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Abstract
We investigate two stochastic models of a growing population with discrete and non-
overlapping generations, subject to selection and mutation. In our models each individual
carries a fitness which determines its mean offspring number. Many of these offspring inherit
their parent’s fitness, but some aremutants and obtain a fitness randomly sampled, as in King-
man’s house-of-cards model, from a distribution in the domain of attraction of the Fréchet
distribution. We give a rigorous proof for the precise rate of superexponential growth of
these stochastic processes and support the argument by a heuristic and numerical study of the
mechanism underlying this growth. This study yields in particular that the empirical fitness
distribution of one model in the long time limit displays periodic behaviour.

Keywords Branching process · Random environment · Population model · Selection ·
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1 Introduction

While the theory of branching processes is undoubtedly one of the best developed areas
of probability theory, stochastic branching models that incorporate effects of selection and
mutation have only recently become the subject of rigorous mathematical analysis. This is
despite the unquestionable relevance of these effects to the evolution of populations in nature
and in the laboratory [1–3].

By contrast, deterministic high density models of a population undergoing selection and
mutation have been studied for quite some time [4]. The model most closely associated
with our stochastic process is Kingman’s model [5]. This is a dynamical system on the
space of probability measures describing the fitness distribution of a population. The fitness
distribution pt at generation t of the population is replaced in the next generation by

pt+1(dx) = (1 − β)
x pt (dx)

∫
y pt (dy)

+ βμ(dx). (1)

Here a proportion 1−β of the new generation has been selected from the current generation
proportionally to their fitness and a proportion β are mutants that get a new fitness, sampled
independently of their past using a fixed mutant fitness distribution (MFD) μ. Note that this
model is only well-defined if the mean fitness of the population remains finite and therefore
requires moment bounds for the MFD. For certain MFDs with bounded support Kingman’s
model undergoes a condensation phase transition, which implies that a nonzero fraction of
the total population attains the maximally possible fitness value when the mutation rate is
low enough [6]. A rigorous analysis of the condensation transition can be found in [7], and
variants of the model have been considered in [8–10].

Kingman’s model is based on twomain assumptions about the evolutionary process. First,
the fitness of a mutant is assumed to be random and independent of the parental fitness, a
setting often referred to as the “house-of-cards”model [4, 5, 11]. Second, eachmutation gives
rise to a newgenetic type or allele, an assumption knownas the infinite allelesmodel [12]. Park
and Krug [13] studied a stochastic version of Kingman’s model which incorporates these two
features. The population is updated in discrete generations following asexual Wright–Fisher
dynamics, which can be viewed as a branching process conditioned on a constant population
size N , see [1]. For unboundedMFDs themean population fitness growswithout bound. Since
the MFD is time-independent, the fraction of beneficial mutations declines indefinitely over
time. As a consequence, for long times beneficial mutants emerge and evolve independently
of each other, and the dynamics can be analyzed rather straightforwardly in terms of a record-
like point process [13]. In particular, for a MFDwith an exponential tail the mean population
fitness increases logarithmically, which is consistent with the behaviour observed in Lenski’s
long-term evolution experiment with bacteria [2, 14]. A generalization of this model that
includes the response of the immune system to a population of pathogens was considered in
[15].

The decline of the supply of beneficialmutations distinguishes the fixed population version
of Kingman’smodel from a related class of stochastic models where the selection coefficients
of novel mutants, rather than their fitness, is drawn from a given, time-invariant distribution
[1]. In these models the fitness distribution of the population converges to a fitness wave
traveling at a constant speed, which is determined by the interference between competing
mutant clones [16–21].

The branching process version of Kingman’s model considered in this paper is, in a
sense, intermediate between the deterministic model (1) and the stochastic finite population
model of [13]. The dynamics of the branching process is stochastic, but because of the
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unbounded growth of the population, competing clones can coexist at arbitrary long times
and the population retains a nontrivial type structure. While our motivation here is primarily
conceptual and mathematical, we note that the clonal composition of growing populations
is a problem of considerable interest for the modeling of proliferating tumours [22–24].
In this context, Durrett et al. [22] studied a branching process with selection and mutation
where, similar to the fitness wave models described in the previous paragraph, the selection
coefficients of beneficialmutations are drawn fromafixed, continuous probability distribution
with bounded or unbounded support.

The first papers studying branching process models of Kingman type that express the
selective advantage of a fit individual in terms of its offspring distribution are [25], which
deals with Weibull type MFDs and puts the focus on the condensation phenomenon in that
model, and [26] which looks at the growth of the fittest family in the case of Gumbel type
MFDs. Both papers are limited to bounded MFDs and implicitly rely on the analogy to
Kingman’s original model, though of course the methods of study are entirely different in a
stochastic setting. The present paper initiates the study of Kingman type branching processes
with selection and mutation for unbounded MFDs. We focus on the case of Fréchet type
MFDs, where the mathematical challenge is linked to the fact that the analogous Kingman
model is ill-defined [13].

The structure of the paper is as follows. In Sect. 2, we introduce the models and state the
main theorem. Section 3 explains the heuristics behind the formal results and in Sect. 4 we
present a rigorous proof of the theorem. Section 5 contains refined results for the empirical
fitness distribution for one of our models. These results are not yet accessible by a complete
rigorous mathematical analysis, so that we resort to a numerical and heuristic study and a
rigorous analysis of an approximating deterministic system. In Sect. 6 we provide a short
discussion that places our results into the context of previous work and points to directions
for future research.

2 Models andMain Result

We study two models of a population evolving in discrete and non-overlapping generations.
In both models all individuals are assigned a fitness value, which is a positive real number.
As model parameters we fix a probability distribution μ on (0,∞) from which the random
fitness values F are sampled, referred to in the following as the mutant fitness distribution
(MFD), and a mutation probability β ∈ (0, 1). As was explained in the Introduction, we
assume an infinite alleles model with a house-of-cards fitness landscape.

In both models we start from generation t = 0 with a single individual1 with fitness f .
Each individual in the population in generation t ≥ 0 produces a Poisson random number
of offspring with mean given by its fitness. With probability 1 − β an offspring individual
inherits its parent’s fitness and is added to the population at generation t +1. Otherwise, with
probability β, it is a mutant. The two models differ in the fate of the mutants.

• Fittest mutant model (FMM) Every mutant is assigned a fitness sampled independently
from μ. Only the fittest mutant (if there is one) is added to the population at generation
t + 1. All other mutants die instantly.

• Multiple mutant model (MMM)Everymutant is assigned a fitness sampled independently
from μ and is added to the population at generation t + 1.

1 The generalization to multiple individuals is straightforward.
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We write X(t) for the number of individuals in generation t and study the growth of the
population conditioned on the event of survival, i.e. when X(t) �= 0 for all times t . It is easy
to see that the population size of the MMM dominates the population size of the FMM at
all times. Because the growth is determined by the fittest mutants we expect both models to
grow at the same rate and to show this, it suffices to find an upper bound for the MMM and
a matching lower bound for the FMM.

Naturally, the rate of growth depends on the MFD μ. If μ is an unbounded distribution in
both models individuals of ever increasing fitness occur and hence the population will grow
superexponentially fast. By contrast, if μ is bounded we can only have exponential growth.
Indeed, ifμ is continuous with essential supremum one, then for a closely related continuous
time model of immortal individuals, it is shown in [25, Remark 1] that

lim
t→∞

log X(t)

t
= λ∗,

where λ∗ ∈ [1 − β, 1) is the unique solution of the equation

β

∫
λ∗

λ∗ − (1 − β)x
μ(dx) = 1

if β
∫ 1

1−x μ(dx) ≥ 1, and otherwise λ∗ := 1−β. Further details on the long term growth of
the process in [25] depend on the classification of μ according to its membership in the max
domain of attraction of an extremal distribution. This also applies to other model variants and
unboundedMFDs. By the celebrated Fisher-Tippett theorem there are three such universality
classes, see for example [27, Proposition 0.3]. These are

• the Weibull class, which roughly occurs if μ is bounded with mass decaying slowly near
the essential supremum,

• the Gumbel class, which roughly occurs if the mass of μ is decaying quickly near the
essential supremum, which may be finite or infinite,

• the Fréchet class, which roughly occurs if μ is unbounded with mass decaying slowly
near infinity.

Extreme value theory plays an important role in the interpretation of experimentally deter-
mined effect size distributions of beneficial mutations, and representatives of all three
universality classes have been identified empirically [28–31].

In the present paper, we aremainly interested in the asymptotic behaviour of the population
size X(t) in the case that μ belongs to the Fréchet class (or, in short, is of Fréchet type).
Precisely, this means that the tail function

G(x) := μ((x,∞)) = P(F > x)

is regularly varying with index −α for some α > 0. In other words, there exists a function
� : (0,∞) → R which is slowly varying at infinity such that G(x) = x−α�(x). MFDs of
Fréchet type have been found in several experimental studies [32–35], and appear to be
typical for populations subjected to strong selection pressures, such as bacteria or viruses
exposed to drugs.

As in this case μ is an unbounded distribution, the process (X(t) : t ≥ 0) will grow
superexponentially fast on survival and therefore our discussion will focus on the limiting
quantity

ν = lim
t→∞

log log X(t)

t
.

Our main result is stated in the following theorem.
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Theorem 1 Given α > 0, let T ∈ N be the unique number such that

(T − 1)T

T T −1 < α ≤ T T +1

(T + 1)T

and define (see Lemma 4 for another equivalent definition)

ν(α) := 1

T
log

T

α
. (2)

Let (X(t))t≥0 be the size of the population in either the FMM or the MMM. Then, almost
surely on survival,

lim
t→∞

log log X(t)

t
= ν(α).

We would like to emphasize that although the survival probability depends not only on the
initial condition but also on the model (FMM or MMM), the almost sure convergence on
survival in Theorem 1 holds irrespective of the actual value of the survival probability as long
as it is nonzero. Before presenting the proof of the theorem in Sect. 4, in the next section we
motivate the expression (2).

3 Motivation of theMain Result

Here we explain the statement of Theorem 1 by a heuristic analysis of the FMM. For conve-
nience we take the MFD μ to be of Pareto form, G(x) = x−α for x ≥ 1 and G(x) = 1 for
x < 1. Moreover, throughout this section we assume that the initial fitness f is so large that
the fluctuations induced by Poisson sampling are negligible at all times, which implies that
both the total population size and the sizes of subpopulations of mutants are well approxi-
mated by their expectations. Denoting the fitness of the mutant that is added to the population
at generation t by Wt , we can then write

X(t) ≈ (1 − β)t f t +
t∑

i=1

(1 − β)t−i W t−i
i , (3)

where the factors 1 − β account for the fact that (apart from the added mutant) only the
unmutated fraction of the population survives to the next generation. For the same reason the
total number Nt ofmutants produced in generation t (including the ones that die immediately)
is approximately2

Nt ≈ β

1 − β
X(t).

Since the probability that the largest fitness Wt among Nt independent and identically dis-
tributed random variables with common distribution G is smaller than x is (1− x−α)Nt , the
random variable Wt can be sampled as

Wt =
(
1 − Z1/Nt

t

)−1/α ≈ X(t)1/αYt , Yt :=
(
1 − β

β
log

1

Zt

)−1/α

,

2 In the FMM, given total population size X(t − 1) and population’s mean fitness F̄t−1 at generation t − 1,
we can approximate Nt ≈ β X(t − 1)F̄t−1 and X(t) ≈ (1−β)X(t − 1)F̄t−1. Therefore, to associate Nt with
X(t) correctly, we need 1 − β in the denominator.
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where Zt is uniformly distributed in the interval (0, 1) and we have approximated Z1/Nt
t ≈

1 + (1/Nt ) log Zt . Note that Yt does not depend on X(t).
To proceed, we define ωt as

ωt := log X(t)

log f
,

which implies that X(t) = f ωt and Wt ≈ Yt f ωt /α . Inserting these relations into (3) we
obtain

f ωt ≈ (1 − β)t f t +
t∑

i=1

(1 − β)t−i Y t−i
i f (t−i)ωi /α. (4)

In the limit f → ∞ with t fixed, the sum on the right hand side is dominated by the term
with the largest exponent of f . Correspondingly, the ωt for large but finite f can be well
approximated by the solution χt of the recursion relation

χt = max

{

t,
t − 1

α
χ1,

t − 2

α
χ2, . . . ,

t − k

α
χk, . . . ,

1

α
χt−1

}

(5)

with χ1 = 1. We now argue that the χt grow at least exponentially. Since for any t0 ≥ 1 and
any positive integer m

χt0+m ≥ m

α
χt0 ,

we have, for any n ≥ 1

χt0+nm ≥
(m

α

)n
χt0 .

Correspondingly

lim
t→∞

logχt

t
= lim

n→∞
logχt0+nm

nm
≥ 1

m
log

m

α
, (6)

where we have assumed that the limit is well-defined. Since (6) is valid for any integer
m ≥ 1, an optimal lower-bound can be found by maximizing the right hand side. As shown
by Lemma 4 in Sect. 4, the maximizer over the positive integers is precisely the function
ν(α) in Theorem 1. As the population size depends exponentially on ωt or χt , the heuristic
argument makes it plausible that ν(α) is a lower bound on the double-exponential growth
rate of X(t). Remarkably, Theorem 1 states that the bound is tight, and moreover applies also
to the MMM. Informally this implies that the population at time t is dominated by the fittest
mutant that was generated at time t − T . As a consequence the empirical fitness distribution
changes periodically with period T (see Sect. 5 for further discussion).

In Fig. 1, we depict ν(α) together with the numerical solution3 of the recursion relation (5).
The fact that ν(α) is the exact exponential growth rate of χt is proven rigorously in Lemma 6
in Sect. 4. In the inset of Fig. 1, we compare (2) to an approximation obtained by treating m
in (6) as a continuous variable. This yields

max

{
1

x
log

x

α
: x ≥ 1

}

=
{
1/(eα), αe ≥ 1,

− logα, αe < 1.
(7)

3 The direct numerical estimate of ν by extrapolating logχt /t is hampered by the fact that limt→∞ χt e−νt

does not exist in general (see Sect. 5). The method used to obtain the data in Fig. 1 is explained at the end of
Sect. 5.1.
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Fig. 1 Plots of ν vs α. Solid line
depicts (2) and open circles
present numerical solutions of the
recursion relation (5). Inset: Plot
of (νeα)−1 − 1 vs. α with ν in
(2). The error of the
approximation (7) is small and
vanishes when α ≤ 1/e

Although (7) is not exact, the relative error is less than 7% in all cases.
Forαe < 1 the expressions (2) and (7) actually coincide. In this regimeof extremely heavy-

tailed MFDs (more precisely, in the case of α ≤ 0.5 with T = 1; see Theorem 1) selection
becomes irrelevant, in the sense that the double-exponential growth rate ν(α) = log(1/α)

persists in the extreme case β → 1 of the MMM, where all individuals are replaced by
mutants in each generation and the process becomes a classical Galton–Watson process
albeit with infinite mean, cf. [36]. In the case of the FMM, the extreme case would stop the
population from growing but the fitness Wt of the single individual present approximately
satisfies Wt+1 ≈ W 1/α

t , which gives

lim
t→∞

log log Wt

t
= log(1/α).

4 Proof of Theorem 1

4.1 Preparation for the Proof

In this subsection we collect some tools that will be used in the proofs of the lower and upper
bounds in the estimate leading to Theorem 1. The lower bound will be verified in Sect. 4.2
and the upper bound in Sect. 4.3.

For t ∈ N0 let Wt be the fitness of the fittest of the mutants in generation t and Wt = 0 if
there are no mutants in generation t . Our first observation is that under the weak assumption
G(x) > 0 for all large x (which always holds if μ is of Fréchet type) either the sequence
(Wt ) is unbounded or the branching process dies out in finite time. Heuristically speaking,
on survival the accumulated number of mutants is unbounded almost surely, which naturally
entails unbounded largest fitness.

Lemma 2 Almost surely on survival the sequence (Wt ) is unbounded.

Proof We first show that the branching process can be coupled to a sequence (ξ1, . . . , ξt ) of
independent Bernoulli variables with success parameter β and an independent sequence
(F1, . . . , Ft ) of independent fitnesses with distribution μ such that on survival up to
generation t we have, for all 1 ≤ i ≤ t ,

• ξi = 1 if there is at least one mutant in generation i , and
• Wi ≥ Fiξi .

Indeed, once the random variables (F1, . . . , Ft ) and (ξ1, . . . , ξt ) are generated with the given
lawwe generate the branching process as follows: Produce the offspring in the nth generation
as a Poisson distribution with the right parameter given by the previous generation (possibly
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zero). If there is at least one offspring use ξn to decide whether it is a mutant and if so give it
fitness Fn . Then use other newly sampled Bernoulli variables with parameter β and fitnesses
to decide whether other variables are mutants and if they are decide their fitness. Then surival
implies Wn ≥ ξn Fn as required.

Now N := ∑t
i=1 ξi is binomially distributed with parameters β > 0 and t ∈ N. We infer

that, for any fixed x > 1,

P(Wi ≤ x for all i ≤ t) ≤ P(Fiξi ≤ x for all i ≤ t) + P(extinction)

=
t∑

i=0

(
t

i

)

β i (1 − β)t−i
P(F ≤ x)i + P(extinction)

= (βP(F ≤ x) + (1 − β))t + P(extinction).

Since P(F ≤ x) < 1 and β > 0, we get

P(Wi ≤ x for all i) = lim
t↑∞P(Wi ≤ x for all i ≤ t)

≤ lim
t↑∞(βP(F ≤ x) + (1 − β))t + P(extinction) = P(extinction),

hence P((Wt ) is unbounded) = P(survival) as claimed. ��
We next describe the distribution of Wt given the process at time t − 1.

Lemma 3 Suppose that at generation t − 1 there are n individuals with fitness F1, F2, …, Fn

and set X := ∑n
i=1 Fi . Then, for all x ≥ 0,

P(Wt > x) = 1 − e−βXG(x).

Proof First fix a positive integer n and suppose W (n)

t is the largest of n independently sampled
fitnesses and W (0)

t = 0. Let Ḡ(x) = 1 − G(x) and note that

P(W (n)

t > x) = 1 − P(W (n)

t ≤ x) = 1 − Ḡ(x)n .

Now let N be the number of mutants in generation t , which is Poisson distributed with mean
βX . Hence, for x ≥ 0,

P (Wt > x) =
∞∑

n=0

P
(
W (n)

t > x
)
P(N = n) =

∞∑

n=0

(1 − Ḡ(x)n)P(N = n)

= 1 −
∞∑

n=0

Ḡ(x)n (βX )n

n! e−βX = 1 − e−βX (1−Ḡ(x)).

As 1 − Ḡ(x) = G(x) the proof is complete. ��
The next two results concern the potential limit ν(α). We first characterise ν(α) as a

maximum and then as the growth rate in a recursion relation. Note that the first result easily
implies that ν(α) is decreasing, as well as continuous and positive.

Lemma 4 We have

ν(α) = max
{ 1

m log(m/α) : m ∈ N
}
.

In particular, for all m ∈ N, we have

m ≤ αeν(α)m and T = αeν(α)T . (8)
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Proof First recall (T −1)T /T T −1 < α ≤ T T +1/(T +1)T and observe that α > mm+1/(m+
1)m for m < T and α ≤ mm+1/(m + 1)m for m ≥ T , where m ∈ N. Since

m(m + 1)

(
1

m
log

m

α
− 1

m + 1
log

m + 1

α

)

= log
mm+1

(m + 1)mα
,

we have the desired result. ��
Remark 5 Let αT := T T +1/(T + 1)T . The equality m = αeν(α)m holds iff (m = T ) or
(m = T + 1 and α = αT ).

For the remainder of this subsection, we abbreviate ν := ν(α).

Lemma 6 For some positive sequence (an) we define inductively

χt := χt (α, (an)) := max
{
at ,

t−1
α

χ1, . . . ,
1
α
χt−1

}
. (9)

Then, if lim
n→∞ ane−νn = 0, there are positive constants c and c′ such that

c′eνt ≤ χt ≤ ceνt for all t ≥ 1,

and therefore we have

lim
t→∞

logχt

t
= ν.

Proof Abbreviate χ̂t := χt/c′ with c′ = e−νT min{χ1, χ2, . . . , χT }. Obviously, χ̂t ≥ eνt for
t ≤ T . Now assume n ≥ T and χ̂t ≥ eνt for all t ≤ n. By the assumption and (8), we have

χ̂n+1 ≥ T

α
χ̂n+1−T ≥ T

α
eν(n+1−T ) = eν(n+1).

Induction gives χ̂t ≥ eνt and hence χt ≥ c′eνt for all t ≥ 1.
Now, choose a positive integer n0 such that an ≤ eνn for all n ≥ n0. Let χ̄t = χt/c with

c = max{1, χ1, χ2, . . . , χn0}. Obviously, χ̄t ≤ 1 ≤ eνt for all t ≤ n0. Now let n ≥ n0 and
assume that χ̄t ≤ eνt for all t ≤ n. Then,

χ̄n+1 = max
{ an+1

c , n
α
χ̄1,

n−1
α

χ̄2, . . . ,
n−k+1

α
χ̄k, . . . ,

1
α
χ̄n

}

≤ max
{

eν(n+1), n
α

eν, n−1
α

e2ν, . . . n−k+1
α

eνk, . . . , 1
α

eνn
}

≤ eν(n+1),

where we have used (8). By induction, we have χt ≤ ceνt for all t ≥ 1. ��
For later reference we define

χ̃i (t) :=

⎧
⎪⎨

⎪⎩

−∞, if i < 0,

at , if i = 0,

(t − i)χi/α, if 1 ≤ i ≤ t − 1.

(10)

Lemma 7 Define

It := max{i < t : χt = χ̃i (t)}. (11)

Then t − It is bounded.
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Proof By Lemma 6 we have c′eνt ≤ χt ≤ ceνt for all t . Since there is t0 such that c′eνt > at

for all t ≥ t0, we can write, for t > t0,

χt = max
{ t−1

α
χ1, . . . ,

1
α
χt−1

}
.

Now it is enough to show that t − It is bounded for t > t0.
Note that, for 1 ≤ m ≤ t − 1,

ceνt A(m) ≥ m
α
χt−m ≥ c′eνt A(m),

where A(m) = me−νm/α with A(T ) = 1. Since limm→∞ A(m) = 0, there is m0 such that
c′ > cA(m) and hence

m
α
χt−m < c′eνt , for all m ≥ m0.

As the right hand side is a lower bound of T
α
χt−T we get that t − It cannot be larger than

max{m0, t0}, as desired. ��

Remark 8 If we choose T ′ > sup{t − It : t ∈ N}, then, for all t ,

χt = max{at , (t − 1)χ1/α, . . . , χt−1/α} = max{χ̃t−T ′(t), . . . , χ̃t−1(t)}.
In words, χt is completely determined by χ̃i (t) for i within the window t − T ′ ≤ i ≤ t − 1.
This fact will play an important role in the proof of Theorem 1.

We conclude the subsection with two estimates for classical Galton–Watson processes.

Lemma 9 Consider a supercritical Galton–Watson process (Xt )t≥0 with Poisson offspring
distribution with mean θ > 1, starting in generation 0 with a single individual. Fix 0 < x < 1
and an integer n ≥ 1. Then,

P
(Xt ≥ xtθ t for all 1 ≤ t ≤ n

) ≥ 1 − n
(1 − x)−2

θ − 1
. (12)

Proof First note that the mean and the variance of Xt are (see, e.g., [37])

E[Xt ] = θ t , V[Xt ] = θ2t − θ t

θ − 1
,

respectively and that

P
(Xt ≥ xtθ t for all 1 ≤ t ≤ n

) ≥ 1 −
n∑

t=1

P
(Xt ≤ xtθ t) , (13)

where we have used the sub-additivity of the probability measure. Using Chebyshev’s
inequality, we get

P
(Xt ≤ xtθ t ) = P

(
θ t − Xt ≥ θ t − xtθ t) ≤ P

(∣∣Xt − θ t
∣
∣ ≥ θ t − xtθ t )

≤ (
1 − xt)−2 V[Xt ]

θ2t
= (

1 − xt)−2 1 − θ−t

θ − 1
≤ (1 − x)−2

θ − 1
,

which, along with (13), gives the claimed inequality. ��
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Lemma 10 For a Galton–Watson process (Xt ) with X0 = K0 and generation dependent
offspring distribution Nt with E[Nt ] ≤ N for all t ,

P
(Xt ≤ K N t Bt for all t ≥ 1

) ≥ 1 − K0

K (B − 1)
,

for all B > 1 and K > 0.

Proof By Markov’s inequality, we have

P
(Xt ≥ K N t Bt) ≤ E[Xt ]

K N t
B−t .

Since E[Xt+1|Xt ] = XtE[Nt ], we have E[Xt ] = K0
∏t−1

i=0 E[Ni ] ≤ K0N t , which gives

P
(Xt ≥ K N t Bt) ≤ K0

K Bt
.

Since

P(Xt ≤ K N t Bt for all t ≥ 1) ≥ 1 −
∞∑

t=1

P(Xt ≥ K N t Bt ),

a geometric sum gives the claimed inequality. ��

4.2 Proof of the Lower Bound

In this subsection we show that, for given α > 0 and all α′ > α, we have

P

(
lim inf

t→∞
log log X(t)

t
≥ ν(α′)

∣
∣
∣ survival

)
= 1. (14)

In both models at each generation s, we can regard a lineage originating from the mutant
with fitness Ws as a version (X̂t ( f ))t≥s of the same model starting in generation s with a
single individual of fitness f = Ws . Since X(t) ≥ X̂t ( f ) for t ≥ s, (14) is proved, if there
is at least one s such that

lim inf
t→∞

log log X̂t (Ws)

t
≥ ν(α′).

As (Wt ) is unbounded almost surely on survival it therefore suffices to show that

lim
f →∞P

(

lim inf
t→∞

log log X̂t ( f )

t
≥ ν(α′)

)

= 1. (15)

For convenience, we use the convention (log log X̂t ( f ))/t = −∞ if X̂t ( f ) = 0. As (X̂t (x))

can be coupled to an FMM (St (x)) with the same initial condition such that X̂t (x) ≥ St (x)

for all t ≥ 0, the result follows by combining Lemma 6 with the following statement.

Lemma 11 Fix 0 < ε < 1/2 and let

E( f ) := {
St ( f ) ≥ (1 − β)t f χ ′

t for all t ≥ 1
}
,

where χ ′
t := χt (α

′, ( n
2 )) with α′ := α/(1 − 2ε). Then

lim
f →∞P(E( f )) = 1.
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Proof We define m0 := f , n0 := f 1/2, and (i ≥ 1)

mi := f (1−ε)χ ′
i /α, ni := f (1−2ε)χ ′

i /α = f χ ′
i /α

′
.

For later reference, we also define Ui := ni/mi for all i ≥ 0.
Set ε0 = ε/(2 − 2ε). By our assumption on μ, there is f0 such that

G(x) ≥ x−α(1+ε0) for all x > f0.

Since we are only interested in the limit as f → ∞, we may assume that f is so large
that (1 − β)m0 ≥ 2, (1 − β)m1 ≥ 2, U0 < 1/2, U1 < 1/2, and m1 > f0. Notice that by
assumption,

G(m1) ≥ G(mi ) ≥ m−α(1+ε0)
i = f −(1−ε/2)χ ′

i for all i ≥ 1.

For χ ′
t , we choose T ′ as in Remark 8. By Ni,t we denote the number of individuals with

fitness Wi at generation t . Define events

Ai := {Ni,t ≥ (1 − β)t−i nt−i
i for all i < t ≤ i + T ′}, Bi := {Wi ≥ mi }.

Let D−1 be the certain event and, for i ∈ N0,

Di := Di−1 ∩ Ai ∩ Bi , A :=
∞⋂

i=0

Di .

Now observe that

P(A) = lim
i→∞P(Di ), P(Di ) = P(Ai |Bi ∩ Di−1)P(Bi |Di−1)P(Di−1).

By Lemma 9 we have

P(Ai |Bi ∩ Di−1) ≥ 1 − T ′(1 − ni/Wi )
−2

(1 − β)Wi − 1
≥ 1 − T ′(1 − Ui )

−2

(1 − β)mi − 1
,

where we have used (12).
To proceed, we find the X in Lemma 3 on the event Dn−1 as

X ≥
t−1∑

i=0

Ni,t−1Wi ≥ (1 − β)t
t−1∑

i=t−T ′−1

f χ̃ ′
i (t) ≥ (1 − β)t f χ ′

t ,

where we have used Wi ≥ mi ≥ ni and χ̃ ′
i (t) as in (10) for parameters α′ and as = s/2.

Using Lemma 3 with G(mi ) ≥ f −(1−ε/2)χ ′
i , we have

P(Bi |Di−1) ≥ 1 − exp
(
−β(1 − β)i f εχ ′

i /2
)

.

Now we define

bi := T ′(1 − Ui )
−2

(1 − β)mi − 1
+ (1 − δi0) exp

(
−β(1 − β)i f εχ ′

i /2
)

, φ( f ) :=
∞∑

i=0

bi ,

where δi j is the Kronecker delta symbol. Trivially, we have lim f →∞ bi = 0 for all i ≥ 0.
Since, for sufficiently large f , bs for fixed s is a bounded and decreasing function of f and
since Lemma 6 gives

lim
s→∞ bs2

s = 0,
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there is s0 such that |bs | < 2−s for all s > s0 and for all assumed value of f . Therefore, the
series defining φ( f ) converges uniformly for sufficiently large f and lim f →∞ φ( f ) = 0.
Therefore, for sufficiently large f , we get

P(A) ≥
∞∏

i=0

(1 − bi ) ≥ 1 − φ( f ), lim
f →∞P(A) = 1,

where we have used (1 − x)(1 − y) ≥ 1 − x − y for x, y ≥ 0. As, on the event A,

St ( f ) ≥
t∑

i=t−T ′
Ni,t ≥ (1 − β)t f χ ′

t

wherewe have assumed Ni,t = 0 for i < 0,we see that A ⊂ E( f ) and the proof is completed.
��

In fact, Lemma 11 and its proof are applicable to the MMM verbatim, except that St is
replaced by X̂t . If we are interested in the proof only for the MMM, we actually do not need
to introduce St .

4.3 Proof of the Upper Bound

In this subsection we show that, for given α > 0 and all 0 < α′ < α, we have for the MMM
denoted by (Mt ), or (Mt (x)) if in the initial generation there is a single individual with fixed
fitness x , that

P

(
lim sup

t→∞
log log Mt

t
≤ ν(α′)

)
= 1. (16)

In case of extinction the upper bound holds by convention. One can construct two processes
with initial fitness x ≤ y on the same probability space such that Mt (x) ≤ Mt (y) for all t .
Indeed, this can be done as follows. First construct (Mt (y)) and look at its genealogical tree
truncated after the firstmutant in every line of descent from the root. Removing any individual
in that tree together with all its offspring from (Mt (y)) independently with probability x/y
we obtain (Mt (x)).

We now construct an MMM with special initial conditions. Fix ε > 0. For given α, let
δ = (1 + 2ε)/(1 + 3ε), α′ = α/(1 + 3ε), ν′ = ν(α′), T = T (α′), and

�0 = ε

ν′(1 + 3ε)
,

which is equivalent to ν′�0 + δ = 1. We choose � such that 0 < � ≤ �0 and

n̂ := T

�

is an integer. We define, for a given f > 0,

χ ′
t := eν′t , κn,t := eν′(t−T +n�), gn,t := f κn,t /α, hn,t := f (1+ε)κn,t /α.

Note that χ ′
t above is different from that in Lemma 11.

We briefly explain the motivation of introducing hn,t and other quantities to find an upper
bound. Unlike the proof for the lower bound in Lemma 11, where we have only to investigate
a single lineage X̂t , we have to consider all mutants to find an appropriate upper bound of the
MMM. Since we only need an inequality for the proof, we divide the fitness space of mutants
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by hn,t and regard mutants appearing at generation t with fitness in the region (hn,t , hn+1,t ]
as a mutant class with growth rate bounded by hn+1,t .

We consider theMMM (M̃t ( f ))t≥T −1 starting in generation T −1with an initial condition
such that there are T different mutant classes with fitness gn̂,m for 0 ≤ m ≤ T − 1 and the
number of individuals with fitness gn̂,m is �(gn̂,m)T −m−1�. We only consider f sufficiently
large so that (1 − β) f > 2 and (1 − β) f ε/α > 2.

Now assume that we have proved, for all α′ < α,

lim
f →∞P

(

lim sup
t→∞

log log M̃t ( f )

t
≤ ν(α′)

)

= 1. (17)

Given an arbitrary f > 0 and ε > 0 pick fε such that the probability above exceeds 1−ε and
the smallest fitness in the initial condition of M̃t ( fε) is larger than f . Then (17) guarantees
that

P

(

lim sup
t→∞

log log Mt ( f )

t
≤ ν(α′)

)

> 1 − ε,

which proves (16). So it is enough to prove (17). Once (17) is proved, we use the natural
coupling such that St ≤ Mt for all t . Then, almost surely on survival,

lim sup
t→∞

log log St

t
≤ lim sup

t→∞
log log Mt

t
≤ ν(α),

which completes the proof of Theorem 1.

Lemma 12 In an MMM, let Zt be the number of non-mutated descendants at generation t
of X individuals at generation m whose fitness values are within a bounded interval I with
right endpoint b. Assume X ≤ K . Then, for all B > 1,

P(Zt ≤ K (1 − β)t−mbt−m Bt−m for all t ≥ m + 1) ≥ 1 − 1

B − 1
.

Proof As the mean number of non-mutated offspring of an individual is bounded by (1−β)b
we get the result by applying Lemma 10. ��
Lemma 13 Suppose at generation t − 1 of an MMM the population consists of n individuals
with fitness F1, . . . , Fn. Let

Yt := β

n∑

i=1

Fi (18)

and let Z be the number of mutants in generation t with fitness in the interval (a, b]. Then,
with p := μ((a, b]), we have

P(Z > K ) = e−Yt p
∞∑

n=K+1

(Yt p)n

n! .

Proof Observe that Z is Poisson distributed with mean Yt p. ��
Remark 14 Using Markov’s inequality, we get

P(Z > K ) ≤ Yt p

K
, (19)
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which is useful when K � Yt p. By Chebyshev’s inequality, for K > Yt ,

P(Z > K ) ≤ P(|Z − Yt p| ≥ K − Yt p) ≤ Yt p

(K − Yt p)2
≤ Yt

(K − Yt )2
, (20)

which is useful when (K − Yt )
2 � Yt . For K = 0, we will use

P(Z = 0) = e−Yt p ≥ 1 − Yt p ≥ 1 − Yt G(a). (21)

We denote the number of non-mutated descendants at generation t ≥ T − 1 of initial
individuals with fitness gn̂,m by Nm,T −1,t and define

NT −1,t :=
T −1∑

m=0

Nm,T −1,t .

The number of mutants that appear at generation t ≥ T with fitness in the interval
(hn−1,t , hn,t ] is denoted by Nn,t,t for 0 ≤ n ≤ n̂ + 1, where we have assumed h−1,t := 0
and hn̂+1,t := ∞. Typically, Nn̂+1,t,t will be zero. The number of non-mutated descendants
of Nn,m,m at generation t > m is denoted by Nn,m,t . For t ≥ m ≥ T define

Nm,t :=
n̂+1∑

n=0

Nn,m,t ,

which gives

M̃t ( f ) =
t∑

m=T −1

Nm,t .

Let (θt )t≥T −1 be a sequence satisfying θT −1 = T and, for t ≥ T ,

θt = (t − T )n̂ +
t−1∑

m=T −1

θm .

Since θt+1 − θt = θt + n̂ for t ≥ T , we have

θt =
{
2t−T (T + n̂) − n̂, for t ≥ T

T , for t = T − 1.
(22)

Lemma 15 For T ≤ x ≤ m < t (t, m are integers and x is real), we have

eν′m + t−m
α′ eν′(m−T ) ≤ eν′t , (23)

eν′m − eν′(x−�) + δ t−m
α′ eν′x ≤ eν′t . (24)

Proof Using (8), we have

eν′m
(
1 + t−m

α′ e−ν′T
)

= eν′m T +t−m
T ≤ eν′t eν′T α′

T = eν′t ,

which proves (23). If δ(t − m) − α′e−ν′� is negative, then (24) is trivially valid. If δ(t −
m) − α′e−ν′� is positive, then the left hand side of (24) has maximum at x = m. Therefore,
it is enough to prove (24) only for x = m. Plugging x = m, we have
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eν′m − eν′(m−�) + δ t−m
α′ eν′m = eν′m(1 − e−ν′�) + δ t−m

α′ eν′m

≤ eν′t (ν′� + δ
) ≤ eν′t ,

where we have used 1 − e−x ≤ x , eν′m ≤ eν′t , and t − m ≤ α′eν′(t−m). ��
Lemma 16 Let E( f ) := {M̃t ( f ) ≤ θt+1 f χ ′

t for all t ≥ T }. Then

lim
f →∞P(E( f )) = 1,

which implies (17).

Proof Set ε0 = ε/(2+2ε). By our assumption on μ there is f0 such that G( f ) ≤ f −α(1−ε0)

for all f > f0. Now we assume h0,T = f (1+ε)/α > f0, which gives

G(hn,t ) ≤ f −(1+ε/2)κn,t , for all 0 ≤ n ≤ n̂ and t ≥ T . (25)

Let

An,T −1 :=
{

Nn,T −1,t ≤
⌊
(gn̂,n)T −n−1

⌋
(1 − β)t−T +1 f (t−T +1)χ ′

n/α′
for all t ≥ T

}

and define AT −1 := ⋂T −1
n=0 An,T −1. By Lemma 12 with K = �(gn̂,n)T −n−1�, b = gn̂,n =

f χ ′
n/α , and bB = f χ ′

n/α′ = f (1+3ε)χ ′
n/α , we have

1 − P(An,T −1) ≤
(

f 3εχ
′
n/α − 1

)−1
, P(AT −1) ≥ 1 − bT −1,

bT −1 :=
T −1∑

n=0

(
f 3εχ

′
n/α − 1

)−1
.

Since me−ν′m ≤ α′ and gn̂,n ≤ f χ ′
n/α′

, we have

Nn,T −1,t ≤ f χ ′
n(t−n)/α′ ≤ f χ ′

t for all n, t .

Therefore,

T −1∑

n=0

Nn,T −1,t ≤ T f χ ′
t , for all t ≥ T , (26)

on the event AT −1. Let

An,m,t :=

⎧
⎪⎪⎨

⎪⎪⎩

{
N0,m,t ≤ θm f χ ′

m (1 − β)t−m f (t−m)κ0,m/α′}
, for n = 0,

{
Nn,m,t ≤ f χ ′

m

(gn−1,m )α
(1 − β)t−m f δ(t−m)κn,m/α′}

, for 1 ≤ n ≤ n̂,
{

Nn̂+1,m,t = 0
}

for n = n̂ + 1.

Note that An,t,t has information on the empirical distribution of mutants’ fitness that appear
at generation t . We define

Ãn,m =
∞⋂

t=m+1

An,m,t , An,m := An,m,m ∩ Ãn,m, Am :=
n̂+1⋂

n=0

An,m,

DT −1 := AT −1, Dn := Dn−1 ∩ An, A( f ) :=
∞⋂

n=T −1

Dn .
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By Lemma 15, we have on the event Am , that for all t ≥ m ≥ T ,

Nm,t =
n̂+1∑

n=0

Nn,m,t ≤ (θm + n̂) f χ ′
t ,

and, in turn,

M̃t ( f ) ≤
(

(t + 1 − T )n̂ +
t∑

m=T −1

θm

)

f χ ′
t = θt+1 f χ ′

t

on the event A( f ). Therefore, A( f ) ⊂ E( f ) and the proof is complete if we show

lim
f →∞P(A( f )) = 1.

Now we investigate P(Am |Dm−1). First note that

1 − P(Am |Dm−1) ≤
n̂+1∑

n=0

[
1 − P(An,m |Dm−1)

]
,

P(An,m |Dm−1) = P( Ãn,m |An,m,m ∩ Dm−1)P(An,m,m |Dm−1),

and, on the event Dm−1,

Ym ≤ βθm f χ ′
m , (27)

where Ym is defined in (18).
We begin with P(An̂+1,m |Dm−1), which clearly equals P(An̂+1,m,m |Dm−1). Using (21)

with a = hn̂,m and Ym G(a) ≤ θm f −εχ ′
m/2, we obtain

P(An̂+1,m |Dm−1) ≥ 1 − bn̂+1,m, bn̂+1,m := θm f −εχ ′
m/2.

Now we consider P(A0,m |Dm−1). Using (20) with K = θm f χ ′
m and (27), we have

P(A0,m,m |Dm−1) ≥ 1 − β

(1 − β)2θm
f −χ ′

m .

Using Lemma 12 with B = f κ0,m/α′
/h0,m = f 2εκ0,m/α , we have

P( Ã0,m |A0,m,m ∩ Dm−1) ≥ 1 − (
f 2εκ0,m/α − 1

)−1
.

Therefore, defining

b0,m := β

(1 − β)2θm
f −χ ′

m + (
f 2εκ0,m/α − 1

)−1
,

we have P(A0,m |Dm−1) ≥ 1 − b0,m .
Finally, we move on to P(An,m |Dm−1) for 1 ≤ n ≤ n̂. Using (19) with K = f χ ′

m−κn−1,m ,
a = hn−1,m , and Ym G(a) ≤ θm f χ ′

m−(1+ε/2)κn−1,m , we have

P(An,m,m |Dm−1) ≥ 1 − θm f −εκn−1,m/2.

Using Lemma 12 with B = f δκn,m/α′
/hn,m = f εκn,m/α , we have

P

(
Ãn,m |An,m,m ∩ Dm−1

)
≥ 1 − (

f εκn,m/α − 1
)−1

.
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Therefore, defining

bn,m := θm f −εκn−1,m/2 + (
f εκn,m/α − 1

)−1
,

we have P(An,m |Dm−1) ≥ 1 − bn,m . We define

bm :=
n̂+1∑

n=0

bn,m for m ≥ T , and φ( f ) :=
∞∑

m=T −1

bm .

Recall that we have assumed (1− β) f > 2 and (1− β) f ε/α > 2. Since bm for given m is a
bounded function of f which is decreasing to zero and

lim
m→∞ bm2

m = 0,

there is m0 such that |bm | < 2−m for all m > m0. Hence the series defining φ( f ) con-
verges uniformly for sufficiently large f and, accordingly, lim f →∞ φ( f ) = 0. Therefore,
for sufficiently large f ,

P(A( f )) ≥
∞∏

m=T −1

(1 − bm) ≥ 1 − φ( f ),

and lim
f →∞P(A( f )) = 1, which completes the proof. ��

5 Empirical Fitness Distributions of the FMM

Apart from the fact that the population is dominated by a single mutant class at all times, the
proof of the double-exponential growth rate ν presented in Sect. 4 does not give any insight
into the structure of the population. However, since the solution χt of the recursion relation
(9) correctly describes the asymptotic growth of X(t), it provides a natural starting point for
addressing this question at least on a heuristic level. In this section, we analyze the recursion
relation in more depth to understand the demographic structure of the FMM in the long time
limit, which turns out to display a rather rich behaviour.

5.1 Numerical Solution of the Recursion Relation

To characterize the empirical fitness distribution we introduce the following quantities:

Ji (t) := log Wi

log Wt
≈ χi

χt
, P(t) := log X(t + 1) − log X(t)

log Wt
≈ α

χt+1 − χt

χt
,

Ri (t) := log W t−i
i − log X(t)

log X(t)
= t − i

α
Ji (t) − 1,

where the second approximate relations in the definitions of Ji (t) and P(t) become equalities
in the formal deterministic limit f → ∞ (see Sect. 3). The ratio Ji (t) ∈ [0, 1] compares the
log-fitness of the mutant class born at time i to the log-fitness of the current fittest mutant.
Since X(t + 1) ≈ (1 − β)X(t)F̄t with F̄t denoting the mean fitness of the population
at generation t , P(t) quantifies the mean fitness at generation t on the same scale. The
decomposition in Eq. (3) shows that the fraction of the population in mutant class i at time t
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Fig. 2 a Plots of Ri (t) vs. Ji (t) for α = 1 at generations t = 16, 17, . . ., 24. The vertical line at each panel
indicates the location of the mean fitness P(t). b Data collapse plots of Ri (t) vs. Ji (t) for each column of a

is proportional to W t−i
i , and therefore Ri (t) ∈ [−1, 0] serves as proxy of the (logarithmic)

empirical fitness distribution at generation t over mutant classes i .
In Fig. 2 a, we plot Ri (t) against Ji (t) for nine consecutive generations, obtained by

numerically solving the recursion relation (5) for α = 1 with an = n. The salient feature is
the periodic behavior of the fitness distribution with period 3; note that T = 3 for α = 1. To
illustrate the accuracy of the periodic behaviour, we present data-collapse plots in Fig. 2b. In
most regions of Ji , the collapse looks perfect (since the number of mutant classes increases
with the number of generations, the empirical fitness distributions at different times cannot be
identical). For another illustration of the periodicity, we depict P(t) vs. t for various values
of α (with an = n) in Fig. 3. After an early transient behavior, P(t) clearly shows periodic
behavior. A rigorous proof of the periodicity will be given in Sect. 5.2.

The periodicity was taken into account in the numerical estimates of ν reported in Fig. 1.
Rather than monitoring logχt/t , which converges very slowly, we computed the quantity

ν̂(t) := 1

T
log

χt+T

χt
,

which approaches a constant in a relatively short time.
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Fig. 3 Plots of P(t) vs. t for various α with an =n. The function P(t) exhibits complete periodicity for large t

5.2 Periodicity of �te−�t

By Lemma 6, we know that

ct := χt e
−νt

is bounded away from zero and infinity. Now we show that ct is not only bounded, but
eventually becomes periodic.

Proposition 17 For any sequence (an) in the recursion relation (9), there is a t1 such that
ct = ct+T for all t ≥ t1.

Proof In this proof, k and k′ are exclusively used as integers in the range 1 ≤ k, k′ ≤ T .
Since χt+T ≥ eνT χt (see Sect. 3), the sequence (ck+nT )n is nondecreasing and bounded.
Consequently,

Ck := lim
n→∞ ck+nT (28)

is well defined. Note that max{Ck : 1 ≤ k ≤ T } becomes the optimal upper bound in
Lemma 6. If n satisfies nT > T ′ with T ′ > max{t − It } (see Remark 8), then we have

ck+nT = e−ν(k+nT ) max

{
k + nT − t ′

α
χt ′ : k + nT − T ′ ≤ t ′ < k + nT

}

= max
{ s

α
e−νsck+nT −s : 1 ≤ s ≤ T ′} . (29)

Taking n to infinity, we get

Ck = max
{ s

α
e−νsCk−s : 1 ≤ s ≤ T ′} , (30)

and, by definition, Ck+mT = Ck for any integer m. Since T e−νT /α = 1 and Ck−T = Ck ,
we can rewrite (30) as

Ck = max
{ s

α
e−νsCk−s : 1 ≤ s ≤ T + 1

}
.

Comparing terms with s = T − 1, T , T + 1 for any k, we have

T − 1

T
eνCk+1 = T − 1

α
e−ν(T −1)Ck+1 ≤ Ck,

123



Branching with Selection and Mutation I… Page 21 of 28 115

T + 1

T
e−νCk−1 = T + 1

α
e−ν(T +1)Ck−1 ≤ Ck,

which gives

T + 1

T
≤ Ck+1eν

Ck
≤ T

T − 1
,

for all k. Let ϕk = Ckeν/Ck−1 with ϕ1 = ϕT +1 = C1eν/CT . Then,

Ck = C1e−ν(k−1)
k∏

j=2

ϕ j ,

for k > 1. Setting k = T + 1 and considering CT +1 = C1, we have

T∏

j=1

ϕ j = eνT = T

α
.

To sum up, Ck takes the form

Ck = C0e−νk
k∏

j=1

ϕ j ,

where C0 is a positive constant (note that χt (α, (C0an)) = C0χt (α, (an))) and ϕk satisfies

T + 1

T
≤ ϕk ≤ T

T − 1
,

T∏

j=1

ϕ j = T

α
= eνT . (31)

If α = αT (see Remark 5), then eν = (T +1)/T and the only possible value of ϕk is ϕk = eν

for all k because of (31).
To simplify (29) for large n, we use the following observation. For p ∈ N with X := 1/T

and Ck−(T ±p) = Ck∓p , we have

T − p

α
e−ν(T −p)Ck+p = T − p

T
eν p Ck+p

Ck
Ck = Ck

T − p

T

p∏

j=1

eν Ck+ j

Ck+ j−1

≤ Ck
T − p

T

(
T

T − 1

)p

= Ck
1 − pX

(1 − X)p
,

and

T + p

α
e−ν(T +p)Ck−p = T + p

T
e−ν p Ck−p

Ck
Ck = Ck

T + p

T

p∏

j=1

Ck− j

eνCk− j+1

≤ Ck
T + p

T

(
T

T + 1

)p

= Ck
1 + pX

(1 + X)p
.

Since supp≥2(1+ pX)/(1+ X)p < 1 for all nonzero X not smaller than−1, relating s and p
by p = |s−T |wecan choose ε > 0 such thatCk−ε > se−νsCk−s/α for all s with |s−T | > 1
and for all k. By (28), for this ε, there is an integer m0 such that Ck − ε < ck+nT ≤ Ck for
all n ≥ m0 and for all k. If n > m0, then

ck+nT > Ck − ε > se−νsCk−s/α ≥ se−νsck−s+nT /α,

123



115 Page 22 of 28 S.-C. Park et al.

for all s with |s − T | > 1, which reduces (29) to

ck+(n+1)T = max
{
ck+nT , T +1

T e−νck−1+nT , T −1
T eνck+1+nT

}
. (32)

In the following,n is assumed so large that (32) is valid for all k. Defining δk,n :=1−ck+nT /Ck

with the convention δk+mT ,n := δk,n+m for integer m and using the definition of ϕk , we can
write

δk,n+1 = min
{
δk,n, 1 − T +1

T ϕk
(1 − δk−1,n), 1 − T −1

T ϕk+1(1 − δk+1,n)
}

.

As ck+nT → Ck , we have δk,n → 0 as n → ∞. If (T + 1)/(T ϕk) < 1, then 1 − (T +
1)/(T ϕk)(1 − δk−1,n) > 1 − (T + 1)/(T ϕk) > 0 for sufficiently large n and, therefore, the
term with (T +1)/(T ϕk) cannot be a minimum for large n. The same argument is applicable
to the term with (T − 1)ϕk+1/T .

If α = αT , then ϕk = (T + 1)/T for all k and, accordingly, we have δk,n+1 =
min{δk,n, δk−1,n} for all k and for all sufficiently large n. If there is m and k′ such that
δk′,m = 0, then δk′,n = 0 for all n ≥ m and δk′+1,m+1 = 0, which again gives δk′+2,m+2 = 0
and so on. Therefore, we have δk,n = 0 for all n > m + T and all k. Hence, to complete the
proof for this case, we need to elicit a contradiction if δk,n is strictly positive for all n and for
all k. Since δk,n is a nonincreasing sequence of n, we have

δk,n+s = min{δk,n+s−1, δk−1,n+s−1} = min{δk,n+s−2, δk−1,n+s−2, δk−1,n+s−1}
= min{δk,n+s−2, δk−1,n+s−1} = min{δk,n, δk−1,n+s−1},

for all s ∈ N. Since δk−1,n+s−1 should approach zero monotonically as s → ∞, there
should be s0 such that δk−1,n+s−1 < δk,n for all k and for all s > s0. Therefore, we get
δk,n+s+T = δk−1,n+s+T −1 = δk−2,n+s+T −2 = δk,n+s for all s > s0. Since δ cannot increase,
we conclude that δk,n is a constant for all sufficiently large n. If δk,n is strictly positive for
all n as assumed, Ck cannot be a limit and we arrive at a contradiction. Therefore, there is t1
such that ct+T = ct for all t ≥ t1 in this case.

If α �= αT , then there is at least one ϕk such that (T + 1)/T < ϕk . If ε also satisfies
ε/Ck < 1 − (T + 1)/(T ϕk), then we can write

δk,n+1 = min
{
δk,n, 1 − T −1

T ϕk+1(1 − δk+1,n)
}
,

for all n > m0. If ϕk+1 < T /(T − 1), then δk,n will eventually be smaller than 1 −
(T − 1)ϕk+1/T and we have δk,n+1 = δk,n = 0 for all large n. On the other hand, if
ϕk+1 = T /(T − 1) > (T + 1)/T , we have

δk,n+1 = min
{
δk,n, δk+1,n

}
,

δk+1,n+1 = min
{
δk+1,n, 1 − T −1

T ϕk+2(1 − δk+2,n)
}
. (33)

Since it is impossible for all ϕk to be T /(T − 1), there exists k′ such that ϕk+i = T /(T − 1)
for 1 ≤ i ≤ k′ and ϕk+k′+1 < T /(T − 1). Therefore,

δk+k′,n+1 = δk+k′,n,

for all sufficiently large n. Once δk+k′,m = 0, then δk+i,n = 0 for all 0 ≤ i ≤ k′ and for
all n > m + T by (33). If ϕk+k′+1 > (T + 1)/T , we can repeat the above procedure. If
ϕk+k′+1 = (T + 1)/T , we have

δk+k′+1,n+1 = min
{
δk+k′+1,n, δk+k′,n, 1 − T −1

T ϕk+k′+2(1 − δk+k′+2,n)
} = 0

for all sufficiently large n. Hence, the proof is complete. ��

123



Branching with Selection and Mutation I… Page 23 of 28 115

5.3 Non-uniqueness of Periodic Solutions

Proposition 17 and its proof have shown the general periodic solutions of recursion relation
(9) for t > t1 to be of the form

χt = χt1

t∏

k=t1+1

ϕk, ct = ct1e−ν(t−t1)
t∏

k=t1+1

ϕk,

where the ϕk satisfy ϕT +k = ϕk and (31). Since (T + 1)/T ≤ eν < T /(T − 1), setting
ϕi = eν for all i satisfies (31), which gives the constant sequence ct = ct1 . We refer to this
solution as the homogeneous state. Recall that the homogeneous state is the unique possibility
for α = αT , as shown right after (31). By constructing an appropriate sequence (an), we now
show that any set {ϕk} that satisfies the conditions (31) can give rise to a periodic solution ct .
Therefore, the periodic solution ct is not unique and can vary substantially with (an) unless
α = αT or T = 1.

Proposition 18 Let

at = max

{
T − i + t − 1

α
ψi : 0 ≤ i < T

}

, ψi :=
i∏

j=1

ϕ j , (34)

where the ϕ j are as in (31) with periodicity ϕT + j = ϕ j and we have used the convention
∏0

j=1 = 1. Then

χt = ψt+T −1 :=
t+T −1∏

j=1

ϕ j . (35)

Proof To find a1, we observe that for 0 ≤ i < T − 1

T − i − 1

α
ψi+1 = T − i

α
ψi

T − i − 1

T − i
ϕi+1

≤ T − i

α
ψi

(T − i − 1)T

(T − i)(T − 1)
= T − i

α
ψi

T 2 − (i + 1)T

T 2 − (i + 1) + i
≤ T − i

α
ψi ,

where we have used ϕi ≤ T /(T − 1). Therefore, we get

χ1 = a1 = T

α
=

T∏

j=1

ϕ j = ψT ,

which is (35) for t = 1. Note that this χ1 is trivially valid for T = 1.
Now assume (35) is valid up to t = n. Then,

χn+1 = max

{
T − i + n

α
ψi : 0 ≤ i ≤ n + T − 1

}

.

For i ≤ n, we have

T − i + n

α
ψi = T − i + n + 1

α
ψi−1

T − i + n

T − i + n + 1
ϕi

≥ T − i + n + 1

α
ψi−1

(T − i + n)(T + 1)

(T − i + n + 1)T
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= T − i + n + 1

α
ψi−1

T 2 + (n + 1 − i)T + n − i

T 2 + (n + 1 − i)T

≥ T − i + n + 1

α
ψi−1,

and for n + T − 1 > i ≥ n and T > 1, we have

T − i + n

α
ψi = T − i + n − 1

α
ψi+1

T − i + n

T − i + n − 1

1

ϕi+1

≥ T − i + n − 1

α
ψi+1

(T − i + n)(T − 1)

(T − i + n − 1)T

= T − i + n − 1

α
ψi+1

T 2 + (n − 1 − i)T + i − n

T 2 + (n − 1 − i)T

≥ T − i + n − 1

α
ψi+1.

Therefore, we have

χn+1 = T

α
ψn = ψn

T +n∏

j=n+1

ϕ j =
T +n∏

j=1

ϕ j .

Induction completes the proof. ��
Now we illustrate that any allowed set of ϕ j ’s can appear in the actual branching process

by choosing an appropriate initial condition. For a realization of (34) in the branching process,
consider an initial condition such that there are T different mutant classes with fitness fi :=
f ψi /α (0 ≤ i < T ) and the number Ni of individuals with fitness fi is

Ni =
⌊

f (T −i−1)ψi /α
⌋

.

Notice that this initial condition with ϕ j = eν′
together with a shift in time was used in the

proof of Lemma 16. In the limit f → ∞ as in Sect. 3, X(t) is well approximated by f χt

with at in (34).
In the above discussion, we have illustrated that any permissible set of ϕ j ’s can be realized

by choosing an appropriate initial condition. Now we argue that a surviving outcome with an
arbitrary initial condition should approach such a permissible set, but which values of the ϕ j ’s
are realizedmay depend on the stochasticity in the early time regime. In the original branching
process, the sequence (an) depends both on the initial condition and the stochastic evolution
in the early time regime before the deterministic approximation through the recursion relation
(9) becomes valid. To see this, we recall from Sect. 3 how the recursion relation arises from
the stochastic process. Since on survival the total population size as well as the largest fitness
increases indefinitely, there should be a generation t0 such that X(t0) > K for any preassigned
K . Let W0 be the largest fitness at generation t0, define Y = X(t0) and introduce a shifted
time variable t ′ = t − t0 with X̃(t ′) := X(t ′ + t0). If K is extremely large, X̃(t ′) can be well
approximated as X̃(0) = Y ,

X̃(1) = Y a1 + 1 ≈ Y χ1 , W1 ≈ Y χ1/α,

X̃(2) = Y a2 + Y χ1/α + 1 ≈ Y χ2 , W2 ≈ Y χ2/α,

X̃(3) = Y a3 + Y 2χ1/α + Y χ2/α + 1 ≈ Y χ3 , W3 ≈ Y χ3/α
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Fig. 4 Plot of Ri vs Ji at t = 500 and 501 for α = 3, 4, 5, 6. For comparison, the asymptotic prediction
(36) is depicted as a solid curve. For α = 3 and 4, the changes of the empirical fitness distributions between
generations 500 and 501 are still visible, but the distributions become indistinguishable from the asymptotic
form (36) for α ≥ 5

where Y an is the population size of all mutant classes that appeared prior to generation
t0. Since Y an ≤ Y W n

0 , we naturally have limn→∞ ane−νn = 0, and (an) is a permissible
sequence that can be entered into the recursion relation (9).

5.4 Empirical Fitness Distribution for Large˛

Whereas the preceding subsection has shown that the empirical fitness distribution at long
times is generally non-universal, we will now argue that it nevertheless has a well-defined
limit for α → ∞. Let us begin with the homogeneous state. In this case,

Ji (t) = e−ν(t−i), P(t) ≡ α(eν − 1),

Ri (t) = (t − i)

α
Ji (t) − 1 = − 1

να
Ji (t) log Ji (t) − 1.

Since να → 1/e as α → ∞, the homogeneous state for all sufficiently large α is well
described by

Ri ≈ −eJi log Ji − 1, (36)

and the mean log fitness converges to P = 1
e . Moreover, since

T

T − 1
− T + 1

T
= 1

(T − 1)T
= O(T −2)

and T /α → e as α → ∞, in this limit all periodic solutions that satisfy the constraints
(31) become close to homogeneous, ϕi = eν + O(α−2). Therefore, we conjecture that the
empirical fitness distribution on survival has (36) as a limit distribution for α → ∞. As an
illustration, in Fig. 4we compare (36) to numerical solutions of the recursion relation for
α = 3, 4, 5, 6. The numerical data are hardly distinguishable from (36) already for α = 5.
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6 Summary and Discussion

In this article we have provided a detailed characterization of the superexponential population
growth in two closely related stochastic models of evolution. To the best of our knowledge,
this is the first rigorous analysis of a branching processwith selection andmutationswhere the
random fitness values (rather than the fitness differences [22]) are drawn from an unbounded
probability distribution. A remarkable feature of themodels considered here is the emergence
of an integer-valued time scale T which depends (discontinuously) on the index α of the
underlying Fréchet distribution. As a consequence, the empirical fitness distribution displays
oscillationswith period T , a phenomenon that has been observed previously in certainmodels
that include sexual reproduction [38, 39]. A partial understanding of the periodic behaviour
of the population structure was achieved in a deterministic approximation. Further work on
this problem is needed, addressing in particular how the stochastic initial phase of the process
determines the non-universal aspects of the asymptotic population distribution.

It is instructive to compare our findings for the branching process to the earlier analysis
of a stochastic fixed finite population version of Kingman’s model in [13]. In both cases the
long-time behaviour is dominated by, and can quantitatively understood in terms of extremal
mutation events in the past. However, in the fixed finite population model the likelihood of
generating mutants that exceed the current population fitness declines with time, and the
dynamics reduces to a modified record process, where the takeover of the population by
a fit mutant is instantaneous compared to the waiting time for the next fitter mutant. As
a consequence, the population at time t is dominated by a mutant that arose at a time of
order t in the past. By contrast, in the branching process with Fréchet-type distributions, the
declining probability of exceeding the current fitness is compensated by the rapid growth
of the population in such a way that the time lag since the birth of the currently dominant
mutant takes on a fixed value T . Moreover, the branching process never enters the regime of
rare sequential fixation events associated with the decreasing supply of beneficial mutations
in the finite population setting. Instead, the population attains a nontrivial stationary clonal
structure which is approximately described in Sect. 5.

It is reasonable to expect that the growth of the population fitness in the branching process
is intermediate between that of the fixed finite population model [13] and the deterministic
infinite population model [5]. For Fréchet type fitness distributions the deterministic model is
ill-defined, but the analysis of the fixed finite populationmodel predicts a polynomial increase
of the fitness with exponent 1/α [13], which is indeedmuch slower than the superexponential
growth in the branching process. For unbounded Gumbel type distributions the growth law
of the fitness is known for infinite as well as for finite populations [5, 13]. The corresponding
behaviour of the branching process will be addressed in future work.
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