collision to another collision, if |1+τG+

t | > 1.
For this to hold, it is enough to check that G+

t < −2/τ (see (8.2) from [14]). A focusing
wave front with curvature G+

t < 0 passes through a focusing point and defocuses at the time
t∗ = t − 1/G+

t or in other words G+
t = 1

t−t∗ (see Section 3.8 in [14]). Thus G+
t < −2/τ is

equivalent to t∗ < t + τ/2. The last inequality indeed says that the wave front must defocus
before it reaches the midpoint between the consecutive collisions. By Theorem 8.9. from
[14] it holds that the families of unstable cones remain unstable under the iteration of the
map. This implies that all wave fronts are in the unstable cones which gives a contradiction.
Therefore, we indeed have unique coding of trajectories of the billiard map. 
�

4 Proof of Theorem 1

To count the number of saddle connections we unfold the stadium (see Fig. 4). Consider
an integer j ≥ 1. We say (n1,m1, n2,m2, . . . nk,mk) is a signed composition of j if ni ∈ Z,
mi ∈ N with mi ≥ 1 for all i such that

∑ |ni | + ∑
mi = j . Let Q( j) denote the number of

signed compositions of j . Recall that N (n) denotes the number of distinct saddle connections
of length at most n.

Lemma 5 For each n and l > 0 we have

N (n) ≤ 36
n−1∑
j=0

Q( j).
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Proof Fix a corner of Bl and consider the saddle connections of length at most n starting at
this corner. We consider the associated signed composition in the following way: the non-
negative integer |ni | counts the consecutive hits in the flat sides of Bl and mi counts the
consecutive hits in a semicircle. The sign of ni tells us which way we are moving in the
unfolding, left or right, when changing from one semicircle to the other. In this way each
saddle connection yields a signed composition.

Fix j ≥ 1 and a signed composition of j . As we showed in part b) from Proposition 4,
for each pair of corners there is at most one saddle connection with this signed composition.
Thus, since there are 6 corners, there are at most 36 codes of saddle connections which
correspond to a given signed composition. 
�

Let (n1,m1, n2,m2, . . . nk,mk) be a signed composition of j with 2k terms. Denote by
Q( j, k) the number of such possible compositions of j ∈ N with 2k terms. Let

ri := |ni | + mi , then�rk( j) := (r1, . . . , rk)

is a composition of j with k terms. In what follows we will first estimate Q( j, k) and then
Q( j).

Fix a composition �rk( j). Each ni ∈ {−ri + 1, . . . ,−1, 0, 1, . . . ri − 1} yields a different
signed composition, there are

f (�rk( j)) :=
k∏

i=1

(2ri − 1)

preimages of �rk( j) in total, i.e.,

Q( j, k) =
∑
�≥1

� × #{�rk( j) : f (�rk( j)) = �}.

We start by estimating the number of terms in this sum, i.e., the largest possible value of �.
If s = q1 + . . . + qk , then the arithmetic–geometric mean inequality

k
√
q1 · · · qk ≤ q1 + . . . + qk

k

yields

q1 · · · qk ≤
( s
k

)k
.

Notice that the equality is obtained if and only if all the q1 = q2 = · · · = qk , and thus
qi = s/k. Setting qi = 2ri − 1 and s = 2 j − k yields

f (�rk( j)) ≤
(
2 j

k
− 1

)k

with equality if and only if ri = 2 j

k
− 1.
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Thus

Q( j, k) ≤
(
2 j

k
− 1

)k ∑
�≥1

#
{
�rk( j) : f (�rk( j)) = �

}

=
(
2 j

k
− 1

)k

× #
{
�rk( j)

}

=
(
2 j

k
− 1

)k (
j

k

)
.

Fix j ≥ 1 and let g j be the function defined by

k ∈ {1, . . . , j} �→
(
2 j

k
− 1

)k (
j

k

)
.

Lemma 6 The function k ∈ {1, . . . , j} �→ ( j
k

)
is increasing for 1 ≤ k ≤ j+1

2 and decreasing

for j+1
2 ≤ k ≤ j .

Proof The inequalities 1 ≤ k − 1 < k ≤ j + 1

2
imply that

j − k + 1

k
≥ 1 and thus

(
j

k

)
=

(
j

k − 1

)
j − k + 1

k
≥

(
j

k − 1

)

and thus the function is increasing for 1 ≤ k ≤ j+1
2 .

The decreasing statement holds since
( j
k

) = ( j
j−k

)
. 
�

For each 1 ≤ j let

h j (x) =
(
2 j

x
− 1

)x

= ex ln(
2 j
x −1).

Lemma 7 For each j ≥ 2 there exists a unique x j > 1 such that h j is increasing for
x ∈ [1, x j ] and decreasing for x ∈ [x j , j].
Proof Throughout the proof the functions under consideration are restricted to the domain
[1, j]. We begin by calculating the derivative of h j ,

h′
j (x) = h j (x)

( −2 j

2 j − x
+ ln

(
2 j

x
− 1

))
.

Let k j (x) := −2 j

2 j − x
+ ln

(
2 j

x
− 1

)
, then the signs of h′

j and k j are the same since h j is

positive. We study the sign of k j by taking its derivative:

k′
j (x) = − 2 j

(2 j − x)2
− 2 j

x (−x + 2 j)
= −4 j2

x(2 j − x)2
< 0

for x ∈ [1, j].
For j ≥ 2 we have k j (1) = −2 j

2 j−1 + ln (2 j − 1) > 0. Furthermore, k j ( j) = −2 < 0;
thus there is a unique x j ∈ (1, j) which is the solution of the equation k j (x) = 0 such
that sgn(h′

j (x)) = sgn(k j (x)) > 0 for x ∈ (1, x j ) and sgn(h′
j (x)) = sgn(k j (x)) < 0 for

x ∈ (x j , j) and thus h j (x) is maximized when x = x j . 
�
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To prove the next lemma we will use the LambertW function; see [16] for an introduction
to this notion. The Lambert W function is a multivalued function which for a given complex
number z gives all the complex numbers w which satisfy the equation wew = z. If z is a
positive real number then there is a single real solution w of this equation which we denote
W (z).

Lemma 8 There exists a constant a such that x j = a · j for each j ≥ 2.

Proof The equation k j (x j ) = 0 is equivalent to 2 j−x
x = e1e

(
x

2 j−x

)
. Substituting w = x

2 j−x

yields 1/w = e1ew or equivalently 1
e = wew. Since 1

e is positive there is a single solution

to this equation w = W ( 1e ), and thus x j = 2W ( 1e )

1+W ( 1e )
· j =: a · j . 
�

Lemma 9 The constant a verifies a ∈ (0.43562, 0.43563). The maximum value of h j is at

most
( 2
a − 1

)aj
< 1.74533 j .

Proof Notice that k j (0.43562 j) ≈ 0.00001 > 0 and k j (0.43563 j) ≈ −0.00002 < 0.
Remembering fromLemma 7 that k j is decreasing yields 0.43562 < a < 0.43563. Themax-

imum value of h j is h j (x j ) = h j (a · j) =
(
2

a
− 1

)aj

. If 0 < a1 < a then
2

a
− 1 <

2

a1
− 1.

If furthermore a < min(a2, 1) then 2
a − 1 > 1 and thus

(
2

a
− 1

)a

<

(
2

a1
− 1

)a2
. Com-

bining this with our previous estimate yields
( 2
a − 1

)a
<

( 2
0.43562 − 1

)0.43563
< 1.74533.


�
Combining Lemmas 6 and 9 yields:

Corollary 10 For j ≥ 2 the maximum value of function g j is bounded from above by(
2

a
− 1

)a (
j

� j
2 �

)
< 1.74533 j

(
j

� j
2 �

)
.

To prove the next result we consider the gamma function 	(z), we will use the Legendre
duplication formula

	(z)	(z + 1

2
) = 21−2z√π	(2z)

as well as Gautschi’s inequality

x1−s <
	(x + 1)

	(x + s)
< (x + 1)1−s

which holds for any positive real x and s ∈ (0, 1).

Lemma 11 For any even j ≥ 2 we have

(
j

� j
2 �

)
≤

√
2

j
· 2 j

√
π

while for odd j > 2 we have

(
j

� j
2 �

)
≤

√
2

j + 1
· 2 j

√
π

.
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Proof If j = 2n is even then

(
j

� j
2 �

)
=

(
2n

n

)
= 	(2n + 1)

	(n + 1)2
. Using the duplication formula

with z = n + 1
2 yields

	(2n + 1)

	(n + 1)2
= 	(2z)

	(z + 1
2 )

2
= 	(z)

	(z + 1
2 )

· 2
2z−1

√
π

= 	(
j+1
2 )

	(
j
2 + 1)

· 2 j

√
π

.

Next we apply Gautschi’s inequality with s = 1
2 and x = j

2 ; it yields

	(
j+1
2 )

	(
j
2 + 1)

· 2 j

√
π

<

√
2

j
· 2 j

√
π

.

Now suppose that j = 2n + 1 is odd, then(
j

� j
2 �

)
=

(
2n + 1

n

)
= 	(2n + 2)

	(n + 1)	(n + 2)
.

Using the duplication formula with z = n + 1 yields

	(2n + 2)

	(n + 1)	(n + 2)
= 	(2z)

	(z)	(z + 1)
= 	(z + 1

2 )

	(z + 1)
· 2

2z−1

√
π

= 	(
j
2 + 1)

	(
j+1
2 + 1)

· 2 j

√
π

.

Again we apply Gautschi’s inequality, here with x = j+1
2 and s = 1

2 which yields

	(
j
2 + 1)

	(
j+1
2 + 1)

· 2 j

√
π

<

√
2

j + 1
· 2 j

√
π


�
Now we are ready to prove the main theorem of the paper.

Proof of Theorem 1 From Corollary 10 and Lemma 11 it follows that

Q( j, k) ≤
((

2

a
− 1

)a) j ( j

� j
2 �

)
≤

((
2

a
− 1

)a) j 2 j

√
jπ/2

=
(
2

( 2
a − 1

)a) j

√
jπ/2

.

Therefore,

Q( j) ≤ j max
k

(Q( j, k)) ≤
(
2

( 2
a − 1

)a) j √
j

√
π/2

.

Thus we obtain

N (n) ≤ 36
n−1∑
j=1

Q( j) ≤ 36
n−1∑
j=1

(
2

( 2
a − 1

)a) j √
j

√
π/2

≤
(
2

(
2

a
− 1

)a)n

C
√
n − 1,

whereC is a positive constant. Recall that p(n) denotes the complexity of �̃. Therefore using
Proposition 2,

p(n) ≤ 30
n−1∑
j=0

(
2

(
2

a
− 1

)a) j

C
√
j − 1 ≤

(
2

(
2

a
− 1

)a)n

C ′√n − 1
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where C ′ is another positive constant. From the definition of topological entropy we obtain

htop(Fl) ≤ log

(
2

(
2

a
− 1

)a)
≤ log(3.49066).


�

5 Other Possible Definitions of Topological Entropy

Another very natural definition of topological entropy was given by Pesin and Pitskel’ in
[20] and the closely related capacity topological entropy was defined by Pesin in [19][p.
75]. Applying these definitions to the map Fl restricted to M̃l yields two quantities, the
Pesin-Pitskel’ topological entropy hM̃l

(Fl) and the capacity topological entropy ChM̃l
(Fl).

Formally, in [19] the capacity topological entropy is defined in a slightly more restrictive
setting than in [20], but it can be defined in the setting of [20] and the relationship hM̃l

(Fl) ≤
ChM̃l

(Fl) from [19] still holds. But our definition of htop(Fl) coincideswith Pesin’s definition
of ChM̃l

(Fl). Thus we have the following corollary

Corollary 12 For any l > 0 the Pesin-Pitskel’ topological entropy hM̃l
(Fl) is bounded from

above by log
(
2

( 2
a − 1

)a)
< log(3.49066).
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was partially supported by the FWF Schrödinger Fellowship stand-alone project J 4276-N35, the IDUB pro-
gram no. 1484 “Excellence initiative - research university” for the AGHUniversity of Science and Technology
and the AD Program J1-4632 from ARRS, Slovenian National Research Agency.

Declarations

Conflicts of interest Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study. Both authors declare that they have no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

In [2] the authors state in Theorem 3.5 that a certain 16 element partition is generating. Just
after the statement of the theorem they remark that it implies that the six element partition
we consider in this article is a generating partition as well.

For convenience we give a formal proof of this remark. Consider the four element partition
B := {L, T , B, R}. The sixteen element partition C consists of the connected components
of the partition C′ := B ∨ F−1

l (B). The partition C′ has 14 elements since the codes T T
and BB can not be realized. There are exactly two elements of C′ which are not connected,
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corresponding to the pairs LL and RR. Each of them has two connected components, we
call the splitting into the two connected components LL, LL, resp. RR, RR which yields
the partition C. The component LL (RR) consists of x ∈ Ml such that x and Fl(x) are on
the left (right) semi-circle of ∂Bl and x = (s, θ) with θ ≤ 0. Similarly, the component LL
(RR) consist of such points where θ ≥ 0.

We consider the space of all codes �̃6 resp. �̃16 of orbits which stay in the interiors of
the partition elements with the six letter, resp. 16 letter alphabet, and their closures �6 resp.
�16. Note that �̃6 resp. �6 is referred to �̃ resp. � in the rest of this article. Theorem 3.5
of [2] states that the partition C is a generating partition in the following sense: there is a
continuous surjection

π : �̃16 \ ((T B)∞ ∪ (BT )∞) → M̃l \ M̂l

such that

Fl ◦ π = π ◦ σ

where σ is the shift map and M̂l := {x ∈ Ml : c(s, θ) = (BT )∞ or (T B)∞}.
Actually C is a generating partition in a stronger sense; namely there is a continuous

surjection

π : �16 \ ((T B)∞ ∪ (BT )∞) → Ml \ M̂l

such that Fl ◦ π = π ◦ σ . The proof of this stronger statement is identical to the proof of
Theorem 3.5 of [2], and it is important to note that in Equation (10) of their proof the authors
show that the intersection of closed cells is a single point.

We define φ : �6 → �16 by regrouping consecutive symbols and erasing the overbar or
underbar except for the four cases LL, LL, RR, RR.

For example in Fig. 1 we consider the lower point on L pointing up, we have

φ(. . . , ¯L, ¯L, ¯R, ¯R, . . . ) = . . . , LL, LR, RR, RL, . . .

while if we consider the upper point on L pointing down, we have

φ(. . . , L̄, L̄, R̄, R̄, . . . ) = . . . , LL, LR, RR, RL, . . . .

The map φ is continuous, surjective, and commutes with the shift map, thus

π ◦ φ : �6 \ ((T B)∞ ∪ (BT )∞) → Ml \ M̂l

is a continuous surjection and such that Fl ◦ π ◦ φ = π ◦ φ ◦ σ , i.e., the six element partition
is generating as well.
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