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Abstract
A classical approach for the analysis of the long-time behaviour of Markov processes is to
consider suitable Lyapunov functionals like the variance or more generally �-entropies. Via
purely analytic arguments it can be shown that these functionals are indeed non-increasing
in time under quite general assumptions on the process. We refine these classical results via
a more probabilistic approach and show that dissipation is already present on the level of
individual trajectories for spatially extended systems of infinitely many interacting particles
with arbitrary underlying geometry and compact local spin spaces. This extends previous
results from the setting of finite-state Markov chains or diffusions in R

n to an infinite-
dimensional setting with weak assumptions on the dynamics.

Keywords Interacting particle systems · Phi-entropy · Time-reversal · Martingale
representation

Mathematics Subject Classification Primary 82C20 · Secondary 60K35

1 Introduction

There are many different techniques to study the long-time behaviour of Markov processes
that excel in different situations. One very common and powerful technique is the use of
Lyapunov functionals, i.e., functionals that are monotone in time. An example of such a
functional is the variance

Varμ( f ) := Eμ[ f 2] − Eμ[ f ]2, f ∈ L2(μ),
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where μ is an invariant measure for some Markov process (Xt )t≥0 with semigroup (Pt )t≥0.
If we now fix an observable f and consider the function

[0,∞) � t �→ Varμ(Pt f ) ∈ [0,∞),

then it is easy to see that this is non-increasing and under some further assumptions one
can even show that it is strictly decreasing for all non-constant observables f . This whole
viewpoint is purely based on functional analytic arguments and one does not even need to
speak about the underlyingMarkov process itself to carry out the corresponding calculations.
Looking at this result from a different perspective, we observe that on average the process
(Pt f (Xt )

2)t≥0 is non-increasing. However, the purely analytic approach does not provide
us with any insight on the behaviour of this process on the level of single trajectories. Of
course, in general we cannot expect that every trajectory of this process is non-increasing, but
we can hope that the process exhibits some stochastic form of monotonicity, such as being
non-increasing in conditional mean, i.e., a supermartingale. From a probabilistic standpoint,
these limitations of the purely analytic tools are somewhat dissatisfying. Consequently, we
seek to enhance this coarse approach by applying a more detailed, probabilistic technique
that allows us to extend these results to a trajectorial level, by which we mean results on the
behaviour of single realisations of a stochastic process. By doing so, we uncover more of the
underlying probabilistic mechanisms governing the decay of variance, or more generally, the
decay of �-entropies. For this, we will first briefly recall the notion of �-entropies and then
explain our main results and ideas with the help of the simple example of a continuous-time
Markov chain on a finite state space. The rest of the article is then devoted to extending these
ideas to the setting of spatially extended systems of infinitely many interacting particles as
e.g. considered in [13].

1.1 8-Entropies and Their Decay Under Markovian Dynamics

Let� : I → R be a smooth and convex function defined on a not necessarily bounded interval
I ⊂ R. Let (E,B(E)) be a Polish space equipped with its Borel σ -algebra and assume that
μ is a probability measure on (E,B(E)). The �-entropy functional is then defined on the
set of μ-integrable functions f : E → I by

Ent�μ( f ) :=
∫
E

�( f )dμ − �

(∫
E
f dμ

)
= Eμ [�( f )] − �

(
Eμ [ f ]

)
.

By Jensen’s inequality one can immediately deduce that the �-entropy functional takes its
values in R+ ∪ {+∞}. Moreover, Ent�μ( f ) vanishes if its argument is constant and if � is
strictly convex, then the converse is also true. For special choices of � one can recover the
classical variance and relative entropy functionals since we have

Entu �→u2
μ = Varμ, Entu �→u log u

μ = h(·|μ).

Now let (X(t))t≥0 be a Markov process on our Polish space E with associated semigroup
(Pt )t≥0 acting on Cb(E;R), the space of continuous and bounded real-valued functions on
E . Let us assume that there exists an invariant probability measure μ and denote by L the
generator of the semigroup (Pt )t≥0 with domain dom(L ) ⊂ Cb(E;R).

By invariance of μ and Jensen’s inequality one can now deduce that for all f ∈ Cb(E;R)

Ent�μ(Pt f ) = Eμ [�(Pt f )] − �
(
Eμ [Pt f ]

) ≤ Eμ [Pt�( f )] − �
(
Eμ [ f ]

) = Ent�μ( f ).
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This tells us that the �-entropy is non-increasing as a function of t and can be used as a
Lyapunov function. More precisely, with purely analytic arguments, one can even deduce the
following general result about the decay of �-entropies.

Proposition 1.1 (DeBruijn like property for Markov semigroups, [2]) Let (X(t))t≥0 be a
Markov process on a Polish space E equipped with its Borel σ -algebra B(E) and let (Pt )t≥0

be the associated Markov semigroup with generatorL . Assume that μ is an invariant prob-
ability measure. Then, for any continuous and bounded function f : E → I and any t > 0,
it holds that

∂t Ent�μ(Pt f ) = Eμ

[
�′(Pt f )L (Pt f )

] ≤ 0.

This result is classical, but we nevertheless recall its short analytic proof.

Proof The chain rule and the definition of the generator L directly imply that

∂t Ent�μ(Pt f ) = Eμ

[
�′(Pt f )

d

dt
(Pt f )

]
= Eμ

[
�′(Pt f )L (Pt f )

]
.

To see that the left-hand side is actually non-positive, it suffices to observe that the convexity
of � implies via Jensen’s inequality for conditional expectations

�(Pt+s g) ≤ Pt (�(Psg))

for any s, t ≥ 0 and hence for all f we have

Ent�μ(Pt+s f ) ≤ Ent�μ(Ps f ),

by invariance of μ. �

By integrating with respect to the time variable one obtains the following classical corol-
lary, which links exponential decay of �-entropies and functional inequalities involving
�-entropies.

Corollary 1.2 In the setting of Proposition 1.1, the following two statements are equivalent.

i There exists a constant c > 0 such that for all f ∈ dom(L )

Ent�μ( f ) ≤ −cEμ

[
�′( f )L f

]
.

ii. There exists a constant c > 0 such that for all continuous and bounded f : E → I

Ent�μ(Pt f ) ≤ e− t
cEnt�μ( f ).

Note that, in the special case � : u �→ u2, one recovers the Poincaré inequality

Varμ( f ) ≤ − c

2
〈 f ,L f 〉L2(μ),

which is well-known to be equivalent to exponential L2 ergodicity, see e.g. [7]. For a more
detailed review of �-entropies and further results we refer the interested reader to [2].
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1.2 A Finite State-Space Example for the Trajectorial Approach

As one can see, the results above can be obtained without even mentioning the underlying
stochastic process and just dealing with the semigroup and its generator. While the simplicity
of this method is certainly attractive, it solely provides information about averaged quantities,
i.e., the mean behaviour of the process, but it does not offer any insights into the behaviour
of individual realisations. We therefore want to complement this perspective with a more
refined and probabilistic approach that enables us to derive results at a trajectorial level.

For simplicity, we will first discuss the main ideas for the example of a continuous-time
Markov chain on a finite state space. More precisely, let (Xt )t≥0 be a Markov chain on a
finite set E with irreducible generator L and strictly positive invariant measure μ. Hence,
the corresponding Markov semigroup is given by the matrix exponential (etL )t≥0. Denote
the underlying probability space by (�,A,P) and assume that X0 ∼ μ under P.

It is easy to check that for all bounded f : [0,∞) × E → R such that for all x ∈ E the
partial derivatives ∂t f (·, x) are continuous and bounded, the process defined by

f (t, Xt ) −
∫ t

0
(∂s + L ) f (s, Xs)ds, t ≥ 0, (1.1)

is a martingale with respect to the canonical filtration generated by (Xt )t≥0, see e.g. [14,
Lemma IV.4.20].

If we now fix a finite time horizon T > 0 and consider the time-reversal (X̂t )0≤t≤T

of (Xt )t≥0, where X̂t = XT−t , then under P the time-reversed process is again a time-
homogeneous Markov process with generator L̂ , where

L̂ (x, y) = μ(y)

μ(x)
L (y, x).

A short calculation now shows that, for each bounded g : E → R and T > 0, the process
(PT−s g(X̂s))0≤s≤T is a ((F̂t )0≤t≤T ,P)-martingale, where F̂t = σ(XT−s : 0 ≤ s ≤ t).
Indeed, we can use the chain rule to calculate

∂t PT−t g(x) = −L̂ PT−t g(x),

so the correction term in (1.1) vanishes. Note that it is crucial to use the time-reversed process
here, since the correction term does not cancel out if one uses the forward process.

By convexity this directly implies that the time-reversed trajectorial �-entropy, i.e., the
process defined by

�(PT−s g(X(T − s))), 0 ≤ t ≤ T ,

is a submartingale. The submartingale property of this process should be thought of as a
stochastic monotonicity because it tells us that almost surely we have

E

[
�(PT−s g(X(T − s)))

∣∣∣F̂t

]
≥ �(PT−t g(X(T − t))), 0 ≤ t ≤ s ≤ T . (1.2)

This provides us with valuable insights into the behavior of�-entropy functionals along indi-
vidual trajectories and can be viewed as a trajectorial refinement of DeBruijn’s Theorem,
which we can recover from (1.2) by taking expectations with respect to P. The submartin-
gale property of the backward dynamics can be interpreted as follows: Regardless of our
knowledge about the system’s future trajectory, we expect the �-entropy to have decreased
in the past. Hence, in a sense, the knowledge of a system’s trajectory does not influence the
DeBruijn-like decay of �-entropies when looking backwards in time.
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Moreover, we can now apply the standard machinery of martingale inequalities to get
concentration bounds on the fluctuations around the mean. For example, Doob’s classical
submartingale inequality, see [14, Theorem II.52.1], implies that for all C > 0 we have

P

[
sup

0≤t≤T
�(Pt f (ηt )) ≥ C

]
≤
∫

�( f )dμ

C
.

Since the right-hand side does not depend on T > 0, we even get a tail bound for unbounded
time intervals

P

[
sup

0≤t<∞
�(Pt f (ηt )) ≥ C

]
≤
∫

�( f )dμ

C
.

An analogous time-reversedmartingale structure has been identified in the field of stochas-
tic thermodynamics, specifically in the investigation of the decay of non-equilibrium free
energies under Markovian dynamics, see [15, Sect. 9.1.4]. Exploring the underlying rea-
sons for why the submartingale property appears exclusively in reversed time is a subject
of ongoing research. For readers interested in delving deeper into this topic from a physics
perspective, we recommend the comprehensive review article [15].

The main work is now to establish that a similar argument as in the case of a finite state
space can also be made rigorous to treat infinite-dimensional systems like the interacting
particle systems we consider. To our best knowledge, the first results of this kind, in the
context of diffusions in R

n , have been achieved in [4]. More recently, starting with [9],
these results have been extended to more and more classes of Markov processes, including
continuous time Markov chains on countable state spaces, see [10]. The works [11, 16] are
also in a similar spirit.

The setting will be made precise in Sect. 2, but roughly speaking, we consider continuous-
timeMarkov jump processes on general configuration spaces� = �S

0 , where S is an arbitrary
countable set and�0 is a compact Polish space.We will refer to the elements of S as sites and
call�0 the local state-space. In most examples considered in the literature, S is the vertex set
of some graph like the d-dimensional hypercubic lattice Zd , a tree or the Cayley graph of a
group. This underlying spatial geometry dictates which particles can interact with each other
and we are therefore not in the setting of mean-field systems but in an infinite-dimensional
setting. This of course brings with it its own set of technical difficulties which need to be
dealt with for making the time-reversal arguments work.

The main technical difficulties come from making sure that the time-reversal is again a
well-defined interacting particle system and fromobtaining a description of its generator. This
ismade possible by assuming some local regularity of the local conditional distributions of the
time-stationarymeasureμ. Namely, by the assumption thatμ is actually aGibbsmeasurewith
respect to a quasilocal specification that additionaly satisfies a certain smoothness condition.
This condition is e.g. satisfied if the specification is given in terms of a potential � =
(�B)B�S such that

sup
x∈S

∑
B�S: B�x

|B| ‖�B‖∞ < ∞,

where the notation B � S means that B is a finite subset of S. Note that this condition is for
example satisfied for any translation-invariant finite-range potential, so our theory applies to
a fairly large class of models.
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1.3 Organisation of theManuscript

The rest of this article is organised as follows. We will first collect the necessary notation and
formulate our main results in Sect. 2. Then, as a first step, we investigate the time-reversal
of interacting particle systems in equilibrium in Sect. 3 with the main goal of obtaining an
explicit representation of the (formal) generator of the time-reversed dynamics. In Sect. 4, we
will then apply these results to establish pathwise properties of general�-entropy functionals.

2 Setting andMain Results

Let (�0,B0) be a compact Polish space equippedwith its Borelσ -algebra andλ0 a probability
measure on (�0,B0), whichwill serve as our referencemeasure.Wewill considerMarkovian
dynamics on the configuration space� = �S

0 , where S is some countable set whose elements
we will refer to as sites. In most applications this will be the set of vertices of some graph,
e.g. Zd or a tree. We equip � with the product topology and corresponding Borel σ -algebra
F . Note that F coincides with the product σ -algebra ⊗x∈SB0. For � ⊂ S we will also write
�� := ��

0 for the set of partial configurations. We will also equip �� with the product σ -
algebra and the probability measure λ� = ⊗x∈�λ0. For 	 ⊂ S, let F	 be the sub-σ -algebra
of F that is generated by the projections ω �→ ω� ∈ �� for � � 	, where we write �
to signify that a set is a finite subset of another set. For � ⊂ S and (partial) configurations
η�c ∈ ��c and ξ� ∈ ��, we will write ξ�η�c for the configuration that is defined on
all of S and agrees with η�c on �c and with ξ� on �. For a topological space E , we will
denote its Borel σ -algebra by B(E) and the space of continuous real-valued functions on
E by C(E). The space of non-negative measures on E , or more precisely on B(E), will
be denoted by M(E) and is equipped with the topology of weak-convergence. The subset
of probability measures, i.e., non-negative measures with total mass equal to one, will be
denoted by M1(E). The total variation distance on M(E) will be denoted by ‖·‖TV.

2.1 Interacting Particle Systems and Gibbs Measures

2.1.1 Interacting Particle Systems

We will consider time-continuous Markovian dynamics on �, namely interacting particle
systems characterised by time-homogeneous generators L with domain dom(L ) ⊂ C(�)

and the associated Markovian semigroup (Pt )t≥0 on C(�). For interacting particle systems
we adopt the notation and exposition of the standard reference [13, Chapter I].

In our setting, the generator L is given by a collection of transition measures
(c�(·, dξ))��S in finite volumes � � S, i.e., mappings

� � η �→ c�(η, dξ�) ∈ M(��).

These transition measures can be interpreted as the infinitesimal rates at which the particles
inside � switch from the configuration η� to ξ�, given that the rest of the system is cur-
rently in state η�c . The full dynamics of the interacting particle system is then given as the
superposition of these local dynamics,

L f (η) =
∑
��S

∫
��

[ f (ξ�η�c ) − f (η)] c�(η, dξ�). (2.1)
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In [13, Chapter I] it is shown that the following conditions are sufficient to guarantee well-
definedness.

(L1) For each � � � the mapping

� � η �→ c�(η, dξ�) ∈ M(��)

is continuous.
(L2) The total rate at which a single particle switches its state is uniformly bounded, i.e.,

sup
x∈S

∑
��x

sup
η∈�

c�(η,��) < ∞.

(L3) The total influence of all other particles on the transition rates of a single particle is
uniformly bounded, i.e.,

M := sup
x∈S

∑
��x

∑
y �=x

δyc� < ∞,

where

δyc� := sup
{‖c�(η, ·) − c�(ξ, ·)‖TV : ηyc = ξyc

}
.

Under these conditions, the core of the operator L is given by

D(�) :=
{
f ∈ C(�) : ||| f ||| :=

∑
x∈S

δx ( f ) < ∞
}

,

where for x ∈ S

δx ( f ) := sup
η,ξ : ηxc=ξxc

| f (η) − f (ξ)|

is the oscillation of a function f : � → R at the site x . In addition, one can show the
following estimates forL and the action of the semigroup (Pt )t≥0 generated byL . We will
need these later on.

Lemma 2.1 Assume that the generator L satisfies (L1) − (L3) and denote by (Pt )t≥0 the
semigroup generated by L .

i. For f ∈ D(�) we have Pt f ∈ D(�) for all t ≥ 0 and

|||Pt f ||| ≤ exp ((M − ε)t) ||| f |||.
ii. For all f ∈ D(�) it holds that

‖L f ‖∞ ≤
(
sup
x∈S

∑
��x

sup
η∈�

c�(η,��)

)
||| f |||.

The constants are explicitly given by

M = sup
x∈S

∑
��x

∑
y �=x

δyc� < ∞,

ε = inf
x∈S inf

η,ζ : ηxc=ζxc ,ηx �=ζx

∑
��x

⎛
⎝ ∑

ξ�:ξx=ζx

c�(η, ξ�) +
∑

ξ�:ξx=ηx

c�(ζ, ξ�)

⎞
⎠ .
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Proof Combine the results from Proposition 3.2(a) and Theorem 3.9.(d) in [13, Chapter I].
�

For our purposes, the mere well-definedness of an interacting particle system is not suf-
ficient and we need to assume some more regularity. All the additional assumptions we put
will be used to make the generator of the time-reversal well-defined.

(R1) For each � and η ∈ � the measure c�(η, dξ�) is absolutely continuous with respect
to the reference measure λ�(dξ�) with density c�(η, ·).

(R3) For each � ∈ � the map

� × �� � (η, ξ�) �→ c�(η, ξ�) ∈ R

is continuous with respect to the product topology.
(R3) The total rate of transition for a single site is uniformly bounded from above

sup
x∈S

∑
��x

sup
η∈�

‖c�(η, ·)‖∞ < ∞.

(R4) The condition (L3) is satisfied, i.e.,

sup
x∈S

∑
��x

∑
y �=x

δyc� < ∞.

(R5) There exists an R > 0 such that for all � � Z
d with |�| > R we have

sup
η∈�,ξ�∈��

c�(η, ξ�) = 0.

Wewill comment onwhere andwhywe need these assumptions and their connection to the
classical conditions (L1)–(L3) at the end of Sect. 2.1.2, after we have stated our assumptions
on the local conditional distribution of the time-stationary measure μ.

2.1.2 Gibbs Measures and the DLR Formalism

We will mainly be interested in the situation where the process generated by L admits a
time-stationary measureμwith a well-behaved local representation, namely thatμ is a Gibbs
measure with respect to to a sufficiently nice specification γ . Let us therefore first recall the
general definition of a specification.

Definition 2.2 A specification γ = (γ	)	�S is a family of probability kernels γ	 from �	c

to M1(�) that additionally satisfies the following properties.

i. Each γ	 is proper, i.e., for all B ∈ F	c it holds that

γ	(B|·) = 1B(·).
ii. The probability kernels are consistent in the sense that if� ⊂ 	 � S, then for all A ∈ F

γ	γ�(A|·) = γ	(A|·),
where the concatenation of two probability kernels is defined as usual via

γ	γ�(A|η) =
∫

�

γ�(A|ω)γ	(dω|η).
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For the existence and further properties of Gibbs measures with specification γ one needs
to impose some conditions on the specification γ . One sufficient condition for the existence
of a Gibbs measure for a specification γ is quasilocality, see e.g. [5] or [6]. For the following
sections we will need to assume some more regularity for the specification γ . In particular,
these assumptions will guarantee that γ is quasilocal.

(S1) For each � � S and η ∈ �, the probability measure γ�(dξ�|η) is absolutely contin-
uous with respect to the reference measure λ�(dξ�) with density γ�(·|η).

(S2) For all � � S, the map

� × �� � (η, ξ�) �→ γ�(ξ�|η�c ) ∈ [0,∞)

is continuous (with respect to the product topology).
(S3) The conditional densities on the single spin spaces are uniformly bounded away from

zero and infinity, i.e.,

0 < δ ≤ inf
x∈S inf

η∈�
γx (ηx |ηxc ) ≤ sup

x∈S
sup
η∈�

γx (ηx |ηxc ) ≤ δ−1 < ∞.

(S4) We have

sup
x∈S

∑
��x : c�>0

∑
y �=x

δyγ� < ∞,

where

δyγ� = sup
{‖γ�(dξ�|η) − γ�(dξ�|ζ )‖TV : ηyc = ζyc

}
.

Remark 2.3 Now that we have stated all of the conditions that we need, let us briefly comment
on why and where we need them.

i. Assumption (R3) clearly implies (L2) and togetherwith (R4) ensures that the interacting
particle system is well-defined.

ii. Assumption (R1) and (S1) allow us to write down the local transition density of the
time-reversal and (S3) makes sure that we are not performing a division by zero.

iii. The further regularity assumptions (R3), (R5) (S3), (S4) and the continuity assumptions
(R2) and (S2) make sure that the local transition densities of the time-reversal also give
rise to a well-defined interacting particle system.

iv. The quantity in (S4) is similar to the classical Dobrushin uniqueness condition, see [6].
However, we only need it to be finite and not strictly smaller than one.

Example 2.4 One particular class of models to which our theory can be applied to are spin
systems for which the specification γ is defined via a potential � = (�B)B�S that satisfies

sup
x∈S

∑
B�x

|B| ‖�B‖∞ < ∞,

and where the rates are of the form

c�(η, ξ�) =
{
exp
(
−β
∑

B:B∩� �=∅ �B(ξ�η�c )
)

, if |�| = 1,

0, otherwise.

Instead of these single-site updates one could also consider updates in larger regions with a
bounded diameter. Then the rates satisfy (R1) − (R5) and the specification satisfies (S1) −
(S4), as one can see by using similar arguments as in the proof of [5, Lemma 6.28]. Note that
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this class of examples includes models with long-range pairwise interactions (�{x,y})x,y∈Zd

that satisfy ∥∥�{x,y}
∥∥∞ ∼ ‖x − y‖−α

1

for some α > d .

2.2 The Time-Reversal of an Interacting Particle System

In the notation of above, assume thatμ ∈ G (γ ) isGibbsmeasure for a quasilocal specification
γ , i.e., assume that μ satisfies the DLR equations

μ( f ) = μ(γ	( f |·))
for all 	 � S and bounded measurable functions f . Further assume that μ is time-stationary
with respect to the Markovian dynamics with generatorL . Denote the semigroup generated
byL by (Pt )t≥0 and the corresponding process on� by (η(t))t≥0. As discussed in Sect. 1.2,
for each fixed T > 0 the process (η(T − t))0≤t≤T is again a time-homogeneous Markov
process and under some suitable assumptions its associated semigroup has a generator L̂ .
But what does this generator look like? For general Markov processes it is not possible to
give a closed form expression, but in our case we can use the special structure of L as the
superposition of local dynamics in finite volumes. In each of these finite volumes, it is clear
how the time-reversal with respect to μ should look and we can hope that we can again
write L̂ as the superposition of finite volume processes. With this Ansatz, the probabilistic
intuition dictates the educated guess

ĉ�(η, ξ�) = c�(ξ�η�c , η�)
γ�(ξ�|η�c )

γ�(η�|η�c )
(2.2)

for the transition densities appearing in the generator of the time-reversed interacting particle
system. However, at this stage, it is not obvious that the generator of the time-reversed system
is again of the form (2.1) and has precisely these rates. For Markov processes on finite state
spaces this is an easy calculation but we have to put in somemore work, which will be carried
out in Sect. 3. We obtain the following result that extends results from [12] to a much more
general setting.

Proposition 2.5 (Time-reversal generator) Let the rates of an interacting particle systemwith
generator L satisfy (R1) − (R5) and assume that μ is a time-stationary measure for the
corresponding Markov semigroup (P(t))t≥0 on C(�) that is generated byL such that μ is
a Gibbs measure with respect to a specification γ that satisfies (S1) − (S4). Then, the time-
reversed process has a generator L̂ whose transition densities (with respect to the reference
measure λ0) are given by

ĉ�(η, ξ�) = c�(ξ�η�c , η�)
γ�(ξ�|η�c )

γ�(η�|η�c )
.

The proof of this can be found at the end of Sect. 3.

2.3 Trajectorial Decay of8-Entropies

With this auxiliary result at hand, we can then obtain the following result, which describes
the dissipation of general �-entropies on a trajectorial level. Before we state the theorem,
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let us introduce some further notation to express the main equation in a cleaner way. The
Bregman �-divergence associated with � : I → R is defined as

div�(p|q) := �(p) − �(q) − (p − q)�′(q), p, q ∈ I .

This is precisely the difference between the value of� at the point p and the value of the first-
order Taylor expansion of � around q , evaluated at p and is non-negative, since we assumed
that� is convex. Bregman divergences are sometimes also referred to as Bregman distances,
despite not being a metric since they are in general not symmetric and do not satisfy the
triangle inequality. They are however still useful for applying techniques from optimisation
theory inmore general contexts, e.g. in statistical learning theory [1]. As an example, consider
the classical entropy function � : u �→ u log u. Then the associated Bregman divergence is
given by

div�(p|q) = p log p − p log q + p − q = p log

(
p

q

)
+ p − q.

Note that we now have to be careful with the probability space and filtration we are working
with, since we are talking about results on a trajectorial level.

Theorem 2.6 (Trajectorial decay of �-entropies) Let (�,A,P) be a probability space on
which the interacting particle system (η(s))s≥0 is defined. Denote the generator of the inter-
acting particle system by L and assume that its rates satisfy (R1) − (R5) and assume that
under P we have η0 ∼ μ, where μ is a time-stationary measure for the corresponding
Markov semigroup (Pt )t≥0 on C(�) that is generated byL such that μ is a Gibbs measure
with respect to a specification γ that satisfies (S1) − (S4). Let I ⊂ R be an interval and
� : I → R be a continuously differentiable convex function. Then, for any f ∈ D(�) such
that f (�) ⊂ I , and T > 0, the process defined by

L�, f (s) := �(PT−s f (ηT−s)), 0 ≤ s ≤ T , (2.3)

is a ((Ĝt )0≤t≤T ,P)-submartingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t). Its Doob–Meyer
decomposition is given by

L�, f (t) = M�, f (t)

+
∫ t

0

∑
��S

∫
��

ĉ�(η(T − s), ξ�)div�

× (PT−s( f (ξ�η�c (T − s))|PT−s f (η(T − s)))λ�(dξ�)ds. (2.4)

The proof of this theorem can be found at the end of Sect. 4. While one can recover the
classical DeBruijn-like decay of �-entropies as stated in Proposition 1.1 by taking expecta-
tions, let us stress that Theorem 2.6 gives us a much more precise description of the process.
Indeed, the submartingale property provides us with information on the behaviour of the
process in conditional mean, and not just on the level of ensemble averages. So we can
actually say that, irrespective of the current state and future trajectory of our system, we
expect that the �-entropy process has decreased in the past. Furthermore, the submartingale
property allows us to make use of the strong machinery of (sub)martingale inequalities and
thereby derive new results on the pathwise deviations from the ensemble average. Indeed,
from Doob’s submartingale inequality, see [14, Theorem II.52.1], we immediately get the
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following explicit concentration bound for the trajectories:

∀C > 0 : P

[
sup

0≤t<∞
L�, f (t) ≥ C

]
≤
∫
�

�( f )dμ

C
.

This allows us to bound the probability of ever seeing large pathwise deviations from the
ensemble average, as described by DeBruijn’s Theorem.

For the sake of concreteness, let us write out the result from Theorem 2.6 explicitly for one
of the simplest cases, namely the trajectorial decay of variance, corresponding to� : u �→ u2.

Corollary 2.7 (Trajectorial decay of variance) In the setting of Theorem 2.6, we have that,
for any f ∈ D(�) and T > 0, the process defined by (PT−s f (ηT−s))

2, 0 ≤ s ≤ T , is
a ((Ĝt )0≤t≤T ,P)-submartingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t). Its Doob–Meyer
decomposition is given by

(PT−s f (ηT−s))
2 = M f (t) +

∫ t

0

∑
��S

∫
��

ĉ�(η(T − s), ξ�)

× [ f (ξ�η�c (T − s)) − f (η(T − s))]2 λ�(dξ�)ds.

2.4 Outlook

Even though we were able to show the trajectorial decay for the relative entropy under quite
general assumptions on the dynamics, these results are not fully satisfactory in the context
of statistical mechanics. The usually more interesting Lyapunov functional in this setting is
the so-called relative entropy density, as e.g. considered in [5], which is not only defined
for measures ν that are absolutely continuous with respect to μ. Therefore, it would be
much more natural to work with this functional h(·|μ) : Minv

1 (�) → R instead and one can
show that is also a Lyapunov function for interacting particle systems under quite general
assumptions, see [8], but it is somewhat unclear how to even formulate conjectures about the
trajectorial properties of this functional, since one cannot naively evaluate it pointwise.

As we already saw in the case of a continuous time Markov chain on a finite state space,
the main ingredient for this type of result is to obtain an explicit description of the generator
of the time-reversed process. Another class of processes that could be of interest and is not
covered by our results are systems which evolve continuously on their single spin spaces,
as opposed to our pure-jump processes. The first example that comes to mind are of course
systems of (infinitely-many) interacting diffusions, e.g. indexed by Z

d . We expect that, if
a given system of interacting diffusions admits a Gibbs measure as an invariant probability
measure, then a combination of the techniques in [9] and this article should yield analogous
results—of course under some suitable regularity conditions on the coefficients.

3 The Time-Reversed Interacting Particle System and Its Generator

The main goal of this section is to prove Proposition 2.5, thereby establishing that the gen-
erator of the time-reversal is indeed given by L̂ . For this we will need to establish some
regularity properties for the transition densities as defined in (2.2).
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3.1 Upper and Lower Bounds for the Conditional Densities

Since we will need to deal with quotients involving the conditional densities γ� on arbitrary
finite subsets � � S, we will need to lift the upper and lower bounds from (S3) to this more
general case. This is essentially the content of the following lemma.

Lemma 3.1 Let γ be a specification that satisfies (S1) and (S3). Then, there exists a constant
C ∈ (0,∞) such that for all � � S we have the estimate

e−C |�| ≤ inf
η∈�

γ�(η�|η�c ) ≤ sup
η∈�

γ�(η�|η�c ) ≤ eC |�|.

This constant is precisely given by C = |log δ|.
Proof For this, fix an enumeration i1, . . . , ik of the elements of � and introduce the notation

[i j , ik] := {i j , i j+1, . . . , ik
}
, 1 ≤ j ≤ k.

With this notation at hand, we can use the chain rule for conditional probability densities to
write

γ�(η�|η�c ) =
k∏
j=1

γ[i1,i j ](ηi j |η[i j+1,ik ]η�c ), (3.1)

where γ[i1,i j ](ηi j |η[i j+1,ik ]η�c ) is the marginal density of the measure
γ[i1,i j ](dη[i1,i j ]|η[i j+1,ik ]η�c ) with respect to the site i j . But, using consistency of the speci-
fication γ , we have

γ[i1,i j ](ηi j |η[i j+1,ik ]η�c ) =
∫

γ[i1,i j ](dξ[i1,i j ]|η[i j+1,ik ]η�c )γi j (ηi j |ξ[i1,i j−1]η[i j+1,ik ]η�c ),

which is, by assumption, upper bounded by δ−1 and lower bounded by δ. In conjunction with
the representation (3.1) this implies the desired upper and lower bound where the constant
C is explicitly given by C = |log(δ)|. �

As a corollary we now get the following estimate for the quotients that appear in the
definition of transition density of the time-reversal (2.2).

Lemma 3.2 Let � � S and γ be a specification that satisfies (S1) and (S3). Then, for all
� � S, η ∈ � and ξ� ∈ ��, we have

0 < e−2C |�| ≤ γ�(ξ�|η�c )

γ�(η�|η�c )
≤ e2C |�|.

3.2 The Switching Lemma

Now that we can be sure that the densities as in (2.2) are actually well-defined and we are
not performing a division by zero, we can start showing that L̂ is indeed the generator of
the time-reversed process. The main technical tool will be the following lemma.

Lemma 3.3 Let the rates of a well-defined interacting particle system with generator L
satisfy (R1) and assume thatμ is a time-stationary measure forL andμ is a Gibbs measure
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with respect to a specification γ that satisfies (S1) and (S3). Then, we have for all bounded
and measurable f , g : � → R and � � S that∫

��

∫
�

c�(ω, ξ�) f (ω)g(ξ�ω�c )μ(dω)λ�(dξ�)

=
∫

��

∫
�

ĉ�(ω, ξ�) f (ξ�ω�c )g(ω)μ(dω)λ�(dξ�), (3.2)

where

ĉ�(η, ξ�) = c�(ξ�η�c , η�)
γ�(ξ�|η�c )

γ�(η�|η�c )
.

To keep the notation for conditional expectations in the upcoming proof simple, we will
denote integration with respect to μ by E[·].
Proof As a first step, note that for fixed � � S and ξ� ∈ �� the maps

� � ω �→ g(ξ�ω�c ) ∈ R, � � ω �→ f (ξ�ω�c ) ∈ R,

are F�c -measurable. Therefore, we can use that γ is the local conditional distribution of μ

and the definition of the rates ĉ to obtain the μ-almost-sure identity

E [c�(·, ξ�) f (·)g(ξ�·�c )|F�c ] (ω)

= g(ξ�ω�c )E [c�(·, ξ�) f (·)|F�c ] (ω)

= g(ξ�ω�c )

∫
��

γ�(ζ�|ω�c )c�(ζ�ω�c , ξ�) f (ζ�ω�c )λ�(dζ�)

= g(ξ�ω�c )

∫
��

γ�(ξ�|ω�c )ĉ�(ξ�ω�c , ζ�) f (ζ�ω�c )λ�(dζ�).

If we now integrate over ξ�, exchange the order of integration (via Fubini) and apply the
same arguments in reverse— with f taking the role of g and vice versa—we get∫

��

E [c�(·, ξ�) f (·)g(ξ�·�c )|F�c ] (η)λ�(dξ�)

=
∫

��

E
[
ĉ�(·, ζ�) f (ζ�·�c )g(·)|F�c

]
(η)λ�(dζ�).

By integrating both sides with respect toμ, exchanging the order of integration, and applying
the law of total expectation we obtain∫

��

∫
��

(ω, ξ�) f (ω)g(ξ�ω�c )μ(dω)λ�(dξ�)

=
∫

��

∫
�

ĉ�(ω, ζ�) f (ζ�ω�c )g(ω)μ(dω)λ�(dζ�),

as desired. �

3.3 Regularity of the Time-Reversal Rates

To make sure that L̂ is actually the generator of a well-defined interacting particle system
we now show that the collection of transition measures (ĉ�(·, ·))��S satisfies the three
conditions (L1)–(L3).
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Proposition 3.4 Let the rates of an interacting particle system with generator L satisfy
(R1) − (R5) and assume that μ is a time-stationary measure for L and such that μ is a
Gibbs measure with respect to a specification γ that satisfies (S1)–(S4). Then, the transition
measures (ĉ�(·, dξ�))��Zd with λ�-densities given by

ĉ�(η, ξ�) = c�(ξ�η�c , η�)
γ�(ξ�|η�c )

γ�(η�|η�c )

satisfy the conditions (L1)–(L3).

Proof Ad (L1): This follows from the continuity assumptions (R2) and (S2), together with
assumption (S3) and Lemma 3.2.
Ad (L2): Note that for fixed � � S, ξ� ∈ �� and η ∈ � we have by Lemma 3.2 and
assumption (R5)

|c�(η, ξ�)| =
∣∣∣∣c�(ξ�η�c , η�)

γ�(ξ�|η�c

γ�(η�|η�c )

∣∣∣∣ ≤ 1

δ
eRc�(ξ�η�c , η�).

So we get

sup
η∈�

ĉ�(η,��) = sup
η∈�

∫
��

ĉ�(η, ξ�)λ�(dξ�) ≤ 1

δ
eR sup

η∈�

∫
��

c�(ξ�η�c , η�)λ�(dξ�)

≤ 1

δ
eR sup

η∈�

‖c�(η, ·)‖∞ .

Therefore, assumption (R3) implies that (L2) is also satisfied.
Ad (L3): Fix � � S, y ∈ S and two configurations η1, η2 that only disagree at y. Then, for
any ξ� ∈ �� we have

∣∣ĉ�

(
η1, ξ�

)− ĉ�

(
η2, ξ�

)∣∣

=
∣∣∣∣∣c�

(
ξ�η1�c , η

1
�

) γ�

(
ξ�|η1�c

)
γ�

(
η1�|η1�c

) − c�

(
ξ�η2�c , η

2
�

) γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣

≤ ∣∣c�

(
ξ�η1�c , η

1
�

)∣∣
∣∣∣∣∣
γ�

(
ξ�|η1�c

)
γ�

(
η1�|η1�c

) − γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣

+
∣∣∣∣∣
γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣
∣∣c�

(
ξ�η1�c , η

1
�

)− c�

(
ξ�η2�c , η

2
�

)∣∣ .

To estimate this further, we will have to make a case distinction over whether the site y
is contained in � or not. If y is contained in �, then we can naively use Lemma 3.2 and
assumption (R5) to obtain the rough estimate

∣∣ĉ�

(
η1, ξ�

)− ĉ�

(
η2, ξ�

)∣∣ ≤ 4
1

δ
eR sup

η∈�,ξ�∈��

|c� (η, ξ�)| ≤ 4eRK (c)

δ
.

In the case where y is not contained in �, we can (and have to) be a bit more precise. Via the
elementary algebraic rule

ac − bd = 1

2
[(a − b)(c + d) + (a + b)(c − d)] ,
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and Lemma 3.2 plus assumption (R5) one obtains
∣∣∣c�

(
ξ�η1�c , η

1
�

)∣∣∣
∣∣∣∣∣
γ�

(
ξ�|η1�c

)
γ�

(
η1�|η1�c

) − γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣+
∣∣∣∣∣
γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣
∣∣∣c�

(
ξ�η1�c , η

1
�

)
− c�

(
ξ�η2�c , η

2
�

)∣∣∣

= 1

2

∣∣∣c�

(
ξ�η1�c , η

1
�

)∣∣∣
∣∣∣∣∣

1

γ�

(
η1�|η1�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣

×
∣∣∣γ�

(
ξ�|η1�c

)
− γ�

(
ξ�|η2�c

)∣∣∣
∣∣∣γ�

(
η1�|η1�c

)
+ γ�

(
η2�|η2�c

)∣∣∣

+
∣∣∣∣∣
γ�

(
ξ�|η2�c

)
γ�

(
η2�|η2�c

)
∣∣∣∣∣
∣∣∣c�

(
ξ�η1�c , η

1
�

)
− c�

(
ξ�η2�c , η

2
�

)∣∣∣

≤ 1

2δ2
e2R K (c)K (γ )

∣∣∣γ�

(
ξ�|η1�c

)
− γ�

(
ξ�|η2�c

)∣∣∣+ 1

δ
eR
∣∣∣c�

(
ξ�η1�c , η

1
�

)
− c�

(
ξ�η2�c , η

2
�

)∣∣∣ .
Now, by integrating this pointwise difference of the densities over ξ�, we obtain via all of
the other assumptions that

sup
x∈S

∑
��x

∑
y �=x

δy ĉ� < ∞.

But this is precisely (L3) and the proof is finished. �

With these two intermediate results at hand, we can now show that L̂ is indeed the
generator of the time-reversal of (ηt )t≥0 (with respect to the time-stationary measure μ).

Proof of Proposition 2.5 It only remains to show that for all f , g ∈ D(�) we have
∫

�

f (ω)L g(ω)μ(dω) =
∫

�

(
L̂ f
)

(ω)g(ω)μ(dω),

since then the claimed time-reversal duality follows from Lemma A.4.
For this, we first note that it suffices to show that the duality relation for the generators

holds for all local functions f , g : � → R. Indeed, if it holds for all pairs of local functions,
we can then extend it to functions with bounded total oscillation by using the estimates from
Lemma 2.1 and dominated convergence. Therefore, let f , g be two local functions and let
	 � S be sufficiently large such that both f and g only depend on coordinates in 	. By first
applying Lemma 3.3 and then using that μ is time-stationary with respect to the Markovian
dynamics generated by L , we see that

∫
�

f (ω)L g(ω)μ(dω) −
∫

�

(
L̂ f (ω)

)
g(ω)μ(dω)

=
∑

�∩	�=∅

∫
��

∫
�

c�(ω, ξ�)[ f · g(ξ�ω�c ) − f · g(ω)]μ(dω)λ�(dξ�)

=
∫

�

L ( f · g)(ω)μ(dω) = 0,

which finishes the proof. �

4 Trajectorial Decay of8-Entropies

In this section we use the time-reversed process and a martingale argument to prove Theorem
2.6.
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4.1 The Time-Dependent Martingale Property

The main technical tool will be the following lemma which can be seen as an extension of
[14, Lemma IV.20.12] to our setting.

Lemma 4.1 LetL be the generator of an interacting particle system (η(s))s≥0 such that its
transition rates satisfy (L1)−(L3) and letμ be a time-stationary measure with respect toL .
Then, for all f : [0,∞) × � → R such that

i. f (·, η) ∈ C1([0,∞)) for all η ∈ � and
ii. for all T > 0 it holds that

sup
0≤t≤T

||| f (t, ·)||| < ∞,

the process defined by

f (t, η(t)) −
∫ t

0
(∂s + L ) f (s, η(s))ds

is a martingale with respect to the filtration Gt := σ(η(u) : 0 ≤ u ≤ t).

The proof of this lemma is not difficult but hard to find in the existing literature, we therefore
give it in some detail.

Proof For functions f as above, we define

M(s) := f (s, η(s)) −
∫ s

0
(∂u + L ) f (u, η(u))du, s ≥ 0

and denote by (Pt )t≥0 the Markov semigroup generated by (∂s + L ). Then, for s < t , the
Markov property and the elementary identity

d

dt
Pt = Pt (∂t + L ) = (∂t + L )Pt ,

give us

E

[
f (t, η(t)) −

∫ t

0
(∂u + L ) f (u, η(u))du

∣∣∣Gs
]

= Pt−s f (s, η(s)) −
∫ s

0
(∂u + L ) f (u, η(u))du −

∫ t

s
Pu−s(∂u + L ) f (s, η(s))du

= Pt−s f (s, η(s)) −
∫ s

0
(∂u + L ) f (u, η(u))du −

∫ t

s

d

du
Pu−s f (s, η(s))du

= f (s, η(s)) −
∫ s

0
(∂u + L ) f (u, η(u))du.

This shows that the process (M(s))s≥0 is indeed a martingale. �
This abstract tool now lets us establish the analogue of the first step in the case of a finite

state space considered in Sect. 1.2.

Proposition 4.2 Let (�,A,P) be a probability space onwhich the interacting particle system
(η(s))s≥0 is defined. Denote the generator of (η(s))s≥0 byL and assume that the rates satisfy
(R1)–(R5) and assume that under Pwe have η(0) ∼ μ, whereμ is a time-stationary measure
for the corresponding Markov semigroup (Pt )t≥0 on C(�) that is generated by L and that
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μ is a Gibbs measure with respect to a specification γ that satisfies (S1)–(S4). Then, for all
f ∈ D(�) and T > 0, the process defined by

PT−s f (η(T − s)), 0 ≤ s ≤ T ,

is a ((Ĝt )0≤t≤T ,P)-martingale, where Ĝt = σ(η(T − s) : 0 ≤ s ≤ t).

Proof Note that by Lemma 2.1 we can apply Lemma 4.1 to the function

[0, T ] × � � (s, η) �→ PT−s f (η).

But since we have by the chain rule

∂s PT−s f = −L̂ PT−s f ,

the correction term cancels out and we obtain the claimed martingale property. �

4.2 Trajectorial Decay of8-Entropies

With this preliminary result in place, we can now come to the proof of our main result.

Proof of Theorem 2.6 Submartingale property: By Jensen’s inequality and Proposition 4.2
we immediately see that the process (L�, f (t))t≥0, as defined in (2.3), is a submartingale.
Doob–Meyer decomposition: Here we want to apply Lemma 4.1 to the function

g : [0, T ] × � � (s, η) �→ �(PT−s f ) ∈ R.

Via the chain rule we see that

∂sg(s, ·) = ∂s�(PT−s f (·)) = −�′(PT−s f (·))L̂ PT−s f (·).
Applying the generator L̂ for fixed s ∈ [0, T ] yields

L̂ g(s, η) =
∑
��S

∫
��

ĉ�(η, ξ�)
[
�(PT−s f (ξ�η�c )) − �(PT−s f (η))

]
λ�(dξ�).

By putting these two ingredients together and using the previously introduced notation for
the Bregman �-divergence we obtain

(∂s + L̂ )g(s, η) =
∑
��S

∫
��

ĉ�(η, ξ�)div�(PT−s f (ξ�η�c )|PT−s f (η))λ�(dξ�).

The claimed Doob–Meyer decomposition (2.4) of the submartingale L�, f now follows from
Lemma 4.1. �
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Appendix A: The Time-Reversal of Markov Processes in Equilibrium

In this section,we briefly summarise some properties of the time-reversal of aMarkov process
with respect to a time-stationary measure. These results are classical but not particularly easy
to find in the literature, at least in this formulation.

We start by making precise what we mean by time-reversal of a stochastic process. Recall
that any time-stationary stochastic process (Xt ))t≥0 can be extended (in law) to a process
(Xt )−∞<t<∞ via Kolmogorov’s extension theorem.

Definition A.1 Let (Xt )t≥0 be a time-stationary stochastic process. We call a process (Yt )t≥0

the time-reversal of X if

Law((X−t )t≥0) = Law((Yt )t≥0).

The intuition behind this definition is that forward in time the process Y looks like the
process X run backwards. For Markov processes this notion can be characterised in terms of
the semigroups and generators as follows.

Proposition A.2 Let X = (Xt )t≥0 and Y = (Yt )t≥0 be Markov processes on a compact
topological space E with associated semigroups (Tt )t≥0 and (St )t≥0. Assume that X has a
time-stationary measure ν and for all f , g ∈ C(E) we have∫

E
(Tt f )gdν =

∫
E
f (St g)dν. (A.1)

Then ν is also time-stationary for Y and Y is the time-reversal of X (with respect to ν).

Proof By the duality relation (A.1), ν is also time-stationary for Y and we can extend it to
a process (Yt )−∞<t<∞ with Y0 ∼ ν. To show that Y is the time-reversal of X (with respect
to ν) it suffices to show that for arbitrary n ∈ N and times t0 < t2 < · · · < tn < tn+1 and
functions f1, . . . , fn ∈ C(E) it holds that

EY0∼ν

[
f1(Yt1) · · · fn(Ytn )

] = EX0∼ν

[
f1(X−t1) · · · fn(X−tn )

]
.

We will do this as follows. First, we introduce the notation f0 = fn+1 ≡ 1 and define
functions g0, . . . , gn+1 and h0, . . . , hn+1 by g0 = hn+1 ≡ 1,

gl(x) := Ex

[
l−1∏
k=0

fk(Xtl−tk )

]
, 1 ≤ l ≤ n + 1

and

hl(y) := Ey

[
n+1∏

k=l+1

fk(Ytk−tl )

]
, 0 ≤ l ≤ n.
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With this notation it suffices to show that the quantity

αl :=
∫
E
gl(x) fl(x)hl(x)ν(dx), 0 ≤ l ≤ n + 1,

does not depend on l. Indeed, by stationarity of X and Y , this will then imply that

EY0∼ν

[
f1(Yt1) · · · fn(Ytn )

] =
∫
E
h0dν = α0

= αn+1 =
∫
E
gn+1dν = EX0∼ν

[
f1(X−t1) · · · fn(X−tn )

]
,

exactly as we wanted. In order to show that αl does not depend on l, we use the duality
relation as follows. For 0 ≤ l ≤ n it holds that

αl =
∫
E
gl flhldν

=
∫
E
gl(x) fl(x)Ttl+1−tl [ fl+1hl+1](x)ν(dx)

=
∫
E
Stl+1−tl [gl fl ](x) fl+1(x)hl+1(x)ν(dx)

=
∫
E
gl+1 fl+1hl+1dν = αl+1.

Therefore, αl does not depend on l and the claim follows. �
The duality relation (A.1) for the semigroups can also be verified by checking a similiar

property on the level of generators. The main technical tool for establishing this relation
between the generator of a Markov process and its semigroup will unsurprisingly be the
celebrated Hille–Yosida theorem which we recall here.

Theorem A.3 (Hille–Yosida) There is a one-to-one correspondence between Markov gener-
ators on C(E) and Markov semigroups on C(E). This correspondence is explicitly given
by

i.

dom(L ) =
{
f ∈ C(E) : lim

t↓0
St f − f

t
exists

}
, and

L f := lim
t↓0

St f − f

t
, f ∈ dom(L ).

ii.

St f = lim
n→∞

(
Id − t

n
L

)−n

f , f ∈ C(E), t ≥ 0.

Moreover,

iii. if f ∈ dom(L ), then St f ∈ dom(L ) for all t ≥ 0 and d
dt St f = L St f = StL f and

iv. for g ∈ C(E) and λ ≥ 0, the solution to the resolvent equation f − λL f = g is given
by

f =
∫ ∞

0
e−t Sλt gdt .
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Proof See Theorem 1.2.6 and Theorem 4.2.2 in [3]. �
With this at hand, we can now formulate the time-reversal duality for generators.

Lemma A.4 Let (Tt )t≥0 and (St )t≥0 be two Markov semigroups on C(E) where E is a com-
pact topological space with time-stationary measure ν. Let (A , dom(A )) and (B, dom(B))

be their generators. If for all f ∈ dom(A ) and g ∈ dom(B) it holds that∫
E

(A f ) g dν =
∫
E
f (Bg) dν, (A.2)

then (A.1) holds. It suffices if (A.2) holds for f , g in a core of the respective generators.

Proof The duality relation implies that for all f ∈ dom(A ), g ∈ dom(B) and λ ≥ 0 it holds
that ∫

E
f (g − λL g) dν =

∫
E
g( f − λL̂ f ) dν.

Nowwecan replace f by (Id−λL )−1 f and g by (Id−λL̂ )−1g to see that for all f , g ∈ C(�)∫
E
[(Id − λA )−1 f ]g dν =

∫
E
[(Id − λB)−1g] f dν.

By iteratively applying this equality we obtain that for all n ∈ N and λ ≥ 0 it holds that∫
E
[(Id − λA )−n f ]g dν =

∫
E
[(Id − λB)−ng] f dν.

For fixed t ≥ 0 we can replace λ by t/n and use Part i i . of Theorem A.3 to see that

lim
n→∞

∫
E

[
(Id − t

n
A )−n f

]
g dν =

∫
E
gTt f dν

and

lim
n→∞

∫
E

[
(Id − t

n
B)−ng

]
f dν =

∫
E
f St g dν,

as desired. �
To sum this up, in order to show that a stationary Markov process Y is the time-reversal

of a stationary Markov process X , it suffices to check that their generators satisfy the duality
relation (A.2).
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