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Abstract
We re-examine the combined semi-classical and mean-field limit in the N -body fermionic
Schrödinger equation with pure state initial data using the Husimi measure framework. The
Husimi measure equation involves three residue types: kinetic, semiclassical, and mean-
field. The main result of this paper is to provide better estimates for the kinetic and mean-
field residue than those in Chen et al. (J Stat Phys 182(2):1–41, http://arxiv.org/abs/1910.
09892v4, 2021). Especially, the estimate for the mean-field residue is shown to be smaller
than the semiclassical residue by a mixed-norm estimate of the two-particle reduced density
matrix factorization. Our analysis also updates the oscillation estimate parts in the residual
term estimates appeared in Chen et al. (J Stat Phys 182(2):1–41, http://arxiv.org/abs/1910.
09892v4, 2021).
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1 Introduction

In this article, we consider the following N -particle mean-field Schrödinger equation

i�∂t ψN ,t = −�
2

2

N∑

j=1

�x j ψN ,t + 1

2N

N∑

i �= j

V (xi − x j )ψN ,t

ψN ,0 = 1√
N ! det

{
e j (xi )

}N
i, j=1,

(1.1)

where {e j }Nj=1 is a family of orthonormal basis in L2(R3) and �x j is the Laplacian on j-th
particle. The initial data in (1.1) is in the form of a Slater determinant, which stays in the
antisymmetric subspace L2

a(R
3N ) of L2(R3) with ‖ψN ,0‖2 = 1, where

L2
a(R

3N ) := {
ψN ∈ L2(R3N ) : ψN (xπ(1), . . . , xπ(N ))

= (sign π)ψN (x1, . . . , xN ) for all π ∈ SN
}
.

In the above formulation, SN is the symmetric group.
Note that the number of the terms for interaction is of order N 2. Hence, with themean-field

constant 1/N in front of the interaction, we could think that the size of interaction energy is
of order N . Since we are interested in the regime where the size of kinetic energy is similar
to the size of interaction energy, we have from Tomas–Fermi theory that �

2N 5/3 = N . This
gives � = N−1/3. For more details, we refer to [5, 6, 8].

As it is difficult to solve the Schrödinger equation in (1.1) numerically when the number
of particle N is large, we aim to derive its corresponding effective evolution equation. In fact,
we consider the k-particle reduced density matrix where its corresponding integral kernel is
given by

γ
(k)
N ,t (x1, . . . , xk; y1, . . . , yk)
= N !

(N−k)!
∫

dxk+1 . . . dxN ψN ,t (y1, . . . , yk , xk+1, . . . , xN )ψN ,t (x1, . . . , xk , xk+1, . . . , xN ),

(1.2)

where 1 � k � N . Moreover, we denote the expectation of the one-particle observable as
follows,

TrOγ
(1)
N ,t = 〈ψN ,t , OψN ,t 〉 =

∫
dx1 . . . dxN ψN ,t (x1, x2, . . . , xN )

(
OψN ,t

)
(x1, x2, . . . , xN ).

The one-particle reduce density matrix of the initial data given in (1.1) is ωN =∑N
j=1 |e j 〉〈e j |, where its corresponding integral kernel is ωN (x; y) =∑N

j=1 e j (y)e j (x).

1.1 Short Review of Mean-Field Limit, N → ∞

It is well known that the Hartree–Fock equation

i�∂t ωN ,t = [− �
2� + (V ∗ ρN ,t ) − Xt , ωN ,t

]
,

ρN ,t = 1

N
ωN ,t (x; x)

Xt = 1

N
V (x − y)ωN ,t (x; y)

(1.3)
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is used to approximate the Schrödinger equation in the mean-field limit. Here we use the
conventional notation [A, B] := AB − BA for commutator of operators.

The mean field limit result for fixed � has been given in [17] for short time. Under the
scaling � = N−1/3, the rates of convergence in the trace norm and the Hilbert–Schmidt norm
are obtained for arbitrary given time in [8] when the initial data is an approximation of the
Slater determinant. Later on, the case with mixed state initial data has been considered in [7,
10]. Furthermore, for Coulomb and Riesz potentials, the rate of convergence is obtained in
[40, 41]. We refer more references on this topic to [6, 19, 37–39] and the references therein.

1.2 Short Review of Semi-classical Limit, � → 0

The Vlasov equation can be obtained via semi-classical limit of the Hartree or the Hartree–
Fock equations. It has been first investigated in [32] by using Wigner measure for smooth
potentials. Recently, the rates of convergence in the trace norm aswell as theHilbert–Schmidt
norm has been studied in [11] with regularity assumptions on the mixed state initial data and
a class of regular potentials. The k-particle Wigner measure used in the [11, 32] reads

W (k)
N ,t (x1, p1, . . . , xk, pk)

:=
(
N

k

)−1 ∫
(dy)⊗k γ

(k)
N ,t

(
x1 + �

2
y1, . . . , xk + �

2
yk; x1 − �

2
y1, . . . , xk − �

2
yk

)

e−i
∑k

i=1 pi ·yi , (1.4)

Some of the recent developments in the semi-classical limit are the following: One can find
results for the inverse power law potential in [43], for the rate of convergence in the Schatten
norm in [30], for the Coulomb potential and mixed states in [42], and for the convergence in
the Wasserstein distance in [28, 29]. Relativistic fermionic system has been studied in [16].
Further analyses of the semi-classical limit can be found in [1–3, 6, 20, 34].

1.3 CombinedMean-Field and Semi-classical Limits

Narnhofer and Sewell, and Spohn independently derived Vlasov equation (1.8) from the N -
body Schrödinger equation (1.1) with � = N−1/3, in [36, 46].Without assuming � = N−1/3,
a rate of convergence was obtained in [25] in a weak formulation. The rate of convergence
of the combined limits was studied in [22–24] by using the Wasserstein (pseudo-)distance.
Under a generalizedHusimimeasure framework, the authors in [13] obtained the convergence
for regular potentials. Recently, the combined limit for the singular potential casewith regular
mixed state initial data was obtained in [14].

It is well-known that the Wigner measure in (1.4) is not a (proper) probability measure, as
there might be some point having negative sign. (We refer, e.g., [12, 26, 27, 33, 45] for further
references on Wigner measure.) It has been shown that the Husimi measure, the convolution
of the Wigner measure with a Gaussian function, is a nonnegative probability measure [15,
18, 48]. In particular, from [18, p.21], given a specific Gaussian coherent state, the relation
between the Husimi measure and Wigner measure is given by the following convolution: for
any 1 � k � N ,

m
(k)
N ,t := N (N − 1) · · · (N − k + 1)

Nk
W (k)

N ,t ∗ G�, (1.5)
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where

G�(q1, p1, . . . , qk, pk) := 1

(π�)3k
exp

(
−
∑k

j=1 q j
2 + p j

2

�

)
.

The Wigner transform of Hartree (or Hartree–Fock) equation shares the structure of Vlasov
equation, see [9, Eq. (6.15)] for example.

In this paper, following the ideas in [13], we study the equation for Husimi measure.
Instead of using the classical definition of Husimimeasure in (1.5), we consider the following
generalized k-particle Husimimeasure, which is given for example in [18]: For any p, q ∈ R

3

and ψN ,t ∈ L2
a(R

3N ), the k-particle Husimi measure is given by

m(k)
N ,t (q1, p1, . . . , qk, pk) = 〈ψN ,t , a

∗( f �

q1,p1) · · · a∗( f �

qk ,pk )a( f �

qk ,pk ) · · · a( f �

q1,p1)ψN ,t 〉.
(1.6)

Here a∗( f �
q,p) and a( f �

q,p) are standard creation- and annihilation-operator respectively1

with respect to the coherent state f �
q,p given by

f �

q,p(y) := �
− 3

4 f

(
y − q√

�

)
e

i
�
p·y,

where f is any given real-valued function satisfying ‖ f ‖2 = 1.

Remark 1.1 As stated in [18], the k-particle Husimi measure m(k)
N ,t describes how many

fermions are within the k-semi-classical boxes of length
√

� centered at the phase-spaces
(q1, p1), . . . , (qk, pk).

Remark 1.2 If f (x) = π−3/4e−|x |2/2, [15] shows that the k-particle Husimi measure m(k)
N ,t

coincides with the m(k)
N ,t in (1.5).

1.4 Main Result

Let ψN ,t be the solution to the Schrödinger equation in (1.1) and denote the one-particle
Husimi measure of it by mN ,t := m(1)

N ,t . From [13, Proposition 2.1], we obtain the following
identity:

∂tmN ,t (q, p) + p · ∇qmN ,t (q, p) − ∇q ·
(
� Im〈∇qa( f �

q,p)ψN ,t , a( f �

q,p)ψN ,t 〉
)

= 1

(2π)3
∇p ·

∫
dw1du1dw2du2dq2dp2

(
f �

q,p(w) f �
q,p(u)

)⊗2

∫ 1

0
ds ∇VN

(
su1 + (1 − s)w1 − w2

)
γ

(2)
N ,t (u1, u2;w1, w2),

(1.7)

where
(
f �

q,p(w1) f �
q,p(u1)

)⊗2 := f �

q,p(w1) f �
q,p(u1) f

�

q2,p2(w2) f �
q2,p2(u2).

Remark 1.3 The two-particle reduced density matrix in (1.7) is given in (1.2).

1 Definitions of creation- and annihilation-operator is provided in Appendix A.
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Our aim is therefore to obtain the convergence from mN ,t , in weak sense, to the solution
of Vlasov equation mt as follows:

∂tmt (q, p) = −p · ∇qmt (q, p) + ∇q
(
V ∗ 	t

)
(q) · ∇pmt (q, p),

mt (q, p)
∣∣
t=0 = m0(q, p),

(1.8)

where 	t = ∫ dp mt (q, p) and the initial data m0(q, p) is the one-particle Husimi measure
of ψN ,0 given in (1.1).

The following assumptions are needed in this paper.

Assumption H1 1. (Interaction potential) V ∈ L1(R3) and V (−x) = V (x). Furthermore it
holds

∫
dp(1 + |p|2)|V̂ (p)| < ∞, where V̂ is its Fourier transform of V .

2. (Coherent state) f ∈ H1(R3) ∩ L∞(R3) satisfies ‖ f ‖2 = 1, and has compact support in
BR1 for a given R1 > 0.

3. (Initial data) mN converges weakly to m0 in L1(R3). Furthermore, it satisfies
∫

dqdp (|p|2 + |q|)mN (q, p) < ∞ (1.9)

uniformly for all N .
4. (Initial data) ωN , the one-particle density matrix of ψN ,0 satisfies

sup
p∈R3

1

1 + |p| ‖[e
ip·x , ωN ]‖Tr � CN�,

‖[�∇, ωN ]‖Tr � CN�,

(1.10)

where ‖ · ‖Tr is the trace norm.

Remark 1.4 The assumptions in (1.10) can be explained by the nature of the semi-classical
structure. More details can be found in [8] where mean field limit has been studied.

With the assumptions presented above, our final goal is to obtain the following theorem:

Theorem 1.1 Let mN ,t be the one-particle Husimi measure defined in (1.6) with ψN ,t the
solution of Schrödinger equation (1.1), and suppose the aforementioned assumptions hold
and mt is the solution of Vlasov equation in (1.8). Then, for any given T > 0, (mN ,t )N∈N

converges to mt weakly (*) in L p((0, T ) × R
3 × R

3) for arbitrary 1 � p � ∞.

Remark 1.5 As a consequence, [47, Theorem 6.9] implies, for t � 0, thatW1(mN ,t ,mt ) → 0
as N → ∞, where W1 is 1-Weisserstein distance.

For convenience, we use the Fock space formalism, which will be briefly introduced in
Appendix A. By using Husimi transform given in (1.7), the Schrödinger equation for ψN ,t

can be rewritten into the Vlasov type equation for mN ,t with residual terms. More precisely,
from the computations in [13], we have

∂tmN ,t (q, p) + p · ∇qmN ,t (q, p)

= 1

(2π)3
∇p ·

∫
dq2∇V (q − q2)	N ,t (q2)mN ,t (q, p) + ∇q · R̃ + ∇p · Rs + ∇p · Rm,

(1.11)

where 	N ,t (q) := ∫ dpmN ,t (q, p), the kinetic residue R̃, the semi-classical residueRs and
the mean-field residue Rm are given by

R̃ := � Im〈∇qa( f �

q,p)
N ,t , a( f �

q,p)
N ,t 〉,

123
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Rs := 1

(2π)3

∫
dw1du1dw2du2dq2dp2

(
f �

q,p(w) f �
q,p(u)

)⊗2

[ ∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − q2)

]
γ

(2)
N ,t (u1, u2;w1, w2),

Rm := 1

(2π)3

∫
dw1du1dw2du2dq2dp2

(
f �

q,p(w) f �
q,p(u)

)⊗2

∇V (q − q2)

[
γ

(2)
N ,t (u1, u2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (u2;w2)

]
.

(1.12)

Remark 1.6 The three terms—kinetic residue R̃, semiclassical residue Rs, and mean-field
residue Rm—arise due to the following reasons: The kinetic residue R̃ is bounded by the
kinetic energy estimate. This term’s name reflects its connection to the kinetic energy used
in establishing the bound. The semiclassical residue Rs is proven to be small by oscillatory
integrals that appear due to theHusimi transform. Similarly, the estimate ofmean-field residue
Rm is transformed into the factorization of two-particle reduced density matrix, which is a
characteristic of mean-field behavior. Thus, its name denotes its association with mean-field
properties.

Under the assumptions of Theorem 1.1, the estimate of the kinetic residue R̃ can be
obtained exactly the same as in [13]. (In the updated arXiv version of [13], the oscillation
estimates have been corrected, with which the estimates for the residue terms from BBGKY
hierarchy as well as the main result still hold true.) In this paper we give a better estimate for
R̃ in the following proposition.

Proposition 1.1 Under the assumptions 1, 2, and 3 in H1, the following estimate holds
∥∥∥∥
∫

dp
∣∣∣R̃(p, ·)

∣∣∣
∥∥∥∥
L

5
4 (R3)

� C�
1
2 . (1.13)

As a consequence, the following holds:
∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇q · R̃(q, p)

∣∣∣∣ � C�
1
2 . (1.14)

where C depends on ϕ, φ, f .

The proof will be listed in Sect. 2.
In addition, we obtain the following two propositions for the other two residues:

Proposition 1.2 Under the assumptions 1, 2, and 3 in H1 and let φ, ϕ be test functions, then
the following inequality holds:

∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇p · Rs(q, p)

∣∣∣∣ � C�
1
2+3(α2−1), (1.15)

where 1
2 < α2 < 1, and C depends on ϕ, φ, f .

Detailed proof will be given in Sect. 3.

Proposition 1.3 Assuming H1, let ϕ, φ ∈ C∞
0 (R3) be test functions, then the following

inequality holds:
∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇p · Rm(q, p)

∣∣∣∣ � C�
3
2 (α1− 1

2 )+ 3
2 (1.16)

123
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where 1
2 < α1 < 1, C depends on φ, ϕ, f .

Detailed proof will be given in Sect. 4.
By using a similar idea in the estimate of the semi-classical residue term, as shown in

Lemma 4.1, the estimate of the mean-field residue term can be reduced to the corresponding
quantities involving

γ
(2)
N ,t (u1, u2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (u2;w2)

= γ
(2)
N ,t (u1, u2;w1, w2) − ωN ,t (u1;w1)ωN ,t (u2;w2)

+ [ωN ,t (u1;w1) − γ
(1)
N ,t (u1;w1)

]
ωN ,t (u2;w2)

+ γ
(1)
N ,t (u1;w1)

[
ωN ,t (u2;w2) − γ

(1)
N ,t (u2;w2)

]

=: T1 + T2 + T3,

(1.17)

where ωN ,t is the solution to Hartree–Fock equation. The terms with T2 and T3 can be
estimated by the trace norm and Hilbert-Schmidt norm of γ

(1)
N ,t − ωN ,t , respectively. To

control T1, we provide a bound of the following mixed norm estimate for two particle density
matrix

(∫
dw1du1

[∫
dw2

∣∣∣γ (2)
N ,t (w1, w2; u1, w2) − ωN ,t (w1; u1)ωN ,t (w2;w2)

∣∣∣
]2) 1

2

. (1.18)

In [8], the convergence with respect to the trace norm and Hilbert-Schmidt norm of the
difference between γ

(k)
N ,t and ω

(k)
N ,t are obtained separately with the help of Wick’s theorem

for k � 2. However, in the current framework the mixed norm estimate as listed in (1.18)
needs extra efforts. We trace the strategies given in [8] to reduce it to the estimate of the
expectation of the number operator N along the quantum fluctuation.

The above estimates show that in the sense of distribution Rs ∼ �
1
2− and Rm ∼ �

9
4− ∼

N− 3
4−, from which one can observe that the semi-classical and mean field residue terms are

not of the same order in the combined limit N−1 = �
3 argument.

This paper is arranged as follows: we prove the estimate for semi-classical residue in
Sect. 3, followed by the estimate for mean-field residue in Sect. 4. Then we conclude the
proof of Theorem 1.1 in Sect. 5. In the appendices, for reader’s convenience, we list some
basic notations and known estimates.

2 Estimate for Kinetic Residue

In this section, we provide the estimate for R̃ in Proposition 1.1.

Proof of Proposition 1.1 Note that
∣∣∣∣
∫

dp
∣∣R̃(q, p)

∣∣
∣∣∣∣ � �

∫
dp‖∇qa( f �

q,p)
N ,t‖‖a( f �

q,p)
N ,t‖

�
[
�
2
∫

dp〈∇qa( f �

q,p)
N ,t ,∇qa( f �

q,p)
N ,t 〉
] 1

2
[∫

dp mN ,t (q, p)

] 1
2

=
[
�
2
∫

dp〈∇qa( f �

q,p)
N ,t ,∇qa( f �

q,p)
N ,t 〉
] 1

2

	
1
2
N ,t

123
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=
[
�

1
2

∫
dp
∫

dwdu ∇q f

(
w − q√

�

)
∇q f

(
u − q√

�

)
e

i
�
p·(w−u)〈
N ,t , a

∗
wau
N ,t 〉

] 1
2

	
1
2
N ,t (q)

= (2π)3

[
�

1
2 +3

∫
dw �

−1
∣∣∣∣∇ f

(
w − q√

�

)∣∣∣∣
2

〈
N ,t , a
∗
waw
N ,t 〉

] 1
2

	
1
2
N ,t (q)

� �
2

[∫
dw �

− 3
2

∣∣∣∣∇ f

(
w − q√

�

)∣∣∣∣
2

〈
N ,t , a
∗
waw
N ,t 〉

] 1
2

	
1
2
N ,t (q).

This implies, by using Hödler inequality, that

(∫
dq

∣∣∣∣
∫

dp
∣∣R̃(q, p)

∣∣
∣∣∣∣

5
4
) 4

5

� �
2

[∫
dqdw �

− 3
2

∣∣∣∣∇ f

(
w − q√

�

)∣∣∣∣
2

〈
N ,t , a
∗
waw
N ,t 〉

] 1
2 [∫

dq	
5
3
N ,t (q)

] 3
10

� C�
2‖∇ f ‖2〈
N ,t ,N
N ,t 〉 1

2 � C�
1
2 .

In the above estimate, we have used the fact that ‖ρN ,t‖
L∞(0,T ;L 5

3 (R3))
� C , which is a direct

result from Appendix B. Moreover, we obtain
∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇q · R̃(q, p)

∣∣∣∣

� ‖∇ϕ‖L5(R3)

(∫
dq

∣∣∣∣
∫

dp φ(p) R̃(q, p)

∣∣∣∣

5
4
) 4

5

� ‖∇ϕ‖L5(R3)‖φ‖L∞(R3)

(∫
dq

∣∣∣∣
∫

dp
∣∣R̃(q, p)

∣∣
∣∣∣∣

5
4
) 4

5

� C�
1
2 .

��

3 Estimate for Semi-classical Residue

In this section, we will estimate the semi-classical residual term under the assumption with
V ∈ W 2,∞(R3) in Proposition 1.2, withwhich give us the insight to compare the rate between
semi-classical and mean-field residuals.

Proof of Proposition 1.2 First, recall that

Rs := 1

(2π)3

∫
dw1du1dw2du2dq2dp2

(
f �

q,p(w) f �
q,p(u)

)⊗2

[∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − q2)

]
γ

(2)
N ,t (u1, u2;w1, w2).

(3.1)

Since φ(q), ϕ(p) are test functions, we see that
∣∣∣∣
∫

dqdp φ(q)ϕ(p)∇p · Rs(q, p)

∣∣∣∣

= 1

(2π)3

∣∣∣∣
∫

(dqdp)⊗2 φ(q)∇pϕ(p) ·
∫

dw1du1dw2du2
(
f �

q,p(w) f �
q,p(u)

)⊗2

123
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[∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − q2)

]
γ

(2)
N ,t (u1, u2;w1, w2)

∣∣∣∣

= 1

(2π�)3

∣∣∣∣
∫

(dq)⊗2dpdw1du1dw2 φ(q)∇pϕ(p) f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�
p·(w1−u1)

∫
du2dp2 e

i
�
p2·(w2−u2) f

(
w2 − q2√

�

)
f

(
u2 − q2√

�

)

[∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − q2)

]
γ

(2)
N ,t (u1, w2;w1, w2)

∣∣∣∣

=
∣∣∣∣
∫

(dq)⊗2dpdw1du1dw2 φ(q)∇pϕ(p) f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�
p·(w1−u1)

∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2 [∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − q2)

]

γ
(2)
N ,t (u1, w2;w1, w2)

∣∣∣∣,

wherewe applied the fact that (2π�)3δx (y) = ∫ e i
�
p·(x−y)dp. Then, inserting±∇V (q−w2)

and we have

�
∣∣∣∣
∫

(dq)⊗2dpdw1du1dw2 φ(q)∇ϕ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�
p·(w1−u1)

∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

[∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − w2)

]
γ

(2)
N ,t (u1, w2;w1, w2)

∣∣∣∣

+
∣∣∣∣
∫

(dq)⊗2dpdw1du1dw2 φ(q)∇ϕ(p) · f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

e
i
�
p·(w1−u1)

∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

[∇V (q − w2) − ∇V (q − q2)] γ
(2)
N ,t (u1, w2;w1, w2)

∣∣∣∣

=: Is + Js

where we used integration by part in the second to last equality.

Before advancing, recalling (B.4), we split the integral and obtain the following estimate,
∀α2 ∈ ( 12 , 1

)
,

∣∣∣∣
∫

dp∇ϕ(p)e
i
�
p·(w−u)

∣∣∣∣ =
∣∣∣∣∣

∫
dp( χ

(w1−u1)∈�
α2
�

+ χ
(w1−u1)∈(�

α2
�

)c
)∇ϕ(p)e

i
�
p·(w−u)

∣∣∣∣∣

� C̃

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

)
,

(3.2)

where C̃ depends on ‖φ‖Ws+1,∞ and suppφ.

Now we want to estimate the term Is and Js separately. We begin by estimating Is,

Is = �
3
2

∣∣∣∣
∫

dqdpdw1du1dw2 φ(q)∇ϕ(p) f

(
w1 − q√

�

)
f

(
u1 − q√

�

)
e

i
�
p·(w1−u1)
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(∫
dq̃2 | f (q̃2)|2

)[∫ 1

0
ds ∇V

(
su1 + (1 − s)w1 − w2

)− ∇V (q − w2)

]

γ
(2)
N ,t (u1, w2;w1, w2)

∣∣∣.

Using ‖D2V ‖L∞ � C , (3.2), the definition of γ (2) with Cauchy-Schwarz inequality, we have

Is � C�
3
2

∫
dq |φ(q)|

∫
dw1du1

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

) ∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣

(|u1 − q| + |w1 − q|)
∫

dw2
∣∣γ (2)

N ,t (w1, w2; u1, w2)
∣∣

� C�
3
2

∫
dq |φ(q)|

∫
dw1du1

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

) ∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣

(|u1 − q| + |w1 − q|)
(∫

dw2‖aw2aw1ψN ,t‖2
) 1

2
(∫

dw2‖aw2au1ψN ,t‖2
) 1

2

=: C
[
is,1 + is,2

]
,

where we use is,1 to be the term with χ(w1−u1)∈�α
�
, and is,2 to be the other one.

Due to the symmetric property, we can reduce the estimate for is,1 into the following

is,1 � 2C�
3
2

∫
dq |φ(q)|

∫
dw1du1 χ

(w1−u1)∈�
α2
�

∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣ · |u1 − q|
∫

dw2‖aw2aw1ψN ,t‖2

� C�
3
2 ‖ f

(
u1 − q√

�

)
· |u1 − q|‖L∞|�α2

�
|
∫

dq |φ(q)|
∫

dw1

∣∣∣∣ f
(

w1 − q√
�

) ∣∣∣∣〈ψN ,t , a
∗
w1

Naw1ψN ,t 〉

� C�
3
2 �

1
2 �

3α2�
3
2

∫
dw1〈ψN ,t , a

∗
w1

Naw1ψN ,t 〉 � C�
3α2+3+ 1

2−6. (3.3)

Similarly, noticing that φ(q) has compact support, one obtains the estimate for the term
is,2,

is,2 � 2C�
3
2

∫
dq |φ(q)|

∫
dw1du1�

(1−α2)s
∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣ · |u1 − q|
∫

dw2‖aw2aw1ψN ,t‖2

� 2C�
3
2+ 3

2+ 1
2

∫
dũ χ

|ũ|�R1

| f (ũ)||ũ|
∫

dq |φ(q)|
∫

dw1�
(1−α2)s

∣∣∣∣ f
(

w1 − q√
�

) ∣∣∣∣
∫

dw2‖aw2aw1ψN ,t‖2

� C�
3
2+ 3

2+ 1
2 �

(1−α2)s�
3
2 �

−6 � C�
(1−α2)s−1
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To balance the order between is,1 and is,2, the term s is chosen to be

s =
⌈
3(α2 − 1

2 )

1 − α2

⌉
,

where α2 ∈ ( 12 , 1
)
. Therefore, we have

Is � C�
1
2+3(α2−1). (3.4)

Now, to estimate Js, we recall the estimate in (3.2) and obtain

Js � C

∣∣∣∣
∫

(dq)⊗2|φ(q)|
∫

dw1du1

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

)
f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

∫
dw2

∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

|w2 − q2|γ (2)
N ,t (u1, w2;w1, w2)

∣∣∣∣

� C
∫

dq |φ(q)|
∫

dw1du1

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

) ∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣
∫

dq̃ | f (q̃)|2 h 3
2 h

1
2 |q̃|

∫
dw2

∣∣γ (2)
N ,t (w1, w2; u1, w2)

∣∣

� C�
2
∫

dq |φ(q)|
∫

dw1du1

(
χ

(w1−u1)∈�
α2
�

+�
(1−α2)s

) ∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣

(∫
dw2‖aw2aw1ψN ,t‖2

) 1
2
(∫

dw2‖aw2au1ψN ,t‖2
) 1

2

=: C
[
js,1 + js,2

]
.

The estimate for js,1 can be exactly done as in (3.3) for is,1, the same for js,2 as in is,2.
Therefore we obtain the same rate for Js as in (3.4) for Is. This completes the proof. ��

Remark 3.1 The key step in the estimates of semi-classical residue is in (3.3), with which the
computational bugs appeared in [13] can both be fixed by the same technique.

4 Estimate for Mean-Field Residue

In this section, we will estimate the mean-field residue by first showing in Lemma 4.1 that
the estimate for mean-field residue term can be reduced to the estimate for the term

T(1)
∣∣γ (2)

N ,t − γ
(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1) (4.1)

where we denote

T(1)|γ (2) − γ (1) ⊗ γ (1)|(u1;w1) :=
∫

dy
∣∣∣γ (2)(u1, y;w1, y) − γ (1)(u1;w1)γ

(1)(y; y)
∣∣∣ .

Then,we prove the estimate for (4.1) in Proposition 4.1 and finally summary the estimation
for the mean-field residue in Proposition 1.3.
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Lemma 4.1 Let ϕ, φ ∈ C∞
0 (R3). Then, for 1

2 < α1 < 1 and s =
⌈
3(α1− 1

2 )

2(1−α1)

⌉
, we have

∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇p · Rm(q, p)

∣∣∣∣

� C‖∇V ‖L∞�
3+ 3

2 (α1− 1
2 )+ 3

2

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

,

(4.2)

where the constant C depends on ‖ϕ‖∞, ‖∇φ‖Ws,∞ , suppφ, ‖ f ‖L∞∩H1 , supp f .

Proof Recall that, in (1.12), we defined the mean-field residue such that

Rm := 1

(2π)3

∫
dw1du1dw2du2dq2dp2

(
f �

q,p(w) f �
q,p(u)

)⊗2

∇V (q − q2)

[
γ

(2)
N ,t (u1, u2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (u2;w2)

]
.

(4.3)

Then one obtains
∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇p · Rm(q, p)

∣∣∣∣

= 1

(2π)3

∣∣∣∣
∫

(dqdp)⊗2(dwdu)⊗2 ϕ(q)∇φ(p) ·
(
f �

q,p(w) f �
q,p(u)

)⊗2 ∇V (q − q2)

[
γ

(2)
N ,t (u1, u2;w1, w2) − γ

(1)
N ,t (u1; w1)γ

(1)
N ,t (u2; w2)

] ∣∣∣∣

= 1

(2π�)3

∣∣∣∣
∫

(dqdwdu)⊗2
(
f

(
w − q√

�

)
f

(
u − q√

�

))⊗2 (∫
dp ϕ(q)∇φ(p) · e i

�
p·(w1−u1)

)

∇V (q − q2)

(∫
dp2 e

i
�
p2·(w2−u2)

)[
γ

(2)
N ,t (u1, u2; w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (u2;w2)

] ∣∣∣∣

=
∣∣∣∣
∫

(dq)⊗2dw1du1dw2 f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

(∫
dp ϕ(q)∇φ(p) · e i

�
p1·(w1−u1)

)

∇V (q − q2)
[
γ

(2)
N ,t (u1, w2; w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (w2; w2)

] ∣∣∣∣,

where we use the weighted Dirac-Delta function in the last equality, i.e.,

1

(2π�)3

∫
dp2 e

i
�
p2·(w2−u2) = δw2(u2). (4.4)

Now, splitting the domains of w1 and u1 into two, namely, with the characteristic functions
χ

(w1−u1)∈�
α1
�

and χ
(w1−u1)∈(�

α1
�

)c
whose domain �

α1
�

is defined in (B.3), we have

�
∣∣∣∣
∫

(dq)⊗2ϕ(q)

∫
dw1du1dw2 f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

(∫
dp χ

(w1−u1)∈�
α1
�

e
i
�
p·(w1−u1)∇φ(p)

)
· ∇V (q − q2)
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[
γ

(2)
N ,t (u1, w2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (w2;w2)

] ∣∣∣∣

+
∣∣∣∣
∫

(dq)⊗2ϕ(q)

∫
dw1du1dw2 f

(
w1 − q√

�

)
f

(
u1 − q√

�

) ∣∣∣∣ f
(

w2 − q2√
�

)∣∣∣∣
2

(∫
dp χ

(w1−u1)∈(�
α1
�

)c
e

i
�
p·(w1−u1)∇φ(p)

)
· ∇V (q − q2)

[
γ

(2)
N ,t (u1, w2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (w2;w2)

] ∣∣∣∣

=: Im + Jm.

First, considering the term Jm, by the change of variable
√

� q̃2 = w2 − q2, we obtain

Jm =
∣∣∣∣
∫

dq ϕ(q)

∫
dw1du1dw2 f

(
w1 − q√

�

)
f

(
u1 − q√

�

)

(
�

3
2

∫
dq̃2 | f (q̃2)|2∇V (q − w2 + √

� q̃2)

)

(∫
dp χ

(w1−u1)∈(�
α1
�

)c
∇φ(p)e

i
�
p·(w1−u1)

)

(
γ

(2)
N ,t (u1, w2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (w2;w2)

) ∣∣∣∣

� C‖∇V ‖L∞�
3
2

∫
dq |ϕ(q)|

∫
dw1du1

∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

) ∣∣∣∣ χ
|w1−u1|�2R1

√
�∣∣∣∣∣

∫
dp χ

(w1−u1)∈(�
α1
�

)c
∇φ(p)e

i
�
p·(w1−u1)

∣∣∣∣∣
∫

dw2

∣∣∣γ (2)
N ,t (u1, w2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (w2;w2)

∣∣∣ .

where we have used that supp f ⊂ BR1 . Recall again from Lemma B.4 that we have

∣∣∣∣∣

∫
dp χ

(w1−u1)∈(�
α1
�

)c
e

i
�
p·(w1−u1)∇φ(p)

∣∣∣∣∣ � ‖∇φ‖Ws,∞�
(1−α1)s, (4.5)

for s to be chosen later. Hence, together with Hölder’s inequality we get

Jm � C‖∇φ‖Ws,∞‖∇V ‖L∞�
3
2+(1−α1)s

∫
dq |ϕ(q)|

(∫
dw1du1 χ

|w1−u1|�2R1
√

�

∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

)∣∣∣∣
2
) 1

2

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2

χ
|w1−q|�R1

√
�

) 1
2

� C‖ϕ‖L∞‖∇φ‖Ws,∞‖∇V ‖L∞�
3
2+(1−α1)s

(
�
3
∫

dw̃1dũ1 χ
|w̃1−ũ1|�2R1

| f (w̃) f (ũ) |2
) 1

2
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∫
dq

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2

χ
|w1−q|�R1

√
�

) 1
2

� C‖ϕ‖L∞‖∇φ‖Ws,∞‖∇V ‖L∞�
3+(1−α1)s

(∫
dw̃1dũ1 | f (w̃) f (ũ) |2

) 1
2

�
3
2

∫
dq̃1 χ

|q̃1|�R1

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

� C‖ϕ‖L∞‖∇φ‖Ws,∞‖∇V ‖L∞�
3+(1−α1)s+ 3

2

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t

−γ
(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

.

Now, we focus on Im . Using the fact that
∣∣∣
∫
dp e

i
�
p·(w1−u1)∇φ(p)

∣∣∣ � ‖∇φ‖L1 , we obtain

the following estimate:

Im � C‖∇φ‖L1‖∇V ‖L∞

∫
dq |ϕ(q)|

(∫
dw1du1 χ

|w1−u1|��α1
χ

|w1−u1|�2R1
√

�

∣∣∣∣ f
(

w1 − q√
�

)
f

(
u1 − q√

�

)∣∣∣∣
2
) 1

2

�
3
2

∫
dq̃2| f (q̃2)|2

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1; w1)
]2

χ
|w1−q|�R1

√
�

) 1
2

� C‖ϕ‖L∞‖∇φ‖L1‖∇V ‖L∞�
3
2

⎛

⎝�
3
∫

dw̃1dũ1 χ

|w̃1−ũ1|��
α1− 1

2

χ
|w̃1−ũ1|�2R1

| f (w̃1) f (ũ1)|2
⎞

⎠

1
2

∫
dq

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1; w1)
]2

χ
|w1−q|�R1

√
�

) 1
2

� C‖ϕ‖L∞‖∇φ‖L1‖∇V ‖L∞�
3

⎛

⎝
∫

dw̃1dũ1 χ

|w̃1−ũ1|��
α1− 1

2

| f (w̃1) f (ũ1)|2
⎞

⎠

1
2

�
3
2

∫
dq̃1 χ

|q̃1|�R1

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1; w1)
]2) 1

2

,

which together with

∫
dw̃1 | f (w̃1)|2

∫
dũ1 χ

|w̃1−ũ1|��
α1− 1

2

| f (̃u1)|2 � ‖ f ‖2L∞(R3)
‖ f ‖2L2(R3)

�
3(α1− 1

2 ),

implies immediately that

Im � C‖ϕ‖L∞‖∇φ‖L1‖∇V ‖L∞�
3+ 3

2 (α1− 1
2 )+ 3

2

×
(∫

dw1du1
[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

.
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To balance the order between Im and Jm, s is chosen to be

s =
⌈
3(α1− 1

2 )

2(1 − α1)

⌉
,

for α1 ∈ [0, 1). Therefore, we obtained the desired result:
∣∣∣∣
∫

dqdp ϕ(q)φ(p)∇p · Rm

∣∣∣∣

� C‖ϕ‖L∞‖∇φ‖Ws,∞‖∇V ‖L∞�
3+ 3

2 (α1− 1
2 )+ 3

2

×
(∫

dw1du1
[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

.

[

��
Next, we want to bound the term with the ‘mixed’-norm, i.e.,

∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2

. (4.6)

The following proposition provides the estimate of (4.6):

Proposition 4.1 Let γ (k)
N ,t be k-particle reduced density matrix associated with 
N ,t , ωN ,t be

the solution of the Hartree–Fock equation in (1.3). Suppose the assumption for Theorem 1.1
holds. Then the following inequalities hold for all t ∈ R:

‖γ (1)
N ,t − ωN ,t‖HS � C . (4.7)

and

‖γ (1)
N ,t − ωN ,t‖Tr � C

√
N . (4.8)

Furthermore, it holds that
(∫

dw1du1
[
T(1)

∣∣γ (2)
N ,t − ωN ,t ⊗ ωN ,t

∣∣
]2

(u1;w1)

) 1
2

� C N (4.9)

where C depends on t but is independent of N .

The proof of Proposition 4.1 requires the following results from [8], namely:

Lemma 4.2 [8, Lemma 3.1] Let d�(O) be the second quantization of any bounded operator
O on L2(R3), i.e.

d�(O) :=
∫

dxdy O(x; y)a∗
x ay .

For any 
 ∈ Fa, the following inequalities hold
∥∥∥∥d�(O)


∥∥∥∥ � ‖O‖‖N
‖. (4.10)

If furthermore O is a Hilbert-Schmidt operator, we have the following bounds:
∥∥∥∥d�(O)


∥∥∥∥ � ‖O‖HS‖N 1/2
‖, (4.11)
∥∥∥∥
∫

dxdyO(x; y)axay

∥∥∥∥ � ‖O‖HS‖N 1/2
‖, (4.12)
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∥∥∥∥
∫

dxdyO(x; y)a∗
x a

∗
y


∥∥∥∥ � 2‖O‖HS‖(N + 1)1/2
‖. (4.13)

Finally, if O is a trace class operator, we obtain
∥∥∥∥d�(O)


∥∥∥∥ � 2‖O‖Tr, (4.14)
∥∥∥∥
∫

dxdyO(x; y)axay

∥∥∥∥ � 2‖O‖Tr, (4.15)

∥∥∥∥
∫

dxdyO(x; y)a∗
x a

∗
y


∥∥∥∥ � 2‖O‖Tr, (4.16)

where ‖O‖Tr := Tr|O| = Tr
√
O∗O.

Lemma 4.3 [8, Proposition 3.4] Suppose the assumption for Theorem 1.1 holds. Then, there
exist constants K , c > 0 depending only on potential V such that

sup
p∈R3

1

1 + |p|Tr|[ωN ,t , e
ip·x ]| � K N�C(t)

Tr|[ωN ,t , �∇]| � K N� C(t).

Lemma 4.4 [8, Theorem 3.2] Let UN (t; s) be the quantum fluctuation dynamics defined in
(A.6) andN be the number operator. If the assumptions in Lemma 4.3 hold. Then for ξN ∈ Fa

with 〈ξN ,N kξN 〉 � C for any k � 1, we have the following inequality:

‖(N + 1)k UN (t; 0)ξN‖ � C(k, t). (4.17)

Remark 4.1 Here in this paper we only need the result for initial data ξN = � where � is the
vacuum state give in Appendix A.

Now, we are ready to provide the proof of Proposition 4.1.

Proof of Proposition 4.1 The proof of the inequalities (4.7) and (4.8) follows by modifying
Theorem 2.1 of [8]. In particular, from Eq. (4.3) in [8], we obtain

‖γ (1)
N ,t − ωN ,t‖HS � C‖N 1

2UN (t; 0)ξN‖,
‖γ (1)

N ,t − ωN ,t‖Tr � C
√
N‖NUN (t; 0)ξN‖,

by choosing the appropriate operator O as discussed in [8]. Our results for (4.7) and (4.8)
are obtained by applying Lemma 4.4 and taking the assumption that ‖(N + 1)ξN‖ � C .

Therefore, it remains to prove for (4.9). As remarked previously, the trace norm and
Hilbert-Schmidt norm of the difference between γ

(k)
N ,t and ω

(k)
N ,t are obtained separately with

the help of Wick’s theorem for k � 2 in [8]. For our term, however, we do not directly use
Wick’s theorem to compute (4.9) as each terms requires similar but still unique method when
taking the estimation.

Simplifying the notation Rt := RVN ,t , where RVN ,t is the Bogoliubov transformation
given in (A.4), we have, from the definition of a 2-particle reduced density matrix and (A.4).
that

γ
(2)
N ,t (x1, x2; y1, y2)
= 〈ξN ,U∗

N (t; 0)R∗
t a

∗
y1a

∗
y2ax2ax1RtUN (t; 0)ξN 〉
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= 〈ξN ,U∗
N (t; 0) R∗

t a
∗
y1RtR∗

t a
∗
y2RtR∗

t ax2RtR∗
t ax1RtUN (t; 0)ξN 〉

=
〈
ξN ,U∗

N (t; 0) (a∗(ut,y1) + a(v̄t,y1)
) (
a∗(ut,y2 ) + a(v̄t,y2 )

)

(
a(ut,x2 ) + a∗(v̄t,x2 )

) (
a(ut,x1) + a∗(v̄t,x1)

)UN (t; 0)ξN
〉

=
〈
ξN ,U∗

N (t; 0)
[
a(v̄t,y1)a(v̄t,y2 )a(ut,x2 )a(ut,x1) + a(v̄t,y1)a(v̄t,y2 )a

∗(v̄t,x2 )a(ut,x1)

+ a(v̄t,y1)a(v̄t,y2 )a(ut,x2 )a
∗(v̄t,x1) + a(v̄t,y1)a(v̄t,y2 )a

∗(v̄t,x2 )a∗(v̄t,x1)
+ a(v̄t,y1)a

∗(ut,y2 )a(ut,x2 )a(ut,x1) + a(v̄t,y1)a
∗(ut,y2 )a∗(v̄t,x2 )a(ut,x1)

+ a(v̄t,y1)a
∗(ut,y2 )a(ut,x2 )a

∗(v̄t,x1) + a(v̄t,y1)a
∗(ut,y2 )a∗(v̄t,x2 )a∗(v̄t,x1)

+ a∗(ut,y1)a(v̄t,y2 )a(ut,x2 )a(ut,x1) + a∗(ut,y1)a(v̄t,y2 )a
∗(v̄t,x2 )a(ut,x1)

+ a∗(ut,y1)a(v̄t,y2 )a(ut,x2 )a
∗(v̄t,x1) + a∗(ut,y1)a(v̄t,y2 )a

∗(v̄t,x2 )a∗(v̄t,x1)
+ a∗(ut,y1)a∗(ut,y2 )a(ut,x2 )a(ut,x1) + a∗(ut,y1)a∗(ut,y2 )a∗(v̄t,x2 )a(ut,x1)

+a∗(ut,y1)a∗(ut,y2 )a(ut,x2 )a
∗(v̄t,x1)+a∗(ut,y1)a∗(ut,y2 )a∗(v̄t,x2 )a∗(v̄t,x1)

]
UN (t; 0)ξN

〉
,

(4.18)

wherewe use (A.4) in the third equality. Therefore,we obtain, using the fact that 〈v̄t,x , ut,y〉 =
0, 〈ut,x , v̄t,y〉 = 0, 〈v̄t,x , v̄t,y〉 = ωN ,t (y; x), and CAR,
∫

dx1dx2dz1dz2 O1(x1; z1)O2(x2; z2)
(
γ

(2)
N ,t (z1, z2; x1, x2) − ωN ,t (z1; x1)ωN ,t (z2; x2)

)

=
∫

dx1dx2dz1dz2 O1(x1; z1)O2(x2; z2)
〈
ξN ,U∗

N (t; 0)
[
a(v̄t,x1)a(ut,z1)a(v̄t,x2)a(ut,z2)

+ a(v̄t,x1)a(ut,z1)a
∗(ut,x2)a(ut,z2) + a(v̄t,x1)a(ut,z1)a

∗(ut,x2)a∗(v̄t,z2)
+ a∗(v̄t,z1)a(v̄t,x1)a

∗(ut,x2)a(ut,z2)

+ a∗(v̄t,z1)a(v̄t,x1)a
∗(v̄t,z2)a∗(ut,x2) − a∗(ut,x1)a(ut,z1)a(v̄t,x2)a(ut,z2)

+ a∗(ut,x1)a(ut,z1)a
∗(v̄t,z2)a(v̄t,x2)

+ a∗(ut,x1)a∗(v̄t,z1)a(v̄t,x2)a(ut,z2) + a∗(v̄t,z1)a∗(ut,x1)a∗(v̄t,z2)a(v̄t,x2)

+ a∗(ut,x1)a(ut,z1)a
∗(ut,x2)a(ut,z2)

+ a∗(ut,x1)a(ut,z1)a
∗(ut,x2)a∗(v̄t,z2) + a∗(ut,x1)a∗(v̄t,z1)a∗(ut,x2)a∗(v̄t,z2)

+ a∗(v̄t,z1)a(v̄t,x1)a
∗(v̄t,z2)a(v̄t,x2)

− a∗(v̄t,z1)a(v̄t,x1)a(ut,z2)a(v̄t,x2) + a∗(ut,x1)a∗(v̄t,z1)a∗(ut,x2)a(ut,z2)

− a(ut,z1)a(v̄t,x1)a
∗(v̄t,z2)a(v̄t,x2)

− 〈v̄t,x2 , v̄t,z1〉a(v̄t,x1)a(ut,z2) + 〈v̄t,x1 , v̄t,z1〉a(v̄t,x2)a(ut,z2)

− 〈ut,z1 , ut,x2〉a(v̄t,x1)a(ut,z2) + 〈ut,z1 , ut,x2〉a∗(v̄t,z2)a(v̄t,x1) − 〈ut,z1 , ut,x2〉〈v̄t,x1 , v̄t,z2〉
+ 〈v̄t,x1 , v̄t,z1〉a∗(ut,x2)a(ut,z2) + 〈v̄t,x1 , v̄t,z1〉a∗(ut,x2)a∗(v̄t,z2)
− 〈v̄t,x2 , v̄t,z1〉a∗(ut,x1)a(ut,z2) − 〈v̄t,x2 , v̄t,z1〉a∗(ut,x1)a∗(v̄t,z2)
− 〈ut,z1 , ut,x2〉a∗(ut,x1)a(ut,z2) − 〈ut,z1 , ut,x2〉a∗(ut,x1)a∗(v̄t,z2)
− 〈v̄t,x2 , v̄t,z2〉a∗(v̄t,z1)a(v̄t,x1) + 〈v̄t,x2 , v̄t,z1〉a∗(v̄t,z2)a(v̄t,x1)

+ 〈v̄t,x2 , v̄t,z2〉a∗(ut,x1)a(ut,z1) − 〈v̄t,x2 , v̄t,z2〉a∗(v̄t,z1)a∗(ut,x1)

− 〈v̄t,x1 , v̄t,z1〉a∗(v̄t,z2)a(v̄t,x2) − 〈v̄t,x2 , v̄t,z1〉〈v̄t,x1 , v̄t,z2〉
]
UN (t; 0)ξN

〉
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=:
16∑

i=1

Ai +
16∑

j=1

Bj + C . (4.19)

Using the fact that ‖ut‖op, ‖vt‖op � 1, ‖vt‖HS �
√
N , ‖ωN ,t‖Tr = N and the assump-

tion ‖ξN‖ � 1, we do the following estimates for the first term from {Ai }16i=1 and {Bi }16i=1
separately.

|A1|
=
∣∣∣∣
∫

dx1dx2dz1dz2
〈
ξN ,U∗

N (t; 0)
∫

dη1dη
′
1 aη1aη′

1
vt (η1; x1)O1(x1; z1)ut (z1; η′

1)

∫
dη2dη

′
2 aη2aη′

2
vt (η2; x2)O2(x2; z2)ut (z2; η′

2)UN (t; 0)ξN
〉∣∣∣∣

=
∣∣∣∣
∫

dη1dη
′
2

〈
ξN ,U∗

N (t; 0)aη1a
(
vt O1ut (η1; ·))a(vt O2ut (·; η′

2)
)
aη′

2
UN (t; 0)ξN

〉∣∣∣∣

�
∫

dη1‖a∗(vt O1ut (η1; ·))a∗
η1
UN (t; 0)ξN‖

∫
dη′

2‖a
(
vt O2ut (·; η′

2)
)
aη′

2
UN (t; 0)ξN‖

�
∫

dη1‖vt O1ut (η1; ·)‖2‖a∗
η1
UN (t; 0)ξN‖

∫
dη′

2‖vt O2ut (·; η′
2)‖2‖aη′

2
UN (t; 0)ξN‖

� ‖vt O1ut‖HS
(∫

dη1‖a∗
η1
UN (t; 0)ξN‖2

) 1
2 ‖vt O2ut‖HS

(∫
dη′

2‖aη′
2
UN (t; 0)ξN‖2

) 1
2

�
√
N‖vt‖op‖O1‖HS‖ut‖op‖vt‖HS‖O2‖op‖ut‖op‖ (N + 1)

1
2 UN (t; 0)ξN‖

� N‖O1‖HS‖O2‖op‖ (N + 1)
1
2 UN (t; 0)ξN‖.

Additionally, we have

|B1|
=
∣∣∣∣
∫

dx1dx2dz1dz2 O1(x1; z1)O2(x2; z2)
〈
ξN ,U∗

N (t; 0),

〈v̄t,x2 , v̄t,z1〉a(v̄t,x1)a(ut,z2)UN (t; 0)ξN
〉∣∣∣∣

=
∣∣∣∣
∫

dx1dx2dz1dz2
〈
ξN ,U∗

N (t; 0),
∫

dηdη′ aηaη′

vt (η; x1)O1(x1; z1)ωN ,t (z1; x2)O2(x2; z2)ut (z2; η′)UN (t; 0)ξN
〉∣∣∣∣

=
∣∣∣∣
∫

dηdη′〈ξN ,U∗
N (t; 0), aηaη′

(
vt O1ωN ,t O2ut

)
(η; η′)UN (t; 0)ξN

〉∣∣∣∣

� ‖vt O1ωN ,t O2ut‖HS‖ξN‖‖N 1/2UN (t; 0)ξN‖
� ‖O1‖HS‖O2‖op‖N 1/2UN (t; 0)ξN‖.

The estimates for the rest of the terms can be done with similar steps After getting the
bound of each terms, we have obtained the following estimates:
∣∣∣∣∣

16∑

i=1

Ai

∣∣∣∣∣ � N‖O1‖HS‖O2‖op‖NUN (t; 0)ξN‖,
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∣∣∣∣∣∣

16∑

j=1

Bi

∣∣∣∣∣∣
� ‖O1‖HS‖O2‖op

(
N‖(N + 1)1/2UN (t; 0)ξN‖ + √

N‖(N + 1)UN (t; 0)ξN‖
)

� N‖O1‖HS‖O2‖op‖(N + 1)UN (t; 0)ξN‖. (4.20)

Lastly, the final term is estimated as follows:

|C |
=
∣∣∣∣
∫

dx1dx2dz1dz2 O1(x1; z1)O2(x2; z2)
〈
ξN ,U∗

N (t; 0)

〈v̄t,x2 , v̄t,z1〉〈v̄t,x1 , v̄t,z2〉UN (t; 0)ξN
〉∣∣∣∣

=
∣∣∣∣
∫

dx2
〈
ξN ,U∗

N (t; 0)(O1ωN ,t O2ωN ,t
)
(x2; x2)UN (t; 0)ξN

〉∣∣∣∣

� ‖O1ωN ,t O2ωN ,t‖Tr
∣∣〈ξN ,U∗

N (t; 0)UN (t; 0)ξN
〉∣∣

�
√
N‖O1‖HS‖O2‖op.

As a summary, we have

∣∣∣TrO(γ
(2)
N ,t − ωN ,t ⊗ ωN ,t )

∣∣∣ �
∣∣∣∣

16∑

i=1

Ai

∣∣∣∣+
∣∣∣∣

16∑

j=1

Bj

∣∣∣∣+ |C |

� N‖O1‖HS‖O2‖op‖(N + 1)UN (t; 0)ξN‖,
(4.21)

which implies that, for O1 and O2 being Hilbert-Schmidt and trace class operators, we get

(∫
dx1dy1

[∫
dx2

∣∣∣γ (2)
N ,t (x1, x2; y1, x2) − ωN ,t (x1; y1)ωN ,t (x2; x2)

∣∣∣
]2) 1

2

� N‖(N + 1)UN (t; 0)ξN‖.
(4.22)

Applying Lemma 4.4, we obtain the inequalities in Proposition 4.1 as desired. ��
Finally, we have the following estimate for the mixed-norm. Since it is one of the main

contributions of this paper, we write it as a theorem.

Theorem 4.1 Suppose the assumptions given in Proposition 4.1 hold. Then, we have the
following estimate

(∫
dw1du1

[
T(1)

∣∣γ (2)
N ,t − γ

(1)
N ,t ⊗ γ

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

� Ct N , (4.23)

where the constant Ct depends on potential V and time t.

Proof of Theorem 4.1 Inserting the intermediate terms

γ
(2)
N ,t (u1, u2;w1, w2) − γ

(1)
N ,t (u1;w1)γ

(1)
N ,t (u2;w2)

= γ
(2)
N ,t (u1, u2;w1, w2) − ωN ,t (u1;w1)ωN ,t (u2;w2)

+ [ωN ,t (u1;w1) − γ
(1)
N ,t (u1;w1)

]
ωN ,t (u2;w2)

+ γ
(1)
N ,t (u1;w1)

[
ωN ,t (u2;w2) − γ

(1)
N ,t (u2;w2)

]

=: T1 + T2 + T3,

(4.24)
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the estimate in (4.23) is then reduced into the estimates of the following terms.

•
(∫

dw1du1
[
T(1)

∣∣γ (2)
N ,t − ω

(1)
N ,t ⊗ ω

(1)
N ,t

∣∣(u1;w1)
]2) 1

2

,

• ‖ωN ,t − γ
(1)
N ,t‖HS‖ωN ,t‖Tr,

• ‖γ (1)
N ,t‖HS‖ωN ,t − γ

(1)
N ,t‖Tr.

Proposition 4.1 implies immediately (4.23) considering the fact that ‖ωN ,t‖Tr � N . ��
Proof of Proposition 1.3 Direct corollary from Theorem 4.1. ��

5 Proof of Theorem 1.1

In this section, we prove the main theorem. As have been mentioned in the introduction.
We will show that, for any T > 0, the sequence mN ,t is weakly compact and that any
accumulation point mt is exactly the solution of the Vlasov equation. For this purpose, we
need the following lemma.

Lemma 5.1 Let mN ,t be weak solution of the reformulated Schrödinger equation (1.11) and
ρN ,t (q) := ∫

dp mN ,t (p, q). Then there exists a subsequence of mN ,t (without relabeling
for convenience) and function mt such that as N → ∞

mN ,t
∗
⇀ mt in L∞(0, T ; Ls(R3 × R

3)), s ∈ [1,∞], (5.1)

∇V ∗ ρN ,t → ∇V ∗ ρt in Lr (0, T ; Lr (R3)), r ∈ (1,∞), (5.2)

where ρt = ∫ dp mt .

Proof The estimates in Appendix B imply

‖mN ,t‖L∞(0,T ;L1(R3×R3)) + ‖mN ,t‖L∞(0,T ;L∞(R3×R3)) � C, (5.3)

where C appeared in this section denotes a positive constant independent of N . And com-
bining interpolation inequality, we have

‖mN ,t‖L∞(0,T ;Ls (R3×R3)) � C, s ∈ [1,∞].
Therefore, (5.1) is a direct consequence of the above inequality and the moment estimates in
Proposition B.1.

Furthermore, Proposition B.1 implies ‖|p|2mN ,t‖L∞(0,T ;L1(R3×R3)) � C, together with

(5.3), we arrive at ‖ρN ,t‖L∞(0,T ;Ls (R3)) � C for s ∈ [1, 5
3 ]. Hence there exists a subsequence

of rhoN ,t (which is not re-labeled for convenience) such that

ρN ,t
∗
⇀ ρt in L∞(0, T ; Ls(R3)), s ∈

(
1,

5

3

]
.

Owing to V ∈ W 2,∞(R3) and Young’s convolution inequality, we have for a.e. t ∈ (0, T ),

‖∇2V ∗ ρN ,t‖L∞(R3) � ‖∇2V ‖L∞(R3)‖ρN ,t‖L1(R3) � C .

Similarly, we obtain that

‖∇V ∗ ρN ,t‖L∞(0,T ;W 1,∞(R3)) � C . (5.4)
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By means of (1.11), we get

∂tρN ,t = ∂t

∫
dp mN ,t (p, q) = −∇q ·

∫
dp p mN ,t (p, q) + ∇q ·

∫
dp R̃.

It is easy to see that ∂t (∇V ∗ ρN ,t satisfies the following equation:

∂t (∇V ∗ ρN ,t ) = −∇q ·
(
∇V ⊗∗

∫
dp p mN ,t (p, q)

)
+ ∇q ·

(
∇V ⊗∗

∫
dp R̃

)
,

where (u ⊗∗ v)i j = ui ∗ v j for (u, v) ∈ R
3 × R

3. Noticing that

∥∥∥
∫

dp p mN ,t (p, q)

∥∥∥
L∞(0,T ;Ls (R3))

� C, s ∈
[
1,

5

4

]
,

we derive for any test function ϕ̃(q) ∈ W 1,3(R3) and a.e. t ∈ (0, T ),
∣∣∣
∫

R3
dq ∇q ·

(
∇V ⊗∗

∫
dp p mN ,t (p, q)

)
ϕ̃(q)

∣∣∣

� C(V )

∥∥∥
∫

dp p mN ,t (p, q)

∥∥∥
L1(R3)

‖∇ϕ̃(q)‖L3(R3).

For the second term, applying Proposition 1.1, we have
∣∣∣
∫

dq ∇q ·
(
∇V ⊗∗

∫
dp R̃

)
ϕ̃(q)

∣∣∣ � C(V )‖
∫

dpR̃‖
L

5
4 (R3)

‖∇ϕ(q)‖L3(R3)

� C�‖∇ϕ(q)‖L3(R3).

The estimates above show that

‖∂t (∇V ∗ ρN ,t )‖
L∞(0,T ;W−1, 32 (R3))

� C . (5.5)

The inequalities (5.4) and (5.5) allow us to apply Aubin–Lions lemma (e.g. in [4, 31]) to
infer that (5.2). We mention here that the application of Aubin-Lions lemma is proceeded in
a sequence of growing balls, and the convergent subsequence is obtained through diagonal
rule. ��
Proof of Theorem 1.1 With the help of (5.1), (5.2), Propositions 1.1, 1.2 and 1.3, we can take
limit N → ∞ in the weak formulation of the reformulated Schrödinger equation (1.11).
More precisely, for any φ, ϕ ∈ C∞

0 (R3) and η ∈ C∞
0 [0, T ), mN ,t satisfies the following

equation
∫ T

0
dt
∫

dqdp mN ,t (p, q)
[
∂tηϕ(q)φ(p) + p · η(t)∇qϕ(q)φ(p)

− 1

(2π)3
∇V ∗ ρN ,tη(t)ϕ(q) · ∇pφ(p)

]

=
∫ T

0
dt η(t)

∫
dqdp

(∇ϕ(q) φ(p) R̃ + ϕ(q)∇φ(p)(Rs + Rm)
)

− η(0)
∫

dqdp ϕ(q)φ(p)mN ,0.

Since the sums and products of functions of the form η(t)ϕ(q)φ(p) are dense inC∞
0 ([0, T )×

R
3 ×R

3), we have showed that the limit of the subsequence is a weak solution of the Vlasov
equation. On the other hand, the assumption 1 in H1 implies that V ∈ W 2,∞, from which
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one obtains that the Vlasov equation has a unique weak solution as in [21, Theorem 1.1].
Therefore, the whole sequence mN ,t converges weakly. Hence the proof of Theorem 1.1 is
completed. ��
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Appendices

Appendix A: Second Quantization

The Fock space formalism and some results from Bogoliubov theory for the proof of this
paper are listed in the following.2 In particular, as in [9], we will introduce the fermionic
Fock space over Hilbert spaces as the following direct sum:

Fa := C⊕
⊕

n�1

L2
a(R

3n).

By convention, we say that the vacuum state, denoted as � = {1, 0, 0, . . . }, belongs to C.
For all 
 = {ψ(n)}n∈N ∈ Fa and ψ(n) ∈ L2

a(R
3n), we define the number of particle operator

on the n-th sector by
(N


)(n) = nψ(n).
As in [9], the creation and annihilation operators acting on 
 ∈ Fa is defined as follows:

for any f ∈ L2(R3)

(
a∗( f )


)(n)
(x1, . . . , xn) :=

n∑

j=1

(−1) j√
n

f (x j )ψ
(n−1)(x1, . . . , x j−1, x j+1, . . . , xn),

(
a( f )


)(n)
(x1, . . . , xn) := √

n + 1
∫

dx f (x)ψ(n+1)(x, x1, . . . , xn),

2 See [35] for more pedagogic treatment on the topics.
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where ψ(n) ∈ L2(R3n) for any n ∈ N. Additionally, for convenient purposes, the creation
and annihilation operators will be represented by its operator-value distribution, a∗

x and ax
respectively, so that

a∗( f ) =
∫

dx f (x)ax , a( f ) =
∫

dx f (x)ax .

Therefore, the canonical anticommutator relation(CAR) is written as

{a∗
x , ay} = δx=y, {a∗

x , a
∗
y} = {ax , ay} = 0,

for any x, y ∈ R
3.

Observe that for given any 
,� ∈ Fa , it holds that

〈
,N�〉 =
∫

dx〈ax
, ax�〉.

Therefore,wewrite the number of particles operator asN = ∫ dxa∗
x ax . Similarly, the integral

kernel of the k-particle reduced density matrix is written as follows:

γ (k)(x1, . . . , xk; y1, . . . , yk) = 〈
, a∗
y1 . . . a∗

yk axk . . . ax1
〉. (A.1)

Moreover, the Hamiltonian acting on 
 ∈ Fa can be written as

HN := �
2

2

∫
dx∇xa

∗
x∇xax + 1

2N

∫
dxdy V (x − y)a∗

x a
∗
yayax , (A.2)

where V is the interaction potential. We will denote the operator of the kinetic term as

K = �
2
∫

dx∇xa
∗
x∇xax . (A.3)

As presented in [8, 44], for any t � 0, there exists a unitary transformationRVN ,t : Fa →
Fa such that

R∗
VN ,t

axRVN ,t = a(ut,x ) + a∗(v̄t,x ),
R∗

VN ,t
a∗
xRVN ,t = a∗(ut,x ) + a(v̄t,x ),

(A.4)

where vt,x :=∑N
j=1 |e j,t 〉〈e j,t | and ut,x := 1−∑ j=1 |e j,t 〉〈e j,t |, for any orthonormal basis

{e j,t }Nj=1 ⊂ L2(R3).
Then, for t � 0, the solution of the Schrödinger equation is given as


N ,t = e− i
�
HN tRVN ,0� = RVN ,tUN (t; 0)�, (A.5)

where RVN ,t is a unitary Bogoliubov mapping and UN is the quantum fluctuation dynamics
defined as follows,

UN (t; s) := R∗
VN ,t

e− i
�
HN (t−s)RVN ,s . (A.6)

Appendix B: A Priori Estimates

In this appendix, we present in this section a sequence of estimates from [13] that will
prove useful to our calculation. First, we have the following properties of k-particle Husimi
measures from [13, Lemma 2.2]
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Lemma B.1 Letm(k)
N ,t be the k-particleHusimimeasure as defined in (1.6). Then, the following

properties hold:

1. m(k)
N ,t (q, p, . . . , qk, pk) is symmetric,

2. 1
(2π)3k

∫
(dqdp)⊗km(k)

N ,t (q, p, . . . , qk, pk) = N (N−1)···(N−k+1)
Nk ,

3. 1
(2π�)3

∫
dqkdpk m

(k)
N ,t (q, p, . . . , qk, pk) = (N − k + 1)m(k−1)

N ,t (q, p, . . . , qk−1, pk−1),

4. 0 � m(k)
N ,t (q, p, . . . , qk, pk) � 1 a.e.,

where 1 � k � N.

From [13, Lemma 2.6] and [13, Proposition 2.3], we have the following estimate for the
kinetic energy as well as the moment estimate of the 1-particle Husimi measure respectively:

Lemma B.2 Assume V ∈ W 1,∞(R3), then the kinetic energy is bounded as follows:

〈
N ,t ,
K
N


N ,t 〉 � 〈
N ,
K
N


N 〉 + Ct2, (B.1)

where K is defined in (A.3) and the constant C depends on ‖∇V ‖∞.

Proposition B.1 For t � 0, we have the following finite moments:
∫

dqdp (|q| + |p|2)mN ,t (q, p) � C(1 + t3), (B.2)

where C > 0 is a constant that depends on initial data
∫
dqdp (|q| + |p|2)mN (q, p).

Next, we will present the oscillation estimate from [13, Lemma 2.5] which will be used
frequently in our proof:

Lemma B.3 (Bound on localized number operator) Let ψN ∈ F (N )
a such that ‖ψN‖ = 1,

and R be the radius of a ball such that the volume is 1. Then we have
∫

dqdx〈ψN ,χ|x−q|�√
�R a

∗
x axψN 〉 � C(R)�− 3

2 ,

where χ is a characteristic function.

Lemma B.4 (Estimate of oscillation) For ϕ ∈ C∞
0 (R3) and

�α
�

:= {x ∈ R
3; max

1� j�3
|x j | � �

α}, (B.3)

it holds for every α ∈ (0, 1), s ∈ N, and x ∈ R
3\�α

�
,

∣∣∣∣
∫

R3
dp e

i
�
p·xϕ(p)

∣∣∣∣ � C�
(1−α)s, (B.4)

where C depends on the compact support and the Cs-norm of ϕ.
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